Антигистаминный и антиаллергический крем
Антигистаминный и антиаллергический крем
Содержит активный ингредиент: хлорфеноксамин HCL 15 мг
Остановите зуд, получите охлаждающий эффект и уменьшите боль.
Крем SYSTRAL указывается для местного применения при укусах насекомых, умеренных ожогах, солнечных ожогах, ознобе, простудном и аллергическом дерматитах, например, вызванных медузами, экземой.
Не используйте SYSTRAL:
— Если у вас есть специфические кожные процессы (такие как сифилис, туберкулез), ветряная оспа, реакции после вакцинации, микоз, бактериальные кожные инфекции, стероидные угри.
— Беременность и кормление грудью
SYSTRAL должен использоваться во время беременности и лактации, только если он выписан врачом.
Не используйте SYSTRAL больше, чем необходимо
Использование SYSTRAL в расширенных областях кожи, пораженных воспалительными изменениями (ожоги, солнечные ожоги), может вызывать побочные эффекты от большого количества хлорфеноксамина гидрохлорида, особенно у маленьких детей.
В очень редких случаях может возникать беспокойство, путаница и расширение зрачка. У взрослых неблагоприятные эффекты — это в основном усталость и сухость во рту.
Крем против аллергии Systral 10 г / Systral cream 10g
-20%
Отзывы:
(0)
- Код Товара: 8354
- Вес: 0.03кг
- Наличие: В наличии
272.00р.
340.00р.
Нашли дешевле?
Кол-во:
- Обзор товара
- Отзывов (0)
Крем от кожного зуда, аллергии, сыпи, крапивницы, укусов насекомых. Кожа не обгорает на солнце.
Без стероидов
Безопасно для детей и пожилых людей, также для домашних животных
Отзывов (0)
Нет отзывов об этом товаре.
Chlorphenoxamine
In Meyler’s Side Effects of Drugs (Sixteenth Edition), 2016
General information
Chlorphenoxamine is an antihistamine closely related to diphenhydramine with a similar metabolic pathway [1]. It appears to have been developed in the hope of producing a greater effect in Parkinson’s disease by combining both anticholinergic and antihistaminic effects in a single molecule [2].
In the doses commonly used well-recognized anticholinergic effects can occur [3]. Some patients become drowsy, whilst others are stimulated; with increasing dosages, some patients go into coma; others have agitation, convulsions, and marked euphoria, perhaps with hallucinations and disorientation.
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/B9780444537171004820
Antiallergics, antiasthmatics and antitussives
Paul Merlob, Corinna Weber-Schöndorfer, in Drugs During Pregnancy and Lactation (Third Edition), 2015
4.2.1 Antihistamines (H1-blocker)
Antihistamines are used to treat allergic illnesses, as antiemetics (Chapter 4.3) and as sleeping aids.
The newer antihistamines, which have practically no sedative effect, have also proven beneficial during breastfeeding. Following a single dose of 40 mg loratadine (four times the current therapeutic dose) transfer to the infant was calculated at approximately 1% of the effective ingredient (including metabolites) compared to the maternal weight-related dose (Hilbert 1988). Only two infants (3.9%) among 51 exposed to loratadine during breastfeeding showed sedation (Merlob 2002). There are no data on the passage into mother’s milk of cetirizine, which has a half-life of 9 hours. Previous comprehensive experience, however, does not indicate any noteworthy intolerance while breastfeeding. Terfenadine with an M/P ratio of 0.2 has a half-life of 20 hours. A study of four breastfeeding women indicated less than 0.5% of the weight-related dose for the infant. Only the active metabolites, but not the maternal substance, were detectable in the milk (Lucas 1995). There is very limited experience with the following non-sedating H1-blockers and no data on their passage into mother’s milk: desloratadine, ebastine, fexofenadine and levocetirizine. There are no observations at all on rupatadine and bilastine.
The older antihistamines with sedating action have become less important and should be reserved during breastfeeding for special conditions. Mild restlessness that does not need treatment and irritability were described in around 10%, and sedation or weak suckling in 1.6% of the children exposed to various antihistamines (Moretti 1995, Ito 1993). None of the manufacturers have data on the relative dose. Twelve hours after the start of maternal treatment with clemastine, a stiff neck, hyper-excitability and sleepiness were observed in a 10-week-old infant; 5–10 μg/L of the drug was detected in the milk. No clemastine was found in the infant’s serum (Kok 1982). In addition, the mother had long-term treatment with phenytoin and carbamazepine. Until a few years ago, dimetindene was a common antihistamine. It has a short half-life of 5 to 7 hours, was approved for children from age 1, and is comparatively non-sedating, but it has an atropine-like effect that should not be overlooked. Much less well studied are cyproheptadine, dexchlorpheniramine, hydroxyzine, mizolastine and triprolidine. Azelastine is available for systemic and local use. The latter is considered to be non-problematic but it could alter the milk taste leading to rejection by the infant.
Used exclusively for local therapy are bamipine, chlorphenoxamine and levocabastine as well as the newer substances epinastine and olopatadine. There are no data on passage into the mother’s milk for any of these substances. Their use during breastfeeding is considered unproblematic.
Recommendation
The antiallergics of choice during breastfeeding are loratadine and cetirizine. Should a sedating effect be expressly desired, breastfeeding could also be continued with dimentindene without limitation. Should symptoms such as restlessness or mild sedation occur, the (possible) consequences must be considered in individual cases – first and foremost changing to another preparation. Due to the longer market testing, levocabastine and azelastine are preferable for local use. Desensitization with allergen extracts may also be conducted during breastfeeding.
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/B9780124080782000275
SPECTROPHOTOMETRY | Pharmaceutical Applications
J. Martinez Calatayud, in Encyclopedia of Analytical Science (Second Edition), 2005
Chemometric procedures
Simultaneous spectrophotometric determinations on binary or ternary mixtures of drugs in a formulation, and avoiding separation methods and other sample pretreatments, can also be achieved by using chemometric-assisted spectrophotometric procedures other than derivative spectrophotometry. Analyzing synthetic mixtures containing title drugs by this approach has been validated using liquid chromatographic or capillary electrophoresis. The effort devoted to other chemometric methods is less than that devoted to derivative spectrophotometry. Tablets and sugar-coated pills are the formulations generally analyzed.
Studies on binary mixture samples frequently deal with classical least-squares, inverse least-squares, principal component regression and partial least-squares methods. These methods have been used for resolving mixtures of hydrochlorothiazide and spironolactone in tablets; cyproterone acetate and estradiol valerate; amiloride and hydrochlorothiazide; mefenamic acid and paracetamol; chlorphenoxamine hydrochloride and caffeine; benazepril hydrochloride and hydrochlorothiazide.
Mixtures of acetylsalicylic acid and ascorbic acid have been studied by using parallel factor analysis and partial least-squares. The former is used for spectral deconvolution, and pKa estimation for both acids. The simultaneous determination of fosinopril and hydrochlorothiazide in pharmaceutical formulations consists of extracting both compounds in an aqueous solution, measuring by multiwavelength UV spectrophotometry; hydrochlorothiazide acts as an internal standard to verify the accuracy of the analysis.
Chemometrics has also been applied to solve other problems but not for the quantification of binary mixtures. Principal component analysis (PCA) has been used to plot dissolution curves and provide information about between- and within-batch variations. Differences in level or shape can be observed in the first two principal components (PCs). Irrelevant irregularities, which have a strong influence on the similarity factor, are resolved.
A kinetic spectrophotometric method has been developed for the simultaneous quantitative determination of acetaminophen and phenobarbital in pharmaceutical preparations. The basis of the method was the different kinetic rates of the analytes in a two-step chemical procedure: first the oxidative coupling reaction with 3-methylbenzothiazolin-2-one hydrazone in hydrochloric acid medium and then using Fe(III) as oxidant and continuous absorbance monitoring. An artificial neural network (ANN) coupled with PCA (PC-ANN) has been used to simulate this method.
Spectrophotometric monitoring with the aid of chemometrics has also been applied to more complex mixtures. To solve the mixtures of corticosteroid dexamethasone sodium phosphate and vitamins B6 and B12, the method involves multivariate calibration with the aid of partial least-squares regression. The model is evaluated by cross-validation on a number of synthetic mixtures. The compensation method and orthogonal function and difference spectrophotometry are applied to the direct determination of omeprazole, lansoprazole, and pantoprazole in grastroresistant formulations. Inverse least squares and PCA techniques are proposed for the spectrophotometric analyses of metamizol, acetaminophen, and caffeine, without prior separation. Ternary and quaternary mixtures have also been solved using iterative algorithms.
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/B0123693977007238
Antiallergic drugs and desensitization
Margreet Rost van Tonningen, in Drugs During Pregnancy and Lactation (Second Edition), 2007
2.2.1 Antihistamines (H1-blocker)
Pharmacology
Antihistamines are substances that competitively block the action of histamine on the histamine receptors. Histamine release results in the stimulation of H1-receptors located on the smooth muscles of many organs, or H2-receptors located in the mucosa of the stomach, producing an increase in acid secretion. Only the blocking of the H1-receptors is essential in antiallergy therapy.
H1-antihistamines are mostly used in antiallergy therapy; some are used as antiemetics and some as sedatives. The less sedating antihistamines are preferred for antiallergy therapy.
Of the first-generation antihistamines, alimemazine, bamipine, brompheniramine, carbinoxamine, chlorpheniramine, chlorphenoxamine, clemastine, cyproheptadine, dexchlorpheniramine, dimetindene, diphenhydramine, hydroxyzine, mebhydroline, oxatomide, pheniramine, triprolidine, and tripelenamine among others, have been or are still used as antiallergic drugs.
Second- and third-generation antihistamines such as acrivastin, astemizole, azelastine, cetirizine, desloratadine, ebastin, fexofenadin, levocabastine, levocetirizine, loratadine, mequitazine, mizolastine, oxatomide, terfenadine, and tritoqualin are less sedating than the first-generation agents. The half-lives for astemizole and for terfenadine are very long (20–26 hours, astemizole metabolites 9 days!). Serious cardiovascular events and potentially serious drug interactions have been reported with respect to terfenadine and astemizol. In many countries, astemizole and terfenadine have been removed from the market. Some of the above-mentioned drugs are only available for local use. For azelastine and oxatomide, see also Chapter 2.3.
Toxicology
First-generation antihistamines
A large number of pregnancies exposed to first-generation anti-histamines such as chlorpheniramine, clemastine, dexchlorpheniramine, dimetindene, diphenhydramine, hydroxyzine, mebhydroline, and pheniramine have been studied to date. No increased teratogenic risk has been detected (Gilbert 2005, Källén 2002, 2003, Schatz 1997, Lione 1996).
Only a limited number of pregnancies exposed to brompheniramine, cyproheptadine, triprolidine, and tripelenamine have been studied, but no increased risk of congenital malformations was noted (Mazzotta 1999). In animal experiments, cyproheptadine was toxic to fetal pancreatic cells. The comparable effects in humans have not been reported, but experience with the use of cyproheptadine in pregnancy is very limited.
One study uncovered an association between the use of antihistamines during the 2 weeks preceding delivery and an increased risk of retrolental fibroplasia (Zierler 1986). Other investigators have not confirmed this association.
Diphenhydramine and dimenhydrinate, when used parenterally in late pregnancy, may stimulate uterine contractions, leading to concern about fetal hypoxia (Broussard 1998; see also Chapter 2.4).
Withdrawal symptoms (e.g. generalized tremulousness and diarrhea) have been reported after the use of the antihistamines diphenhydramine and hydroxyzine throughout pregnancy (Lione 1996). A recent publication reports on a term newborn with tonic–clonic seizures starting 4 hours after birth, whose mother had received 150mg hydroxyzine per day for anxiolysis. The newborn’s plasma levels paralleled those of its mother 6 hours after birth. The authors interpreted the seizures as withdrawal symptoms. The neurological development was uneventful at the age of 6 months (Serreau 2005).
Second- and third-generation antihistamines
Among 66 pregnant women exposed to acrivastin during early pregnancy, no indication for teratogenicity was observed (Källén 2002, Wilton 1998).
In prospective studies on astemizole use in 187 pregnancies, no association was found between astemizole exposure in the first trimester and the occurrence of congenital malformations or other adverse effects (Diav-Citrin 2003, Pastuszak 1998). However, like terfenadine, astemizole has been withdrawn in many countries because of cardiotoxicity.
There is a fair amount of experience with the use of cetirizine – an active metabolite of hydroxyzine – during pregnancy. In a very small prospective study (39 pregnancies), cetirizine use during the first trimester was not associated with a teratogenic risk (Einarson 1997). Two recent prospective controlled studies by members of the European Network of Teratology Information Services (ENTIS) demonstrated no increased risk of congenital malformations or other adverse effects after exposure to cetirizine during pregnancy, of which 292 were first-trimester exposures (Weber-Schöndorfer 2005, Paulus 2004). Data from the Swedish Medical Birth Registry on cetirizine exposure during pregnancy (n = 917) confirm these findings (Källén 2002).
Among 39 first-trimester exposures, there were no indications for teratogenicity of ebastin (Källén 2002).
Post-marketing prescription-event monitoring found no drug-related adverse outcome in 47 pregnancies exposed to fexofenadine, the active metabolite of terfenadine (Craig-McFeely 2001).
The best-studied second-generation antihistamine is loratadine. Data on more than 4000 exposed pregnancies are documented. The Swedish Medical Birth Registry reported finding a prevalence of hypospadias in male offspring that was twice that of the general population among approximately 3000 women who had taken loratadine in pregnancy (Källén 2001). This report had a number of design limitations. The finding of an increased risk of hypospadias was not confirmed in various subsequent studies and reports. Two prospective controlled studies found no increased risk of congenital malformations and no cases of hypospadias after exposure to loratadine in approximately 370 pregnancies, of which 336 were exposed at least during the first trimester (Diav-Citrin 2003, Moretti 2003). Unpublished data of the European Network of Teratology Information Services (ENTIS) on loratadine exposure during pregnancy did not yield any case of hypospadias to date. Investigators at the Centers for Disease Control analyzed data from the National Birth Defects Prevention Study. The use of loratadine was identified in only 1.7% of the entire study population, and no statistical association with the use of loratadine (or other antihistamines) and hypospadias was detected in these data (Werler 2004). An examination of Danish birth registries, reported in abstract, identified cases of hypospadias and investigated prescription records for each case and a matched control group. This study did not find a significant association between maternal exposure to loratadine and an increased risk of hypospadias (Pedersen 2004). To date, continuous post-marketing surveillance has found no further evidence of an increased risk of hypospadias.
In prospective studies covering almost 300 pregnancies, and one record linkage study on terfenadine use during pregnancy, no increased risk of malformations could be detected after the first-trimester use (Diav-Citrin 2003, Loebstein 1999, Schick 1994). Data from the Swedish Medical Birth Registry on terfenadine exposure during pregnancy confirm these findings (Källén 2002). However, terfenadine has been withdrawn in many countries because of cardiotoxicity.
There are absent or few human data on the use of the following antihistamines: bamipine, carbinoxamine, desloratadine, levocabastine, levocetirizine, mequitazin, mizolastine, and tritoqualin (Gilbert 2005, Källén 2002).
Recommendation.
First-generation H1-blockers like chlorpheniramine, dexchlorpheniramine, mebhydroline, clemastine, and dimetindene can be used during pregnancy for the treatment of allergic conditions. As the best-studied second-generation antihistamine, loratadine can be used during pregnancy for the treatment of allergic conditions. Cetirizine could be an acceptable second choice. It should be noted that neonatal respiratory depression has been reported after perinatal use of some first-generation antihistamines. To date, the inadvertent use of the new and/or less well-documented antihistamines does not require termination of pregnancy or invasive diagnostic procedures. When feasible, local treatment with intranasal sodium cromoglycate, beclomethason or budesonide is preferred in conditions like allergic rhinitis etc. (see Chapter 2.3).
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/B9780444520722500069
Urine Markers for Bladder Cancer Surveillance: A Systematic Review
Bas W.G. van Rhijn, … Theo H. van der Kwast, in European Urology, 2005
- 1.
-
Shabaik AS, Pow-Sang JM, Lockhart J, Nicosia SV. Role of DNA image cytometry in the follow-up of patients with urinary tract transitional cell carcinoma. Anal Quant Cytol Histol 1993;15:115–23.
- 2.
-
Murphy WM, Emerson LD, Chandler RW, Moinuddin SM, Soloway MS. Flow cytometry versus urinary cytology in the evaluation of patients with bladder cancer. J Urol 1986;136:815–9.
- 3.
-
Desgrippes A, Izadifar V, Assailly J, Fontaine E, Beurton D. Diagnosis and prediction of recurrence and progression in superficial bladder cancers with DNA image cytometry and urinary cytology. BJU Int 2000;85:434–6.
- 4.
-
Gregoire M, Fradet Y, Meyer F, Tetu B, Bois R, Bedard G, et al. Diagnostic accuracy of urinary cytology, and deoxyribonucleic acid flow cytometry and cytology on bladder washings during followup for bladder tumors. J Urol 1997;157:1660–4.
- 5.
-
Carbin BE, Ekman P, Eneroth P, Nilsson B. Urine-TPA (tissue polypeptide antigen), flow cytometry and cytology as markers for tumor invasiveness in urinary bladder carcinoma. Urol Res 1989;17:269–72.
Read full article
URL:
https://www.sciencedirect.com/science/article/pii/S030228380500148X
Хлорфеноксамин
Chlorphenoxamine
Фармакологическое действие
Хлорфеноксамин — антигистаминное, антихолинергическое средство, обладает противозудным и противопаркинсоническим действием.
Информация о действующем веществе Хлорфеноксамин предназначена для медицинских и фармацевтических специалистов, исключительно в справочных целях. Инструкция не предназначена для замены профессиональной медицинской консультации, диагностики или лечения. Содержащаяся здесь информация может меняться с течением времени. Наиболее точные сведения о применении препаратов, содержащих активное вещество Хлорфеноксамин, содержатся в инструкции производителя, прилагаемой к упаковке.
На чтение 21 мин. Опубликовано
Содержание
- Systral cream инструкция по применению на русском языке
- Крем против аллергии Systral 10 г / Systral cream 10g
- Похожие товары
- Чай Пу Эр 50 гр / Tea Pu Er 50 gr
- Тайский сушеный манго / Thai dried mango 200 g
- Содержание
- Действующее вещество
- Фармакологическая группа
- Состав и форма выпускa
- Фармакологическое действие
- Фармакодинамика
- Показания
- Противопоказания
- Применение при беременности и кормлении грудью
- Способ применения и дозы
- Побочные действия
- Взаимодействие
- Меры предосторожности
- Условия хранения
- Срок годности
- Systral cream chlorphenoxamine инструкция на русском
- Фармакологическое действие
- Фармакокинетика
- Показания активного вещества ХЛОРФЕНАМИН
- Режим дозирования
- Побочное действие
- Противопоказания к применению
- Особые указания
- Лекарственное взаимодействие
- Chlorphenoxamine
- General information
- Antiallergics, antiasthmatics and antitussives
- 4.2.1 Antihistamines (H1-blocker)
- Recommendation
- SPECTROPHOTOMETRY | Pharmaceutical Applications
- Chemometric procedures
- Antiallergic drugs and desensitization
- 2.2.1 Antihistamines (H1-blocker)
- Pharmacology
- Toxicology
Systral cream инструкция по применению на русском языке
Антигистаминный и антиаллергический крем
Антигистаминный и антиаллергический крем
Содержит активный ингредиент: хлорфеноксамин HCL 15 мг
Остановите зуд, получите охлаждающий эффект и уменьшите боль.
Крем SYSTRAL указывается для местного применения при укусах насекомых, умеренных ожогах, солнечных ожогах, ознобе, простудном и аллергическом дерматитах, например, вызванных медузами, экземой.
— Если у вас есть специфические кожные процессы (такие как сифилис, туберкулез), ветряная оспа, реакции после вакцинации, микоз, бактериальные кожные инфекции, стероидные угри.
— Беременность и кормление грудью
SYSTRAL должен использоваться во время беременности и лактации, только если он выписан врачом.
Не используйте SYSTRAL больше, чем необходимо
Использование SYSTRAL в расширенных областях кожи, пораженных воспалительными изменениями (ожоги, солнечные ожоги), может вызывать побочные эффекты от большого количества хлорфеноксамина гидрохлорида, особенно у маленьких детей.
В очень редких случаях может возникать беспокойство, путаница и расширение зрачка. У взрослых неблагоприятные эффекты — это в основном усталость и сухость во рту.
Крем против аллергии Systral 10 г / Systral cream 10g
Крем от кожного зуда, аллергии, сыпи, крапивницы, укусов насекомых. Кожа не обгорает на солнце.
Безопасно для детей и пожилых людей, также для домашних животных
Нет отзывов об этом товаре.
Для местного лечения аллергических и зудящих кожных заболеваний, таких, как укусы насекомых, медуз ожоги, крапивница и экзема, солнечные ожоги, незначительные ожоги и обморожения.
Похожие товары
Чай Пу Эр 50 гр / Tea Pu Er 50 gr
Элитный черный прессованный чай Пуэр, вес упаковки 50 грамм, производится в городе Пуэр, расположенному в китайской провинции Юньнань. Все чайные плантации находятся в экологически чистой горной местности, с особым влажным климатом, благоприятно воздействующим на рост и развитие деревьев. Именно поэтому …
Тайский сушеный манго / Thai dried mango 200 g
Полакомиться экзотическим фруктом и одновременно принести ощутимую пользу здоровью можно легко и приятно с тайским сушеным манго. Помимо неповторимого вкуса, плоды отличаются высоким содержанием витаминов, минеральных веществ и аминокислот.
Сушеные тайские фрукты можно употреблять ежедневно в качестве перекуса.
Описание препарата Сектрал (таблетки, покрытые оболочкой, 200 мг) основано на официальной инструкции, утверждено компанией-производителем в 2002 году
Дата согласования: 31.07.2002
Содержание
- Действующее вещество
- ATX
- Фармакологическая группа
- Нозологическая классификация (МКБ-10)
- Состав и форма выпускa
- Фармакологическое действие
- Фармакологическое действие
- Фармакодинамика
- Показания
- Противопоказания
- Применение при беременности и кормлении грудью
- Способ применения и дозы
- Побочные действия
- Взаимодействие
- Меры предосторожности
- Условия хранения
- Срок годности
- Отзывы
Действующее вещество
Фармакологическая группа
Состав и форма выпускa
1 таблетка, покрытая оболочкой, содержит ацебутолола (в виде гидрохлорида) 200 мг; в блистере 10 шт., в картонной коробке 2 блистера.
Фармакологическое действие
антиаритмическое, антиангинальное, гипотензивное.
Селективно блокирует бета-адренорецепторы сердца, обладает внутренней симпатомиметической активностью и мембраностабилизирующим эффектом.
Селективно блокирует бета-адренорецепторы сердца, обладает внутренней симпатомиметической активностью и мембраностабилизирующим эффектом.
Фармакодинамика
Угнетает возбудимость и проводимость в миокарде. Оказывает незначительное отрицательное инотропное действие, несколько уменьшает минутный выброс.
Показания
Аритмия, в т.ч. мерцание предсердий, стенокардия, артериальная гипертензия.
Противопоказания
AV-блокада II и III степени, брадикардия, застойная сердечная недостаточность, бронхиальная астма, прием за 24–48 ч до начала анестезии, одновременное применение ингибиторов МАО , беременность (I триместр).
Применение при беременности и кормлении грудью
Противопоказано при беременности (I триместр).
Способ применения и дозы
Внутрь. Артериальная гипертензия: 400 мг однократно (утром) или в 2 приема (утром и вечером).
Стенокардия и нарушения ритма: по 200 мг 2 раза в сутки, в экстренных случаях — до 300 мг 3 раза в сутки, поддерживающая доза — по 100 мг 3 раза или по 200 мг 2 раза в сутки.
Побочные действия
Сердечная недостаточность, AV блокада, брадикардия, гипертензия; диспепсия, гипогликемия, аллергические реакции.
Взаимодействие
Усиливает гипогликемический эффект инсулина и пероральных противодиабетических средств.
Меры предосторожности
Лечение следует начинать спустя 2 нед после приема ингибиторов МАО . Прекращать терапию необходимо постепенно, во избежание развития синдрома «отмены» (усиление симптомов вплоть до инфаркта миокарда).
Условия хранения
В сухом, защищенном от света месте.
Хранить в недоступном для детей месте.
Срок годности
Не применять по истечении срока годности, указанного на упаковке.
действующее вещество: сульфадиазина серебра 10 мг.
вспомогательные вещества: цетостеариловый спирт, парафин белый мягкий, изопропилмиристат, пропиленгликоль, полиоксил 40 стеарат, сорбитанолеат, метилпарагидроксибензоат и очищенная вода.
Беловато-желтоватый крем, однородный, с запахом воска
Противомикробные препараты для наружного применения. Сульфаниламиды.
Лечение и профилактика инфекций при ожогах второй и третьей степени, а также трофических язв и пролежней.
Необходимо учитывать официальные рекомендации по соответственному применению и назначению антибактериальных препаратов.
Применяют наружно у взрослых и детей старше 2-х месяцев.
Необходимо предварительно вымыть и очистить поврежденную поверхность. Затем при помощи стерильного шпателя или руками в стерильных резиновых перчатках нанести слой толщиной 3 мм на поврежденную поверхность, после чего наложить повязку.
В зависимости от степени инфицирования и вида повреждения определяется частота смены повязки, с 1-2 раз в день при ожогах и повреждениях незначительной степени заражения до каждых 4-6 часов в случае серьезного заражения.
При каждой перевязке и нанесении лекарственного средства необходимо предварительно удалить остатки предыдущей повязки, тщательно промыть рану теплой кипяченой водой либо слабым изотоническим солевым раствором.
Не следует прерывать лечение до тех пор, пока возможно инфицирование.
Следует назначать с осторожностью пациентам с почечной или печеночной недостаточностью (см. раздел Особые указания)
Каждая отдельная упаковка должна быть использована для лечения одного пациента.
Указания по правильному применению препарата
см. раздел «Способ применения и дозы».
Способ применения крема одинаков для лечения ожогов, трофических язв и другой поврежденной кожи. Максимальная разовая доза 0,3 г.
Туба имеет уплотнение, которое вскрывается в соответствии с инструкциями на рисунке:
Гиперчувствительность к сульфадиазину серебра, сульфаниламидным препаратам или любому из вспомогательных веществ, угнетение костномозгового кроветворения, дефицит глюкозо-6-фосфатдегидрогеназы, почечная и печеночная недостаточность, порфирия, беременность и кормление грудью, глубокие гнойные раны и ожоги с выраженной экссудацией.
Вследствие риска возникновения ядерной желтухи, сульфадиазин серебра не следует назначать новорожденным и недоношенным детям в возрасте до 2-х месяцев, беременным и кормящим женщинам.
Жжение, зуд, коричневато-серое окрашивание кожи, кожные аллергические реакции (кожная сыпь, фотосенсибилизация); при длительном применении на больших раневых поверхностях – системные побочные эффекты (лейкопения, головная боль, диспепсия).
Тяжёлые кожные побочные реакции: синдром Стивенса-Джонсона и токсический эпидермальный некролиз.
Частота развития – очень редкая.
Побочные эффекты, обусловленные применением сульфадиазина серебра, наблюдались примерно у 2% пациентов и имели незначительный и транзиторный характер.
В ходе клинических исследований были выявлены следующие побочные реакции, представленные по частоте проявления и системам органов, где они возникали. Для их оценки применялась следующая классификация: очень часто (≥ 1/10); часто (≥ 1/100,
Источник
Systral cream chlorphenoxamine инструкция на русском
Антигистаминный и антиаллергический крем
Антигистаминный и антиаллергический крем
Содержит активный ингредиент: хлорфеноксамин HCL 15 мг
Остановите зуд, получите охлаждающий эффект и уменьшите боль.
Крем SYSTRAL указывается для местного применения при укусах насекомых, умеренных ожогах, солнечных ожогах, ознобе, простудном и аллергическом дерматитах, например, вызванных медузами, экземой.
— Если у вас есть специфические кожные процессы (такие как сифилис, туберкулез), ветряная оспа, реакции после вакцинации, микоз, бактериальные кожные инфекции, стероидные угри.
— Беременность и кормление грудью
SYSTRAL должен использоваться во время беременности и лактации, только если он выписан врачом.
Не используйте SYSTRAL больше, чем необходимо
Использование SYSTRAL в расширенных областях кожи, пораженных воспалительными изменениями (ожоги, солнечные ожоги), может вызывать побочные эффекты от большого количества хлорфеноксамина гидрохлорида, особенно у маленьких детей.
В очень редких случаях может возникать беспокойство, путаница и расширение зрачка. У взрослых неблагоприятные эффекты — это в основном усталость и сухость во рту.
Rec.INN
зарегистрированное ВОЗ
Входит в состав препаратов:
список
Фармакологическое действие
Блокатор гистаминовых H1-рецепторов, оказывает антисеротониновое, антигистаминное, слабое антихолинергическое, седативное действие. Уменьшает выраженность аллергических реакций, опосредованных действием гистамина, уменьшает проницаемость капилляров, суживает сосуды, устраняет отечность и гиперемию слизистой оболочки полости носа, носоглотки и придаточных пазух носа; уменьшает местные экссудативные проявления, подавляет симптомы аллергического ринита: чиханье, ринорею, зуд глаз, носа. Начало действия — через 20-30 мин, длительность — 4-4.5 ч.
Фармакокинетика
После приема внутрь хлорфенамин относительно медленно абсорбируется из ЖКТ. Cmax достигается через 2.5-6 ч. Биодоступность низкая — 25-50%. Подвергается эффекту «первого прохождения» через печень. Связывание с белками плазмы — около 70%. Хлорфенамин широко распределяется в органах и тканях организма, проникает в ЦНС.
Интенсивно метаболизируется в печени с образованием десметил- и дидесметилхлорфенамина. Неизмененный препарат и его метаболиты выводятся главным образом с мочой. Экскреция зависит от pH мочи и скорости тока мочи. В кале определяются лишь следовые количества хлорфенамина.
Хлорфенамин характеризуется значительной межиндивидуальной вариабельностью фармакокинетических параметров: T1/2 варьирует от 2 до 43 ч.
У детей наблюдается более быстрая абсорбция хлорфенамина, более высокий клиренс и более короткий T1/2.
Показания активного вещества
ХЛОРФЕНАМИН
В составе комбинированных препаратов при аллергическом рините, риносинусопатии, вазомоторном рините, поллинозе; при инфекционных заболеваниях и ОРВИ, сопровождающихся ринитом, ринореей, синуситом, ринофарингитом.
Режим дозирования
Индивидуальный, в зависимости от применяемой лекарственной формы.
Побочное действие
Со стороны ЦНС: седативный эффект (может исчезать через несколько дней лечения), слабость, сонливость, нарушение координации движений; при применении в высоких дозах и у детей возможны парадоксальные реакции, обусловленные стимулирующим влиянием на ЦНС.
Со стороны системы кроветворения: в единичных случаях — агранулоцитоз, тромбоцитопения, панцитопения, апластическая анемия.
Прочие: в единичных случаях — эксфолиативный дерматит; возможны проявления антихолинергического действия (сухость во рту, уменьшение секреции слизистой оболочки дыхательных путей), двоение зрения, затрудненное мочеиспускание, запор.
Противопоказания к применению
Повышенная чувствительность к хлорфенамину.
Особые указания
Влияние на способность к управлению транспортными средствами и механизмами
В период лечения пациентам следует избегать вождения автотранспорта и другой деятельности, требующей высокой концентрации внимания и скорости психомоторных реакций.
Лекарственное взаимодействие
Хлорфенамин может нарушать метаболизм фенитоина в печени, что приводит к повышению его концентрации в плазме крови.
При одновременном применении с препаратами, обладающими антихолинергической активностью повышается риск развития антихолинергических эффектов.
Этанол усиливает седативное действие хлорфенамина.
Chlorphenoxamine
In Meyler’s Side Effects of Drugs (Sixteenth Edition) , 2016
General information
Chlorphenoxamine is an antihistamine closely related to diphenhydramine with a similar metabolic pathway [ 1 ]. It appears to have been developed in the hope of producing a greater effect in Parkinson’s disease by combining both anticholinergic and antihistaminic effects in a single molecule [ 2 ].
In the doses commonly used well-recognized anticholinergic effects can occur [ 3 ]. Some patients become drowsy, whilst others are stimulated; with increasing dosages, some patients go into coma; others have agitation, convulsions, and marked euphoria, perhaps with hallucinations and disorientation.
Antiallergics, antiasthmatics and antitussives
Paul Merlob, Corinna Weber-Schöndorfer, in Drugs During Pregnancy and Lactation (Third Edition) , 2015
4.2.1 Antihistamines (H1-blocker)
Antihistamines are used to treat allergic illnesses, as antiemetics ( Chapter 4.3 ) and as sleeping aids.
The newer antihistamines, which have practically no sedative effect, have also proven beneficial during breastfeeding. Following a single dose of 40 mg loratadine (four times the current therapeutic dose) transfer to the infant was calculated at approximately 1% of the effective ingredient (including metabolites) compared to the maternal weight-related dose ( Hilbert 1988 ). Only two infants (3.9%) among 51 exposed to loratadine during breastfeeding showed sedation ( Merlob 2002 ). There are no data on the passage into mother’s milk of cetirizine, which has a half-life of 9 hours. Previous comprehensive experience, however, does not indicate any noteworthy intolerance while breastfeeding. Terfenadine with an M/P ratio of 0.2 has a half-life of 20 hours. A study of four breastfeeding women indicated less than 0.5% of the weight-related dose for the infant. Only the active metabolites, but not the maternal substance, were detectable in the milk ( Lucas 1995 ). There is very limited experience with the following non-sedating H1-blockers and no data on their passage into mother’s milk: desloratadine, ebastine, fexofenadine and levocetirizine. There are no observations at all on rupatadine and bilastine.
The older antihistamines with sedating action have become less important and should be reserved during breastfeeding for special conditions. Mild restlessness that does not need treatment and irritability were described in around 10%, and sedation or weak suckling in 1.6% of the children exposed to various antihistamines ( Moretti 1995, Ito 1993 ). None of the manufacturers have data on the relative dose. Twelve hours after the start of maternal treatment with clemastine, a stiff neck, hyper-excitability and sleepiness were observed in a 10-week-old infant; 5–10 μg/L of the drug was detected in the milk. No clemastine was found in the infant’s serum ( Kok 1982 ). In addition, the mother had long-term treatment with phenytoin and carbamazepine. Until a few years ago, dimetindene was a common antihistamine. It has a short half-life of 5 to 7 hours, was approved for children from age 1, and is comparatively non-sedating, but it has an atropine-like effect that should not be overlooked. Much less well studied are cyproheptadine, dexchlorpheniramine, hydroxyzine, mizolastine and triprolidine. Azelastine is available for systemic and local use. The latter is considered to be non-problematic but it could alter the milk taste leading to rejection by the infant.
Used exclusively for local therapy are bamipine, chlorphenoxamine and levocabastine as well as the newer substances epinastine and olopatadine. There are no data on passage into the mother’s milk for any of these substances. Their use during breastfeeding is considered unproblematic.
Recommendation
The antiallergics of choice during breastfeeding are loratadine and cetirizine. Should a sedating effect be expressly desired, breastfeeding could also be continued with dimentindene without limitation. Should symptoms such as restlessness or mild sedation occur, the (possible) consequences must be considered in individual cases – first and foremost changing to another preparation. Due to the longer market testing, levocabastine and azelastine are preferable for local use. Desensitization with allergen extracts may also be conducted during breastfeeding.
SPECTROPHOTOMETRY | Pharmaceutical Applications
J. Martinez Calatayud, in Encyclopedia of Analytical Science (Second Edition) , 2005
Chemometric procedures
Simultaneous spectrophotometric determinations on binary or ternary mixtures of drugs in a formulation, and avoiding separation methods and other sample pretreatments, can also be achieved by using chemometric-assisted spectrophotometric procedures other than derivative spectrophotometry. Analyzing synthetic mixtures containing title drugs by this approach has been validated using liquid chromatographic or capillary electrophoresis. The effort devoted to other chemometric methods is less than that devoted to derivative spectrophotometry. Tablets and sugar-coated pills are the formulations generally analyzed.
Studies on binary mixture samples frequently deal with classical least-squares, inverse least-squares, principal component regression and partial least-squares methods. These methods have been used for resolving mixtures of hydrochlorothiazide and spironolactone in tablets; cyproterone acetate and estradiol valerate; amiloride and hydrochlorothiazide; mefenamic acid and paracetamol; chlorphenoxamine hydrochloride and caffeine; benazepril hydrochloride and hydrochlorothiazide.
Mixtures of acetylsalicylic acid and ascorbic acid have been studied by using parallel factor analysis and partial least-squares. The former is used for spectral deconvolution, and pKa estimation for both acids. The simultaneous determination of fosinopril and hydrochlorothiazide in pharmaceutical formulations consists of extracting both compounds in an aqueous solution, measuring by multiwavelength UV spectrophotometry; hydrochlorothiazide acts as an internal standard to verify the accuracy of the analysis.
Chemometrics has also been applied to solve other problems but not for the quantification of binary mixtures. Principal component analysis (PCA) has been used to plot dissolution curves and provide information about between- and within-batch variations. Differences in level or shape can be observed in the first two principal components (PCs). Irrelevant irregularities, which have a strong influence on the similarity factor, are resolved.
A kinetic spectrophotometric method has been developed for the simultaneous quantitative determination of acetaminophen and phenobarbital in pharmaceutical preparations. The basis of the method was the different kinetic rates of the analytes in a two-step chemical procedure: first the oxidative coupling reaction with 3-methylbenzothiazolin-2-one hydrazone in hydrochloric acid medium and then using Fe(III) as oxidant and continuous absorbance monitoring. An artificial neural network (ANN) coupled with PCA (PC-ANN) has been used to simulate this method.
Spectrophotometric monitoring with the aid of chemometrics has also been applied to more complex mixtures. To solve the mixtures of corticosteroid dexamethasone sodium phosphate and vitamins B6 and B12, the method involves multivariate calibration with the aid of partial least-squares regression. The model is evaluated by cross-validation on a number of synthetic mixtures. The compensation method and orthogonal function and difference spectrophotometry are applied to the direct determination of omeprazole, lansoprazole, and pantoprazole in grastroresistant formulations. Inverse least squares and PCA techniques are proposed for the spectrophotometric analyses of metamizol, acetaminophen, and caffeine, without prior separation. Ternary and quaternary mixtures have also been solved using iterative algorithms.
Antiallergic drugs and desensitization
Margreet Rost van Tonningen, in Drugs During Pregnancy and Lactation (Second Edition) , 2007
2.2.1 Antihistamines (H1-blocker)
Pharmacology
Antihistamines are substances that competitively block the action of histamine on the histamine receptors. Histamine release results in the stimulation of H1-receptors located on the smooth muscles of many organs, or H2-receptors located in the mucosa of the stomach, producing an increase in acid secretion. Only the blocking of the H1-receptors is essential in antiallergy therapy.
H1-antihistamines are mostly used in antiallergy therapy; some are used as antiemetics and some as sedatives. The less sedating antihistamines are preferred for antiallergy therapy.
Of the first-generation antihistamines, alimemazine, bamipine, brompheniramine, carbinoxamine, chlorpheniramine, chlorphenoxamine , clemastine, cyproheptadine, dexchlorpheniramine, dimetindene, diphenhydramine, hydroxyzine, mebhydroline, oxatomide, pheniramine, triprolidine, and tripelenamine among others, have been or are still used as antiallergic drugs.
Second- and third-generation antihistamines such as acrivastin, astemizole, azelastine, cetirizine, desloratadine, ebastin, fexofenadin, levocabastine, levocetirizine, loratadine, mequitazine, mizolastine, oxatomide, terfenadine, and tritoqualin are less sedating than the first-generation agents. The half-lives for astemizole and for terfenadine are very long (20–26 hours, astemizole metabolites 9 days!). Serious cardiovascular events and potentially serious drug interactions have been reported with respect to terfenadine and astemizol. In many countries, astemizole and terfenadine have been removed from the market. Some of the above-mentioned drugs are only available for local use. For azelastine and oxatomide, see also Chapter 2.3 .
Toxicology
First-generation antihistamines
A large number of pregnancies exposed to first-generation anti-histamines such as chlorpheniramine, clemastine, dexchlorpheniramine, dimetindene, diphenhydramine, hydroxyzine, mebhydroline, and pheniramine have been studied to date. No increased teratogenic risk has been detected ( Gilbert 2005 , Källén 2002 , 2003 , Schatz 1997 , Lione 1996 ).
Only a limited number of pregnancies exposed to brompheniramine, cyproheptadine, triprolidine, and tripelenamine have been studied, but no increased risk of congenital malformations was noted ( Mazzotta 1999 ). In animal experiments, cyproheptadine was toxic to fetal pancreatic cells. The comparable effects in humans have not been reported, but experience with the use of cyproheptadine in pregnancy is very limited.
One study uncovered an association between the use of antihistamines during the 2 weeks preceding delivery and an increased risk of retrolental fibroplasia ( Zierler 1986 ). Other investigators have not confirmed this association.
Diphenhydramine and dimenhydrinate, when used parenterally in late pregnancy, may stimulate uterine contractions, leading to concern about fetal hypoxia ( Broussard 1998 ; see also Chapter 2.4 ).
Withdrawal symptoms (e.g. generalized tremulousness and diarrhea) have been reported after the use of the antihistamines diphenhydramine and hydroxyzine throughout pregnancy ( Lione 1996 ). A recent publication reports on a term newborn with tonic–clonic seizures starting 4 hours after birth, whose mother had received 150mg hydroxyzine per day for anxiolysis. The newborn’s plasma levels paralleled those of its mother 6 hours after birth. The authors interpreted the seizures as withdrawal symptoms. The neurological development was uneventful at the age of 6 months ( Serreau 2005 ).
Second- and third-generation antihistamines
Among 66 pregnant women exposed to acrivastin during early pregnancy, no indication for teratogenicity was observed ( Källén 2002 , Wilton 1998 ).
In prospective studies on astemizole use in 187 pregnancies, no association was found between astemizole exposure in the first trimester and the occurrence of congenital malformations or other adverse effects ( Diav-Citrin 2003 , Pastuszak 1998). However, like terfenadine, astemizole has been withdrawn in many countries because of cardiotoxicity.
There is a fair amount of experience with the use of cetirizine – an active metabolite of hydroxyzine – during pregnancy. In a very small prospective study (39 pregnancies), cetirizine use during the first trimester was not associated with a teratogenic risk ( Einarson 1997 ). Two recent prospective controlled studies by members of the European Network of Teratology Information Services (ENTIS) demonstrated no increased risk of congenital malformations or other adverse effects after exposure to cetirizine during pregnancy, of which 292 were first-trimester exposures ( Weber-Schöndorfer 2005 , Paulus 2004 ). Data from the Swedish Medical Birth Registry on cetirizine exposure during pregnancy (n = 917) confirm these findings ( Källén 2002 ).
Among 39 first-trimester exposures, there were no indications for teratogenicity of ebastin ( Källén 2002 ).
Post-marketing prescription-event monitoring found no drug-related adverse outcome in 47 pregnancies exposed to fexofenadine, the active metabolite of terfenadine ( Craig-McFeely 2001 ).
The best-studied second-generation antihistamine is loratadine. Data on more than 4000 exposed pregnancies are documented. The Swedish Medical Birth Registry reported finding a prevalence of hypospadias in male offspring that was twice that of the general population among approximately 3000 women who had taken loratadine in pregnancy ( Källén 2001 ). This report had a number of design limitations. The finding of an increased risk of hypospadias was not confirmed in various subsequent studies and reports. Two prospective controlled studies found no increased risk of congenital malformations and no cases of hypospadias after exposure to loratadine in approximately 370 pregnancies, of which 336 were exposed at least during the first trimester ( Diav-Citrin 2003 , Moretti 2003 ). Unpublished data of the European Network of Teratology Information Services (ENTIS) on loratadine exposure during pregnancy did not yield any case of hypospadias to date. Investigators at the Centers for Disease Control analyzed data from the National Birth Defects Prevention Study. The use of loratadine was identified in only 1.7% of the entire study population, and no statistical association with the use of loratadine (or other antihistamines) and hypospadias was detected in these data ( Werler 2004 ). An examination of Danish birth registries, reported in abstract, identified cases of hypospadias and investigated prescription records for each case and a matched control group. This study did not find a significant association between maternal exposure to loratadine and an increased risk of hypospadias ( Pedersen 2004 ). To date, continuous post-marketing surveillance has found no further evidence of an increased risk of hypospadias.
In prospective studies covering almost 300 pregnancies, and one record linkage study on terfenadine use during pregnancy, no increased risk of malformations could be detected after the first-trimester use ( Diav-Citrin 2003 , Loebstein 1999 , Schick 1994 ). Data from the Swedish Medical Birth Registry on terfenadine exposure during pregnancy confirm these findings ( Källén 2002 ). However, terfenadine has been withdrawn in many countries because of cardiotoxicity.
There are absent or few human data on the use of the following antihistamines: bamipine, carbinoxamine, desloratadine, levocabastine, levocetirizine, mequitazin, mizolastine, and tritoqualin ( Gilbert 2005 , Källén 2002 ).
First-generation H1-blockers like chlorpheniramine, dexchlorpheniramine, mebhydroline, clemastine, and dimetindene can be used during pregnancy for the treatment of allergic conditions. As the best-studied second-generation antihistamine, loratadine can be used during pregnancy for the treatment of allergic conditions. Cetirizine could be an acceptable second choice. It should be noted that neonatal respiratory depression has been reported after perinatal use of some first-generation antihistamines. To date, the inadvertent use of the new and/or less well-documented antihistamines does not require termination of pregnancy or invasive diagnostic procedures. When feasible, local treatment with intranasal sodium cromoglycate, beclomethason or budesonide is preferred in conditions like allergic rhinitis etc. (see Chapter 2.3 ).
Источник