Руководство по работе с осциллографом

Осциллограф – это цифровой или аналоговый прибор, предназначенный для визуального контроля формы напряжения и токов. Любой мастер или инженер занимающийся ремонтом электроники, должен уметь пользоваться Oscilloscope, для проведения диагностики.

Назначение осциллографа

Для разработки и ремонта современной электронной техники необходимы специализированные знания в области электронных схема построений. При проектировании или исследовании любой схемы необходимо проводить измерения. Так как большинство схем имеют импульсный режим работы, то приборы должны соответствовать исследуемой технике. 

Если мы до этого могли свободно обходиться мультиметром, измеряя необходимые значения токов и напряжения, то при диагностике современной электроники этого будет недостаточно. Так как помимо значений измеренных мультиметром, необходимо визуально контролировать форму сигнала устройства или участка схемы, который исследуется. 

В этом случае применяется прибор называемый – Осциллографом. Данный прибор визуально показывает какие процессы происходят в электрической схеме, в определенный момент исследования. На практике научиться применять Oscilloscope можно пройдя очное обучение по программе Электроника и схемотехника в Bgacenter.

Визуализация процессов используя АКИП-4115/4А

Визуализация процессов используя АКИП-4115/4А

Осциллографы существуют двух видов: 

  • аналоговые
  • цифровые

Развитие электронной техники вытеснили аналоговые, а цифровые завоевали особую популярность среди электронщиков и начинающих радиолюбителей. За счет простоты их использования, а также минимальной подготовки к работе. Данные приборы обладают большим функционалом, многими полезными функциями, которые отсутствуют у аналоговых приборов. При ремонте и настройке блока питания APW8 необходимо применять Oscilloscope, для визуального контроля амплитуды и длительности на входах полевых транзисторов каскада PFC и оконечного каскада.

Осциллограф – практически тот же вольтметр, где измеряется напряжение, поэтому прибор подключается параллельно к участку измеряемой цепи, либо параллельно источнику питания. Если применить закон Ома, то можно увидеть необходимый сигнал – форму тока. Для этого необходимо применить сопротивление значением 1 Ом, а при делении напряжения на сопротивление в 1 Ом получим силу тока и его форму.

Настройка осциллографа

В данной инструкции будем рассматривать все примеры, применяя цифровой осциллограф АКИП-4115/4А. 

Для использования прибора его необходимо подключить к электрической сети, при помощи сетевого шнура идущего в комплекте с прибором. 

Далее на верхней части корпуса необходимо нажать кнопку, подождать некоторое время, когда загрузится программа осциллографа. На экране появится заставка с названием прибора. После загрузки операционной системы устройства засветится дисплей (горизонтальная линия на экране прибора). 

АКИП-4115/4А

АКИП-4115/4А

Так как Oscilloscope является двух канальным, то по умолчанию включается первый канал. Клавиша КАН 1 на передней панели, обозначена желтым цветом. Канал подсвечивается, а на экране прибора так же светится желтая линия. 

В нижней части панели управления имеется высокочастотный разъем BNC (Bayonet Neill-Concelman), также желтого цвета, что соответствует подсвечиваемой линии на экране осциллографа. Для второго канала используется синий цвет, это связано с  удобством в работе при одновременном наблюдении осциллографом сигнала в исследуемом устройстве.

КАН1

КАН1

Для дальнейшей работы необходимо перейти к определенным настройкам АКИП-4115/4А. По умолчанию может быть выставлен определенный режим работы, например заданный производителем (язык интерфейса, время, значения настроек). Для этого в данном приборе существует специализированное меню которое имеет 6 независимых функциональных кнопок расположенных в верхней части настроечного блока в два ряда.

Верхний ряд имеет клавиши: 

  • Курсоры
  • Сбор информации
  • Зап. вызов

Верхний ряд кнопок меню

Верхний ряд кнопок меню 

Нижний ряд имеет клавиши: 

  • Измерение 
  • Дисплей
  • Утилиты

Нижний ряд кнопок меню

Нижний ряд кнопок меню

Слева от данного меню находится регулятор “УСТАНОВКА”, который необходим для настройки необходимых параметров прибора в соответствующем МЕНЮ.

image9

При нажатии кнопки “Утилиты” в правой части экрана прибора появляется 4-х страничное меню. Самая верхняя клавиша “Меню вкл/выкл” может удалять при нажатии на нее меню с экрана прибора. В нижней части блока кнопок расположенных на панели экрана, расположена кнопка “Печать”. При помощи которой можно записать данные с экрана осциллографа на флеш носитель. 

При повторном нажатии на клавишу “Меню вкл/выкл” меню снова появляется на экране. 4-х страничное меню, можно переключать нажимая пятую клавишу сверху. 

Кнопка Меню ВКЛ/ВЫКЛ

Кнопка Меню ВКЛ/ВЫКЛ

При выборе первой страницы меню, клавишей “1” можно включить подменю “СТАТУС”, при этом на экране осциллографа появляется информация о статусе прибора. Выход из этого подменю осуществляется нажатием клавиши “Однократно”.

Статус прибора

Статус прибора

Клавиша подменю “2” управляет отключением и включением звукового сигнала.

Клавиша “3” выводит на экран частоту измеряемого сигнала.

Кнопка “4” позволяет выбрать язык интерфейса. 

При нажатии клавиши “5” включается вторая страница подменю. В этой вкладке, нажимая на кнопку “1” выполняется самокалибровка. 

В режиме Самокалибровки необходимо отключить от прибора все пробники и кабели. Затем нажать кнопку “Однократно”, при этом появляется шкала зеленого цвета, которая заполняется. После завершения Самокалибровки нажать кнопку “Однократно”. Для выхода из режима Самокалибровки необходимо нажать клавишу “ПУСК/СТОП”.

Кнопка Однократно

Кнопка Однократно

Режим “Самотестирования”. При нажатии клавиши “2” открывается подменю соответствующее кнопкам:

  • 1 – Тест экрана (Screen Test). При нажатии этой клавиши, экран становится красным. Дальнейшее нажатие кнопки “Однократно”, цвет экрана может меняться на зеленый и синий. Эта функция помогает контролировать наличие основных цветов RGB (красный, зеленый, синий). Выход из данного меню осуществляется нажатием кнопки “ПУСК/СТОП”
  • 2 – Тест клавиатуры (Keyboard Test). При нажатии этой клавиши можно протестировать работу всех клавиш. При этом на экране соответствующая кнопка будет менять цвет на зеленый. Что говорит о исправности клавиш.
  • 3 – Тест Свд (LED Test). Проверка работоспособности подсветки кнопок. 

Выход из данного подменю осуществляется нажатием кнопки “Утилиты”.

Утилиты

Утилиты

Страница 3 подменю. Соответствие кнопок настройкам:

  • 1 – Обновление ПО
  • 2 – “Доп/Контр” использование дополнительных настроек
  • 3 – “Запись” – записывает данные на нужный носитель, в соответствии с выбранным подменю
  • 4 – “Установки порта”

Страница 4 подменю. Соответствие кнопок настройкам:

  • 1 – Режим сохранения долговечности светодиодов
  • 2 – Регистратор

Дисплей” – клавиша основного меню 

При нажатии этой кнопки высвечиваются следующие пункты подменю:

  • 1 – “Вектор”
  • 2 – “Послесвечение”
  • 3 – “Яркость луча”
  • 4 – “Яркость сетки”

При нажатии клавиши “1” мы можем видеть линию осциллографа либо в виде точек, либо в виде прямой линии (вектор).

При нажатии клавиши “2” выбираем длительность свечения экрана после проведения измерения. От 1 секунды до бесконечности.

При нажатии клавиши “3” – мы можем регулировать яркость свечения луча при помощи ручки регулятора “Установка”.

При нажатии клавиши “4” мы можем регулировать яркость координационной сетки, для удобства пользования.

Выход из этого меню осуществляется нажатием клавиши “Утилиты”

Измерения” – клавиша основного меню

При нажатии этой кнопки открывается пять видов подменю:

  • 1 – Напряжение. Выбор источника канала. Выбор типа измерения напряжения.
  • 2 –  Время. Также выбор источника канала и тип длительности (частота)
  • 3 – Задержка. 
  • 4 – Все измерения. Канал, напряжение и время. Сразу три характеристики одновременно отображаются на экране. 
  • 5 – Удалить измерения.

Курсоры” – клавиша основного меню

Устанавливает линии ограничения измерений по амплитуде и по частоте

Сбор информации” – клавиша основного меню

Используется режим выборки

Зап/Выз” – клавиша основного меню

Переводит режим осциллографа при нажатии первой клавиши к заводским настройкам.

Начальные установки” переводит осциллограф к начальным установкам пользователя

Помощь” – нажатие на эту кнопку вызывает справочное меню. Перемещение осуществляется с использованием кнопок 1-5.

Пуск/Стоп” – применяется для остановки исследуемого сигнала. Чтобы измерить его длительность и амплитуду.

АВТО” – автоматически находит исследуемый сигнал подаваемый на щупы осциллографа, для его дальнейшего исследования.

Регулятор управления вертикальной разверткой первого канала (желтого цвета) предназначен для выбора оптимальной величины амплитуды, для исследования сигнала.

Регулятор “Смещение” луча в вертикальном направлении

Что измеряет осциллограф

Для полноценной диагностики электронного устройства применяется Oscilloscope.

При помощи осциллографа можно измерить следующие параметры:

  1. Максимальную амплитуду любого сигнала
  2. Посмотреть эпюру напряжения и тока 
  3. Измерить частоту сигнала
  4. Просмотреть фазу сигнала
  5. Измерить постоянное напряжение 

Амплитуда сигнала есть максимальное значение которое выдается генератором при его работе. Если производить измерения мультиметром, то мы видим действующее значение тока или напряжения. Что зачастую бывает не достаточно при проектировании или ремонте электронных устройств. Поэтому в данном случае целесообразно применить мультиметр который измеряет максимальные амплитудные значения. Часто для этих целей применяется осциллограф. Например при рассмотрении синусоидального напряжения электрической сети через понижающий трансформатор на выходе диодного моста без сглаживающего конденсатора фильтра.

Амплитуда сигнала

Амплитуда сигнала

Эпюра напряжения или тока – это осциллограмма, то есть изображение на экране осциллографа, поданного на вход прибора любого исследуемого электрического сигнала. Измерения можно проводить в любой интересующей нас контрольной точке и сравнить ее с данными производителя.

Эпюра синусоидального напряжения сети

Эпюра синусоидального напряжения сети

Частота сигнала – значение исследуемого сигнала во временном диапазоне по оси Х осциллографа. Так как данный сигнал измеряется по времени (сек, миллисекунд, микросекунд), то частота величина обратная времени. Поэтому для нахождения частоты необходимо применить формулу: 

f = 1/T 

где f – частота, в Гц (Hz)

T – время, в сек (S)

Частота сигнала формы Меандр

Частота сигнала формы Меандр

Фаза сигнала – измеряется при помощи двух каналов. На один вход подается один исследуемый сигнал, на второй вход подается другой сигнал на этой же частоте. Сдвиг сигналов на экране прибора по времени и есть фаза.

Измерение постоянного напряжения. При помощи прибора можно измерять не только амплитудное переменное значение, но и постоянную составляющую напряжения.

Осциллограф без сигнала на входе

Осциллограф без сигнала на входе

Измерение напряжение источника постоянного тока. На фото заметно поднятие горизонтальной полосы вверх относительно первоначального значения. Согласно координационной сетки Вольт/деление по оси Y можно рассчитать фактическое напряжение на выходе источника питания 

Измерение постоянного напряжения

Измерение постоянного напряжения

Как работает осциллограф

Последовательность работы с осциллографом:

  1. Включить Oscilloscope в электрическую сеть. 
  2. Согласно инструкции выбрать соответствующие настройки в пунктах меню (язык, время, и т.д.).
  3. Произвести калибровку прибора.
  4. Подключить высокочастотные измерительные провода BNC к соответствующим разъемам, в соответствии с маркировкой.
  5. Начать проводить измерения, присоединив щуп к исследуемой точке на электронной плате. 
  6. Если исследуемый сигнал не отображается на экране осциллографа в ручном режиме, необходимо нажать кнопку “АВТО”. При этом прибор покажет исследуемый сигнал.
  7. В случае когда эпюра сигнала не помещается на экране, ее необходимо удержать кнопкой “ПУСК/СТОП”, затем регуляторами вертикального и горизонтального усиления довести картинку до оптимального отображения.
  8. Во время проведения работ с осциллографом, соблюдайте технику безопасности. Особенно это касается при ремонте горячей части импульсного блока питания, привязанной к электрической сети. В этом случае, для полной безопасности лучше использовать разделительный трансформатор.

Как пользоваться осциллографом

Перед тем как начать пользоваться Oscilloscope, важно определиться какой сигнал предварительно может в данной точке измеряться прибором по амплитуде. Это необходимо в целях исключения поломки прибора. Согласно инструкции установить на приборе максимальное значение напряжения В/Деление по развертке Y. А по развертке X ожидаемую частоту сигнала. 

Только после этого подключаем прибор к соответствующей контрольной точке для измерений. Затем проанализировать появившуюся эпюру напряжения. Для удобства отсчета существуют ручки смещения: 

  • по оси координат Y – вертикальное отклонение
  • по оси Х – горизонтальное отклонение

При помощи этих регуляторов сместить полученное изображение к началу координат, для удобства отсчета. По осям Ординат и Абсцисс (Y,Х) существует координатная сетка. Она привязана к соответствующим условным значениям. По выбранным значениям можно посчитать полученное значение напряжение в вольтах и время в секундах. Для нахождения частоты, необходимо перевести время в частоту, по формуле f = 1/T.

Измерение сигнала с ШИМ-контроллера (видео)

Для примера возьмем плату от рабочего телевизора и посмотрим выходные импульсы с ШИМ-контроллера в различных режимах работы:

  • в дежурном режиме – когда телевизор включен в сеть, до нажатия на кнопки включения
  • в рабочем режиме – после нажатия на кнопку включения (или что то же самое под нагрузкой)

Удобно применять осциллограф, для исследования электрической схемы в случае, когда ШИМ-контроллер был бы не исправен. При присутствии питания на ШИМ-контроллере выходных импульсов не было бы. А присутствовало бы какое-нибудь напряжение. А это в свою очередь говорит о неисправности самого ШИМ-контроллера или его цепей.

Выводы

  • Научиться применять осциллограф необходимо каждому электронщику и начинающему радиолюбителю, занимающемуся разработкой, производством, настройкой, диагностикой и ремонтом электронных устройств.
  • Важно уметь анализировать полученные результаты, основываясь на понимании  работы электронных компонентов.
  • Осциллограф является сложным устройством, но научится им пользоваться не составляет особого труда.

Как правильно пользоваться осциллографом

Содержание

  • 1 Что такое осциллограф
    • 1.1 Назначение
    • 1.2 Где применяется
    • 1.3 Что может измерить осциллограф
  • 2 Виды
  • 3 Устройство
  • 4 Как функционирует осциллограф
  • 5 На что обратить внимание в Oscilloscope, ориентиры для выбора
    • 5.1 Полоса пропускания
    • 5.2 Частота дискретизации (Sampling rate)
    • 5.3 Число каналов
    • 5.4 Эквивалентная частота дискретизации
    • 5.5 Глубина памяти
    • 5.6 Обновление экрана
    • 5.7 Максимальное входное напряжение (питание)
  • 6 Основы управления
  • 7 Начало работы
    • 7.1 Синхронизация
    • 7.2 Подключение
    • 7.3 Режим входа
    • 7.4 Быстрый старт
  • 8 Измеряем напряжение
    • 8.1 Порядок действий
  • 9 Измерение частоты
  • 10 Измеряем сдвиг фаз
    • 10.1 Порядок действий
  • 11 Видео по теме

Как пользоваться осциллографом, надо знать каждому, кто желает углубить свои навыки в починке, обслуживании электротехники, в диагностических мероприятиях. Осциллограф предназначен для мониторинга изменений напряжения во времени. Устройство оснащено экраном с движущейся разверткой, показывающую графики, амплитуду, синусоиду колебаний за определенные периоды.

осциллограф

Что такое осциллограф

Осциллографом (O-Scope, Oscilloscope) регистрируют изменения (амплитуды, колебания) напряжений сигналов электроцепи с выводом в виде синусоид, пилообразных и других линий на координатную сетку на мониторе. Прибор применяют для изучения динамики системы во время ее работы. Характерный пример: тестирование импульсных, генераторных устройств (источники питания). Oscilloscope покажет форму напряжения, электросигналов во времени, уровень колебаний, изменения при определенных условиях и факторах (поломки, температура, магнитные поля, помехи, экранирование).

осциллографы

Назначение

O-Scope измеряет такие величины и решает следующие задачи:

  • тестовые меры для электросхем, сборок, изделий при их выпуске, починке, в исследовательских учреждениях;
  • всегда используется при проверке измерительных устройств;
  • электро, теле и радио сфера: свойства сигналов, степень шумов, искажений;
  • для узкоспециализированного аппаратного оснащения, для анализа АСУ, исполнительных приспособлений;
  • замеры частот и амплитуд при отладке;
  • визуальный мониторинг сигналов, фазных сдвигов;
  • анализ функционирования датчиков автомобиля.

Что такое осциллограф

Если кратко отобразить функции, то аппарат позволяет наблюдать изменения напряжения:

  • во времени: частоту, промежутки, скважность, циклы, скачки, спады, всплески;
  • на физике: колебания, амплитуды, макс./мин. среднеквадратичные значения.

Осциллограф — это «глаза», позволяющие посмотреть внутрь цепи во время ее работы. Кроме простого измерения электросигнала, современные изделия могут делать математические преобразования в реальном времени (Фурье и пр.).

Где применяется

Сферы применения:

  • всегда в научных, технических лабораториях, исследовательских отделениях на заводах, выпускающих электроприборы, например, производитель должен знать, как реагирует его продукция на помехи;
  • при углубленном анализе сборок, при наладке, ремонте электроустройств: от радио и сотовой связи до цепей двигателей машин. Для радиолюбителей прибор незаменим.

Аппарат

Аппарат выдает визуальную информацию о характеристиках сложных сигналов, показывает временные и амплитудные данные изменений, что важно для расчетов и определения, как будет себя вести изучаемый объект за периоды в конкретных условиях.

Что может измерить осциллограф

Осциллограф может измерить:

  • покажет по сигналам:
    • форму;
    • частотность;
    • период;
    • амплитуду;
    • угол сдвига фазы;
    • сравнение сигналов;
  • АЧХ (ампл.-частотную х-ку);
  • через закон Ома по показателям прибора исчисляют ток (при этом его преобразовывают в напряжение резисторами).

изменение тока

O-Scope — фактически это вольтметр, но отображающий изменения напряжения онлайн, им можно обозначить форму тока, подключив последовательно к обслуживаемой сети резистор (Rt, «t» — токовый, он же шунтирующий). Его число Ом подбирают намного меньшим, чем у цепи, чтобы отсутствовали влияния на схему. Далее, вычисляют по формуле и, зная величину Rt, можно найти ток.

формула

Виды

У цифровых моделей есть функция записи и архивирования, что расширяет возможности. Для сопоставления результатов онлайн используют аппараты с несколькими каналами. Есть экземпляры, подключаемые к ПК и комбинации с другими измерительными девайсами.

Осциллограф с мультиметром

Выбор аналоговых моделей (кроме простых и учебных) подразумевает наличие познаний во множестве настроек, регулировка усложненная. С другой стороны, такие приборы дают углубленную практику.

Разновидности Осциллографов

Цифровые модели — это рекомендованный выбор, на таком аппарате можно быстро освоить основы. Это вычислительные комплексы, с ними получение данных, интерпретация проще и намного быстрее.  Есть также модели аналогово-цифровые.

Цифровые модели

аналоговые осциллографы

Устройство

Главный узел осциллографа — трубка как у старых телевизоров, электронно-лучевая, осуществляющая визуализацию величин, принимаемых входным делителем, от которого зависят рамки допустимых замеров. Происходит усиление, синхронизация с генератором развертки. Далее, исследуемая величина попадает на оконечный усиливающий узел, на ЭЛТ, затем происходит отображение его онлайн без каких-либо задержек.

Устройство

Устройство 2

цифровой осциллограф

Алгоритм, как работает цифровой осциллограф несколько иной: он сначала пропускает сигнал через преобразователь (аналого-цифровой), замеряя его несколько раз в сек. Затем происходит реконструкция и отображение на мониторе. Одновременно данные записываются буферной памятью, есть возможность будущей их обработки.

работа осциллографа

Электронный осциллограф

Работать с цифровым осциллографом удобнее, его преимущества — полная функциональность с дополнительными опциями в маленьком корпусе, простота настроек. Выбор осциллографа в современных условиях обычно осуществляется среди указанных видов. Отдельные аналоговые старые основательные советские экземпляры (дешевле в 4–5 раз) неплохи, но они габаритные, требуют больше навыков по настройке.

Как функционирует осциллограф

Если смотреть на быстро пробегающие объекты, то увидим размытую линию. Но если периодически открывать «окошко», то будут выхватываться статичные кадры. Это принцип стробоскопа, так же, но в электронной форме работает Oscilloscope.

рассинхронизация

Действие «окошка» синхронизуется (главное условие) со скоростью объектов (сигнала), поэтому при его открытии их место стабильно. В противном случае возникнет рассинхронизация.

рассинхронизация 2

Аппарат визуализирует периодические изменения в реальном времени на табло синусоидой или линией другой формы (пила, меандр и прочее). Каждый будущий отрезок схожий с прошедшим, он «останавливается» и показывается (в 1 момент — 1 период).

периодические изменения

На что обратить внимание в Oscilloscope, ориентиры для выбора

Рассмотрим основы характеристик O-Scope, которые послужат также ориентирами, как выбрать осциллограф, надежную его модель.

характеристики O-Scope

Способы, чтобы проверить осциллограф:

  • встроенным генератором (Калибровка), все цифровые модели имеют его. Включают режим и смотрят, есть ли синусоида. Если магазин специализированный, там должен быть внешний генератор для проверки;
  • старые осциллографы начинают подвирать со временем, как проверить их есть простой способ: взять эталонный источник, например, ту же батарейку 1.5 В;
  • экран должен быть достаточной яркости, луч без артефактов;
  • дотронуться до щупа: фаза покажет синусоиду (правда с большими помехами), земля — ровную линию;
  • посредством ПК, специальным ПО.

ПО

Полоса пропускания

Это минимальная и максимальная частоты, амплитудность, то есть диапазон, который может измерить прибор. Достаточно учесть верхнюю черту; нижнюю рисуют все устройства.

Частота дискретизации (Sampling rate)

У цифровых моделей. Данный параметр связан с предыдущим. Чем выше, тем лучше (например, у Siglent SDS — 1×109). Это число считываний за единицу времени, определяет максимальные частоты без потерь на экране. У приборов с несколькими каналами может уменьшаться при задействовании их всех (при покупке надо учесть).

развертки

По теореме Котельникова част. дискр. должна превышать в 2 раза верхнюю рамку пропускания, но на практике потребуется превышение в 4–5 раза. На этом и основывается выбор. Пример для изделия с полосой до 200–800 МГц (важно учесть параметр при использовании 2 и больше каналов).

Число каналов

Многие модели способны обрабатывать больше сигналов вместе, одновременно раздельно показывая их на мониторе. Обычно от 2 до 4. Иногда включение других каналов сказывается на производительности. Выбор осциллографа рекомендовано делать среди изделий с двумя каналами, что позволит сравнивать исследуемые величины, исчислять фазные сдвиги.  Три и больше входа, это хорошо, но для обычных задач иногда чрезмерно, цена прибора возрастет многократно.

осциллографы

Эквивалентная частота дискретизации

Когда недостаточно реальной част. дискр., итоговая картинка реконструируется по нескольким последовательным измерениям. Пример: анализируется сигнал 200 МГц на модели с част. дискр. 1 млрд. выборок/сек. (1 GSa/s) — получают всего 5 измерений. По теор. Котельникова этого хватает, но можно детализировать (алгоритмическим методом) и активировать опцию: будет не 1 GSa/s, а уже 2 GSa/s.

Глубина памяти

Всегда есть в цифровых моделях (DSO=Digital Storage Oscilloscope). Чем ниже скорость развертки, тем точнее показатели и тем больше значений приходится сохранять прибору в памяти. Чем глубже память — тем лучше. Но иногда наблюдается негативный момент: при медленных измерениях прибор подтормаживает, выбирая изделие, надо поинтересоваться этим нюансом.

частота дискретизации

Обновление экрана

Чем чаще обновляется монитор, тем короче «мертвое время», требуемое для обработки захватываемой информации, более оперативно происходит обновление осциллограмм. Больше шансов, что аппарат покажет малозаметный артефакт. Впрочем, это имеет значение только для фанатов-электронщиков.

Максимальное входное напряжение (питание)

Любой прибор имеет предел по мощности питания, при превышении которого без дополнительных мер он просто сгорит, выйдет из строя. Нужно учитывать параметры обслуживаемых цепей. Пример: макс. напр. в режиме щупа 1:1 — 40 В, в режиме 1:10 — 400 В, то есть лезть в цепь с 400 В и больше без предохранительных мер уже небезопасно.

Основы управления

Большинство ручек, кнопок, переключателей осциллографа пригодятся только для профессионалов электронщиков. Поэтому рассмотрим основы, которых достаточно для большинства задач. Все остальные опции по сути, это дополнения, упрощающие исследования.

управление

Начало работы

Работа с осциллографом по аналоговому прибору описывается более подробно. В роли объекта изучения можно использовать несложные модели: чрезвычайно простой учебный осциллограф н3013 или популярный С1-83. По цифровому — все то же, но он унифицирует, обобщает некоторые моменты.

осциллограф н3013

подготовка прибора

В лучевой трубке Oscilloscope пучки электронов, идущие на табло, провоцируют свечение люминофора (светлая точка посередине). Отклоняющие пластины (2 пары) дают возможность гонять ее. Чем выше напряжение на клеммах, тем значительнее она подвигается. Подающееся напряжение на пласт. Х (вертикальные) инициирует пилообразную развертку, луч бегает циклически (это линия развертки или нуля). На пласт. Y подключают исследуемые величины.

кнопки управления

Синхронизация

Перед тем, как работать с осциллографом, надо изучить основы (управление, подключение, какие щупы и прочее). Главный пункт взаимодействия — синхронизация. Если старт пилы (самое левое положение луча) и сигнала совпали, то 1 проход развертки покажет 1 или больше периодов и изображение как бы застынет. Изменяя скор. развертки делают так, что на табло будет только 1 отрезок: за 1 пер. пилы пройдет 1 пер. анализируемого сигнала.

структура управления

Способы синхронизации:

  1. Пила и сигнал синхронизируются, регулируя селектором скорость до остановки синусоиды
  2. Задается уровень, указывают напряжение на входе для активации генератора. Пила появится, только при выставленном значении, синхронизация автоматическая. Надо учесть помехи: они могут активировать генератор ошибочно (уровень чрезмерно низкий), если очень высокий — сигнал не запустит систему.

Надо знать следующее:

  • по горизонтали смещение луча прямо пропорциональное времени;
  • по вертикали — пропорционально исследуемому напряжению.

Подключение

В осциллографе нет отдельных двух щупов, как у мультиметра. Есть один кабель с 2 отростками, жилами (напряжение меряют между 2 точками), втыкаемыми в розетку с 2 клеммами. Если на приборе гнезд с ними больше одного, то прибор двух или многоканальный.

осциллограф

Две клеммы:

  • для фазы — подключена к входу усилителя, отклоняющего луч по вертикали;
  • общая (земля, минус) — связана непосредственно с корпусом аппарата.

В иностранных приборах провод с «крокодилом» — земля, фаза — игла, которой тыкают в контакты проверяемых схем, в ножки микропроцессоров и прочее. В отечественной продукции часто провода одинаковые. Узнать назначение можно, коснувшись их рукой: минус (земля) — на экране ровная линия, фаза — искаженная синусоида.

осцилограмма

Нельзя использовать любой провод для щупа — в осциллографе это только коаксиальные специальные изделия, любой другой кабель покажет чушь.

щупы осциллографа

Упрощенно алгоритм использования, как подключить к анализируемой цепи и провести исследование:

  1. Осциллограф ставят в удобное место, ручки приводят в нормальное или нейтральное положение.
  2. Если есть калибратор, то надо откалибровать по инструкции.
  3. Землю сажают на «−» или общую жилу в исследуемой схеме. Если их невозможно определить — подключают к любому из контактов, между которыми проводят исследование. Сигналом тычут по схеме.

Прибор отображает напряжение на щупе по отношению к общему проводку. На некоторых таких шнурах (прямо на них) есть делители 1:0, 1:100 с тумблерами вкл./выкл., позволяющие воткнуть концы хоть напрямую в 220 В, не рискуя сжечь прибор.

подключение осциллографа

Режим входа

Регулятор с прямой и, ниже нее, волнистой чертой — это режим входа. Верхняя позиция — допустимо подавать любое напряжение. Средняя — позволяет установить развертку. Нижняя позиция — только для переменной величины, при этом подключение идет через встроенный конденсатор.

Пример: надо проанализировать помехи на БП с 12 В, их интенсивность возможна до 0.3 В. На фоне 12 В незаметно. Можно повысить коэфф. по Y, но график выйдет за монитор, а смещения не хватит для наблюдения вершины. Тогда включаем в цепь конденсатор и 12 В осядут там, а в O-Scope пойдет переменная величина — 0.3 В помех, визуализацию усиливают и разглядывают полный масштаб.

деления

Быстрый старт

Экран размечен линиями с делениями Y (вертикаль) и X (горизонталь) – это декартовая система координат, их селекторы (большие и заметные) — главные органы управления:

  • Усиление (В/дел, вольт/на деление) — масштабирует по оси Y, чтобы просмотреть весь сигнал, и там же указано, сколько В на деление в итоге отобразится. Пример: если стоит 2 В на деление, а сигнал занимает две клеточки в высоту, то амплитуда равна 4 В; при выборе 1 В и подачи синусоиды ампл. в 0.2 В она займет 4 кл.;
  • Длительность (Развертка) — регулировка частоты. Тут деления в мс и мкс. Чем меньший промежуток и больше частота, тем высокочастотный сигнал можно разглядеть и по его ширине можно исчислить, сколько он клеток, а умножив на масш. по линии X, получим его длительность в сек. Можно рассчитать один период, затем — значение частоты — f=1/t. Данная ручка — для выставления скорости луча на табло слева/направо. В цифровых аппаратах — сплошная линия. Поступающий через вход сигнал отклоняет луч вверх/вниз: возникает волнообразная синусоида, пила или иная форма линии, отображая шумы, помехи.

главные органы управления

Клавиша развертка и крутилки со стрелочками позволят гонять график по экрану для удобства его восприятия и подгонки нужного участка под квадратики сетки. А изменяя скорость, частотность бега луча (величину частоты развертки), добиваются синхронизации, замирания изображения.

развертка

Измеряем напряжение

Для уменьшения погрешности, так как наблюдение визуальное, рекомендовано, чтобы график занимал 80–90 % монитора. Когда делают замеры напряжения и по частоте (есть временный интервал), надо регуляторы усиления и скорости развертки разместить в крайние правые позиции.

Измеряем напряжение

Порядок действий

график

Напряжение измеряется масштабированием по вертикали. Алгоритм:

  1. Перед началом замыкают сигнал щупа на свой же земляной проводок (иглу на «крокодил») или выставляют тумблер режима входа в позицию «земля».
  2. Высветится «пульс трупа», если нет, то надо подвигать смещение, стабилизацию и уровень — возможно изображение спряталось, не запустилось.
  3. Регулируем селекторами смещение полосы на ноль и регулятором «вверх-вниз» выставляем развертку на горизонталь сетки, так можно будет корректно рассчитать высоту осциллограммы. Если осциллограф старый или аналоговый, то надо ему дать прогреться минут 5.
  4. Выставляем предел измерений по напряжению, рекомендовано брать с запасом, потом можно уменьшить.
  5. На вход дают сигнал (или его переключатель переводится в одно из рабочих позиций). На мониторе появится график.
  6. Проиллюстрируем процесс: батарейка имеет 1.5 V, если прикоснуться земляным отростком щупа к ее минусу, а сигнальным — к плюсу, то появится скачок графика на 1.5 Вольта.

график 2

Для нахождения высоты графика осциллограмму подвигают селектором, чтобы отметка, по которой исчисляется амплитуда, была на центральной вертикали с долями. Получим чувствительность отклонения — 1 в/дел, размер осциллогр. — 2.6 дел., а отсюда ампл. = 2.6 В.

Ниже иллюстрация на аналоговом аппарате: 3.4 дел. — макс. напряжения. На соседнем рисунке — масштабирование по вертикали. Регулятор «плавно» (часть с зеленой риской) – в правой предельной позиции, черточка тумблера чувствительности — 0.5 в/дел. Множитель по масшт. — ×10. Расчет напряжения:

Расчет напряжения

Расчет напряжения

Измерение частоты

Частота — это временная характеристика, интервалы, периоды сигнала; их измерение — прямое назначение осциллографа. Исследуемое значение всегда обратно пропорционально его периоду, который можно замерить в любой области осциллограммы. Но комфортнее и точнее это сделать в точках пересечения графика с горизонталью по центру (ось времени).

Измерение частоты

Перед исследованием полосу развертки выставляем на центральную горизонталь. Используя ручку со стрелкой в обе стороны, смещаем начало периода с самой крайней левой полосой на мониторе. В нашем случае промежуток = 6.8 дел., скор. развертки — 100 мкс/дел. Исчисления:

Исчисления

графики

Выше на схожих двух рисунках те же сигналы, но при разной скорости развертки. По первому изображению исчисление частоты (точное значение — 1.459 кГц) имеет большую погрешность, по второму — меньшую, так как большую точность при измерении получают, если растянуть картинку.

На втором рисунке период чуть превышает 6.8 дел. и частота в реальности чуть ниже (1.459 КГц), чем полученная (1,47 КГц). Отклонение меньше 1 %, это допустимо и считается высокой точностью, ее обеспечит цифровой O-Scope (с линейной разверткой). В аналоговых моделях отклонение было бы выше. Характерная закономерность: с увеличением периода снижается частота (пропорция обратная), и наоборот.

Измеряем сдвиг фаз

Иногда бывает, что фазы напряжения и тока расходятся (при проходе через конденсаторы, индуктивность). С двухканальным O-scope возможно посмотреть уровень различий.

Измеряем сдвиг фаз

Сдвиг фаз покажет два процесса в движении, их положение с колебаниями. Измеряют не в ед. времени (горизонталь), а в долях промежутка сигнала (ед. угла). Одинаковому взаимному размещению сигналов соответствует такой же сдвиг, и он не зависит от периода и частоты. Поэтому измерения достовернее при максимальном растяжении периодов на мониторе.

Порядок действий

управление

прибор

Этапы (модель С1-83):

  1. Крутилками со стрелками 2 каналов (по вертикали) развертку ставят на центральную линию (сигнал на входе отсутствует).
  2. Усил. (вертикаль) на первом канале устанавливают (ступени и плавно) большую амплитуду, на втором — делают ее меньшей.
  3. Скор. разв. настраивают, чтобы на табло поместился 1 определенный промежуток.
  4. Уровнем синхронизации выставляют старт графика с временной линии (развертки, т. А), а селектором с горизонтальной чертой с двумя стрелками — чтобы с крайней левой грани экрана (т. А);
  5. Скор. разв. (ступени и плавно) добиваются финиша графика на крайней правой вертикальной грани.
  6. Повторяют описанное, растягивая диаграмму на весь монитор, стартовая и финишная точка должны совпадать с полосой развертки.
  7. Определяют опережение, угол сдвига (φ) зависит от этого. Ниже на первом рис., ток отстает его старт позже (т. А и Б). На соседнем рисунке (б) он первый, его старт не показывается, поэтому смотрят на финиш первого полупериода: первым к 0 придет диаграмма, начавшаяся раньше (отметка Г подходит быстрее В).

φ — модуль угла, промежуток между начальной и финишной точками периода. Далее, φ узнаем по правилу: 1 промежуток любого колебания = 360° (это стабильная пропорция).

φ – модуль угла

график 3

Замеры возможны и по концам периодов (Д и Е), но в правом сегменте монитора линейность плохая, вероятность погрешностей увеличивается.

Пример исчисления с графической иллюстрацией:

Пример исчисления

график 4

Видео по теме




Download Article


Download Article

An oscilloscope is a powerful tool used to test the voltage of an electrical signal. The oscilloscope displays the results in the form of a wave pattern on a graph, allowing you to visualize how the current behaves over time. This wikiHow article will teach you how the oscilloscope works, and how you can use it to start testing electrical signals.

  1. Image titled Use the Oscilloscope Step 1

    1

    Learn what an oscilloscope measures. An oscilloscope measures the voltage of an electrical current. Unlike a multimeter (which only measures the RMS voltage), an oscilloscope takes multiple voltage measurements and plots them on a graph in the form of a wave pattern. This allows you to see exactly what the voltage is doing overtime.

  2. Image titled Use the Oscilloscope Step 2

    2

    Explore the display. The display on an oscilloscope displays voltage over time in the form of a wave pattern. This allows you to see how voltage pulses over time.[1]

    • The horizontal axis on the display represents time. Usually, the time scale represented on the display is only a few milliseconds.
    • The Vertical axis on the display represents voltage. The waveform on the display shows how the voltage rises and falls over time.
    • The squares in the grid are called divisions. They are used to represent unit measurements How much each division represents depends on how the vertical and horizontal positioning is set on the oscilloscope.

    Advertisement

  3. Image titled Use the Oscilloscope Step 3

    3

    Understand the oscilloscope channels. Most oscilloscopes have between two to four channels. Each channel has a separate input that you can connect a probe to. This allows you to measure multiple components at a time. The waveform that each probe measures is represented with a different color on the display.

  4. Image titled Use the Oscilloscope Step 4

    4

    Learn the difference between periodic and non-periodic waves. Waves that produce a consistent pattern that does not change over time are called periodic waves. Waves that are constantly changing and do not produce a predictable pattern are called non-periodic waves. Non-periodic waves are usually caused by some external input, such as user controls (knobs and buttons, etc.), atmospheric interference, or something the circuit is measuring.

  5. Image titled Use the Oscilloscope Step 5

    5

    Know the different types of waves. There are a variety of different types of waves patterns you will see in an oscilloscope display. These correspond to the different types of electrical currents you might be measuring. Some of these waves are as follows:

    • Sine Waves: A sine wave consistently oscillates up and down producing smooth-looking waves that gradually rise, crest, and then gradually fall. Sine waves are most commonly found when measuring alternating current (AC).
    • Square waves: When measuring direct current (DC), the oscilloscope will display a flat line representing the voltage. Many digital and time-based components pulse on and off thousands of times a second. This produces square or rectangle-shaped waves that rise suddenly when the current is on, and then drop suddenly when the current is off. This is sometimes referred to as a pulse wave.
    • Triangle waves: Triangle waves rise consistently, peak, and then drop consistently at the same rate This produces triangle-shaped waves. Waves that rise consistently and then drop-off suddenly (or rise suddenly and drop-off consistently) are called sawtooth waves. They are often found in analog-to-digital conversion circuits, switch mode power supplies, and motor driver control circuits.[2]
    • Complex waves: Complex waves are generally non-periodic waves and may contain a combination of any of the above waves.
  6. Image titled Use the Oscilloscope Step 6

    6

    Understand what an oscilloscope can show you. Oscilloscopes measure voltage, but there are lots of other measurements you can make with an oscilloscope. These include the following:[3]

    • Voltage: Voltage is the maximum amount of electrical potential between two points of a circuit. This is usually a circuit component and the ground. You can determine the voltage by subtracting the minimum point of a wave from the maximum point of a wave.
    • Frequency: In addition to measuring how much voltage is in an electric current, you can also measure the amount of time in between each wave.
    • Wave length: Using an oscilloscope, you can measure the length of each wave or pulse in an electrical current.
    • Slope length: You can also use an oscilloscope to measure how long it takes each wave to rise to it’s peak and then drop back down again.
  7. Advertisement

  1. Image titled Use the Oscilloscope Step 7

    1

    Turn on the oscilloscope. The coaxial cable of your probe can interfere with your measurements. Especially when taking measurements of more than a few MHz. In order to get the most accurate reading, you must adjust the compensation on the probe.

    • You don’t need to adjust the probe compensation every time you use the oscilloscope, but it is a good idea to check it once and a while.
  2. Image titled Use the Oscilloscope Step 8

    2

    Connect the probe to Channel 1 and turn it on. Connect the probe to the Channel 1 input, and then press the button to turn on Channel 1. Make sure all other channels are turned off.

  3. Image titled Use the Oscilloscope Step 9

    3

    Switch the probe to «10x.» Most probes have a switch that allows you to adjust the attenuation. The 1x setting is good for currents of only a few MHz, and does not need to be compensated. However, the 10x setting is used for higher electrical signals and is what you will be using most often. This needs to be compensated in order to get the most accurate reading.

  4. Image titled Use the Oscilloscope Step 10

    4

    Attach the probe to the frequency generator. Most oscilloscopes have a frequency generator on the front of the panel. Connect the tip of the probe to the frequency generator.

  5. Image titled Use the Oscilloscope Step 11

    5

    Attach the ground connector to the frequency generator ground. The wire that hangs loose on the probe is the ground wire. Attach it to the ground on the frequency generator.

  6. Image titled Use the Oscilloscope Step 12

    6

    Check the display. You will likely see a square wave pattern on the display. However, they may not be perfect squares. If there is a sharp point or curve after the rise or fall of the wave, this means the probe is not compensated properly.

    • If you can’t see the waveform on the display, adjust the vertical and horizontal position knobs until you can see the waveform on the display.
  7. Image titled Use the Oscilloscope Step 13

    7

    Adjust the compensation on the probe. Most probes have a screw-head on the probe, or near the base where it connects to the oscilloscope. Use a small flathead screwdriver to turn the screw-head and adjust the compensation. Turn the screw-head until the square patterns in the display are perfectly square-shaped.

  8. Advertisement

  1. Image titled Use the Oscilloscope Step 14

    1

    Connect the probe to your oscilloscope. Connect the probe to the input on one of the channels using the probe plug.

  2. Image titled Use the Oscilloscope Step 15

    2

    Select «1x» or «10x» on the probe. Many oscilloscope probes have a switch that allows you to switch between «1x» and «10x.» The 10x setting attenuates the probe by a factor of 10. 1x is good for frequencies of less than a few MHz, but for most applications, you will want to use 10x.

  3. Image titled Use the Oscilloscope Step 16

    3

    Turn on the channel the probe is plugged into. Look for a button above the channel probe input that toggles the channel on and off. Press it to turn the channel on. Make sure any channels you are not using are turned off.

  4. Image titled Use the Oscilloscope Step 17

    4

    Connect the ground of the probe to a ground on your circuit. The ground is the loose wire that hangs off the side of the probe. Connect it to a ground on your circuit.

  5. Image titled Use the Oscilloscope Step 18

    5

    Connect the probe to the output of a circuit component. The output is where the current exits the component. Most oscilloscope probes have a spring-loaded grip that is used to wrap around wires or pins.

    • On most probes, you can remove the grip to reveal a smaller single-pin probe that can be used to connect hard-to-reach places on a circuit.
  6. Image titled Use the Oscilloscope Step 19

    6

    Adjust the horizontal knob. The horizontal knob on an oscilloscope adjusts the time scale of the display, making the time scale larger or smaller. This effectively zooms in and out on the time measurement in the display.

  7. Image titled Use the Oscilloscope Step 20

    7

    Adjust the vertical knob. The horizontal knob adjusts the voltage reading. This makes the peaks and crests of the waves bigger or smaller. This effectively zooms in and out on the vertical measurements of the wave.

  8. Image titled Use the Oscilloscope Step 21

    8

    Adjust the horizontal position knob. This is usually a smaller knob above the horizontal knob. The smaller horizontal position knob adjusts when the time measurement in the display starts.

  9. Image titled Use the Oscilloscope Step 22

    9

    Adjust the vertical position knob. This is usually a smaller knob above the vertical knob. This moves the wave in the display up and down.

    • Some oscilloscopes have a single knob that adjusts the vertical and horizontal positions.
  10. Image titled Use the Oscilloscope Step 23

    10

    Adjust the trigger knob to stabilize the wave measurement. If the wave in the display appears jittery, this is because the oscilloscope doesn’t know when to start and stop measuring the wave. Adjust the trigger knob so that the trigger line in the display is somewhere between the minimum and maximum peaks of the waveform. This tells the oscilloscope to start measuring when the wave reaches a certain voltage.

    • Most oscilloscopes allow you to select if you want the trigger to start on the rise or fall of a wave.
  11. Image titled Use the Oscilloscope Step 24

    11

    Press the measure button. The display will display some automatic measurements, such as peak-to-peak voltage and the frequency of the waveform.[4]

    • Many oscilloscopes have cursors that allow you to measure a specific section of a wave. To use the cursors, press the «Cursor» button, and then select if you want to use vertical or horizontals cursors. Use that adjustment knob to position the A cursor in the display. Then select the B cursor and use the adjustment knob to position the B cursor.
  12. Advertisement

  1. Image titled Use the Oscilloscope Step 25

    1

    Power on the oscilloscope. When taking a measurement of a periodic wave, you can just connect the probe to a circuit and it will display a consistent signal on the display. Non-periodic signals can be more sporadic with signals appearing and disappearing before you can read them. To capture this type of signal, you need to set a trigger to tell the oscilloscope when to start measuring and then to only take a single sweep so that it stops taking measurements after the initial measurement.

  2. Image titled Use the Oscilloscope Step 26

    2

    Connect the probe to your oscilloscope. Plug the probe into the input of the channel you want to use on the oscilloscope.

  3. Image titled Use the Oscilloscope Step 27

    3

    Select «1x» or «10x» on the probe. Many oscilloscope probes have a switch that allows you to switch between «1x» and «10x.» The 10x setting attenuates the probe by a factor of 10. 1x is good for frequencies of less than a few MHz, but for most applications, you will want to use 10x.

  4. Image titled Use the Oscilloscope Step 28

    4

    Turn the channel on. Look for a button above the channel probe input that toggles the channel on and off. press it to turn the channel on. Make sure any channels you are not using are turned off.

  5. Image titled Use the Oscilloscope Step 29

    5

    Connect the ground of the probe to a ground on your circuit. The ground is the loose wire that hangs off the side of the probe. Connect it to a ground on your circuit.

  6. Image titled Use the Oscilloscope Step 30

    6

    Connect the probe to the output of a circuit component. The output is where the current exits the component. Most oscilloscope probes have a spring-loaded grip that is used to wrap around wires or pins.

  7. Image titled Use the Oscilloscope Step 31

    7

    Adjust the vertical and horizontal knobs as needed. Use the positioning knobs to adjust the display so that you can see the waveform clearly in the display.

  8. Image titled Use the Oscilloscope Step 32

    8

    Set the trigger within the waveform. Adjust the trigger knob so that the trigger line in the display is somewhere between the minimum and maximum wave points in the waveform.

  9. Image titled Use the Oscilloscope Step 33

    9

    Press the «Single» button. Most oscilloscopes have a button that tells the oscilloscope to only take a single measurement. This tells the oscilloscope to only do a single sweep rather than continually taking new measurements and refreshing the display. This allows you to measure non-periodic waves using the oscilloscope.

  10. Advertisement

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

  • If you cannot see the horizontal line when the probe is not connected, try adjusting the position controls.

  • The trigger level may need to be adjusted if you cannot see a lit triggered LED, or if you cannot see a waveform when the probe is connected.

Thanks for submitting a tip for review!

Advertisement

  • If you are unsure of the input voltage you are measuring, wind the amplitude control up to the highest voltage before you connect the probe.

Advertisement

Things You’ll Need

  • Oscilloscope
  • Oscilloscope probe

References

About This Article

Article SummaryX

1. Connect the probe to channel input and turn the channel on.
2. Select «1x» or «10x» on the probe.
3. Attach the ground wire on the probe to the ground on the circuit.
4. Attach the probe to the output of a circuit component.
5. Adjust the horizontal knob to adjust the time scale in the display.
6. Adjust the vertical knob to adjust the voltage reading in the display.
7. Use the small knobs to shift the wave in the display, up, down, left, or right.
8. Adjust the trigger knob within the wave voltage to stabilize the waveform.
9, Press the Measure button to take some automatic measurements.

Did this summary help you?

Thanks to all authors for creating a page that has been read 70,582 times.

Did this article help you?

Понравилась статья? Поделить с друзьями:
  • Бензопила лесник 3816 инструкция по эксплуатации
  • Хондромед плюс инструкция по применению порошок цена
  • Поиск руководства пользователя
  • Форум руководство для пользователя
  • Хепель инструкция по применению цена отзывы аналоги цена