Руководство по управлению двигателем с распределенным впрыском топлива

В этой статье я попытаюсь собрать для Вас как можно больше информации по МИКАС 7.1

В этой статье вы найдёте:

  • 1 Электронный Блок управления МИКАС 7.1
    • 1.1 Функции электронного блока управления МИКАС 7.1
  • 2 Память электронного блока управления МИКАС 7.1
    • 2.1 ОЗУ — оперативное запоминающее устройство
    • 2.2 Проверка работы выходных цепей МИКАС 7.1
    • 2.3 Управление диагностической лампой.
    • 2.4 Управление реле бензонасоса.
    • 2.5 Управление вентилятором системы охлаждения
    • 2.6 Управление реле муфты кондиционера
    • 2.7 Управление регулятором холостого хода.
    • 2.8 Управление топливными форсунками.
    • 2.9 Управление клапаном продувки адсорбера
    • 2.10 Управление блокировкой лямбда-регулятора
  • 3 Глава II. Проверки электронной системы
    • 3.1 Расположение узлов и элементов электронной системы в подкапотном пространстве
    • 3.2 Дорожные испытания МИКАС 7.1
    • 3.3 Непостоянное горение лампы диагностики
    • 3.4 Потеря памяти диагностических кодов
  • 4 Проверки работоспособности элементов и узлов системы
    • 4.1 Проверка регулятора холостого хода. Описание проверок

Электронный Блок управления МИКАС 7.1

Изготовлен на базе микропроцессора SAB80С509 фирмы SIEMENS, имеет объем оперативной памяти (RАМ) 3,25 Кбайт и постоянной памяти (RОМ) 128 Кбайт. Выходные ключи управления исполнительными устройствами имеют защиту от короткого замыкания. Система обладает само диагностикой и аварийным режимом работы в случае повреждения датчиков. Информация о текущих неисправностях системы инициируется на световом табло, установленном в салоне автомобиля (диагностическая лампа или светодиод с красным светофильтром), и заносится в па- мять блока с последующей возможностью ее получения и обработки. Блок управления имеет возможность подключения к внешнему диагностическому устройству или к внешней ЭВМ. Блок управления размещается в салоне автомобиля и закрепляется с помощью двух винтов. Не допускается попадание грязи, масла, влаги на корпус блока управления. Электронный блок является мозгом электронной системы управления — управляющим компьютером. Он имеет устройства связи с датчиками системы и исполнительными элементами и не подлежит ремонту и тестированию без специального оборудования и знаний.

Функции электронного блока управления МИКАС 7.1

Блок управления собирает информацию с датчиков системы и по сложной логике вырабатывает сигналы управления, необходимые для функционирования подсистем двигателя, обеспечивающих его работу:

• топливо подача в двигатель блок управляет включением-выключением бензонасоса; порядком и длительностью открытия форсунок

• искровое зажигание блок управляет катушками зажигания для искро образования в двигателе

• защита от детонации блок формирует угол опережения зажигания, обеспечивающий работу двигателя без детонации

• стабилизация частоты вращения холостого хода блок регулирует открытие регулятора дополнительного воздуха для поддержания частоты вращения холостого хода

• электро вентилятор системы охлаждения (на части автомобилей) блок управляет включением-выключением реле электро вентилятора системы охлаждения

• клапан продувки адсорбера (на автомобилях с нейтрализатором отработавших газов) блок управляет электромагнитным клапаном продувки адсорбера системы улавливания паров бензина, образующихся в топливном баке

• электромагнитная муфта компрессора системы кондиционирования воздуха блок управляет включением-выключением реле муфты компрессора кондиционера при поступлении сигнала на включение системы кондиционирования

Память электронного блока управления МИКАС 7.1

Как и любой компьютер, блок управления имеет встроенные запоминающие устройства — электронную память. Различают постоянное запоминающее устройство — ПЗУ, в котором находится программа (алгоритм управления двигателем и данные калибровок), настроенная на конкретную комплектацию системы управления. Информация, хранящаяся в ПЗУ, не может быть перезаписана или удалена из ПЗУ.

ОЗУ — оперативное запоминающее устройство

Память, необходимая для работы программы блока при изменении параметров управления и для хранения данных, корректирующих настройки системы под изменяющиеся условия работы двигателя. ОЗУ для хранения информации Электронный блок управления МИКАС 7.1  об отсутствии информационного обмена — загорается красный светодиод «Error». Описание проверки диагностической цепи по карте А в разделе А п.5 главы II содержит последовательность проверок для ремонта цепи. Необходимо помнить, что АСКАН-8 не управляет двигателем, а лишь отображает информацию, которую получает от блока управления. Прибор АСКАН-8 экономит время при диагностике и не допускает замены исправных узлов и деталей. Ключевым условием успешного применения прибора для диагностики является понимание механиком диагностируемой системы и ограничений прибора АСКАН-8.

Проверка работы выходных цепей МИКАС 7.1

Эта функция позволяет запитывать или отключать цепи исполнительных устройств, напрямую вмешиваясь в логику работы блока управления. Работоспособность цепи оценивается по факту включения/выключения исполнительного устройства или признакам, характеризующим это включение-выключение. Если управляемое устройство не работает, это означает необходимость проверки всех узлов электрической цепи данного устройства. Например, если не включается вентилятор, то проверяется в этом случае и исправность проводов, и клемм подключения, и реле вентилятора, а потом и сам вентилятор системы охлаждения.

Управление диагностической лампой.

Тестер включает/выключает диагностическую лампу.

Управление реле бензонасоса.

Тестер включает/выключает реле бензонасоса. На работающем двигателе такая процедура заблокирована. Режим включения/выключение бензонасоса полезен при тестировании системы топливо подачи: проверке регулятора давления, форсунок, герметичности и т.д.

Управление вентилятором системы охлаждения

(если данная функция реализована в блоке управления). Работоспособность цепи проверяется на слух по включению/выключению вентиля- тора.

Управление реле муфты кондиционера

(если данная функция реализована в блоке управления). Тестер включает/выключает кондиционер. Работоспособность цепи определяется на слух.

Управление регулятором холостого хода.

Изменение заданного числа шагов регулятора добавочного воздуха, меняет частоту вращения двигателя на холостом ходу.

Управление топливными форсунками.

На работающем двигателе включение-выключение любой из форсунок приводит к ощутимым изменениям в работе двигателя. Режим включения- выключения форсунки полезен при тестировании системы топливо подачи.

Управление клапаном продувки адсорбера

(для автомобилей с нейтрализатором). На работающем двигателе можно задавать интервал открытого состояния клапана. Режим управления клапаном необходим для проверки функционирования клапана и определяется на слух по характерным щелчкам (частота 8…12 Гц)

Управление блокировкой лямбда-регулятора

(для автомобилей с нейтрализатором). На работающем двигателе можно выключать функционирование регулятора состава смеси с обрат- ной связью по сигналу лямбда-зонда. Эта функция используется для проверки качества работы системы регулирования.

Задание, сбор и отображение параметров системы. Тестер АСКАН-8 по линии связи может считывать параметры системы, определяемые и используемые блоком управления. Запись параметров в память тестер осуществляет циклически в рабочем режиме двигателя. После этого их можно просматривать в графическом виде, сравнивая их со стандартными пара- метрами исправного двигателя. Логика проведения диагностики по приведенным диагностическим схемам позволяет по отклонениям параметров определить неисправности в системе и двигателе. Здесь мы приведем список основных параметров, доступных для считывания. На самом деле список переменных значительно шире и может использоваться для тестирования работы блока и для определения настроек двигателя для индивидуального пользователя. Латинским шрифтом приведены переменные, значение которых можно просматривать с помощью диагностического тестера DST-2M. В тестере АСКАН-8 эти же переменные представлены на русском языке.

Глава II. Проверки электронной системы

Расположение узлов и элементов электронной системы в подкапотном пространстве

ТРЕУГОЛЬНИКИ — Датчики 1. Датчик массового расхода воздуха. 2. Датчик температуры охлаждающей жидкости. 3. Датчик положения дроссельной заслонки. 4. Датчик температуры воздуха на впуске.

КРУЖКИ — Управляющие устройства 1. Форсунки. 2. Регулятор холостого хода. 3. Катушки зажигания. 4. Диагностический разъём. 5. Топливный фильтр.

Дорожные испытания МИКАС 7.1

Если при визуальном осмотре причина неисправности не выявлена, можно провести дорожное испытание с вольтметром, подсоединенным к подозреваемой цепи, или с использованием прибора АСКАН-8. Отклонение напряжения или показаний прибора АСКАН-8 при возникновении дефекта указывает на неисправность данной цепи. Прибор АСКАН-8 имеет специальный режим, называющийся режимом «запись параметра». Данный режим может быть использован для регистрации последовательных данных блока управ- ления в момент возникновения дефекта, последующего их поэлементного воспроизведения и вы- явления отклонений параметров в момент возникновения дефекта. Дополнительные сведения о режиме регистрации см. в руководстве для прибора АСКАН-8.

Непостоянное горение лампы диагностики

Непостоянное горение ДИАГНОСТИЧЕСКОЙ ЛАМПЫ и отсутствие диагностических кодов могут быть вызваны:

• электрической помехой, вызванной дефектным реле, электромагнитным клапаном или электронным ключом; они могут вызвать большое перенапряжение;

• неправильным монтажом электрооборудования, такого как фонари, радиоприемники, сигнализация и т.д;

• неправильной трассой проводов системы управления относительно высоковольтных проводов и узлов системы зажигания и генератора;

• замкнутой на «массу» вторичной обмоткой катушки зажигания;

• непостоянным замыканием на «массу» цепи ЛАМПЫ ДИАГНОСТИКИ или цепи диагностического контакта колодки диагностики;

• загрязнением, ненадежностью или неправильным присоединением контактов проводов заземления блока управления; данные провода присоединяются к впускному трубопроводу, в зоне 4-го цилиндра;

• ненадежным соединением корпуса двигателя с минусовой клеммой аккумулятора;

• неисправным генератором или реле-регулятором

Потеря памяти диагностических кодов

Для проверки отключите датчик температуры воздуха, дайте двигателю работать на холостом ходу до включения ДИАГНОСТИЧЕСКОЙ ЛАМПЫ. Код 18 должен занестись и сохраняться в памяти при выключении зажигания более чем на 10 с. Если код 18 не сохраняется, неисправен блок управления

Проверки работоспособности элементов и узлов системы

Проверка выходного сигнала датчика положения дроссельной заслонки Описание проверок

1. Осуществляется проверка показаний по прибору АСКАН-8 параметра «Дроссель» (ТНR), который при отпущенной педали привода акселератора должен соответствовать 0%.

2. Показания в % должны увеличиваться при нажатии на педаль акселератора до 95… 100%.

3. Если величина параметра «Дроссель» (ТНR) больше 1% при отпущенной педали акселератора, то следует проверить полное закрытие дроссельной заслонки и наличие небольшой «слабины» в тросе привода.

4. При необходимости проверьте влияние ковриков в салоне автомобиля на полное открытие заслонки

Проверка регулятора холостого хода. Описание проверок

1. Прибор АСКАН-8 используется в режиме управления частоты вращения холостого хода для открытия и закрытия клапана регулятора добавочного воздуха. Клапан должен плавно перемещаться в заданном диапазоне. При низкой частоте вращения холостого хода (ниже 700 об/мин) двигатель может заглохнуть. Это нормально и не свидетельствует о неисправности.

Условия:

• зажигание включено;

• значение параметра «Напряжение Бортсети» (JAUACC) по прибору АСКАН-8 ниже 6,3 В.

Что проверять:

25.1. Уровень напряжения на клеммах аккумуляторной батареи.

25.2. Уровень напряжения на контакте 4 в колодке соединения с автомобильным жгутом относительно «массы» двигателя.

25.3. Уровень напряжения на контакте 4 в колодке соединения с автомобильным жгутом относительно точки крепления «Б» клеммы силовой «массы» системы управления.

25.4. Надежность электрического соединения в колодке подключения к автомобильному жгуту.

25.5. Обрыв в проводе 27 (ОБ).

25.6. Короткое замыкание провода 65 (К) или провода 66 (Р) на «массу».

Как проверять

25.1.1. Измерьте напряжение на клеммах аккумуляторной батареи. Оно должно быть не ниже 11 В.

25.2.2. Выключите зажигание. Отсоединив колодку соединения жгута проводов системы управления от автомобильного жгута проводов, включите зажигание и измерьте напряжение на контакте «15» относительно «массы» двигателя и относительно точки крепления «Б» клеммы силовой «массы» системы управления. Оно должно совпадать с напряжением аккумуляторной батареи.

25.4.3. При выключенном зажигании подключите колодку электрического соединения жгута проводов к автомобильному жгуту. Отключите блок управления от жгута проводов. Включите зажигание и измерьте относительно «массы» напряжение на контакте 27 розетки соединителя блока управления. Оно должно быть не ниже 11 В.

25.5.4. При выключенном зажигании и отключенном от жгута блоке управления и отключенной ко- лодке соединения с автомобильным жгутом убедитесь в отсутствии обрыва в проводе 27 (ОБ), измерив сопротивление между контактом 27 (ОБ) в розетке соединителя блока управления и контакте «15» в колодке.

 НПП Элкар, 2001  П.Г. Теремякин, Д.А. Баранов, 2001  ЗАО «Легион-Автодата» 2001, 2005

Статья будет дополняться и обновляться, спасибо, что Вы нас читаете.

Яндекс Дзен

Система распределенного (многоточечного) впрыска топлива MPI используется только на бензиновых двигателях и является наиболее популярной в мире. В данной системе каждый цилиндр оснащается индивидуальной форсункой, которая впрыскивает топливо непосредственно перед впускным клапаном. Многоточечный впрыск идеально соответствует высоким экологическим стандартам, а также требованиям, предъявляемым к смесеобразованию в современных двигателях.

Содержание

  1. Основной принцип работы системы MPI
  2. Конструкция системы многоточечного впрыска
  3. Режимы работы MPI
  4. Отличия системы MPI
  5. Преимущества и недостатки многоточечного впрыска

Основной принцип работы системы MPI

Обозначение MPI расшифровывается как Multi-point injection, что означает “многоточечный впрыск”. Наиболее часто такая маркировка встречается на европейских автомобилях.

Конструкция системы многоточечного впрыска

Она состоит из следующих элементов:

  • дроссельная заслонка;
  • распределительная магистраль или топливная рампа;
  • электромагнитные форсунки (инжекторы);
  • датчик массового расхода воздуха или датчик давления и температуры воздуха;
  • регулятор давления топлива.

Схематическое изображение устройства

Схема распределенного впрыска

В такой системе питания воздух из атмосферы проходит через воздушный фильтр, датчик массового расхода воздуха и затем через дроссельную заслонку попадает во впускной коллектор. Далее он распределяется по каналам цилиндров.

В свою очередь, топливо подается при помощи насоса через топливный фильтр и рампу к форсункам. Последние расположены вблизи впускных клапанов цилиндров, что снижает потери топлива и вероятность его оседания во впускном коллекторе. Работу форсунок контролирует ЭБУ двигателя. Количество топлива, которое должно поступить через форсунки, блок управления рассчитывает на основе информации о режимах, нагрузке и оборотах двигателя, а также на основе информации о количестве поступившего в систему воздуха, полученной от целого комплекса датчиков (температуры, давления). В соответствии с расчетами, ЭБУ подает импульсные сигналы на электромагнитные форсунки, приводя их в работу.

Помимо управления режимами работы инжекторов, блок управления проводит регулярную диагностику состояния системы впрыска и при обнаружении неисправностей выдает соответствующий сигнал об ошибке на приборной панели (“Check Engine”).

Режимы работы MPI

В зависимости от режима работы форсунок различают несколько видов системы:

  • Одновременный впрыск. В такой системе все инжекторы открываются одновременно, подавая топливо в каждый цилиндр. Такая схема представляет собой усовершенствованный моновпрыск, поскольку ЭБУ управляет процессом открытия и закрытия всех форсунок как открытием одной. С другой стороны, объем подаваемого топлива для каждого отдельного цилиндра может быть разным.
  • Попарный впрыск. Открытие электромагнитных форсунок происходит парами, но при этом одна работает на такте впуска, а вторая в момент выпуска отработавших газов. В настоящее время такая схема применяется только на этапе запуска мотора или в аварийной режиме.
  • Индивидуальный впрыск. Это наиболее часто используемая схема, при которой каждая форсунка срабатывает по отдельности на такте впуска. Для обеспечения их работы в системе предусмотрен датчик фаз газораспределения. Он устанавливается на распределительном валу и определяет время срабатывания каждой форсунки в зависимости от положения вала. Впрыск топлива в каждый цилиндр происходит один раз за один рабочий цикл двигателя. Классическая последовательность работы форсунок: 1-3-4-2.

Отличия системы MPI

Многие путают MPI с распределенным впрыском в целом, куда также входит система непосредственного впрыска GDI (FSI, DISI, TSI), при которой подача топлива осуществляется напрямую в каждый цилиндр. Это важное различие, поскольку Multi-point injection предполагает образование топливовоздушной смеси в каналах впускного коллектора перед впускными клапанами.

Помимо этого, двигатели с многоточечным распределенным впрыском являются атмосферными, без использования наддува. А это означает, что такие двигатели имеют менее жесткие требования к качеству топлива.

Преимущества и недостатки многоточечного впрыска

Форсунки и рампа двигателя

Топливная рампа системы распределительного впрыска

Главными достоинствами системы распределенного (многоточечного) впрыска является более экономичный расход топлива и соответствие требованиям экологических стандартов в сравнении с моновпрыском или карбюратором. С другой стороны, двигатель MPI менее мощный, нежели моторы с непосредственной подачей топлива в цилиндры двигателя. При этом, в сравнении с системами с непосредственным впрыском, отличается менее затратным обслуживанием.

К недостаткам распределенного впрыска можно отнести сложность изготовления, и, как следствие, высокую стоимость. Это также относится к ремонту электронной системы и инжекторов. Для обслуживания и диагностики необходимо специализированное оборудование и высококвалифицированные специалисты.

Для отечественных условий системы многоточечного распределенного впрыска считаются наиболее оптимальными по соотношению стоимости и удобства обслуживания, а также по уровню получаемой мощности и комфорту эксплуатации.

Очень плохоПлохоХорошоОчень хорошоОтлично (7 оценок, среднее: 4,43 из 5)
Загрузка…

ОБЩАЯ ИНФОРМАЦИЯ

Система управления распределённым
впрыском топлива состоит из датчиков, определяющих состояние двигателя, блока управления двигателем, который управляет системой на
основании данных от датчиков, и исполнительных устройств, работающих по команде блока управления двигателем Блок управления двигателем регулирует подачу топлива, обороты холостого хода и угол опережения зажигания.
Кроме того блок управления может работать в нескольких режимах диагностики, что упрощает поиск неисправностей.
УПРАВЛЕНИЕ ПОДАЧЕЙ ТОПЛИВА
Продолжительность открытого состояния форсунки (впрыска) и начало подачи топлива
выбираются так, чтобы они наилучшим образом соответствовали условиям работы двигателя и удерживали состав рабочей смеси в оптимальном диапазоне.
В каждом впускном канале расположено по одной форсунке. Из топливного бака топливо, под давлением, подаёт электробензонасос. Для поддержания давления топлива на нужном уровне предусмотрен регулятор. Под нужным давлением топливо подаётся в форсунки.
Впрыск топлива в отдельный цилиндр происходит один раз за два оборота коленчатого вала. Порядок работы цилиндров: 1342. Такая подача топлива именуется фазированной. Для поддержания нужных энергетических показателей двигателя (непрогретого или в режиме высокой мощности) блок управления работает без обратной связи по сигналу кислородного датчика (с разомкнутым контуром управления). На прогретом двигателе и при нормальной нагрузке на него блок управления
двигателем работает с использованием сигналов кислородных датчиков, то есть с замкнутым контуром управления, чтобы обеспечить тот теоретический состав рабочей смеси, при котором трёхкомпонентный нейтрализатор работает наиболее эффективно
УПРАВЛЕНИЕ ОБОРОТАМИ
ХОЛОСТОГО ХОДА
Оптимальное значение оборотов холостого хода поддерживается регулированием
количества воздуха, проходящего через дроссельный патрубок. Расход воздуха в режиме
холостого хода меняется в зависимости от нагрузки на двигатель и от иных условий. Блок управления двигателем регулирует работу привода регулятора холостого хода, чтобы поддерживать обороты холостого хода на заданном уровне, в соответствии с температурой охлаждающей жидкости и нагрузкой на компрессор системы кондиционирования.Кроме того, постоянная работа шагового двигателя регулятора холостых оборотов, позволяет поддерживать неизменными обороты холостого
хода при включении и выключении компрессора кондиционера, меняя количество воздуха, проходящего через дроссельный патрубок.
УПРАВЛЕНИЕ УГЛОМ ОПЕРЕЖЕНИЯ
ЗАЖИГАНИЯ
Цепь питания первичной обмотки катушки зажигания замыкается и прерывается транзистором конечного усилителя коммутатора. Таким образом осуществляется регулирование момента зажигания с учётом реального режима работы двигателя. Блок управления двигателем определяет угол опережения зажигания по частоте вращения коленчатого вала, расходу воздуха, температуре охлаждающей жидкости и атмосферному давлению.
ДИАГНОСТИЧЕСКИЕ ФУНКЦИИ
• Если регистрируется неисправность датчика или исполнительного устройства в составе системы понижения токсичности, то на панели приборов включается контрольная лампа «Check Enegine», информирующая об этом водителя.
• При возникновении неисправности в одном
из датчиков или исполнительных устройств генерируется соответствующий код
неисправности.
• Данные оперативной памяти блока управления двигателем, относящиеся к состоянию датчиков и исполнительных
устройств, могут быть считаны при помощи прибора MUTII/III. Кроме того, отдельные
исполнительные устройства, при определённых обстоятельствах, могут быть принудительно активированы.

ОБЩАЯ ИНФОРМАЦИЯ
СИСТЕМА ПОДАЧИ ТОПЛИВА С РАСПРЕДЕЛЁННЫМ ВПРЫСКОМ (MPI) <4g6>
ПРОЧИЕ ФУНКЦИИ УПРАВЛЕНИЯ
1. Управление электробензонасосом

При прокручивании двигателя стартером или
во время его работы включает реле электро@
бензонасоса, подающее напряжение
на бензонасос.

2. Реле компрессора кондиционера
Включает и выключает реле компрессора
кондиционера.

3. Управление электродвигателем вентилятора
Частоты вращения вентиляторов радиатора
системы охлаждения и конденсатора
системы кондиционирования меняются
в зависимости от температуры охлаждаю@
щей жидкости и скорости движения
автомобиля.

4. Электромагнитный клапан управления
продувкой абсорбера
«Система управления двигателем и понижения токсичности − Система улавливания паров топлива», ).
5. Электромагнитный клапан управления
рециркуляцией ОГ (EGR)
«Система управления двигателем и понижения токсичности − Система рециркуляции ОГ»).

ОБЩАЯ ИНФОРМАЦИЯ
СИСТЕМА ПОДАЧИ ТОПЛИВА С РАСПРЕДЕЛЁННЫМ ВПРЫСКОМ (MPI) <4g6>
ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ
Наименование Технические данные
Дроссельный
патрубок Диаметр проточной части патрубка, мм 60

Датчик положения дроссельной
заслонки Потенциометрического типа

Привод регулятора холостого хода Шаговый двигатель

Блок управления
двигателем Идентификационный № E6T34881

Датчики Датчик расхода воздуха На основе эффекта Кармана

Датчик атмосферного давления Полупроводникового типа

Датчик температуры воздуха на впуске Термосопротивление

Температура охлаждающей жидкости Термосопротивление

Кислородный датчик Циркониевый

Переключатель селектора Контактного типа

Датчик положения распределительного
вала Датчик Холла

Датчик положения коленчатого вала
двигателя Датчик Холла

Датчик детонации Пьезоэлектрического типа

Датчик давления в гидроусилителе
рулевого управления Контактного типа

Исполнительные
устройства

Реле системы управления Контактного типа

Реле электробензонасоса Контактного типа

Тип форсунки и количество Электромагнитная, 4

Идентификационный номер форсунки HDA250E

Электромагнитный (электровакуумный)
клапан системы EGR Электромагнитный клапан
с широтноимпульсной модуляцией

Электромагнитный клапан управления
продувкой абсорбера Электромагнитный клапан
с широтноимпульсной модуляцией

Регулятор
давления
топлива Давление топлива, кПа 328

Системы питания инжекторных двигателей



Распределенный впрыск топлива

В настоящее время система распределенного впрыска топлива (Рис. 1) является наиболее распространенной на автомобильных двигателях.
Бензин из бака 22 подается электрическим насосом 1 через фильтр 3 тонкой очистки в рампу 4 форсунок.

система питания бензинового двигателя с распределенным впрыском топлива

Рампа форсунок (Рис. 2) одновременно является топливной магистралью, в которой поддерживается избыточное давление топлива с помощью регулятора давления 5.
Таким образом, электромагнитные форсунки, постоянно находящиеся под давлением, впрыскивают топливо в зону впускных клапанов по сигналу электронного блокауправления (ЭБУ).

Избыток топлива регулятор 5 (см. рис. 1) возвращает обратно в бак.
При использовании двух впускных клапанов на цилиндр форсунка впрыскивает топливо на перемычку между клапанами.

Воздух в цилиндры поступает через воздухоочиститель, измеритель 8 расхода воздуха и впускной трубопровод (ресивер) 12, а его количество регулируется дроссельной заслонкой, управляемой водителем.

как работает инжекторный двигатель

От измерителя 8 расхода воздуха и датчика 13 частоты вращения коленчатого вала сигналы поступают в электронный блок управления (ЭБУ). После обработки этих сигналов и получения значения циклового расхода воздуха по заданному алгоритму в соответствии с режимом работы двигателя ЭБУ выдает управляющие импульсы необходимой длительности для открытия клапанов форсунок, обеспечивая тем самым необходимую подачу топлива.
Подача топлива корректируется блоком управления в зависимости от положения и скорости поворота дроссельной заслонки на основании сигналов от датчика 7, а также температуры охлаждающей жидкости на основании сигналов от датчика 14.

На режимах принудительного холостого хода при закрытой дроссельной заслонке (в датчике 7 срабатывает соответствующая контактная пара) и частоте вращения коленчатого вала более 1500 об/мин подача топлива отключается и возобновляется при частоте вращения коленчатого вала ниже 900 об/мин.

На холостом ходу для обеспечения устойчивой работы двигателя с заданной частотой вращения коленчатого вала предусмотрено, в зависимости от температуры охлаждающей жидкости, автоматическое регулирование количества воздуха, поступающего в двигатель.

У непрогретого двигателя на холостом ходу при незакрытой дроссельной заслонке воздух поступает через верхний и нижний каналы регулятора 11 дополнительной подачи воздуха. По мере прогрева двигателя, начиная с температуры охлаждающей жидкости 50…70 ˚С, регулятор прекращает подачу воздуха, и он поступает только через верхний канал, сечение которого изменяется винтом регулирования частоты вращения коленчатого вала на холостом ходу.

Рампа 4 форсунок (см. рис. 2) представляет собой полую планку с установленными на ней форсунками 2 и регулятором 5 давления топлива, который связан с ресивером и топливным баком.
Рампа закрепляется на головке блока цилиндров или впускном трубопроводе. В конец рампы ввернут штуцер 3 для подвода топлива от насоса. Нижним концом форсунки закрепляются во впускном трубопроводе (коллекторе).

устройство и работа системы питания с распределенным впрыском топлива

Регулятор давления топлива (Рис. 3) поддерживает давление 0,38…0,33 МПа в рампе и форсунках работающего двигателя. Регулятор давления состоит из корпуса 1, крышки 3, между которыми закреплена мембрана 4 с клапаном 2.
Внутренняя полость регулятора делится мембраной на две части: вакуумную и топливную.

Вакуумная полость находится в крышке 3 регулятора и связана с ресивером, а топливная полость – в корпусе 1 регулятора и связана с топливным баком.

При закрытии дроссельной заслонки разрежение в ресивере 12 (см. рис. 1) увеличивается, клапан регулятора открывается при меньшем давлении топлива и перепускает избыточное топливо по сливному топливопроводу в топливный бак 2. При этом давление топлива в рампе 4 понижается.
При открытии дроссельной заслонки разрежение в ресивере уменьшается, клапан регулятора открывается уже при большем давлении топлива.
В результате давление топлива в рампе повышается.



Электромагнитная форсунка (Рис. 4) представляет собой электромагнитный клапан. Она предназначена для впрыска дозированного количества топлива во впускной трубопровод и устанавливается вблизи впускного клапана (или впускных клапанов) цилиндра двигателя. Дозирование топлива осуществляется изменением времени открывания клапана форсунки, и зависит от длительности электрического импульса, поступающего от ЭБУ в обмотку катушки электромагнита форсунки.

устройство форсунки инжекторного двигателя

Форсунка состоит из корпуса 3, крышки 6, обмотки катушки 4 электромагнита, иглы 2 запорного клапана, корпуса 9 распылителя, насадки 1 распылителя и фильтра 5.
При работе двигателя топливо под давлением поступает в форсунку через фильтр 5 и проходит к запорному клапану, который находится в закрытом положении под действием пружины 7.

При поступлении электрического импульса в обмотку катушки 4 электромагнита возникает магнитное поле, которое притягивает сердечник 8 и вместе с ним иглу 2 запорного клапана. При этом отверстие в корпусе 9 открывается и топливо под давлением впрыскивается в распыленном виде во впускной коллектор.
После прекращения поступления электрического импульса в обмотку катушки электромагнита магнитное поле исчезает, и под действием пружины 7 сердечник 8 и игла 2 возвращаются в исходное положение. При этом отверстие в корпусе 9 закрывается, и впрыск топлива прекращается.

Топливный насос (Рис. 5) приводится в действие от электродвигателя, который объединен с насосом в одном корпусе. Благодаря автономному приводу от электродвигателя производительность топливного насоса не зависит от частоты вращения коленчатого вала двигателя, и насос может работать даже при неработающем двигателе.

Центробежный роликовый топливный насос состоит из статора 3, внутренняя поверхность которого незначительно смещена относительно оси якоря 8 электродвигателя, цилиндрического сепаратора 16, соединенного с якорем электродвигателя, и роликов 17, расположенных в сепараторе. Сепаратор с роликами расположен между основанием 2 и крышкой 5 насоса.

При работе насоса топливо поступает через штуцер 1 и канал 18 к вращающемуся сепаратору 16, переносится роликами и через выходные каналы 6 подается в полость электродвигателя и далее через клапан 11 и штуцер 12 по топливопроводу к топливному фильтру.

Топливо, проходя в полости электродвигателя, охлаждает его.
Обратный клапан 11 предотвращает слив топлива из топливопровода и образование воздушных пробок после выключения насоса.
Предохранительный клапан 4 ограничивает давление топлива, создаваемое насосом (0,45…0,6 МПа).
Подача насоса – 130 л/час.

система питания с распределенным впрыском топлива

В настоящее время на отечественных автомобилях марок «ВАЗ», «ГАЗ», «Москвич» получила широкое распространение система распределенного впрыска «Мотроник», которая оснащена единым электронным блоком управления с системами питания и зажигания.
Для формирования управляющих сигналов система ЭБУ получает информацию от следующих датчиков:

  • датчик массового расхода воздуха (ДМРВ);
  • датчик положения дроссельной заслонки (ДПДЗ);
  • датчик температуры охлаждающей жидкости (ДТОЖ);
  • датчик детонации (ДД);
  • датчик кислорода (ДК);
  • датчик скорости автомобиля (ДСА);
  • датчик положения коленчатого вала (ДПКВ);
  • датчик фаз (ДФ).

***

Системы с непосредственным впрыском топлива



Рис. 2.363. Схема включения работы форсунок

Общие сведения

Система распределенного впрыскивания топлива (MFI) состоит из датчиков, которые оценивают состояние двигателя, электронного блока управления двигателем (РСМ), который, в свою очередь, управляет всей системой на основании полученной информации от датчиков и исполнительных устройств, срабатывание которых происходит по командам от РСМ. РСМ управляет подачей топлива в цилиндры двигателя, расходом воздуха на всех режиме холостого хода двигателя и углом опережения зажигания. Более того, РСМ имеет несколько режимов самодиагностирования, которые облегчают поиск неисправностей при их возникновении.

Управление подачей топлива

Продолжительность импульса управления форсункой и угол опережения зажигания подбираются таким образом, чтобы обеспечить оптимальное воздушно-топливное отношение состава смеси при постоянно меняющихся условиях работы двигателя. Впускной канал каждого цилиндра имеет по одной форсунке. Топливо подается топливным насосом под давлением в топливный коллектор. Для поддержания необходимого давления в системе предусмотрен регулятор давления. Топливо под давлением подается к форсункам. Такая система подачи топлива называется распределенной. Обычно топливо впрыскивается форсункой один раз за два оборота коленчатого вала. Электронный блок управления двигателем обогащает состав смеси в режиме работы «без обратной связи» в том случае, когда двигатель холодный или работает с высокой нагрузкой. Если же двигатель прогрет или работает с нормальной нагрузкой, РСМ, при включении режима «обратной связи» через кислородный датчик с подогревателем, создает стехиометрический состав смеси, который обеспечивает наилучшую работу двигателя с точки зрения «чистоты» отработавших газов применением трехкомпонентного каталитического нейтрализатора.

Управление холостым ходом двигателя

Обороты холостого хода поддерживаются на оптимальном уровне путем управления количеством воздуха, проходящего через байпасный канал, в соответствии с изменениями условий протекания режима холостого хода и нагрузки двигателя. РСМ управляет сервоприводом (шаговым электродвигателем) регулятора холостого хода (ISC), поддерживая обороты холостого хода на заранее установленном уровне, определяемом температурой охлаждающей жидкости в двигателе и нагрузкой от кондиционера. Более того, при выключенном кондиционере и при работе в режиме холостого хода, шаговый электродвигатель регулятора так настраивает проходное сечение байпасного канала, чтобы исключить флуктуацию оборотов холостого хода двигателя при случайном изменении нагрузки.

Управление углом опережения зажигания

Рис. 2.364. Диаграмма длительности сигнала открытия форсунки

Силовой транзистор системы зажигания, установленный в первичной цепи системы, включается и выключается для изменения тока в первичной цепи катушки зажигания. Это обеспечивает управление изменением угла опережения зажигания и поддерживает его оптимальное значение при изменении режима работы двигателя. Угол опережения зажигания изменяется РСМ в зависимости от оборотов двигателя, наполнения цилиндров воздухом, температуры охлаждающей жидкости и величины атмосферного (барометрического) давления.

Управление топливным насосом

Включение реле топливного насоса таким образом, чтобы подать ток к насосу при прокрутке двигателя стартером и при нормальной его работе.

Управление электромагнитной муфтой включения компрессора кондиционера

Включение и выключение электромагнитной муфты компрессора кондиционера.

Управления реле вентиляторов

Обороты вентилятора системы охлаждения и вентилятора конденсора кондиционера изменяются в соответствии с изменением температуры охлаждающей жидкости и скоростью автомобиля.

Режим диагностирования

При появлении неисправности в каком-либо датчике или исполнительном устройстве, связанной с системой снижения токсичности, загорается контрольная лампа индикации неисправности двигателя («CHECK ENGINE»), что информирует водителя о возникшей неисправности.

При появлении неисправности в каком-либо датчике или исполнительном устройстве, появляется соответствующий этой неисправности диагностический код.

Данные оперативного запоминающего устройства («RAM») электронного блока управления двигателем, с датчиков и исполнительных устройств, могут быть прочитаны диагностирующим прибором. Наконец, исполнительные устройства могут быть приведены в действие и проверены независимо от самой системы.

Указания при проверке перегоревших предохранителей

Снимите предохранитель и измерьте сопротивление между нагруженной стороной предохранителя и «массой». Установите переключатели всех цепей, которые соединяются с этим предохранителем в положение «включен». Если при этом сопротивление практически равно 0 Ом, это означает наличие короткого замыкания в цепи между этими переключателями и нагрузкой. Если это сопротивление отличается от 0 Ом, это означает отсутствие короткого замыкания в цепи в настоящий момент, но одномоментное закорачивание цепи вызывает перегорание этого предохранителя.

Основные причины короткого замыкания цепи следующие:

– разрушение проводки о кузов автомобиля;

– повреждение изоляции проводки вследствие ее изношенности или тепла;

– проникновение воды в разъем или цепь;

– человеческий фактор (ошибочное соединение цепи).

Проверка системы распределенного впрыска топлива

Если компоненты (датчики, блок управления двигателем, форсунки и т.д.) системы распределенного впрыска топлива (MFI) неисправны, то в результате будет прекращена подача топлива или появится сбой в точной подаче топлива при различных режимах работы двигателя. Могут возникнуть следующие ситуации:

– двигатель не запускается или запускается с трудом;

– нестабильная работа двигателя на холостом ходу;

– плохая управляемость двигателем.

При появлении приведенных симптомов, сначала необходимо провести диагностирование на автомобиле.

Диагностические операции на автомобиле

Запоминание диагностических кодов неисправностей: После того, как РСМ в первый раз определит неисправность, диагностический код записывается и при повторном запуске двигателя эта неисправность вновь определяется. (Неисправность определяется при ездовом цикле автомобиля). Однако для случая топливной системы (богатая/бедная смесь, пропуски зажигания), диагностический код неисправности появляется только при первом определении неисправности.

Стирание диагностических кодов неисправностей: После запоминания диагностического кода, и если РСМ вновь не обнаруживает эту неисправность в течение следующих 40 ездовых циклов, диагностический код стирается из памяти РСМ. Однако, для случая топливной системы (богатая/бедная смесь, пропуски зажигания), диагностический код стирается при выполнении следующих двух условий:

Когда условия движения (обороты двигателя, температура охлаждающей жидкости и др.) идентичны тем, при которых была обнаружена эта неисправность в первый раз.

Когда РСМ вновь не обнаруживает эту неисправность в течение следующих 80 ездовых циклов.

ПРИМЕЧАНИЕ

«Ездовым циклом» называется состояние двигателя, при котором он проходит режим работы «с обратной связью».

Контрольная лампа индикации неисправности двигателя (MIL)

Рис. 2.365. Контрольная лампа индикации неисправности

Когда загорается контрольная лампа индикации неисправности двигателя (MIL), это означает наличие неисправности в автомобиле.

Однако, если не предпринимать никаких ремонтных воздействий, MIL автоматически погаснет через 3 последовательных ездовых циклов.

После включения зажигания MIL загорается, и остается включенной около 5 с, чтобы показать, что лампа исправна.

Включение MIL может означать наличие неисправностей в следующих элементах:

– каталитический нейтрализатор;

– топливная система;

– датчик расхода воздуха (MAF);

– датчик температуры воздуха во впускном коллекторе (IAT);

– датчик температуры охлаждающей жидкости (ECT);

– датчик положения дроссельной заслонки (TPS);

– передний кислородный датчик;

– нагреватель заднего кислородного датчика;

– задний кислородный датчик;

– нагреватель переднего кислородного датчика;

– форсунки;

– пропуски зажигания;

– датчик положения коленчатого вала (СКР);

– датчик положения распределительного вала (СМР);

– система улавливания паров топлива;

– датчик скорости автомобиля (VSS);

– регулятор холостого хода (ISC);

– электронный блок управления двигателем (РСМ);

– датчик абсолютного (барометрического) давления во впускном коллекторе (MAP) (кроме автомобилей с двигателем 2,7 л V6);

– датчик-выключатель полностью закрытой дроссельной заслонки;

– система рециркуляции отработавших газов (кроме автомобилей с двигателем 2,7 л V6).

Поверка

Включите зажигание (положение ключа замка зажигания «ON») и убедитесь что, контрольная лампа индикации неисправности двигателя загорелась примерно на 5 с, а затем погасла.

Если контрольная лампа не горит, то проверьте проводку на отсутствие обрыва, предохранитель и саму лампу на отсутствие перегорания.

Самодиагностика

Электронный блок управления двигателем отслеживает входные/ выходные сигналы (одни постоянно, другие – только при определенных условиях). В случае, если электронный блок управления двигателем обнаружил неисправность (постоянное или временное нарушение в работе системы), то он запишет соответствующий код неисправности в память и пошлет сигнал на стандартный диагностический разъем. Результаты диагностики (коды неисправностей) могут быть считаны с помощью контрольной лампы индикации неисправности двигателя или тестера HI-SCAN (Pro). Коды неисправностей будут сохраняться в памяти электронного блока управления двигателем только при наличии питания от аккумуляторной батареи. Коды неисправностей могут быть стерты либо пи отсоединении клеммы аккумуляторной батареи или разъема блока управления двигателем, либо с помощью тестера HI-SCAN (Pro).

Процедура проверки (самодиагностика)

ПРИМЕЧАНИЕ

Если аккумуляторная батарея разряжена, то прочитать диагностические коды прочесть невозможно. Следите за состоянием аккумуляторной батареи (напряжением бортсети), перед проведением проверки подзарядите аккумуляторную батарею.

Коды неисправности стираются при отсоединении аккумуляторной батареи или разъема РСМ. Не отсоединяйте аккумуляторную батарею до тех пор, пока не прочитаны и не проанализированы все коды неисправностей.

Методика проверки (при использовании диагностического прибора типа GST)

Рис. 2.366. Выводы диагностического разъема

Выключите зажигание.

Подсоедините диагностический прибор к разъему канала передачи данных (диагностическому разъему).

Включите зажигание.

При помощи диагностического прибора считайте коды неисправности.

Выполните необходимые ремонтные работы в соответствии с рекомендациями диагностической карты.

Сотрите диагностические коды.

Отсоедините диагностический прибор.

Понравилась статья? Поделить с друзьями:
  • Newdose dp 06 05 lm инструкция
  • Руководство по работе с планом графиком
  • Лекарство гинофлор инструкция по применению цена
  • Тойота ленд крузер прадо 120 мануал
  • Частотный преобразователь holip инструкция на русском