Руководство по прокладке волоконно оптические линии связи

  • Организация строительства ВОЛС

  • Методы прокладки ВОК

  • Прокладка ВОК в грунт

  • Прокладка ВОК на переходах через подземные коммуникации

  • Прокладка ВОК в кабельной канализации

  • Прокладка ВОК методом подвеса

  • Прокладка ВОК в защитных пластмассовых трубках (ЗПТ)

  • Прокладка оптического кабеля через водные преграды

  • Прокладка оптического кабеля внутри зданий

  • Монтаж волоконно-оптического кабеля

  • Монтаж муфт

  • Монтаж оконечного оборудования ВОЛС

  • Монтаж кросса

  • Сращивание оптических волокон

  • Приемо-сдаточные испытания ВОЛС

Организация строительства ВОЛС

Строительство линейных сооружений ВОЛС начинается с проектирования и завершается приемо-сдаточными испытаниями. После этого сеть или линию сдают в эксплуатацию. В дальнейшем сеть может изменяться или расширяться.

План строительных работ составляют на основании изучения проектно-сметной документации, исследования на местности трасс и условий работ, районов размещения узловых и оконечных пунктов, обслуживаемых и необслуживаемых регенерационных пунктов (ОРП, НРП), а также расположения и состояния дорог, складов линейных и строительных материалов, выбора способа строительства на сложных участках трассы (горы, болота, водные преграды и т. д.). Должны быть подготовлены необходимые строительные механизмы, автотранспорт, измерительное оборудование, решены вопросы размещения строительно-монтажных подразделений и организации служебной связи.

Все вопросы, относящиеся к проектированию, рассматриваются подробно в цикле отдельных статей. Рекомендуем начать знакомство с нашего материала про общие принципы проектирования.

Ближайшие семинары в нашем учебном центре

На подготовительном этапе к строительству выполняют входной контроль волоконно-оптического кабеля (ВОК) и группирование строительных длин. Входной контроль заключается в общем осмотре всех барабанов с ВОК, простейшем просвечивании ОВ и измерении их оптических параметров. Осмотр ведется на кабельной площадке, а измерения — в сухих отапливаемых помещениях, имеющих достаточное освещение и возможность подключения приборов. При входном контроле проверяют соответствие строительных длин и параметров передачи паспортным данным.

Группирование строительных длин проводится из соображений прокладки на одном регенерационном участке ВОК одной конструкции с одним типом ОВ и защитного покрытия, изготовленных одним заводом. Исключение — случаи соединения ВОК разных типов для подводных и воздушных переходов. При группировании строительных длин одномодовых ВОК дополнительно учитываются параметры передачи: затухания отдельных строительных длин складываются арифметически, а дисперсии — алгебраически, т. е. с учетом знака. Законы сложения параметров передачи строительных длин многомодовых ОВ имеют сложный характер, что вызывает значительные трудности при их практической реализации.

По результатам группирования строительных длин ВОК по всем регенерационным участкам составляют укладочную ведомость. Кабель развозят по трассе и приступают к его прокладке.

В этом материале рассмотрим основные виды работ, производимых при строительстве. Их можно в общем случае разделить на следующие этапы:

  • прокладка ВОК;
  • монтаж муфт и оконечных устройств (кроссов);
  • приёмо-сдаточные испытания.

Методы прокладки ВОК

Специфические особенности ВОК привели к тому, что их прокладку могут выполнять не только традиционными методами и оборудованием, которые применяют для медножильных кабелей аналогичного назначения, но и принципиально новыми методами, которые уже сейчас способны резко сократить сроки строительно-монтажных работ и снизить их стоимость.

Нечувствительность ВОК к электромагнитным влияниям и ударам молний позволяет прокладывать их в таких местах и условиях, где использование электрических кабелей невозможно, например, совместно с линиями электропередачи (ЛЭП) или силовыми электрическими кабелями.

Малые габариты, масса и большая гибкость позволяют разместить на одном барабане непрерывный ОК большой длины. Значительное увеличение строительной длины особенно важно, потому что малое затухание ОВ делает неразъемные соединители ОВ основным источником потерь линейного тракта.

При строительстве линейных сооружений ВОЛС применяют следующие (основные) методы прокладки ВОК:

  • прокладка в грунте;
  • прокладка в кабельную канализацию;
  • прокладка методом подвеса;
  • прокладка в защитных полиэтиленовых трубах;
  • прокладка под водой;
  • прокладка внутри помещений

Выбор метода прокладки зависит от многих факторов. В некоторых случаях он достаточно очевиден, например, когда кабели прокладывают непосредственно в грунте или внутри помещений. Иногда экономичнее прокладывать ВОК по мосту, чем под водой.

Выбор между воздушной и подземной прокладками зависит от рельефа местности, категории грунта и даже плотности населения. При выборе подземного варианта необходимо решать вопрос, прокладывать ли ВОК непосредственно в грунте или в защитных пластмассовых трубках и т. д.

Очень важно, чтобы при любом методе прокладки предусматривалась дополнительная длина ОК на обоих концах участка, на котором проводят измерения и сращивание. Запас по длине должен быть достаточным для того, чтобы можно было выполнять повторные соединения в муфтах.

Подготовка траншеи для прокладки ВОК в грунт

Прокладка ВОК в грунт

Условия производства работ

Прокладка кабеля в грунт производится при температуре окружающего воздуха не ниже –10° С. Кабель прокладывают в грунтах всех категорий, кроме подверженных мерзлотным деформациям, в воде при пересечении неглубоких болот, несудоходных рек со спокойным течением (с обязательным заглублением). Способы прокладки ВОК через болота и водные преграды должны определяться отдельными проектными решениями.

Возможные два способа прокладки ВОК в грунт: ручной в ранее отрытую траншею или бестраншейный с помощью ножевых кабелеукладчиков. Кроме того, ВОК может прокладываться с применением защитного трубопровода. При этом различают два способа: в первом способе сначала в грунт укладывается защитная полиэтиленовая труба (ЗПТ), а затем в неё затягивается ВОК, второй способ — это прокладка ЗПТ с заранее уложенным в неё ВОК.

Трассовая прокладка кабелей связи является сложным процессом в техническом и организационном плане. Этот процесс еще более усложняется для ВОК, имеющих большие строительные длины. Особое внимание уделяется выбору трассы, способов и средств прокладки ВОК на каждом участке трассы. Для обеспечения безопасности прокладки и минимальной вероятности его замены в будущем необходимо учитывать такие факторы, как топографическая карта местности, типы грунтов, возможность доступа к кабелю при любых погодных условиях, простота выполнения возможного ремонта, удаление трассы кабеля от подземных коммуникаций и т. д.

Подписывайтесь на канал ВОЛС.Эксперт

Показываем, как правильно выполнять монтаж оптических муфт и кроссов, разбираем частые ошибки, даем полезные советы специалистам.

Прокладка ВОК в траншею

Производственные процессы при прокладке кабеля в открытую траншею трудоемки, малопроизводительны и могут легко контролироваться в ходе строительно-монтажных работ. Максимальное внимание должно быть обращено на ограничение минимального радиуса изгиба ВОК. Для этого размотку кабеля, а при ручном способе прокладки переноску и укладку его в траншею проводят без перегибов. Не допускаются волочение кабеля по поверхности земли и размотка барабана кабелем.

Качество прокладки ВОК зависит также от подготовки для него грунтовой или песчаной постели и соответственно его засыпки. Поэтому в ряде случаев перед прокладкой кабеля в траншею его предварительно обертывают защитным материалом.

Размотка кабеля при прокладке его в открытую траншею должна, как правило, осуществляться с помощью механизмов. Если позволяют условия трассы, для этой цели используют барабан, установленный в специально оборудованном кузове автомашины или на кабельном транспорте, передвигающемся по трассе вдоль траншеи. Кабель опускается сразу в траншею или на ее бровку. Скорость движения автомашины не должна превышать 1 км/ч.

Расстояние от колес до края траншеи должно быть не менее 1,25 глубины траншеи. В случае, если условия местности не позволяют использовать технику, прокладка производится с выноской вручную всей строительной длины кабеля, который укладывается вдоль траншеи, а затем опускается в нее.

При этом барабан с кабелем устанавливают в начале участка прокладки на неподвижной основе. При недостаточном количестве рабочих допускается осуществлять прокладку способом «петли»: конец кабеля оставляют у барабана в начале участка прокладки и размотку ведут с верха барабана петлей, нижнюю часть которой по мере продвижения рабочих укладывают непосредственно в траншею или на землю у траншеи. По мере выкладки нижней части петли на землю освобождающиеся рабочие переходят к барабану и подхватывают новый участок кабеля. Расстояние между соседними рабочими должно быть таким, чтобы кабель не волочился по земле. До половины строительной длины кабеля петля удлиняется, а затем укорачивается по мере продвижения к концу. В результате весь кабель оказывается вытянутым в одну линию.

При наличии на трассе различных пересечений кабель прокладывают способом «петли», протягивая ее в предварительно проложенной под препятствием полиэтиленовой трубе.

После прокладки кабеля в траншею производят фиксацию его трассы в технической документации и засыпку траншеи с помощью траншее засыпщиков, бульдозерами, а в стесненных местах — вручную.

Механизированная прокладка ВОК

Строительство магистральных и внутризоновых ВОЛС характеризуется большой протяженностью, различными климатическими, почвенно-грунтовыми и топографическими условиями. Прокладку ВОК осуществляют комплексные механизированные колонны, в состав которых входят строительные машины и механизмы общестроительного назначения, а также специальные машины и механизмы для прокладки кабеля (кабелеукладчики, тяговые лебедки, баровые машины, машины для прокола грунта под препятствиями и др.).

Бестраншейный способ прокладки кабеля с помощью кабелеукладчика благодаря высокой производительности и эффективности является основным. Он широко применяется на трассах с различными рельефами местности и разными грунтами. С помощью ножевого кабелеукладчика в грунте прорезается узкая щель, и кабель укладывается на ее дно на заданную глубину залегания (0,9…1,2 м). При этом на кабель действуют механические нагрузки. Надо помнить, что кабель на пути от барабана до выхода из кабеленаправляющей кассеты подвергается воздействию продольного растяжения, поперечного сжатия и изгиба, а в случаях применения вибрационных кабелеукладчиков — вибрационному воздействию.

Машины и механизмы для механизированной прокладки кабелей в ЗПТ производятся и зарубежными компаниями, но отечественное оборудование в большей степени приспособлено к тяжелым условиям кабельных трасс в России и заметно дешевле импортного.

При прокладке ВОК кабелеукладчиком недопустимым является вращение барабана под действием натяжений кабеля, возникающих при движении кабелеукладчика по трассе. Особенно опасны рывки кабеля. Крайне неблагоприятным для кабеля может быть момент начала движения (трогания) кабелеукладчика, при котором не исключается разгон вращения барабана под действием натяжения кабеля. Рывки кабеля могут иметь место при прокладке в сложных грунтах, наличии препятствий в грунте, на трассе и т. п.

Для предотвращения превышения допустимых нагрузок на ОК при его прокладке необходимо обеспечить:

  • принудительное вращение барабана в момент начала движения кабелеукладчика и синхронизированную его размотку;
  • ограничение боковых давлений на кабель за счет применения различного рода мероприятий и конструкций, снижающих трение (например, использование в кассетах специальных роликовых направляющих устройств, обеспечивающих минимально допустимый радиус изгиба ОК; размещение роликов кассеты так, чтобы уменьшить радиальное давление на кабель);
  • допускаемый радиус изгиба ОК от барабана до укладки на дно щели на всем участке подачи кабеля через кассету;
  • исключение случаев засорения кассеты кабелеукладочного ножа и остановок вращения барабана при движении кабелеукладчика.

Желательно применение соответствующих технических средств непрерывного контроля, сигнализирующих о достижении пороговых значений тяговых усилий и ограничивающих режимы нагружения кабеля с остановкой процесса прокладки. Обязательной является планировка трассы перед прокладкой ОК бульдозером. Подъемы и уклоны трассы не должны превышать 30°. При прокладке ВОК в сложных грунтах обязательно должна применяться предварительная пропорка грунта. Цель предварительной пропорки — обнаружение скрытых препятствий, которые могли бы повредить кабель.

При обнаружении таких препятствий грунт на этих участках разрабатывается с помощью бурильных и взрывных работ, машин и механизмов для разработки траншей и т. п.

Способы прокладки кабеля в грунте должны чередоваться на трассе в зависимости от условий прокладки. Для выбора способа прокладки может потребоваться исследование грунта. Перед началом работ необходимо проверить подготовку трассы. За проведением всех строительных работ должен осуществляться постоянный контроль, так как в случае наличия ошибок в проекте или при плохой подготовке трасс строительному персоналу трудно исправить эти ошибки непосредственно в полевых условиях.

Прокладку кабеля рекомендуется выполнять под постоянным оптическим контролем. Контроль осуществляется по результатам измерения затухания ОВ кабеля с помощью оптического тестера или оптического рефлектометра.

Прокладка ВОК на переходах через подземные коммуникации

На пересечениях с шоссейными, железными дорогами, водопроводами и другими коммуникациями ВОК затягивают в асбоцементные или пластмассовые трубы, которые прокладываются закрытым (горизонтальным проколом, бурением) или открытым способом. Прокладка труб под препятствиями, как правило, проводится до начала прокладки кабеля в районе пересечения. При этом необходимо отдавать предпочтение таким способам, при которых не требуется разрезать ВОК. При подходе кабелеукладчика к подземному препятствию ВОК сматывают с барабана и укладывают восьмеркой.

Затем протягивают кабель под препятствием в заготовленную трубу, снова наматывают на барабан, заряжают в кассету и продолжают прокладку.

Если под подземным препятствием труба не прокладывается, то проложить ВОК без разрезания можно следующим способом. Под препятствием откапывают котлован, барабан с ВОК снимают с кабелеукладчика и, освободив кабель от разборной кассеты, устанавливают на козлы перед препятствием. Кабелеукладчик перемещают за препятствие, опускают нож в котлован, заправляют предварительно протянутый под препятствием ВОК в кассету и продолжают прокладку. Для предохранения кабеля от перегибов под препятствием устанавливают кабельное колено или ролики. При этом необходимо обеспечивать свободную подачу кабеля с барабана, установленного на козлах, и подтяжку кабеля, проходящего по поверхности земли.

Для сокращения трудоемкости работ рекомендуется в местах пересечения использовать укороченные строительные длины ВОК, так называемые короткомеры, которые по согласованию с заказчиком могут поставляться в небольшом количестве с кабельных заводов.

Для ознакомления с этой технологией читайте наш материал про прокладку оптического кабеля в грунт.

Прокладка ВОК в кабельной канализации

Общие требования к прокладке

В общих чертах технология прокладки ВОК та же, что и для электрических кабелей связи. Специфика прокладки ВОК определяется более низким уровнем допускаемой к ним механической нагрузки, поскольку от нее зависит затухание ОВ. Кроме того, нагрузка, превышающая допустимый уровень, может сразу привести либо к разрыву волокна, либо к дефектам ОВ (микротрещины и т. п.), которые позднее в процессе эксплуатации кабеля за счет действия механизма усталостного разрушения ОВ также приведут к его повреждению.

Особенно чувствительны ОВ к механическим нагрузкам при низких температурах.

Для сокращения числа соединений и соответственно потерь на сростках используются большие строительные длины ВОК, что создает при их прокладке дополнительные нагрузки. Чтобы уровень нагрузки не превышал допустимый, необходимо принимать дополнительные меры и использовать специальное оборудование.

В частности, нормативно-технической документацией не допускается прокладка ВОК при температуре ниже –10° С, предусматриваются непрерывный контроль продольных нагрузок на ВОК, а также меры, ограничивающие механические нагрузки на ВОК в процессе его прокладки и обеспечивающие защиту в процессе эксплуатации.

Методы прокладки

Прокладка ВОК в КК ведется как традиционным методом протаскивания, который используется для электрических кабелей, так и методом задувки (пневмопрокладки).

При протаскивании используются управляемые лебедки, тросы и направляющие устройства. Лебедки всегда оборудуются устройствами, которые ограничивают усилие протаскивания или даже останавливают работу, когда нагрузка, которой подвергается ВОК, приближается к опасному уровню.

Направляющие устройства ограничивают изгиб ВОК. Как правило, целесообразным считается минимальный радиус изгиба, примерно в 12 раз превышающий диаметр кабеля. Однако при прокладывании с натяжением рекомендуется удваивать это соотношение.

При прокладке больших строительных длин, а также на сложных участках трассы со множеством поворотов применяют различные методы разделения продольной нагрузки.

Самый простой и наиболее распространенный из них известен как «метод восьмерки», когда прокладка ВОК с одного барабана ведется в две стороны. При этом барабан устанавливается у колодца, находящегося примерно посередине участка. Сначала ВОК протаскивается с барабана в одну сторону, а затем остаток ВОК равномерно сматывается с барабана, укладывается на земле в виде восьмерки и протаскивается в противоположную сторону. Этот метод требует наличия необходимого места для размещения ВОК и защиты его от загрязнения.

Более сложный метод разделения продольной нагрузки связан с использованием на промежуточных пунктах специальных кабельных лебедок. ВОК прокладывают непосредственно с барабана в одну сторону, а максимальная нагрузка на кабель зависит от расстояния между промежуточными пунктами. Однако при проведении работ необходимо хорошее согласование концевой и промежуточных лебедок.

Прокладка ВОК в кабельной канализации методом задувки может осуществляться как непосредственно в канале, так и в полиэтиленовых трубках, предварительно заложенных в канал, когда сначала вдуваются (или протаскиваются) полиэтиленовые трубки, а уже в них прокладывается ВОК. Такой вариант обычно применяется в тех случаях, когда канал уже занят другим кабелем, и непосредственная прокладка может привести к заклиниванию ВОК. Впрочем, этот метод достаточно экзотичен для прокладки в КК, если говорить о строительстве в нашей стране.

Смотрите подробную инструкцию по прокладке ВОК в кабельную канализацию.

Прокладка ВОК методом подвеса

Прокладка ВОК методом подвеса

Общие требования к прокладке

Требования к сооружениям и технологии подвеса ВОК на несущих тросах по столбам и стоечным опорам на крышах зданий, а также к самонесущим кабелям не отличаются от требований для электрических кабелей связи.

Варианты подвеса ВОК имеют ряд достоинств по сравнению с другими способами строительства:

  • отсутствие необходимости отвода земель и согласований с заинтересованными организациями;
  • уменьшение сроков строительства;
  • уменьшение объема возможных повреждений в районах городской застройки и промышленных зонах;
  • снижение капитальных и эксплуатационных затрат в районах с тяжелыми грунтами.

Подвес ВОК производится на уже установленные опоры и не требует тщательной предварительной подготовки трассы прокладки, поэтому более технологична и проще, чем укладка в грунт.

Особенностью применения ВОК для подвеса на опорах является его способность к упругому продольному растяжению до 1,5% без возникновения нагрузок в оптических волокнах. В настоящее время используются следующие технологии разновидности подвеса на опорах различных телекоммуникационных и электрических сетей:

  • подвес самонесущего ВОК;
  • подвес ВОК со встроенным несущим тросом;
  • подвес кабеля с креплением к внешним несущим элементам;
  • подвес грозозащитного троса со встроенным ВОК (ОКГТ);
  • навивка ВОК на фазные провода.

Широко используется подвес ВОК на опорах линий электропередач различного напряжения, опорах контактной сети и автоблокировки железнодорожного транспорта, а также опорах осветительной сети, опорах силовых сетей наземного электрического транспорта и другим опорах.

Для строительства ВОЛС методом подвеса кабеля на опорах высоковольтных ЛЭП и железнодорожного транспорта используется только диэлектрический самонесущий ВОК, который во время эксплуатации испытывает значительные колебания температуры, скорости ветра, осадков и вибраций, накладывающих определенные ограничения на технологию подвески. Одним из главных является принцип ограничения механических воздействий на саму оболочку, растяжения ВОК, сдавливающих нагрузок и углов поворота трассы.

Технология подвеса ВОК должна обеспечить сохранность тонкого покрытия оболочки кабеля от повреждений при протяжке. Эти повреждения вызваны трением о различные предметы, расположенные вдоль трассы. Поврежденная внешняя защитная оболочка кабеля становится источником и местом сосредоточенной нагрузки при гололеде, повышенной влажности и ветровой нагрузке. Если же при этом имеются еще и загрязнения оболочки, то под воздействием лучей солнца может возникать нагрев загрязненных участков оболочки до температур, на которые кабель не рассчитан, что может привести к его быстрому старению.

Увеличенный угол поворота трассы кабеля, может привести к деформации сердечника ВОК, что может вызвать остаточное напряжение в волокнах. Поэтому недопустимы углы поворота трассы более чем 30° при нормальных силах тяжения.

Ведение строительных работ по подвесу ВОК осуществляется при температуре не ниже –10°С. Только в исключительных случаях допускается проведение работ при температуре ниже –10°С, при этом необходимо соблюдать все меры предосторожности. Подвести с максимально возможной скоростью, поддерживать обогрев кабельного барабана.

Одним из наиболее важных моментов при подвеске ВОК является правильный выбор технологического оборудования, используемого при строительстве ВОЛС. Стандартный комплект технологического оборудования включает:

  • лебедку с регулируемой силой тяжения;
  • кабельный домкрат с тормозным устройством;
  • диэлектрический трос (трос-лидер);
  • специальные барабаны;
  • кабельные чулки (транзитные и концевые);
  • компенсатор вращения;
  • набор больших и малых монтажных роликов;
  • динамометр.

В качестве трослидера, применяемого при подвеске ВОК, используют специальный диэлектрический канатик сложной конструкции, имеющий высокую прочность, малый коэффициент растяжения и низкий коэффициент кручения. Поверхность канатика имеет полиуретановое покрытие, что обеспечивает его износостойкость. Стандартная длина трос-лидера — 1 км или 500 м, что позволяет при помощи специальных соединителей комплектовать его в соответствии со строительными длинами кабеля. При этом длина трос-лидера должна на одну стандартную длину превышать строительную длину ВОК, размотка должна осуществляться с помощью барабанов. Для соединения стандартных длин троса-лидера используются соединители.

Соединение ВОК с тросом-лидером осуществляется с помощью кабельного чулка.

Для защиты ВОК от нагрузок вращения, возникающих при размотке, которые могут привести к его разрыву, используют специальные компенсаторы вращения — вертлюги, которые включаются между кабельным чулком и тросом-лидером.

Для подвеса самонесущего ВОК (ОКСН) широко применяются ролики двух типов: малые, с внешним диаметром 200 мм и внутренним — 138 мм, для подвески ВОК на прямолинейных участках, и большие, с внешним диаметром 676 мм и внутренним — 604 мм, для прохождения трассы через повороты, превышающие 20 от прямолинейного хода трассы подвески.

Эти технологические ролики должны иметь низкий коэффициент трения, обладать конструкцией, обеспечивающей легкую их установку (и снятие) на кронштейны, установленные на опоры. Они также должны обеспечить надежную защиту ВОК от заклинивания в теле ролика и защиту от торможения ролика в случае касания его элементов крепления.

Оптический кабель может подвешиваться на опорах при условии, что их несущая способность достаточна, чтобы выдержать все дополнительные нагрузки, связанные с подвеской ВОК, а расположение ВОК не будет препятствовать нормальному техническому обслуживанию линии, на которой он подвешивается.

Современная технология подвеса ВОК состоит из двух разнесенных во времени этапов.

Первый этап — подготовительный, включающий в себя общие строительные работы, замену дефектных и поврежденных опор, установку дополнительных опор, заказ и приобретение специальных кронштейнов крепления ВОК в соответствии с типами, указанными в проекте, кронштейнов для крепления запасов кабеля и оптических муфт, анкерных узлов.

Второй этап связан с самим подвесом ВОК — это крепление кронштейнов на опорах, крепление на кронштейнах технологических роликов для протяжки трос-лидера (а в дальнейшем с его помощью кабеля), крепление кабеля, монтаж муфт, крепление запасов ВОК. За этим следует подключение кабеля к кроссовому оборудованию, измерения и паспортизация пассивной части ВОЛС.

Все работы по подвесу ВОК на опорах выполняются в соответствии с действующими правилами, нормами и техническими условиями, заложенными в проектах.

При строительстве ВОЛС методом подвески на опоры высоковольтных линий напряжением 110 кВ и выше применяют:

Неметаллический (диэлектрический) кабель малого диаметра, который с помощью специальной навивочной машины наматывается с определенным шагом намотки на фазный провод или на грозотрос. Этот метод строительства применяют на ВЛ 110 кВ и выше.

Навивка оптического кабеля на фазный провод практически исключает его обледенение, которое, так же как и вибрации на пролетах между опорами из-за ветровых нагрузок, является основной причиной обрыва воздушных проводов. Достигается это благодаря разогреванию обвитой вокруг провода влагозащитной полиэтиленовой оболочки оптического кабеля под действием электромагнитного поля ЛЭП (примерно на 1°С при напряжении поля 10 кВ/м). Кроме того, увеличение турбулентности воздушных потоков, обтекающих систему «Оптический кабель — провод ЛЭП» на 40–60% снижает уровень вибрации.

Специальный грозозащитный трос с размещенными в его конструкции ОВ (ОКГТ). Он, как правило, используется для замены существующего грозотроса или при реконструкции высоковольтной линии или при временном отключении ее от нагрузки, даже в режиме ее нормального функционирования преопределенных условиях. Этот способ подвески используется на существующих ВЛ 110 кВ и выше.

Смотрите инструкцию по монтажу ОКГТ-С и ОКГТ-Ц.

Для строительства ВОЛС местных сетей связи широко используется подвес ВОК с выносным тросом (внешним силовым элементом — ВСЭ) или подвеска кабеля z-креплением к внешним несущим элементам (например, стальному или стеклопластиковому тросу). В обоих случаях используются те же кронштейны, устанавливаемые на опорах, что и при подвесе самонесущего ВОК.

При подвесе ВОК с ВСЭ анкерные и поддерживающие зажимы имеют другое конструктивное исполнение, обеспечивающее крепление и натяжение ВОК.

При строительстве ВОЛС методом подвеса ВОК к внешнему стальному тросу в первую очередь подвешивается и натягивается сам стальной трос.

При этом используется натяжная и поддерживающая арматура как в предыдущем варианте. ОК крепится к стальному тросу на подвесах из листовой оцинкованной стали или алюминия. Подвесы устанавливаются через каждые 700 мм так, чтобы они плотно обжимали кабель и свободно висели на тросе.

Стальной трос, на котором подвешен кабель, заземляется в начале и в конце линии, а также через каждые 250 м.

В настоящее время разработана технология навивки маловолоконного ОК (6–16 волокон) диаметром от 3,5 до 6,2 мм на один из фазных проводов низковольтных ЛЭП 6, 10 и 33 кВ. Соединительные муфты крепятся непосредственно к фазному проводу. На концах линии и в местах ответвления кабеля устанавливаются сводные изоляторы. Снижение стоимости монтажа достигается за счет следующих факторов:

  • себестоимость производства тонкого, маловолоконного ОК, имеющего более простую структуру армирующих элементов, ниже, чем у других кабелей такой же жильности;
  • использование существующей инфраструктуры ЛЭП в качестве «кабельной канализации» облегчает проход препятствий;
  • малая масса кабеля и навивочного оборудования позволяет обойтись ручным трудом и средствами малой механизации;
  • добавки к ветровым и гололедным нагрузкам на опоры ЛЭП невелики, что позволяет не проводить работы по их усилению.

Преимуществами ВОЛС, построенных указанным способом, также являются:

  • высокая надежность, практически совпадающая с надежностью ЛЭП;
  • высокая скорость прокладки (несколько километров в день);
  • высокая степень защиты от вандализма, так как все элементы находятся под напряжением.

После подвеса строительных длин ВОК производятся измерения затухания оптических волокон и оценивается их соответствие паспортным данным. Протоколы измерений представляются в исполнительной документации по окончании строительства ВОЛС.

Больше нюансов это технологии читайте в нашей статье — Прокладка ВОЛС по опорам.

Прокладка ВОК в защитных пластмассовых трубках (ЗПТ)

Прокладка оптического кабеля в предварительно проложенных защитных пластмассовых трубках (ЗПТ) нашла широкое применение во всем мире. Этот способ наиболее полно использует преимущества ВОК и весьма эффективен при прокладке магистральных и зоновых ВОЛС.

Предварительное создание междугородной кабельной канализации удлиняет строительный сезон и сокращает сроки строительства благодаря возможности прокладки трубок на трудных и стесненных участках трасс, в населенных пунктах, в зимний период. Эффективно решаются многие вопросы эксплуатации, аварийно-восстановительных работ и особенно, последующей модернизации и развития телекоммуникационной сети.

Использование ЗПТ позволяет в свою очередь использовать легкие небронированные ОК, строительная длина которых достигает 6 км и более.

Для сооружения трубопроводов обычно применяют трубки из полиэтилена или из поливинилхлорида. Наружный диаметр выпускаемых трубок 25…63 мм.

Для уменьшения трения оболочки ВОК при прокладке внутренняя поверхность трубок покрыта твердой смазкой, срок службы которой не меньше срока службы трубки. Длина выпускаемых трубок от 600 до 4000 м. Их наматывают на барабан и обычно прокладывают бестраншейным способом или в подготовленную траншею при температуре окружающей среды от –10 до +50 °С. При монтаже трубок используются пластмассовые и металлические соединительные муфты, а также переходные и компенсирующие температурное изменение длины муфты.

Прокладку ВОК в трубках осуществляют двумя способами: протаскиванием (или проталкиванием) и задувкой (пневмопрокладка в проложенные ЗПТ).

Протаскивание ВОК

Протаскивание в трубке обычно осуществляется с помощью лебедки и троса. В большинстве случаев трос прокладывают с помощью плотно пригнанной по размерам трубки тележки-поводка, которая приводится в движение сжатым воздухом. Иногда трос заранее прокладывается в трубке.

Трение между ОК и трубкой вызывает увеличение усилия протаскивания, особенно возрастающее на поворотах и изгибах траектории.

Это усилие ограничивает длину, которая может быть проложена за одно протаскивание. Контроль за усилием на лебедке позволяет максимальное усилие на ВОК поддерживать ниже определенного предела.

Пневмопрокладка (задувка) ВОК

Одной из возможностей распределения усилий вдоль кабеля является применение метода задувки, который первоначально был разработан для легких и гибких городских ВОК, а в последнее время стал широко применяться для прокладки ВОК на магистральных и зоновых ВОЛС.

При методе задувки в трубку вдоль ВОК с помощью обычного компрессора нагнетается высокоскоростной поток воздуха, и на кабель начинает действовать распределенная сила. Появление этой силы вызвано тяговым усилием вязкого, перемещающегося с большой скоростью воздуха. Суммарное по длине ВОК усилие задувки по величине на порядок меньше усилия протаскивания, что уменьшает опасность повреждения ВОК и позволяет существенно облегчить его конструкцию за счет силовых и армирующих элементов. Тем не менее, монтажные длины ВОК за одну процедуру задувки в большинстве случаев сравнимы с монтажными длинами при протаскивании, а на извилистых трассах даже превышают их. Последнее обстоятельство, а именно слабая зависимость результатов использования метода от степени искривления траектории трубки, чрезвычайно упрощает распределение кабельных колодцев по трассе.

Пневмопрокладка ВОК в микротрубки

Технология прокладки ВОК в ЗПТ получила свое дальнейшее развитие с созданием миниатюрных ВОК (диаметром несколько миллиметров), пневмопрокладка которых обеспечивается в микро-трубки диаметром от 7 до 12 мм. Данная технология предназначена для прокладки миниатюрных ВОК на городских, локальных и внутриобъектовых сетях связи. При этом предварительно осуществляется ввод микротрубок в ЗПТ, а затем по мере необходимости в них производится пневмопрокладка миниатюрных ВОК. Оборудование для пневмопрокладки ВОК в микротрубки аналогично аппаратуре для пневмопрокладки ВОК в ЗПТ, однако при этом используются менее мощные компрессоры и малогабаритные устройства подачи кабелей.

Прокладка оптического кабеля через водные преграды

В данном разделе подводная прокладка рассматривается как часть или отрезок подземной прокладки, когда приходится пересекать реки, ручьи, болота, озера, искусственные водоемы, каналы. По действующим нормам прокладка кабеля связи через судоходные реки, сплавные и несудоходные реки глубиной до 3 м проводится с минимальным заглублением до 1 м. Без заглубления прокладка допускается при глубине водоемов более 8 м по согласованию с организациями, эксплуатирующими водоем. Заглубление кабеля в дно оросительного канала и арыка является обязательным. Практически целесообразность заглубления кабеля и его величина определяются проектом.

Указанные требования распространяются также на ВОК связи и соответственно на способы и приемы производства прокладочных работ: укладку кабелей с буксирных или самоходных судов, понтонов, барж в подводные траншеи.

Для такой прокладки используются ВОК с металлическими упрочняющими элементами и металлическими оболочками. Эти кабели более герметичны, и их механические характеристики позволяют использовать традиционные технические средства прокладки. В процессе прокладки подводных кабелей вертикальный угол кабеля, когда он сходит с горизонтальной плоскости плавсредства, во избежание чрезмерного натяжения должен быть в пределах 30…60°. При этом, чем больше глубина подводной прокладки, тем больше этот угол.

Кабелеукладчики рекомендуется применять только на мелководье, так как на больших глубинах невозможно проконтролировать процесс прокладки кабеля.

Прокладка ВОК без металлических элементов через отдельные водные преграды вызывает определенные трудности. Например, не исключается возможность всплывания кабеля при небольших перемещениях донных грунтов. При сильном течении кабель находится под дополнительной нагрузкой и нужно контролировать, чтобы уровень этой нагрузки не превысил допустимый. Поэтому прокладку кабеля рекомендуется выполнять с применением укладки защитного трубопровода и его заглублением в дно. Полиэтиленовые трубки, а на опасных участках стальные трубы могут прокладываться (как подземный кабель) на глубине до 1,2 м. Преимуществом применения трубок является то, что при встрече с неожиданным препятствием (даже при пропорке грунта) возможные повреждения ограничиваются трубкой, а не кабелем.

При прокладке магистральных ВОК первичной сети на переходах через внутренние водные пути — судоходные и сплавные реки, водохранилища — осуществляется резервирование кабельного перехода путем прокладки кабелей по двум створам (верхнему и нижнему), расположенным на расстоянии не менее 300 м друг от друга. При наличии на трассе мостов автомобильных дорог федерального значения допускается прокладка одного из кабелей по мосту. При этом в основном и резервном кабелях включается по 50% ОВ.

При невозможности бестраншейной прокладки ВОК кабелеукладчиками, кабели на переходах через водные преграды прокладываются в предварительно разработанные подводные траншеи. Траншеи разрабатываются техническими средствами специализирующихся на подводных работах организаций. На судоходных реках подводные траншеи в русле при глубине до 0,8 м можно разрабатывать экскаваторами. При больших глубинах экскаваторы необходимо устанавливать на понтонах, перемещаемых по створу перехода с помощью тросов лебедками.

Прокладка оптического кабеля внутри зданий

Для прокладки внутри зданий и объектов используют ВОК различных конструкций. Их характерные особенности: неметаллические, без гидрофобного заполнения, легко монтируются в стесненных условиях, оболочка должна препятствовать распространению огня.

Одно и двухволоконные ВОК обычно прокладывают вручную с соблюдением необходимых радиусов изгиба.

При горизонтальной прокладке, как правило, настилается фальшпол. Чтобы закрепить кабель непосредственно на стене, применяются крепежные планки и скобы. Часто кабели укладывают на стойках или в желобах.

Многоволоконные ВОК прокладывают по готовым закладным устройствам, подобно электрическим кабелям связи. Однако в последнее время более широкое применение находит метод задувки ВОК в заранее проложенные пластмассовые трубки.

Монтаж оптического кабеля

Монтаж волоконно-оптического кабеля

Состав и условия проведения монтажных работ

В состав монтажных работ входят:

  • входной контроль ВОК и проверка их после прокладки;
  • сращивание в муфтах строительных длин кабелей, проложенных в кабельной канализации, коллекторах, непосредственно в грунте, по стенам зданий, подвешенных на столбовых и стоечных опорах;
  • ввод и включение кабелей в оптические оконечные устройства;
  • измерения оптических и электрических характеристик кабелей в процессе контрольных измерений смонтированных линий;
  • отделка трассы, укладка и крепление муфт и запасов ВОК в колодцах, установка консолей и специальных кронштейнов в колодцах, крепление и защита муфт на опорах; укладка и защита муфт в котлованах;
  • маркировка кабелей, муфт и оконечных устройств;
  • выполнение мероприятий по защите кабельных линий от коррозии, влияния линий высокого напряжения и других помех.

Монтаж ВОК следует производить в монтажной машине, кабельных колодцах или в монтажных палатках над котлованом при плюсовой температуре, необходимой для нормальной работы сварочных устройств.

При необходимости должен быть обеспечен постоянный обогрев окружающего воздуха средствами, обеспечивающими выполнение требований пожарной безопасности и охраны труда.

Читайте наш материал с обзором инструментов и технологии разделки оптического кабеля.

Монтаж ВОК в муфте

Монтаж муфт

После того, как проложены строительные длины ВОК, их соединяют при помощи соединительных муфт. Размеры и конструкция муфт должны быть такими, чтобы ОВ были защищены от действия окружающей среды, а внутри муфт имелось достаточно места для размещения сварных соединений и запаса ОВ с необходимым радиусом изгиба. Кроме того, в конструкции муфты должны быть предусмотрены детали для закрепления наружной оболочки и бронепокровов ВОК, узлы для обеспечения механической непрерывности силовых элементов и устройства для обеспечения в случае необходимости электрической связи и заземления.

Основные требования к конструкциям соединительных муфт изложены в Рекомендациях МСЭ-Т. На территории РФ действует Приказ Мининформсвязи РФ от 10.04.2006 N 40 “Об утверждении Правил применения муфт для монтажа кабелей связи”. Согласно этим правилам, необходимо учитывать условия их работы (в колодцах кабельной канализации, непосредственно в грунте, на опоре, под водой или в помещении), которые определяют особенности монтажа и последующей эксплуатации.

Необходимо учитывать также совместимость конструкций и материалов ВОК и муфты, электрохимические реакции между ними недопустимы.

Наибольшей эксплуатационной надежностью должны обладать те элементы муфт, которые осуществляют защиту ОВ от механических воздействий и проникновения воды. В конструкции муфты всегда предусматриваются кассеты, предназначенные для размещения и фиксации сварных соединений ОВ. Для размещения резервных ОВ устанавливают дополнительные кассеты. Узлы заделки бронепокровов защищают от проникновения воды под броней.

Все монтажные работы проводят в соответствии с инструкциями и руководствами заводов-изготовителей по монтажу конкретных типов ВОК и соединительных муфт.

Многообразию ВОК и условий их прокладки и эксплуатации соответствует такое же многообразие видов оптических муфт и комплектов для их монтажа, установки и защиты. В соответствии с условиями прокладки и назначением кабеля также различаются места монтажа и размещения оптических муфт. Муфта может размещаться, например, на дне реки, в болоте, котловане, колодце, коллекторе, в помещении ввода кабелей на АТС, на опорах контактных сетей или ЛЭП и т. д.

Во всех местах установки требуется жестко закрепить муфту и технологический запас сращиваемых ВОК, а также обеспечить механическую защиту муфты там, где это необходимо.

По типу соединения строительных длин различают:

  • проходные муфты, в которые ВОК вводятся с двух сторон;
  • тупиковые муфты, в которые ВОК вводятся с одной стороны.

Однако следует учитывать, что конструкции многих проходных муфт позволяют использовать их и как тупиковые, осуществляя ввод ВОК только с одной стороны. В этом случае отверстие с другой стороны муфты закрывают специальными заглушками или заказывают муфты, у которых с обеих сторон имеются заглушенные патрубки (МОГ-С, МОГ-У).

Муфты тупикового типа обладают рядом преимуществ перед проходными муфтами, например, при их установке в грунт не возникают изгибающие и осевые напряжения, в тупиковых муфтах проще производить соединение элементов муфты и ремонтные работы. Тем не менее встречаются условия, где применение тупиковых муфт связано с дополнительными затратами, например, в колодцах кабельной канализации. Поэтому применяются оба этих типа муфт.

Организация рабочего места и процесс монтажа

Монтаж муфт на кабелях местных сетей связи, как правило, производят в специально оборудованной монтажной машине на базе автомобиля повышенной проходимости с кузовом микроавтобуса или КУНГ.

Допускается монтаж оптических муфт в колодцах, городских коллекторах, помещениях ввода кабелей на АТС, в палатках, установленных около колодцев, котлованов или опор. Рабочие места, подготовленные в перечисленных выше условиях, должны быть сухими, должны иметь достаточное освещение и вентиляцию и обеспечивать размещение рабочего стола для сварочного устройства и мест для двух монтажников. Температура окружающего воздуха на рабочем месте должна быть такой, при которой возможна нормальная работа оборудования и приборов.

Перед монтажом муфт сращиваемые строительные длины ВОК, проложенные в канализации, в грунте, или подвешенные на опорах, должны быть проверены на соответствие оптических характеристик волокон паспортным данным. На бронированных ВОК, проложенных в грунте, сопротивление изоляции наружных оболочек проверяется на соответствие установленным нормам.

Монтажу подлежат только те ВОК, у которых после прокладки все проверяемые характеристики соответствуют паспортным данным и установленным нормам.

Концы сращиваемых ВОК, при любом месте размещения муфты, подают к организованному рабочему месту (в монтажную машину, в палатку и т. п.), разделывают и выполняют монтаж в соответствии с руководством по монтажу муфты данного типа. Смонтированные комплекты для ввода ВОК вводят в муфты, закрепляют и после этого готовые к монтажу муфты подают в монтажную машину или палатку.

Оптические муфты закрепляют на монтажных столах с применением монтажных кронштейнов, позволяющих установить муфту в любом положении в непосредственной близости к сварочному устройству.

Для обеспечения свободной, без напряжений, укладки запасов кабелей, кольца запаса следует сформировать еще до ввода ВОК в муфту. При этом следует стараться придать бухте ВОК ту форму и тот диаметр, который сам кабель принимает после разматывания с барабана.

Запасы концов кабеля для монтажа проходных муфт следует подавать из колодца, не раскручивая бухты запаса, а осторожно растягивая их в спирали, доходящие до места монтажа. При укладке проходных муфт в колодец кольца спиралей запаса осторожно собирают в бухты, скрепляют проволокой и подвешивают рядом с муфтой.

При монтаже тупиковых муфт запасы кабелей в колодце собирают в общей точке, из которой сращиваемые кабели общим пучком подают к месту монтажа.

После монтажа тупиковой муфты один из монтажников в колодце должен постепенно укладывать кольца запаса в бухту, в предназначенном для ее установки месте. Второй монтажник подает первому общий пучок запаса с поверхности и при этом проворачивает муфту вокруг оси пучка, чтобы предотвратить возможные напряжения ОК.

Монтаж оптических муфт должен производиться в строгом соответствии с указаниями инструкций (руководств, технологических карт) по их монтажу.

Общими при монтаже всех оптических муфт являются следующие монтажные операции:

  • разделка ВОК: очистка, надрезы и удаление оболочек, брони, гидрофобного заполнения сердечника и модулей, обрезание излишков силовых элементов, очистка волокон от гидрофобного заполнителя;
  • надевание частей муфты — оголовников, деталей вводных комплектов на предварительно очищенные концы кабелей;
  • выполнение продольной герметизации ВОК с помощью трубок ТУТ или ленточных герметиков — мастик;
  • закрепление ВОК на внутренних элементах муфты (лотках, кронштейнах и т. п.);
  • сращивание металлических элементов ОК или вывод проводов заземления от брони каждого ОК;
  • укладка запаса оптических модулей;
  • формирование пучков оптических модулей для ввода их на отдельные кассеты;
  • маркировка модулей при помощи липких маркеров;
  • закрепление пучков модулей на входах кассет;
  • подготовка оптических волокон к сварке: разметка, надевание КДЗС на одно из сращиваемых волокон, удаление защитных покрытий с ОВ, скалывание ОВ, укладка подготовленных к сварке ОВ в зажимы сварочного устройства;
  • сварка ОВ и проверка затухания сварного соединения с помощью рефлектометра;
  • принятие решения об оставлении или о переделке сварного соединения;
  • усадка гильзы КДЗС в специальном блоке сварочного устройства;
  • укладка КДЗС в ложемент кассеты, и одновременная укладка запасов ОВ под лапки кассеты;
  • сварка ОВ во всех кассетах муфты;
  • установка кассет на кронштейны муфт, сборка кассет в блок и установка крышки на верхнюю кассету блока, закрепление блока кассет на кронштейне муфты;
  • закрепление внутри муфты пакета с силикагелем;
  • сборка корпуса муфты, обезжиривание и зачистка кабелей и частей муфты в местах усадки трубок ТУТ или на местах наложения ленточных герметиков;
  • проверка всех сварных соединений на целостность оптическим рефлектометром;
  • принятие решения о герметизации муфты;
  • герметизация муфты: усадка ТУТ, затяжка хомутов и т. п.;
  • укладка муфты и запасов ВОК в колодец (котлован), подвес муфты и запасов ВОК;
  • крепление и защита муфты и запасов ВОК в месте установки;
  • проверка всех сварных соединений оптическим рефлектометром с целью выяснения, не увеличилось ли затухание стыков после укладки муфты. Если затухание стыков увеличилось в процессе укладки муфты и запасов ВОК, то запасы следует вновь размотать и уложить так, чтобы напряжения в кабеле не возникали, и затухание не увеличивалось.

Больше информации и видеоинструкции смотрите в отдельном материале про монтаж оптических муфт.

Заземление металлических элементов оптических кабелей

Важно помнить, что металлические элементы оптических кабелей должны заземляться при вводах ВОК в станционные сооружения, в технические помещения, где устанавливается оборудование ВОЛП.

Проектами могут предусматриваться заземления проволочной брони, стальной гофрированной брони и алюмополиэтиленовой оболочки.

На АТС, в помещениях ввода кабелей имеются стационарные щитки заземления. Металлические элементы ВОК должны быть выведены на эти щитки проводами сечением не менее 4 мм².

Для обеспечения заземления металлических элементов ВОК в помещении ввода кабелей должна быть смонтирована оптическая муфта с выводом провода заземления или выполнен разрыв брони на прямолинейном участке ВОК, а с линейной стороны разрыва должен быть присоединен к броне провод заземления.

Монтаж оконечного оборудования ВОЛС

К оконечному оборудованию ВОЛС относят оптическое распределительное и коммутационное кроссовое оборудование: распределительные коробки, панели, шкафы, оптические кроссовые устройства.

Оптическое кроссовое оборудование предназначено преимущественно для эксплуатации в помещениях объектов связи и только в некоторых случаях — в подземных или наземных контейнерах необслуживаемых регенерационных пунктов (НРП) либо в уличных распределительных оптических шкафах.

Ввод ВОК в объекты связи производится через помещение ввода кабелей с учетом требований по заземлению кабеля. В помещении ввода кабелей линейный ВОК монтируется с внутриобъектовым ВОК (не содержащим металлических конструктивных элементов, с оболочкой из материала, не распространяющего горение), который подключается к кроссовому оборудованию.

Допускается прокладка линейного ВОК непосредственно до кросса в случае защиты кабеля материалом, не распространяющим горение.

Оптическое кроссовое оборудование используется для концевой заделки и коммутации оптических кабелей, подключения оптических волокон к аппаратуре оптических систем передачи или оборудованию пользователя, а также для контроля характеристик ВОК в процессе эксплуатации.

Оптический кросс в общем случае представляет собой конструктив, в состав которого входят узлы ввода, крепления и концевой заделки волокон ВОК.

Независимо от конструктивного исполнения оптический кросс содержит:

  • каркас или корпус (стойку, шкаф, блок и т. д.), который может быть при необходимости влагозащитным или герметичным;
  • узел ввода ВОК;
  • панель коммутации с устанавливаемыми на ней адаптерами оптических соединителей;
  • коммутационные одноволоконные оптические шнуры, терминированные с обоих концов оптическими соединителями (шнуры типа patchcord).

Обычно в качестве каркаса для монтажа оптических кроссов используются стандартные стойки и шкафы 19″. Основным, с точки зрения эксплуатации, элементом оптического кросса является панель коммутации с оптическими соединителями.

Монтаж кросса

Общими при монтаже оптических оконечных устройств являются следующие монтажные операции:

  • разметка линейного кабеля: определение длины разделки элементов ВОК;
  • определение длины запаса ВОК;
  • подведение ВОК к оконечному устройству;
  • разделка ВОК;
  • ввод ВОК в оконечное устройство и его крепление;
  • заземление металлических элементов оптического кросса (ОК);
  • укладка запаса оптических модулей;
  • формирование пучков оптических модулей для ввода их на отдельные кассеты;
  • маркировка модулей при помощи бумажных самоклеящихся маркеров;
  • закрепление пучков модулей на входах кассет;
  • подготовка ОВ к сварке: разметка, надевание КДЗС на одно из сращиваемых волокон, удаление защитных покрытий с ОВ, скалывание ОВ, укладка подготовленных к сварке ОВ в зажимы сварочного устройства;
  • сварка ОВ и проверка потерь на сварном соединении с помощью рефлектометра;
  • принятие решения об оставлении или о переделке сварного соединения;
  • усадка гильзы КДЗС;
  • укладка КДЗС в ложемент кассеты, и одновременная укладка запасов ОВ под лапки кассеты;
  • сварка ОВ во всех кассетах;
  • установка кассет на шпильки, сборка кассет в блок и установка крышки на верхнюю кассету блока, закрепление блока кассет на шпильках;
  • установка кросса на его место в стойке или на стене;
  • крепление технологического запаса ВОК.

Подробно про инструмент и порядок работ в материале — Монтаж оптического кросса.

Сращивание оптических волокон

Сварка ОВ является завершающим этапом монтажа ВОК в муфтах и кроссах. Процесс сварки состоит из шести операций:

  • очистка конца волокна от защитного покрытия при помощи специального инструмента;
  • проведение операций для получения качественного скола торца волокна;
  • помещение подготовленных концов свариваемых волокон в аппарат для сварки и их юстировка;
  • сварка волокон;
  • анализ качества полученного сварного соединения;
  • защита места сварки.

Подробно все этапы и особенности читайте в материале про сварку ОВ.

Приемо-сдаточные испытания ВОЛС

Сдача в эксплуатацию линейных сооружений и объектов ВОЛС организуется и проводится в соответствии с официально утвержденными положениями и руководствами по приемке. Основным нормативным документом, регламентирующим составление подрядчиком исполнительной документации (ИД) является руководящий документ отрасли РД.45.156.2000. Специальным комиссиям, в состав которых входят представители заказчика и производителя работ, представляется для проверки вся исполнительная документация и сама ВОЛС.

В состав исполнительной документации входят:

  • паспорт ВОЛС;
  • проектная документация на строительство, полученная от заказчика и откорректированная в соответствии с реально выполненными работами;
  • протоколы измерений на усилительных и регенерационных участках ВОЛС.

В паспорте ВОЛС для линейных сооружений содержится карта сети, на которой показаны трассы прокладки ОК и расположение всех строительных объектов и построек. Существенной особенностью этого документа (особенно в отсутствие в ВОК металлических проводников) являются повышенные требования к точности карты. Если в электрических кабельных линиях трасса прохождения кабеля определяется с помощью кабелеискателей, то в ВОК без металлических проводников подобный метод отыскания трассы неприемлем. Поэтому трассы прохождения ВОК и данные о расстояниях до реперных точек (НУП, НРП, замерные столбики, ориентиры на местности и т. д.) должны быть указаны на карте с точностью до 0,3…0,4 м.

Оптические кабели на карте нумеруют, а их типы, длины и конечные пункты сводят в таблицы.

Протоколы измерений на усилительных и регенерационных участках должны содержать следующую информацию:

  • общее затухание трассы и участков;
  • количество неразъемных (сварных) соединений ОВ и вносимые потери в них;
  • длину волны измерения;
  • тип и модель измерительной аппаратуры.

При приемке в эксплуатацию линейных сооружений ВОЛС проверяют соответствие выполненных строительно-монтажных работ проектной документации, стандартам, строительным нормам и правилам проведения работ. Производят визуальный осмотр трассы, внешнее состояние проложенного или подвешенного ВОК, правильность установки и монтажа соединительных муфт и устройств ввода ВОК в технические помещения. Выполняют измерение оптических потерь каждого регенерационного участка с помощью сертифицированного оптического рефлектометра и оптического тестера в прямом и обратном направлениях.

При этом измерение полного затухания регенерационных пунктов ведется методом вносимых потерь. Нормы и объемы обязательных измерений определяются техническими требованиями и зависят от конструкции ВОК, назначения ВОЛС и системы передачи.

Для измерений в полевых условиях используют специально оборудованные передвижные лаборатории.

После приемо-сдаточных испытаний сеть или линию сдают в эксплуатацию на весь срок ее службы. При расширении или любых изменениях сети в паспорте ВОЛС должны быть внесены соответствующие коррективы.

Заключение

При не соблюдении технологий прокладки и монтажа ВОК, монтаж оптических муфт и кроссов неминуемо пострадает долговечность этих изделий и, конечно же, срок службы всей линии в целом. Каждый из аспектов указанных в статье, мы подробно разбираем во время практических занятий в Учебном центре «ВОЛС.Эксперт».  Ждем вас на обучении!

Найти:
Где:
Тип документа:
Отображать:
Упорядочить:

Скачать Руководство по прокладке, монтажу и сдаче в эксплуатацию волоконно-оптических линий связи ГТС (Линейно-кабельные сооружения)

Дата актуализации: 01.01.2021

Руководство по прокладке, монтажу и сдаче в эксплуатацию волоконно-оптических линий связи ГТС (Линейно-кабельные сооружения)

Статус: Действует
Название рус.: Руководство по прокладке, монтажу и сдаче в эксплуатацию волоконно-оптических линий связи ГТС (Линейно-кабельные сооружения)
Название англ.: Guide to the Installation, Installation, and Commissioning of Fiber Optic Communications Lines for Urban Telephone Networks (Cable Line Facilities)
Дата добавления в базу: 01.09.2013
Дата актуализации: 01.01.2021
Дата введения: 08.07.1987
Область применения: Изложены основные положения, определяющие порядок и технологию прокладки, монтажа и сдачи в эксплуатацию оптических кабелей связи ГТС, предназначенных для применения по ним аппаратуры цифровой системы передачи на межстанционной связи.
Оглавление: 1 Введение
   1.1 Общие положения
   1.2 Конструкция оптических кабелей и их оптические характеристики
   1.3 Механические параметры оптических кабелей
2 Подготовительные работы
   2.1 Проведение входного контроля
   2.2 Группирование строительных длин кабеля
3 Прокладка оптического кабеля
   3.1 Подготовка кабельной канализации к прокладке оптического кабеля
      3.1.1 Общие положения
      3.1.2 Прокладка полиэтиленовой трубы в канале кабельной канализации
      3.1.3 Заготовка полиэтиленовой трубы, проложенной в канале кабельной канализации
   3.2 Подготовка приспособлений и устройств к прокладке оптического кабеля
      3.2.1 Общие положения
      3.2.2 Проверка комплектности и работоспособности приспособлений и устройств
   3.3 Установка приспособлений и устройств на трассе
      3.3.1 Порядок установки
   3.4 Транспортирование барабанов с кабелем
   3.5 Прокладка оптического кабеля
      3.5.1 Установка прокладка кабеля
      3.5.2 Установка барабана с кабелем
      3.5.3 Оснастка конца кабеля для прокладки
      3.5.4 Прокладка кабеля
      3.5.5 Выкладка оптического кабеля
      3.5.6 Прокладка оптического кабеля в коллекторах, шахтах, нишах и по кабельростам
      3.5.7 Контроль оптического кабеля после прокладки
4 Монтаж оптического кабеля
   4.1 Организация рабочего места
   4.2 Состав монтажной бригады
   4.3 Монтажные материалы и детали для монтажа соединительной муфты СМОК
   4.4 Монтаж соединительной муфты СМОК
   4.5 Проверка герметичности смонтированной муфты
5 Ремонт соединительных муфт
   5.1 Вскрытие соединительной муфты
   5.2 Восстановление соединительной муфты
6 Маркировка кабеля и муфт
   6.1 Маркировка
   6.2 Метка кабеля и муфт
7 Сдача регенерационных участков в эксплуатацию
   7.1 Подготовка смонтированных регенерационных участков волоконно-оптической линии к сдаче в эксплуатацию
   7.2 Сдача в эксплуатацию
8 Техника безопасности
Приложение 1 Перечень технологических карт и карт трудового процесса на прокладку и монтаж оптических кабелей ГТС
Приложение 2 Протокол входного контроля и укладочная ведомость строительных длин
Приложение 3 Состав монтажных материалов и деталей для монтажа соединительной муфты СМОК оптического кабеля ГТС
Приложение 4 Перечень инструментов, устройств и приборов, применяющихся на прокладке и монтаже оптических кабелей ГТС
Разработан: ССКТБ
Утверждён: 08.07.1987 Минсвязи СССР (USSR Minsvyazi )
Принят: ГСС (GSS )
ГУТС (GUTS )
ЦНИИС (TsNIIS )
ЦНИЛОТ (TSNILOT )
Издан: ССКТБ ТОМАСС (1987 г. )
Расположен в: Техническая документация
Экология

ТЕЛЕКОММУНИКАЦИИ. АУДИО-И ВИДЕОТЕХНИКА

Волоконно-оптическая связь

Волоконно-оптические системы в целом

Строительство

Нормативные документы

Отраслевые и ведомственные нормативно-методические документы

Проектирование и строительство объектов связи
Нормативные ссылки:
  • ГОСТ 2239-79 «Лампы накаливания общего назначения. Технические условия»
  • ГОСТ 12.4.010-75 «Система стандартов безопасности труда. Средства индивидуальной защиты. Рукавицы специальные. Технические условия»
  • ГОСТ 10354-82 «Пленка полиэтиленовая. Технические условия»

Скачать

Волоконно-оптические линии связи (ВОЛС) – система в основе которой лежит оптоволоконный кабель, предназначена для передачи информации в оптическом (световом) диапазоне. В соответствии с ГОСТом 26599-85 термин ВОЛС заменен на ВОЛП (волоко́нно-опти́ческая ли́ния переда́чи), но в повседневном практическом обиходе по прежнему применяется термин ВОЛС, поэтому в данной статье мы будем придерживаться именно его.

Линии связи ВОЛС (если они корректно проведены) по сравнению со всеми кабельными системами отличаются очень высокой надежностью, отличным качеством связи, широкой пропускной способностью, значительно большей протяженностью без усиления и практически 100% защищенностью от электромагнитных помех. В основе системы лежит технология волоконной оптики — в качестве носителя информации используется свет, тип передаваемой информации (аналоговый или цифровой) не имеет значения. В работе преимущественно используется инфракрасный свет, средой передачи служит стекловолокно.

Область применения ВОЛС

Оптоволоконный кабель применяется для обеспечения связи и передачи информации уже более 40 лет, но из за высокой стоимости широко использоваться стал сравнительно недавно. Развитие технологий позволило сделать производство экономичней и стоимость кабеля доступней, а его технические характеристики и преимущества перед другими материалами быстро окупают все понесенные расходы.

В настоящее время, когда на одном объекте используется сразу комплекс слаботочных систем (компьютерная сеть, СКУД, видеонаблюдение, охранная и пожарная сигнализации, охрана периметра, телевидение и др.), обойтись без применения ВОЛС не возможно. Только использование оптоволоконного кабеля делает возможным одновременное применение всех этих систем, обеспечивает корректную стабильную работу и выполнение их функций.

ВОЛС все чаще применяется как основополагающая система при разработке и монтаже СКС, в особенности для многоэтажных зданий, зданий большой протяженности и при объединении группы объектов. Только Волоконно-оптические кабели могут обеспечить соответствующий объем и скорость передачи информации. На основе оптоволокна могут быть реализованы все три подсистемы СКС, в подсистеме внутренних магистралей оптические кабели применяются одинаково часто с кабелями из витых пар, а в подсистеме внешних магистралей они играют доминирующую роль. Различают оптоволоконный кабель для внешней (outdoor cables) и внутренней (indoor cables) прокладки, а так же соединительные шнуры для коммуникаций горизонтальной разводки, оснащения отдельных рабочих мест, объединения зданий.

Не смотря на относительно высокую стоимость, применение оптоволокна становится все более оправдано и находит все более широкое применение.

Преимущества и недостатки волоконно-оптического кабеля

Преимущества и недостатки волоконно-оптического кабеля

Преимущества волоконно-оптических линий связи (ВОЛС) перед традиционными «металлическими» средствами передачи:

  • Широкая полоса пропускания;
  • Незначительное ослабление сигнала, например применительно к сигналу 10МГц оно составит 1,5 дБ/км по сравнению с 30дБ/км для коаксиального кабеля RG6;
  • Исключена возможность возникновения «земляных петель», так как оптоволокно является диэлектриком и создает электрическую (гальваническую) изоляцию между передающим и принимающим концом линии;
  • Высокая надёжность оптической среды: оптические волокна не окисляются, не намокают, не подвержены электромагнитному воздействию
  • Не вызывает помех в соседних кабелях или в других оптоволоконных кабелях, так как носителем сигнала является свет и он полностью остается внутри оптоволоконного кабеля;
  • Стекловолокно абсолютно не чувствительно к внешним сигналам и электромагнитным помехам (ЭМП), не имеет значения рядом с каким блоком питания проходит кабель (110 В, 240 В, 10 000 В переменного тока) или совсем рядом от мегаватного передатчика. Удар молнии на расстоянии 1 см. от кабеля не даст ни каких наводок и не отразится на работе системы;
  • Информационная безопасность — информация по оптическому волокну передаётся «из точки в точку» и подслушать или изменить ее можно только путем физического вмешательства в линию передачи
  • Оптоволоконный кабель легче и миниатюрней – его удобней и проще укладывать чем электрический кабель такого же диаметра;
  • Сделать ответвление кабеля без повреждения качества сигнала не возможно. Любое вмешательство в систему сразу обнаруживается на принимающем конце линии, это особенно важно для систем обеспечения безопасности и видеонаблюдения;
  • Пожаро- и взрывобезопасность при изменении физических и химических параметров
  • Стоимость кабеля снижается с каждым днем, его качество и возможности начинают превалировать над затратами на построение слаботочных на базе ВОЛС

Идеальных и безупречных решений не существует, как и любая система, ВОЛС имеет свои недостатки:

  • Хрупкость стекловолокна —  при сильном изгибании кабеля возможна поломка волокон или их замутнение из-за возникновения микротрещин. Для устранения и минимизации этих рисков применяются усиливающие кабель конструкции и оплетки.  При монтаже кабеля необходимо соблюдать рекомендации производителя (где, в частности, нормируется минимально допустимый радиус изгиба);
  • Сложность соединения в случае разрыва – требуется специальный инструмент и квалификация исполнителя;
  • Сложная технология изготовления, как самого волокна, так и компонентов ВОЛС;
  • Сложность преобразования сигнала (в интерфейсном оборудовании);
  • Относительная дороговизна оптического оконечного оборудования. Однако, оборудование является дорогим в абсолютных цифрах. Соотношение цены и пропускной способности для ВОЛС лучше, чем для других систем;
  • Замутнение волокна вследствие радиационного облучения (однако, существуют легированные волокна с высокой радиационной стойкостью).

Монтаж систем ВОЛС требует от исполнителя соответствующего уровня квалификации, так как концевая заделка кабеля производится специальными инструментами, с особой точностью и мастерством в отличии от других средств передачи. Настройки маршрутизации и переключения сигналов требуют специальной квалификации и мастерства, поэтому в этой области не стоит экономить и бояться переплатить профессионалам, устранение нарушений в работе системы и последствий не правильного монтажа кабеля обойдется дороже.

Принцип действия оптоволоконного кабеля.

Сама идея передачи информации при помощи света, не говоря уже о физическом принципе работы большинству обывателей не совсем понятно. Мы не будем глубоко вдаваться в эту тему, но постараемся объяснить основной механизм действия оптоволокна и обосновать такие высокие показатели его работы.

Концепция волоконной оптики опирается на фундаментальные законы отражения и преломления света. Благодаря своей конструкции стекловолокно может удерживать световые лучи внутри световода и не дает им «пройти сквозь стены» при передачи сигнала на многие километры. Кроме того не секрет, что скорость света выше.

Концепция волоконной оптикиВолоконная оптика основывается на эффекте преломления при максимальном угле падения, когда имеет место полное отражение. Это явление происходит в том случае, когда луч света выходит из плотной среды и попадает в менее плотную среду под определенным углом. Например, представим себе абсолютно не подвижную гладь воды. Наблюдатель смотрит из под воды и меняет угол обзора. В определенный момент угол обзора становится таким, что наблюдатель не сможет видеть объекты, находящиеся над поверхностью воды. Этот угол называется углом полного отражения. При этом угле наблюдатель будет видеть только объекты, находящиеся под водой, будет казаться, что смотришь в зеркало.

Внутренняя жила кабеля ВОЛС

Внутренняя жила кабеля ВОЛС имеет более высокий показатель преломления, чем оболочка и возникает эффект полного отражения. По этой причине луч света, проходя по внутренней жиле, не может выйти за ее пределы.

Существует несколько типов оптоволоконных кабелей:

  • Со ступенчатым профилем – типичный, самый дешевый вариант, распределение света идет «ступеньками» при этом происходит деформация входного импульса, вызванная различной длиной траекторий световых лучей
  • С плавным профилем «многомодовое» — лучи света распространяются с примерно равной скоростью «волнами», длина их путей уравновешена, это позволяет улучшить характеристики импульса;
  • Одномодовое стекловолокно – самый дорогой вариант, позволяет вытянуть лучи в прямую, характеристики передачи импульса становятся практически безупречными.

Типы оптоволоконных кабелей

Оптоволоконный кабель до сих пор стоит дороже чем другие материалы, его монтаж и заделка сложнее, требуют квалифицированных исполнителей, но будущее передачи информации несомненно за развитием именно этих технологий и этот процесс необратим.

Состав Волоконно-оптической линии связи (ВОЛС)

В состав ВОЛС входят активные и пассивные компоненты. На передающем конце оптоволоконного кабеля находится светодиод или лазерный диод, их излучение модулировано передающим сигналом. Применительно к видеонаблюдению это будет видеосигнал, для передачи цифровых сигналов логика сохраняется. При передаче инфракрасный диод модулирован по яркости и пульсирует в соответствии с вариациями сигнала. Для принятия и преобразования оптического сигнала в электрический, на принимающем конце, как правило находится фотодетектор.

Состав Волоконно-оптической линии связи (ВОЛС)

К активным компонентам относятся мультиплексоры, регенераторы, усилители, лазеры, фотодиоды и модуляторы.

Мультиплексор — объединяет несколько сигналов в один, таким образом для одновременной передачи нескольких сигналов реального времени можно использовать один оптоволоконный кабель. Эти устройства незаменимы в системах с недостаточным или ограниченным числом кабелей.

Существует несколько типов мультиплексоров, они различаются по своим техническим характеристикам, функциям и области применения:

  • спектрального разделения (WDM) – самые простые и дешевые устройства, передает по одному кабелю оптические сигналы от одного или нескольких источников, работающих на различных длинах волн;
  • частотного-модулирования и частотного мультиплексирования (FM-FDM) – устройства достаточно невосприимчивые к шуму и искажениям, с хорошими характеристиками и схемами средней степени сложности, имеют 4,8 и 16 каналов, оптимальны для видеонаблюдения.
  • Амплитудной модуляции с частично подавленной боковой полосой (AVSB-FDM) — с качественной оптоэлектроникой позволяют передавать до 80 каналов, оптимальны для абонентского телевидения, но дороговаты для видеонаблюдения;
  • Импульсно-кодовой модуляции (PCM – FDM)– дорогостоящее устройство, полностью цифровое применяется для распространения цифрового видео и и видеонаблюдения;

На практике часто применяются комбинации этих методов. Регенератор — устройство, осуществляющее восстановление формы оптического импульса, который, распространяясь по волокну, претерпевает искажения. Регенераторы могут быть как чисто оптическими, так и электрическими, которые преобразуют оптический сигнал в электрический, восстанавливают его, а затем снова преобразуют в оптический.

Усилитель —усиливает мощность сигнала до требуемого уровня напряжения тока, может быть оптическим и электрическим, осуществляет оптико-электронное и электронно-оптическое преобразование сигнала.

Светодиоды и Лазеры — источник монохромного когерентного оптического излучения (света для кабеля). Для систем с прямой модуляцией, одновременно выполняет функции модулятора, преобразующего электрический сигнал в оптический.

Фотоприёмник (Фотодиод) — устройство, принимающее сигнал на другом конце оптоволоконного кабеля и осуществляющее оптоэлектронное преобразование сигнала.

Модулятор — устройство, модулирующее оптическую волну, несущую информацию по закону электрического сигнала. В большинстве систем эту функцию выполняет лазер, однако в системах с непрямой модуляцией для этого используются отдельные устройства.

К пассивным компонентам ВОЛС относятся:

Оптоволоконный кабельвыполняет функции среды для передачи сигнала. Наружная оболочка кабеля может быть изготовлена из различных материалов: поливинилхлорида, полиэтилена, полипропилена, тефлона и других материалов. Оптический кабель может иметь бронирование различного типа и специфические защитные слои (например, мелкие стеклянные иглы для защиты от грызунов). По конструкции может быть:

  • Одноволоконный и двухволоконный оптоволоконный кабельОдноволоконный и двухволоконный – включает волокнистую силовую конструкцию (арамидную нить), покрывающую вторичную оболочку. Этот слой защищен пластиковой внешней оболочкой;
  • Многоволоконный – может иметь много конфигураций. Самая простая состоит из группы одноволоконных кабелей с центральной силовой конструкцией внутри внешней оболочки.  Такие кабели могут включать от двух до двенадцати коммуникационных светодиодов. Силовая конструкция может состоять из эластичного Многоволоконный оптоволоконный кабельстального провода или укрепленной стекловолокном пластиковой жилы.  В последнем случае получается оптоволоконный кабель без содержания металла, он целиком состоит из полимеров и стекла, предназначен для установки внутри зданий. Кабель применяется в системах разного типа, в том числе безопасности, видеонаблюдения, компьютерных систем и др. Многоволоконные кабели делаются жесткими, что бы их можно было свободно протягивать через кабельные каналы и эксплуатировать в «тяжелом» режиме;
  • Трубочные оптоволоконный кабельТрубочные кабели – альтернатива одножильным кабелям и кабелям с пазухами. Кабель защищен водонепроницаемой полиэстерной трубкой, наполненной гелем, или воздухом под давлением. Используется для прямой укладки или для кабелепроводов в протяженных системах;
  • С полиэтиленовым стержнем с пазами – позволяет включать в кабель больше светодиодов. Предназначен для подземной прокладки или кабелепроводов в протяженных системах. Может быть сделан водонепроницаемых с гелевым наполнением или с воздухом под давлением;
  • Композитный оптико-металлический кабельКомпозитный оптико-металлический кабель – комбинация оптического волокна и изолированного медного провода. Предназначен для внутренней и внешней укладки, может быть заполнен водозадерживающим веществом для защиты от влаги, оптимален при прокладке под землей

Оптическая муфта — устройство, используемое для соединения двух и более оптических кабелей.

Оптический кросс — устройство, предназначенное для оконечивания оптического кабеля и подключения к нему активного оборудования.

Спайки – предназначены для постоянного или полупостоянного сращивания волокон;

Разъемы – для повторного присоединения или отключения кабеля;

Ответвители – устройства, распределяющием оптическую мощность нескольких волокон в одно;

Коммутаторы – устройства, перераспределяющие оптические сигналы под ручным или электронным контролем

Монтаж волоконно-оптических линий связи, его особенности и порядок.

Монтаж волоконно-оптических линий связи

Монтаж волоконно-оптических линий связи:

Стекловолокно очень прочный, но хрупкий материал, хотя благодаря защитной оболочке, с ним можно обращаться практически как с электрическим. Однако при монтаже кабеля следует соблюдать требования производителей по:

  • «Максимальному растяжению» и «максимальному разрывному усилию», выраженному в ньютонах (около 1000 Н или 1кН). В оптическом кабеле основное напряжение приходится на силовую конструкцию (укрепленный пластик, сталь, кевлар или их комбинация). Каждый тип конструкции имеет свои индивидуальные показатели и степень защиты, если натяжение превышает предусмотренный уровень, то оптоволокно может быть повреждено.
  • «Минимальному радиусу изгиба» — делать изгибы более плавными, избегать резких сгибов.
  • «Механической прочности», она выражается в Н/м (ньютоны/метры) – защита кабеля от физических нагрузок (на него можно наступить или даже наехать транспортом. Следует быть предельно осторожными и особо обезопасить места пересечения и соединения, нагрузка сильно увеличивается из-за малой зоны контакта.

Оптический кабель обычно поставляется намотанным на деревянные барабаны с прочным пластиковым защитным слоем или деревянными планками по окружности. Внешние слои кабеля наиболее уязвимы, поэтому при монтаже необходимо помнить о весе барабана, беречь его от ударов, падений, предпринимать меры безопасности при складировании. Лучше всего хранить барабаны горизонтально, если же они все-таки лежат вертикально, то их края (ободы) должны соприкасаться.

Порядок и особенности монтажа оптоволоконного кабеля:

  1. До начала монтажа необходимо осмотреть барабаны с кабелем на предмет повреждений, вмятин, царапин. При любом подозрении кабель лучше сразу отложить в сторону для последующего детального изучения или отбраковки. Короткие куски (меньше 2 км.) на непрерывность волокна можно проверить на просвет любым фонариком. Волоконный кабель для инфракрасной передаче так же хорошо передает обычный свет.
  2. Далее изучить трассу на предмет потенциальных проблем (острые углы, забитые кабельные каналы и т.д.), при их наличии внести в маршрут изменения для минимизации рисков.
  3. Распределить кабель по маршруту таким образом, чтобы точки соединения и подключения усилителей находились в доступных, но защищенных от неблагоприятных факторов местах. Важно, чтобы в местах будущих соединений оставался достаточный запас кабеля. Открытые концы кабеля должны быть защищены водонепроницаемыми колпаками. Для минимизации напряжения на изгиб и повреждений от проезжающего транспорта используются трубы. На обоих концах кабельной линии оставляют часть кабеля, его длина зависит от планируемой конфигурации).
  4. При прокладке кабеля под землей его дополнительно защищают от повреждений в локальных точках нагрузки, таких как контакт с неоднородным материалом засыпки, неровностями траншеи.  Для этого кабель в траншее укладывают на слой песка 50-150 см. и сверху засыпают таким же слоем песка 50-150 см. Дно траншеи должно быть ровным, без выступов, при закапывании следует удалять камни, которые могут повредить кабель. Следует отметить, что повреждения кабеля могут возникнуть как сразу, так и в процессе эксплуатации (уже после засыпки кабеля), например от постоянного давления, не убранный камень может постепенно продавить кабель. Работы по диагностике и поиску и устранению нарушений уже закопанного кабеля обойдутся намного дороже, чем аккуратность и соблюдение мер предосторожности при монтаже. Глубина траншеи зависит от типа почвы и ожидаемой нагрузки на поверхности. В твердой породе глубина составит 30 см., в мягкой или под дорогой 1 м. Рекомендуемая глубина составляет 40-60 см., при толщине песчаной подстилки от 10 до 30 см.
  5. Чаще всего применяется укладка кабеля в траншею или в лоток прямо с барабана. При монтаже очень длинных линий, барабан помещается на транспортное средство, по мере продвижения машины кабель укладывается на свое место, при этом не стоит торопиться, темп и порядок размотки барабана регулируется вручную.
  6. При укладке кабеля в лоток самое главное не превышать критический радиус изгиба и механической нагрузки. Кабель следует укладывать в одной плоскости, не создавать точек сосредоточенных нагрузок, избегать на трассе резких углов, давления и пересечения с другими кабелями и трассами, не изгибать кабель.
  7. Протяжка оптоволоконного кабеля через кабельные каналы аналогична протяжке обычного кабеля, но не стоит прилагать излишних физических усилий и нарушать спецификации производителя. При использовании скоби хомутов помните, что нагрузка должна ложиться не на внешнюю оболочку кабеля, а на силовую конструкцию. Для уменьшения трения можно использовать тальк или гранулы из полистирола, по поводу применения других смазок необходимо консультироваться с производителем.
  8. В случаях, если кабель уже имеет концевую заделку, при монтаже кабеля следует быть особенно внимательными, что бы не повредить разъемы, не загрязнить их и не подвергать чрезмерной нагрузке в зоне соединения.
  9. После укладки кабель в лотке закрепляется нейлоновыми стяжками, он не должен сползать или провисать. Если особенности поверхности не позволяют использовать специальные кабельные крепления, допустимо применение хомутов, но с особой осторожностью, чтобы не повредить кабель. Рекомендуется применение хомутов с пластиковым защитным слоем, для каждого кабеля следует использовать отдельный хомут и ни в коем случае не стягивать вместе несколько кабелей. Между конечными точками крепления кабеля лучше оставить небольшую слабину, а не класть кабель в натяг, иначе он будет плохо реагировать на колебания температуры и вибрации.
  10. Если при монтаже оптоволокно все-таки было повреждено, пометьте участок и оставьте достаточный запас кабеля для последующего сращивания.

В принципе, прокладка оптоволоконного кабеля не сильно отличается от монтажа обычного кабеля. Если соблюдать все указанные нами рекомендации, то проблем при монтаже и эксплуатации не возникнет и Ваша система будет работать долго, качественно и надежно.

Пример типового решения по прокладке линии ВОЛС

Задача — организовать систему ВОЛС между двумя отдельно стоящими зданиями производственного корпуса и административного здания. Расстояние между зданиями 500 м.

№п/п Наименование оборудования, материалов, работ Ед. из-я Кол-во Цена за ед. Сумма, в руб.
I. Оборудование системы ВОЛС, в том числе: 25 783
1.1. Кросс оптический настенный (ШКОН) 8 портов шт. 2 2600 5200
1.2. Медиаконвертер 10/100-Base-T / 100Base-FX, Tx/Rx: 1310/1550нм шт. 2 2655 5310
1.3. Муфта оптическая проходная шт. 3 3420 10260
1.4. Ящик коммутационный 600х400 шт. 2 2507 5013
II. Кабельные трассы и материалы системы ВОЛС, в том числе: 25 000
2.1. Оптический кабель с внешним тросом 6кН, центральный модуль, 4 волокна, одномодовый G.652. м. 200 41 8200
2.2. Оптический кабель с внутренним несущим тросом, центральный модуль, 4 волокна, одномодовый G.652. м. 300 36 10800
2.3. Прочие расходные материалы (разъемы, саморезы, дюбеля, изоляционная лента, крепления и т.п.) компл. 1 6000 6000
III. ИТОГО СТОИМОСТЬ ОБОРУДОВАНИЯ И МАТЕРИАЛОВ (п.I+п.II)  50 783
IV. Транспортно-заготовительные расходы, 10% *п.III  5078
V. Работы по монтажу и коммутации оборудования, в том числе: 111 160
5.1. Монтаж перетяжки ед. 4 8000 32000
5.2. Прокладка кабеля м. 500 75 37500
5.3. Монтаж и сварка разъемов ед. 32 880 28160
5.4. Монтаж коммутационного оборудования ед. 9 1500 13500
VI. ВСЕГО ПО СМЕТЕ (п.III+п.IV+п.V)  167 021

Пояснения и комментарии:

  1. Общая протяженность трассы 500 м., в том числе:
    • от забора до производственного корпуса и административного здания составляет по 100 м. (итого 200 м.);
    • вдоль забора между зданиями 300 м.
  2. Монтаж кабеля осуществляется открытым способом, в том числе:
    • от зданий до забора (200 м.) по воздуху (перетяжка) с применением специализированных для прокладки ВОЛС материалов;
    • между зданиями (300 м.) по забору из железобетонных плит, кабель закрепляется по середине полотна забора при помощи металлических клипс.
  3. Для организации ВОЛС используется специализированный самонесущий (встроенный трос) бронированный кабель.

ОК-50-2-3-8 —
восьмиволоконный с коэффициентом затухания не более 3 дБ/км.

Оптический
кабель (ОК) (Рис.
1
.) содержит четыре или восемь оптических волокон, расположенных
вокруг центрального силового элемента из стального троса или упрочняющих нитей
СВМ, помещенных в поливинилхлоридную оболочку.

Оптическое
волокно состоит из сердцевины, оболочки и защитного покрытия. Геометрические
размеры волокна:

диаметр
сердцевины — 50±3 мкм;

отклонение от
геометрии круга сердцевины — менее 6%;

диаметр
оболочки — 125±3 мкм;

отклонение от
геометрии круга оболочки — 2%;

Числовая
апертура оптического волокна — 0,2±0,02.

Наружный
диаметр волокна по защитному покрытию не нормируется и зависит от материала
покрытия. Применяются оптические волокна со следующими защитными покрытиями:

полиамидным;

эпоксиакрилатным;

полиарилатным.

Каждое
оптическое волокно помещено во фторопластовую или поливинилхлоридную трубку. Сочетание
оптического волокна и трубки именуется — модулем. При применении трубок из
поливинилхлоридного пластиката внутри трубки помещается синтетические нити.
Модули с наружным диаметром (2,5±0,2) мм скручены вокруг центрального силового
элемента. В четырехволоконном кабеле модули чередуются с корделями заполнения с
наружным диаметром (2,5±0,2) мм, состоят из упрочняющих нитей (СВМ,
терлон, стеклонить), помещенных в поливинилхлоридную оболочку. Два соседних
модуля в восьмиволоконном или два корделя заполнения в четырехволоконном кабеле
должны отличаться по цвету друг от другая от остальных элементов в повиве (или
иметь другой отличительный признак). Допускается маркировка фторопластовых
модулей цветными нитями.

Поверх
скрутки наложены скрепляющие ленты или нити, поверх которых наложена оболочка
из полиэтилена с минимальной толщиной 1,5 мм. Наружный диаметр кабеля
должен быть (13,0±1,0) мм. В кабеле могут быть мерная лента или мерные метки
по наружной оболочке (с 01.01.89 они обязательны).

Межмодульное
пространство сердечника кабеля равномерно заполнено гидрофобной массой.

Кабель в
партии, отправляемой в один адрес, должен иметь центральный силовой элемент
одного типа, одинаковый материал трубки модуля и покрытия оптического волокна,
одинаковую расцветку кодирующих элементов.

1.3. Механические параметры оптических кабелей

До 01.01.88
строительная длина кабеля должна быть не менее 1000 м. Допускается поставка
кабеля длинами не менее 500 м в количестве 20%. До 01.01.89 допускается
поставка кабеля длинами не менее 500 м в количестве 10%. Далее
строительная длина оптического кабеля должна быть не менее 2000
м. Допускаться будет поставка кабеля длинами не менее 1000 м в
количестве 10%.

По
согласования с заказчиком (кроме организации п/я Г-4650) возможна поставка кабеля
любыми длинами. Масса 1 км оптического кабеля указана в табл. 1.

Таблица 1.

Тип кабеля

Масса 1 км
кабеля, кг

номинальная

расчетная

максимальная

ОК без стальных
элементов

ОК со стальными
элементами

ОК без стальных
элементов

ОК со стальными
элементами

4-х вол.

135

15

155

170

8-ми вол.

130

150

Кабель
выдерживает растягивающее усилие:

1200 Н (120
кгс) с центральным элементом из нитей упрочняющих СВМ;

2200 Н (220
кгс) с металлическим центральным элементом (тросом).

Кабель
выдерживает раздавливающее усилие 1000 Н/см.

Допустимый
радиус изгиба кабеля (250±10) мм.

2. ПОДГОТОВИТЕЛЬНЫЕ РАБОТЫ

2.1. Проведение входного
контроля

2.1.1. Проверка барабанов с кабелем

Барабаны с
оптическим кабелем, поступившие на кабельную площадку, подвергаются внешнему
осмотру на отсутствие механических повреждений. Если в результате внешнего
осмотра будут выявлены серьезные повреждения барабанов или кабеля, которые
могут привести к повреждению последнего в процессе транспортирования или
прокладки, а также к снижению эксплуатационной надежности, должен быть
составлен коммерческий акт с участием эксперта или акт с участием
представителей подрядчика, заказчика и других заинтересованных организаций. При
этом следует руководствоваться инструкциями о порядке приемки продукции
производственно-технического назначения и товаров народного потребления по
количеству и качеству, утвержденными постановлениями Госарбитража СССР № П-6 от
15.06.65 и № П-7 от 25.04.66 (с изменениями и дополнениями, внесенными
постановлениями Госарбитража СССР № 81 от 29.12.73, № 98 от 14.11.74, № 115 от
23.07.75).

При наличии
незначительных повреждений, они должны быть устранены собственными силами. Если
барабан на месте отремонтировать невозможно, то с уведомлением заказчика кабель
с него должен быть перемотан на исправный барабан плотными и ровными витками.
Не допускается перемотка с барабана на барабан, установленных на щеки. При
перемотке необходимо осуществлять визуальный контроль целостности наружной
оболочки кабеля.

После
вскрытия обшивки барабана проверяют наличие заводских паспортов, соответствие
маркировки строительной длины, указанной в паспорте, маркировке, указанной на
барабане, проверяют внешнее состояние кабеля на отсутствие вмятин, порезов,
пережимов, перекруток и т.д.

В паспорте на
кабель должна быть указана длина кабеля, тип покрытия оптического волокна, коэффициент
затухания оптических волокон и предел значений полосы пропускания, материал
трубки модуля, материал упрочняющего центрального силового элемента.

При
отсутствии заводского паспорта на кабель, следует запросить его дубликат у
завода-изготовителя. Если дубликат не будет получен, то необходимо вызвать
представителя завода-изготовителя для производства паспортизации кабеля на
месте в присутствии заказчика.

В том случае,
если выведенный на щеку барабана нижний конец кабеля имеет длину меньше 2±0,3 м
(запас для измерений), то кабель необходимо перемотать, выведя необходимый
запас нижнего конца на щеку барабана. Во время перемотки необходимо
осуществлять визуальный контроль за целостностью наружной оболочки кабеля.

2.1.2. Измерение затухания оптических волокон кабеля

При наличии
заводских паспортов производят измерение затухания оптических волокон,
предварительно просветив их электрическим фонарем или переносной электрической
лампой.

Измерение
затухания оптических волокон следует производить комплектом приборов для
измерения методом «обрыва», в соответствии с действующими
инструкциями.

В случае
обрыва оптических волокон или превышения их километрического затухания от
установленной нормы для данного кабеля более чем на 0,3 дБ, должен быть
составлен акт в соответствии с п. 2.1.1. «руководства…» и
строительная длина должна бить возвращена заводу-изготовителю.

После
проведения измерения затухания оптических волокон кабеля составляют протокол
входного контроля по форме 1 (приложение 2). На концах кабеля устанавливают
полиэтиленовые колпачки. Стык колпачка с полиэтиленовой оболочкой кабеля
герметизируют пояском термоусаживаемой трубки с применением сэвилена или клея-расплава
ГИПК-14-13. При их отсутствии, герметизацию производят наплавлением
полиэтиленовой ленты под стеклолентой.

2.2. Группирование строительных длин кабеля

Перед
группированием строительных длин кабеля рабочий чертеж на прокладку его в
канализации должен быть сопоставлен с фактическими длинами пролетов и проверено
соответствие типов колодцев. При отборе кабеля следует исходить из того, что на
одном регенерационном участке должен быть кабель только одной марки, с одним
типом оптического волокна и одним типом центрального силового элемента.
Предназначенные для прокладки строительные длины кабеля должны быть
распределены так, чтобы отходы кабеля после выкладки и монтажа были
минимальными, при этом учитывают длину пролетов, форму транзитных колодцев, запас
кабеля на монтаж муфти и выкладку в колодце.

В зависимости
от рельефа трассы определяют первый колодец, с которого начинают прокладку
кабеля. Если трасса прямолинейна, имеет не более 1-2-х угловых колодцев, на ней
отсутствуют изгибы и снижения, то представляется возможным затянуть в одном
направлении в одну протяжку всю строительную длину кабеля (до 1,5 км). Если
трасса не прямолинейна, имеет более 2-х угловых колодцев и т.д., производитель
работ должен определить первый колодец так, чтобы произвести прокладку кабеля
от этого колодца в двух направлениях. Желательно, чтобы это был угловой
колодец.

По
результатам группирования для каждого регенерационного участка необходимо
составить укладочную ведомость по форме 2 (приложение 2).

3. ПРОКЛАДКА ОПТИЧЕСКОГО КАБЕЛЯ

3.1. Подготовка кабельной
канализации к прокладке оптического кабеля

3.1.1. Общие положения

Для прокладки
оптического кабеля, по возможности, используются каналы, расположенные в
середине блока кабельной канализации по вертикали и у края канализации по
горизонтали. По решению заказчика прокладка кабеля по занятым каналам должна
производиться в полиэтиленовых трубах (ПНД 32т наружным диаметром 32 мм и
внутренним — 25 мм), предварительно проложенных в этих каналах. Применение
полиэтиленовой трубы создает условия для прокладки оптического кабеля большой
длины, а также обеспечивает защиту кабеля от возможных повреждений при
заготовке канала для прокладки другого кабеля (особенно металлическими
палками), при докладке тяжелых массивных кабелей, при вытяжке уже проложенных
кабелей из канала.

Прокладка
кабеля по свободным каналам должна производиться только при условии, что в этих
каналах не будет в дальнейшем докладки других кабелей связи с металлическими
проводниками, а только оптических, однотипных в количестве не более пяти-шести.
Если же докладка предвидится, то и в свободном канале оптический кабель должен
прокладываться в полиэтиленовой трубе.

Прокладка
строительных длин кабеля длиной 2000 м и более должна производиться только в
полиэтиленовой трубе.

3.1.2. Прокладка полиэтиленовой трубы в канале
кабельной канализации

При прокладке
полиэтиленовой трубы по каналу кабельной канализации, трубу разматывают из
бухты с передвижного тамбура или разматывают вручную на всю длину пролета. Если
на участке прокладки имеются несколько коротких пролетов, то трубу разматывают
на максимальную длину с таким расчетом, чтобы ее дальний конец (с учетом
обрезки в каждом транзитном колодце на расстояние, равное расстоянию между каналами
плюс 400 — 450 мм) пришелся на последний колодец с минимальной обрезкой. При
невозможности раскатки трубы из-за стесненных условий трассы, участок прокладки
измеряют рулеткой, а затем в доступном месте отмеряют и отрезают полиэтиленовую
трубу. Если на трассе имеются угловые колодцы, то труба должна заканчиваться в
каждом таком колодце.

Конец трубы,
оснащенный наконечником, вводят в канал кабельной канализации и поступательным
движением проталкивают по нему на всю длину пролета (пролетов). При наличии транзитных
колодцев в них производят вспомогательную подтяжку трубы рабочими кабельщиками.

Если
продвижение трубы станет невозможным из-за возникших препятствий в канале, то
трубу необходимо несколько раз повернуть вокруг оси с одновременным
проталкиванием (рис.
2
).

Рис.
2. Прокручивание трубы при прокладке по каналу кабельной канализации

В каждом
колодце полиэтиленовую трубу с одной сторону обрезают ножовкой, оставляя длину 200
— 250 мм от канала. Вначале трубу обрезают на выходе первого колодца, затем
обрезают на входе второго колодца и проталкивают вперед по каналу. Далее трубу
обрезают на входе третьего колодца и снова проталкивают по каналу. Таким
образом поступают в каждом последующем транзитном колодце.

После обрезки
трубы, в каждом колодце на входе и выходе канала, временно на период прокладки
кабеля, устанавливают по одному противоугону, представляющему упор, препятствующий
смещению трубы при ее заготовке проволокой (тросом) и при прокладке кабеля (рис. 3).

Рис.
3. Установка противоугона

При прокладке
полиэтиленовой трубы в канализации возможны маломерные остатки. Эти остатки
необходимо перераспределять на короткие пролеты трассы, определив их по рабочим
чертежам. Допускается стыковка маломерных длин полиэтиленовой трубы с целью
использования ее для прокладки на участках трассы, не превышающих 70 — 80 м.
Стыковку производят с помощью металлической манжеты длиной 150 мм, толщиной
стенки 1,5 — 2,0 мм, устанавливаемой на стыке труб. Предварительно на торцах
труб с внутренней стороны должна быть снята фаска под углом 30°. Рядом с
установленной манжетой с обеих сторон на поверхность труб накладывают по одному
пояску в два слоя сэвилена или клея-расплава ГИПК-14-13. Поверх манжеты с
равным перекрытием поясков устанавливают и усаживают термоусаживаемую трубку
40/20 длиной 250 мм.

Если
заготовка проложенной полиэтиленовой трубы и прокладка кабеля будут
производиться не сразу же, а через некоторое время, за которое колодцы могут
наполниться водой, то для предотвращения попадания в проложенные трубы песка,
глины, ила, полиэтиленовую трубу в каждом колодце временно защищают полиэтиленовыми
колпачками с обмоткой их стыка 5 — 7 слоями липкой пластмассовой ленты.

3.1.3. Заготовка полиэтиленовой трубы, проложенной
в канале кабельной канализации

Заготовка
полиэтиленовой трубы, проложенной в канале кабельной канализации, производится заготовочной
стальной оцинкованной проволокой диаметром 3 мм или стальным тросом. Для
заготовки трубы применяют стеклопруток или пневмопроходчик. Стеклопруток
наиболее эффективен при наличии на трассе большого количества коротких
пролетов. Пневмопроходчик рекомендуется применять на пролетах от 80 до 140 и
более метров. При отсутствии стеклопрутка и пневмопроходчика полиэтиленовую
трубу можно заготовить капроновым шнуром. Заготовку производят до прокладки
трубы в канал кабельной канализации, размотав ее на поверхности вдоль трассы.
Для заготовки капроновый шнур привязывают к проходному цилиндру или шару.
Цилиндр или шар с привязанным шнуром опускают в трубу, подготовленную для
прокладки в канал. Перебирая трубу впереди себя, перемещают цилиндр или шар со
шнуром на всю длину трубы (рис. 4). Затем, уже после прокладки трубы в канал,
с помощью шнура затягивают в трубу заготовочную проволоку или трос. На коротких
пролетах шнур нескольких длин можно связать между собой.

Заготовка
свободного канала при прокладке кабеля без полиэтиленовой трубы производится
как и обычно, в соответствии с главой 4.2. «Общей инструкции».
Заготовка канала, в котором уже проложен оптический кабель без полиэтиленовой
трубы, должна производиться либо стеклопрутком, либо полиэтиленовой трубкой.

Во всех
случаях при заготовке каналов следует стремиться к тому, чтобы проволока или
трос имели как можно меньше скруток (соединений). Рекомендуемая целая без
скруток длина для проволоки — 450 — 500 м, для троса — до 1500 м.

Рис. 4. Заготовка
полиэтиленовой трубы капроновым шнуром.

3.2. Подготовка приспособлений и устройств к
прокладке оптического кабеля

3.2.1. Общие положения

Прокладка
оптических кабелей в кабельной канализации может осуществляться как ручным, так
и механизированным способами с использованием различных механизмов и
приспособлений. В данном разделе «руководства….» не приводится их
полный перечень, т.к. они постоянно совершенствуются и дополняются новыми, а
даны только устройства, необходимые для применения в обязательном порядке.

3.2.2. Перед
выездом на трассу проверяют комплектность и работоспособность приспособлений и
устройств, применяющихся при прокладке кабеля. В состав комплекта для ручной
прокладки оптического кабеля в кабельной канализации должны входить
приспособления и устройства, максимально снижающие вероятность повреждения
кабеля и создающие благоприятные условия для прокладки больших строительных
длин. Для обеспечения этих требований в составе комплекта обязательно должны быть:

лебедка
ручная проволочная или тросовая с регулируемым ограничителем тяжения для
заготовки каналов (полиэтиленовой трубы) проволокой (тросом) и затягивания
кабеля (в дальнейшем может использоваться лебедка с бензиновым или
электрическим приводом);

устройство
для размотки кабеля с барабана;

труба
гофрированная для ввода кабеля через горловину колодца от барабана до канала
канализации (при прокладке кабеля с середины трассы в обе стороны, труба должна
иметь продольный разрез по всей длине);

ролики
люкоогибные для направления прохождения заготовочной проволоки (троса) и кабеля
через горловину последнего колодца;

горизонтальная
распорка и блок кабельный для плавного поворота кабеля в угловом колодце (по
числу угловых колодцев);

воронки
направляющие на трубу кабельной канализации и на полиэтиленовую трубу,
проложенную в канале для предотвращения повреждения кабеля и обеспечения
требуемого радиуса изгиба на входе и выходе канала (по 2 шт. на каждый
колодец);

наконечник
кабельный с чулком или без чулка для тяжения кабеля за центральный силовой
элемент и полиэтиленовую оболочку;

компенсатор
кручения для исключения скручивания прокладываемого кабеля;

После
проверки комплектности и работоспособности приспособлений и устройств,
необходимо проверить и отрегулировать (при необходимости) с помощью динамометра
тяговое усилие лебедки, которое не должно превышать:

для кабеля с
силовым центральным элементом из нитей СВМ — 1200 Н (120 кгс);

для кабеля с
металлическим силовым центральным элементом — 2200 Н (220 кгс).

В первом случае
на лебедке устанавливают усилие расцепления — 110 кг, во втором — 200 кг.

Проверку и
регулировку лебедки рекомендуется производить в присутствии представителя
заказчика с оформлением протокола.

3.3. Установка приспособлений и устройств на трассе

3.3.1.
Порядок установки

Готовые к
работе приспособления и устройства вместе с лестницами и ограждениями
доставляются автотранспортом к месту прокладки кабеля.

Устройство
для размотки кабеля с барабана устанавливают на расстоянии 1,5 — 2,0 м от люка
колодца, с которого начинают прокладку (рис. 5).

Рис.
5. Устройство для размотки кабеля с барабана

На люк
колодца устанавливают раму с гофрированной трубой для ввода кабеля в канал
канализации.

С
противоположной стороны на люк последнего выходного колодца устанавливают
люкоогибные ролики (рис. 6)и в двух-трех метрах — ручную лебедку.

Рис.
6. Установка люкоогибных роликов

Во всех
угловых колодцах устанавливают горизонтальную распорку и блок кабельный (рис. 7).

Рис.
7. Установка горизонтальной распорки и блока кабельного

Во всех
транзитных колодцах на полиэтиленовую трубу или канальную трубу устанавливают
направляющие предохранительные воронки (рис. 8 и рис. 9) (в первом
случае воронки рекомендуется устанавливать одновременно с противоугонами).

Рис. 8. Установка
направляющей воронки на полиэтиленовую трубу

Рис. 9. Установка
направляющей воронки на трубу канала кабельной канализации

3.4. Транспортирование барабанов с кабелем

Транспортирование
барабанов с кабелем к месту прокладки должно производиться с соблюдением общих
положений, на специально оборудованных бортовых автомашинах с прицепами или без
них. Погрузка барабанов и выгрузка их должны производиться автомобильными
кранами или при помощи покатей. Категорически запрещается сбрасывать их с
автомашины или свободно скатывать по покатям. Перемещение барабанов с кабелем
на короткие расстояния (до 50 м) можно осуществлять перекатыванием в
направлении, указанном стрелкой на щеке барабана. Запрещается также перевозка
барабанов, установленных на щеки.

3.5. Прокладка оптического кабеля

3.5.1. Условия прокладки
кабеля

Прокладка
оптического кабеля должна производиться при температуре окружающего воздуха не
ниже минус 10°С.

3.5.2. Установка барабана с кабелем

Барабан с
удаленной обшивкой устанавливают со стороны трассы прокладки и так, чтобы смотка
производилась сверху. Барабан должен свободно вращаться от руки.

3.5.3. Оснастка конца кабеля для прокладки

Конец кабеля
освобождают от крепления к барабану и от защитного полиэтиленового колпачка.
Прокладку производят либо с использованием наконечника без чулка, либо
наконечника с чулком (оба приспособления однозначны). Наконечник скрепляют с
компенсатором кручения. На рис. 10 показан пример установки наконечника с
чулком и компенсатора кручения.

Рис.
10. Пример установки наконечника с чулком и компенсатора кручения

В каждом
случае тяжение кабеля производится за центральный силовой элемент и
полиэтиленовую оболочку кабеля. Соединение наконечников с заготовочной
проволокой осуществляют обычной скруткой. Скрутка не должна выступать за
габариты наконечника и компенсатора кручения.

3.5.4. Прокладка кабеля

Прокладку
оптического кабеля производят с помощью лебедки с ограничителем тяжения, вращая
ее равномерно, без рывков. Прокладывать оптический кабель без лебедки, имеющей
ограничитель тяжения, категорически запрещается.

На рис. 11
показан момент работы с лебедкой.

Рис.
11. Прокладка кабеля с помощью ручной лебедки

С
противоположной стороны кабель разматывают с барабана вручную (рис. 12).

Во время
прокладки необходимо следить за прохождением кабеля через угловые колодцы.
Кабель должен проходить по центру поворотного колеса и фиксироваться прижимными
роликами.

Для обеспечения
оперативной связи между рабочими необходимо применение служебной радиосвязи.
Для этой цели рекомендуется использовать радиостанции типа»Лен» или
«Кактус».

Рис.
12. Размотка кабеля с барабана во время прокладки

Средняя
скорость прокладки кабеля составляет 5 ¸ 7 м/мин.

Предварительно
отрегулированная лебедка будет обеспечивать тяговое усилие, не превышающее
допустимого для данного кабеля. В случае, если усилие тяжения превысит
допустимое, то необходимо, прежде всего, обследовать трассу прокладки и
определить причину. Если увеличение тягового усилия вызвано усложнившимся
рельефом трассы, то необходимо выявить (локализовать) этот трудный влияющий
участок трассы и поставить в транзитных колодцах рабочих для подтяжки кабеля
руками. При этом следует учитывать, что подтяжка руками должна производиться с
усилием не более 60 — 70 кгс. Рекомендуется заранее подготовить рабочих для
использования на подтяжке кабеля, проинструктировав их и предоставив им
возможность измерить и определить для себя допустимое усилие с помощью
динамометра. При подтяжке кабеля руками запрещается упираться ногами в стенки
колодца или его арматуру. Нельзя допускать перегибов кабеля в руках. Необходимо
следить, чтобы впереди не образовывалась петля и кабель равномерно уходил в
противоположный канал. При появлении кабеля в последнем выходном колодце
лебедку перемещают на расстояние до 20 — 25 м и продолжают вытяжку кабеля из
колодца, обеспечивая тем самым запас кабеля на выкладку и монтаж.

Если
прокладка кабеля производится с какой-то точки трассы в два направления, то
вначале прокладывают одну большую длину в одну сторону. Затем оставшийся на
барабане кабель разматывают, укладывают рядом восьмеркой и прокладывают в
другую сторону.

Прокладка
кабеля по каналам кабельной канализации, в которых уже проложен оптический
кабель, производится аналогично.

Закончив
прокладку кабеля, его конец возле наконечника (чулка) обрезают и герметизируют
полиэтиленовым колпачком (см. п. 2.1.2.),

3.5.5. Выкладка оптического кабеля

При выкладке
подтягивание кабеля в холодцах производят вручную постепенно от крайних
(первого и последнего) колодцев к середине. Оптический кабель должен быть
выложен по форме колодцев, уложен на консоли соответствующего ряда в ближайших
к кронштейну ручьях, желательно на первое консольное место, и закреплен
перевязкой. Выкладываемый кабель не должен перекрещиваться с другими кабелями,
идущими в том же ряду, и заслонять собой отверстия каналов.

В колодце, в
котором будет устанавливаться соединительная муфта, кабель сворачивают кольцами
диаметром 1000 — 1200 мм, укладывают к стенке и прикрепляют к кронштейнам.
Длина запаса кабеля, считая от канала канализации, после выкладки во всех
транзитных колодцах должна быть:

при монтаже
муфты в монтажно-измерительной автомашине — 8м;

при монтаже
муфты в колодце (в зависимости от типа колодца) — от 3 до 5м.

После
выкладки кабеля снимают все противоугоны, направляющие воронки, другие
устройства и устанавливают их на следующем участке трассы. Герметизация
полиэтиленовых труб (если они применялись) не производится.

3.5.6. Прокладка оптического кабеля в коллекторах,
шахтах, нишах и по кабельростам

При прокладке
в коллекторах небольших длин кабеля, его выносят вдоль всего коллектора на
руках и укладывают на консоли. При большой прокладываемой длине, кабель
протягивают по раскатным роликам. Укладывают кабель на консоли верхнего ряда в
ближайших к кронштейну ручьях.

Прокладка и
крепление кабеля в шахтах должны производиться в соответствии с проектом.

В нишах
оптический кабель прокладывается свободно без крепления.

На
кабельростах кабель прокладывают и крепят вместе с другими кабелями связи,
соблюдая при этом требуемый радиус изгиба. Если существующая конструкция
кабельроста это не позволяет, допускается на вертикально-горизонтальных
поворотах кабель пропускать, минуя изгиб кабельроста.

3.5.7. Контроль оптического кабеля после прокладки

После
прокладки и выкладки оптического кабеля необходимо произвести контрольные
измерения затухания оптических волокон, которое должно быть в пределах
установленной километрической нормы. После проверки проложенной длины кабеля,
полиэтиленовые колпачки на его концах должны быть восстановлены.

4. МОНТАЖ ОПТИЧЕСКОГО КАБЕЛЯ

4.1. Организация рабочего
места

Монтаж
соединительных муфт оптического кабеля может производиться в специально
оборудованных монтажно-измерительных автомашинах или непосредственно в колодцах
кабельной канализации. Во втором случае колодец должен быть большого типа, быть
сухим, иметь хорошее освещение, обогрев рабочей зоны и вентиляцию, позволять
установку в нем столика-подставки для сварочного аппарата и свободного
размещения двух монтажников. При любой погоде над колодцем должна быть
кабельная палатка. При невозможности обеспечения этих условий, монтаж должен
производиться только в монтажно-измерительной автомашине.

4.2. Состав монтажной бригады

Монтаж
соединительных муфт и контрольные измерения в процессе монтажа производятся
комплексной бригадой в составе:

инженера-измерителя;

техника-измерителя;

монтажника
связи — 6 разряда;

монтажника
связи — 5 разряда.

4.3. Монтажные материалы и детали для монтажа
соединительной муфты СМОК

Для монтажа
соединительной муфты СМОК применяется комплект деталей и материалов (ТУ
45-86.АХП4.468.049.ТУ.).

На рис. 13
показана соединительная муфта. Состав комплекта указан в приложении 3.

Рис. 13.
Соединительная муфта СМОК

4.4. Монтаж соединительной муфты СМОК

При монтаже
соединительной муфты в монтажно-измерительной автомашине оба конца кабеля, не
раскручивая колец, подают к монтажному столу. При монтаже муфты в колодце
кольца кабеля раскручивают и кабель временно выкладывают по форме колодца. Готовый к монтажу кабель протирают на
расстоянии 2000 мм от загрязнений. Отступив на 1650 — 1700 мм от концов кабеля,
на них устанавливают и приваривают методом наплавления полиэтиленовой ленты под
стеклолентой по одному полиэтиленовому конусу (рис. 14).

Рис.
14. Приварка полиэтиленового конуса к кабелю

Под конуса
устанавливают и скрепляют с ними перевязкой половинку металлического каркаса,
входящего в состав монтажного комплекта. На уровне окончания цилиндрической
части полиэтиленовых конусов полиэтиленовую оболочку обоих концов кабеля
надрезают и удаляют с сердечника. Снимают пластмассовые ленты или нити. В
четырехволоконном кабеле кордели заполнения удаляют ножом на уровне среза
оболочки. Если оптические волокна в кабеле уложены во второпластовые трубки, то
их удаляют на расстоянии 35 — 40 мм от среза полиэтиленовой оболочки. Если
оптические волокна помещены в поливинилхлоридные трубки, то их удаляют на длине
100 мм. Освобожденные волокна или волокна в поливинилхлоридной трубке протирают
от гидрофобного заполнителя бензином Б-70,а затем насухо.

Если
центральный силовой элемент представляет собою нити СВМ в поливинилхлоридной
оболочке, то его соединяют в середине муфты металлической гильзой, обжав ее по
концам плоскогубцами, при этом встречные нити выводят наружу и связывают между
собой двойным узлом. Если центральный силовой элемент выполнен в виде стального
троса в поливинилхлоридной оболочке, то его восстанавливают путем спайки
в середине муфты припоем ПОССу 30-2 с применением пасты ПБК-26м. Место спайки
изолируют полиэтиленовой гильзой (рис. 15. и рис. 16).

Рис. 15. Спайка
стального троса паяльником

Рис.
16. Изолирование спайки стального троса полиэтиленовой гильзой

После
соединения центрального силового элемента временное крепление полиэтиленовых
конусов к металлическому каркасу ослабляют и конуса слегка раздвигают,
обеспечивая, тем самым, натяжение центрального элемента. Далее конуса
закрепляют снова. В каркас вкладывают на всю его длину между конусами полоску
из полиэтиленовой пленки длиной 800 мм и шириной 200 мм.

Приступают к
подготовке к сварке и к сварке первого оптического волокна. Счет оптических
волокон в кабеле на конце «А» ведется по часовой стрелке, на конце
«Б» против часовой стрелки. Соблюдение счета волокон при монтаже
соединительных муфт обязательно.

На свободном
от трубки оптическом волокне на длине 30 мм удаляют защитные покрытия. В
практике чаще всего встречаются два вида покрытий:

полиамидное;

эпоксиакрилатное.

Полиамидное
покрытие удаляют инструментом, входящим в комплект устройства для сварки
КСС-111.Эпоксиакрилатное покрытие удаляют лезвием безопасной бритвы.

Освобожденный
от защитных покрытий участок оптического волокна протирают тампоном, смоченным
в бензине-растворителе «Нефрас», а затем спиртом. После протирки
производят скол оптического волокна инструментом, входящим в комплект
устройства для сварки. Скол должен быть ровным и перпендикулярным оси волокна.
Качество скола определяют через микроскоп устройства для сварки. Если скол не
получился, то операции по удалению защитных покрытий повторяют снова.
Аналогично подготавливают оптическое волокно другого конца кабеля.

Производят
сварку оптических волокон двух строительных длин кабеля в соответствии с
указаниями «Паспорта устройства для сварки». После сварки производят
контроль качества сварного соединения рефлектометром обратного рассеивания,
установленного в начале строительной длины кабеля (участка). Затухание места
сварки оптического волокна должно быть не более 0,5 дБ. Если затухание больше,
то сварку необходимо переделать. Если после двойной переделки затухание все же
будет превышать 0,5 дБ, но не более 0,8 дБ, сварное соединение оставить как оно
есть, но это увеличение постараться скомпенсировать за счет уменьшения
затухания на других сварках этого волокна в следующих муфтах так, чтобы не
превысилась норма затухания, установленная проектом на весь участок.

Если
затухание сварки превышает 0,8 дБ, необходимо вызвать представителя
завода-изготовителя, заказчика и других заинтересованных организаций и в их
присутствии составить акт в соответствии с указаниями п. 2.1.1.

Получив
положительные результаты измерений, на сварное соединение устанавливают и
усаживают защитную термоусаживаемую гильзу (ГЗС). После остывания гильзы
оптическое волокно укладывает в металлическом каркасе, а гильзу подвязывают к
центральному силовому элементу (рис. 17). В паспорте на муфту отмечают место
установки гильзы.

Рис.
17. Укладка волокна в муфте

Кольца
оптического волокна можно связать между собой ниткой без затяжки. Они должны
оставаться в свободном состоянии.

После
выкладки оптического волокна и закрепления защитной гильзы снова производят
проверку сварного соединения рефлектометром и только потом приступают к
подготовке и сварке следующего волокна аналогично первому.

После сварки
и выкладки всех оптических волокон вкладыш из полиэтиленовой пленки
сворачивают трубкой, вкладывают паспорт на муфту (приложение 5) с указанием
распределения защитных гильз по счету волокон в кабеле и закрывают сверху
второй частью металлического каркаса (рис. 18).

Рис.
18. Установка второй части металлического каркаса

Поверх
каркаса надвигают две цилиндрические части полиэтиленовой муфты (рис. 19).

Герметизацию
всех трех стыков производят поясками термоусаживаемой трубки 80/40 длиной по
100 мм, предварительно надетыми на кабель. В качестве герметика под трубку
применяют сэвилен или клей-расплав ГИПК-14-13.

На рис. 20
показана смонтированная соединительная муфта.

Рис. 19. Установка
цилиндрических частей полиэтиленовой муфты

Рис. 20.
Смонтированная соединительная муфта

4.5. Проверка герметичности смонтированной муфты

После монтажа
соединительной муфты проверяют ее герметичность местным избыточным воздушным
давлением. Для этого к корпусу муфты временно приваривают полиэтиленовый
патрубок и делают через него прокол в корпусе муфты. Через осушительный бачок с
селикагелем автомобильным насосом в муфте создают избыточное воздушное давление
порядка 98 кПа (1 кг/см2). Проверку можно производить прибором
«УЗТИ», а при его отсутствии — обмыливанием. После проверки патрубок
срезают ножом, а отверстие герметизируют предварительно надетой на кабель
полоской термоусаживаемой трубки 80/40 шириной 60 мм с применением сэвилена или
клея-расплава ГИПК-14-13.

Если монтаж
муфты производился в монтажно-измерительной автомашине, то муфту снимают с
монтажного стола и опускают в колодец. Запас кабеля снова должен сложиться
кольцами с обеих сторон от муфты. В колодце кольца кабеля скрепляют между собой
и прикрепляют к кронштейнам.

5. РЕМОНТ СОЕДИНИТЕЛЬНЫХ МУФТ

5.1. Вскрытие соединительной
муфты

При
необходимости ремонта (демонтажа) соединительной муфты пояски термоусаживаемой
трубки срезают ножом и удаляют остатки герметика. Полиэтиленовые цилиндры
сдвигают с конусов в сторону кабеля и снимают верхнюю часть металлического
каркаса, предоставляя доступ к оптическим волокнам.

5.2. Восстановление соединительной муфты

При
последующем восстановлении соединительной муфты все операции выполняют в
обратной последовательности. Стыки полиэтиленовых цилиндров между собой и с
конусами герметизируют наплавлением полиэтиленовой ленты под стеклолентой.

6. МАРКИРОВКА КАБЕЛЯ И МУФТ

6.1. Маркировка

После монтажа
на кабель возле смонтированной муфты, а также на кабель в транзитных колодцах
устанавливают свинцовое нумерационное кольцо или пластмассовую бирку. На кольце
или бирке указывают:

между какими
АТС проложен кабель;

марку кабеля;

номер кабеля.

6.2. Метка кабеля и муфты

В смотровых
устройствах на оптическом кабеле и в средней части смонтированной муфты желтой
несмываемой краской делают предупреждающую отметку размеров, примерно, 20´20
мм. По окружности канала кабельной канализации наносят круг желтой краски не
менее 50 мм.

7. СДАЧА РЕГЕНЕРАЦИОННЫХ УЧАСТКОВ В ЭКСПЛУАТАЦИЮ

7.1. Подготовка
смонтированных регенерационных участков волоконно-оптической линии к сдаче в
эксплуатацию

На
смонтированных регенерационных участках необходимо произвести измерения затухания
оптических волокон кабеля. Результаты измерений занести в паспорт (приложение 6).
Затухание оптических волокон всего регенерационного участка должно
соответствовать норме, указанной в проекте.

7.2. Сдача в эксплуатацию

Сдача в
эксплуатацию должна производиться в соответствии с «Руководством по
приемке в эксплуатацию линейных сооружений проводной связи и проводного
вещания» (М., «Радио» и «Связь», 1985), с соблюдением
требований СНИП III-3-81 «Приемка в эксплуатацию законченных
строительством объектов. Основные положения» и ВСН-600-81
«Инструкция по монтажу сооружений и устройств связи, радиовещания и
телевидения».

При сдаче в
эксплуатацию рабочей комиссии, кроме установленной правилами, предъявляется
следующая исполнительная документация:

один
экземпляр рабочих чертежей, скорректированный в процессе строительства;

паспорта на
строительные длины проложенного кабеля;

паспорта на
регенерационные участки в одном экземпляре.

Рабочей
комиссией производятся измерения затухания оптических волокон кабеля по
регенерационным участкам на подтверждение данных, представленных в паспортах на
участки. Непосредственно на трассе проверяют крепление и маркировку кабеля и
муфт в смотровых устройствах.

8. ТЕХНИКА БЕЗОПАСНОСТИ

8.1. При
выполнении работ следует руководствоваться «Правилами техники безопасности
при работах на кабельных линиях связи и проводного вещания» (М.,
«Связь», 1979).

8.2. При
работе с оптическим волокном его отходы при разделке (сколе) необходимо
собирать в отдельный ящик и после окончания монтажа, освобождать ящик в
отдельно отведенном месте или закапывать отходы в грунт.

8.3. Следует
избегать попадания остатков оптического волокна в одежду. Работу с оптическим
волокном следует производить в клеенчатом фартуке.

8.4.
Монтажный стол и пол в монтажно-измерительной автомашине после каждой смены
следует обрабатывать пылесосом и затем протирать мокрой тряпкой. Отжим тряпки
следует производить в плотных резиновых перчатках.

8.5. При
работе с устройством для сварки оптических волокон, необходимо соблюдать
следующие требования:

а) все
подключения и отключения приборов, требующие разрыва электрических цепей или
соединения с высоковольтными цепями устройства, производить при полностью
снятом напряжении;

б) устройство
должно быть заземлено;

в) во время
наладочных работ следует помнить, что трансформатор, высоковольтные провода,
электроды в режиме сварки находятся под высоким напряжением;

г)
запрещается эксплуатация устройства со снятым защитным кожухом блока
электродов;

д) не реже
одного раза в неделю производить проверку исправности изоляции высоковольтных
проводов; запрещается работать на устройстве при поврежденной изоляции
высоковольтных проводов;

е) к работе с
устройством допускаются лица, прошедшие вводный инструктаж, инструктаж по
технике безопасности на рабочем месте с последующей проверкой знаний и имеющие
группу по электробезопасности не ниже III.

Приложение 1

Перечень технологических карт и карт трудового процесса на
прокладку и монтаж оптических кабелей ГТС

Технологическая
карта на прокладку оптического кабеля ГТС в кабельной канализации (1986 г.)

Технологическая
карта на монтаж соединительной муфты СМОК оптического кабеля ГТС (1986 г.)

Технологическая
карта проведения входного контроля оптического кабеля на кабельной площадке
(1987 г.)

Карта
трудового процесса монтажа соединительной муфты на оптическом кабеле связи
ОКЛ-50-2-0,7-1,5-4, прокладываемом в кабельной канализации (1986 г.)

Карта
трудового процесса заготовки канала кабельной канализации полиэтиленовой трубой
для прокладки в нее оптического кабеля связи (1986 г.)

Карта
трудового процесса заготовки полиэтиленовой трубы линейной проволокой (тросом)
для прокладки в ней оптического кабеля (1986 г.)

Карта
трудового процесса на установку наконечника с чулком на конец оптического
кабеля перед прокладкой в кабельной канализации (1987 г.)

Карта
трудового процесса на сварку оптических волокон оптического кабеля связи (1987
г.)

Карта
трудового процесса стыковки маломерных длин полиэтиленовой трубы ПНД 32т для
прокладки в канале кабельной канализации (1987 г.)

Карта
трудового процесса герметизации конца оптического кабеля полиэтиленовыми
колпачками (1987 г.)

Приложение 2.

Форма
1.

Протокол входного контроля

№ № барабан. ОК

Длина ОК, L

№ № ОВ

Данные пасп.

Мощность излучения

Результаты расчета

Дата проверки

Заключение о пригодности ОК

Затухание
ОВ, А, дБ

Рвых ед. мощности

Рвх ед. мощности

Затухание, А, дБ

Коэф. затухан. a,
дБ/км

Затухание
оптических волокон определяется по формуле:

Коэффициент
затухания оптических волокон определяется по формуле:

Проверку
производил ______________________

Укладочная
ведомость строительных длин

Регенерационный
участок________________

Марка оптического кабеля________________

№ № п/п

№ № барабанов
ОК

Номера
колодцев кабельной канализации, между которыми прокладывается строительная
длина ОК

Составил_____________
» » 198 г

Приложение 3

Состав монтажных материалов и деталей для монтажа
соединительной муфты СМОК оптического кабеля ГТС в четырехволоконном исполнении

Наименование

ГОСТ,
ТУ, чертеж

Ед.
из.

К-во

1

2

3

4

1. Гильза для защиты места сварки ОВ (ГЗС)

АХП 4.218.005

шт.

5

2. Корпус полиэтиленовый (цилиндрическая часть)

АХП 7.800.037

«

2

3. Конус полиэтиленовый

АХП 7.899.009

«

2

4. Каркас металлический (из двух частей)

АХП 8.214.029

«

1

5. Гильза алюминиевая (длиной 40 км, наружным
диаметром 6,0 мм, толщиной стенки 0,5 мм)

ГОСТ 18475-82

«

1

6. Гильза полиэтиленовая (длиной 40 мм, диаметром 8
мм)

1

7. Кольцо опорное для полиэтиленовых конусов

АХП 8.245.019

«

2

8. Сэвилен 115-01, 107-01, 118-01 (ширина ленты 30
мм) или клей-расплав ГИПК 14-13

ТУ 6-05-251-99-79

м

2,46

9. Пленка полиэтиленовая (лента 0,1´30, сорт высший)

ГОСТ 10354-82

«

1

10. Термоусаживаемая трубка 80/40(пояски 3´100)

ТУ 6-19-051-492-84

«

0,3

11. То же, (для герметизации муфты после проверки
ее на герметичность)

-«-

«

0,006

12. Нитки капроновые № 35

«

0,6

13. Стеклолента, шириной 30 мм

ГОСТ 5937-81

«

1,3

14. Патрубок из полиэтилена (отрезок полиэтиленовой
оболочки кабеля ТПП 10
´2, длиной 100 мм)

шт.

1

15. Пленка полиэтиленовая вкладыш длиной 800 мм,
шириной 200 мм, толщиной 0,8 — 1,0 мм.

ГОСТ 10354-82

шт.

1

16. Бензин Б-70

гост 1012-72

л

0,39

17. Бензин-растворитель

гост 6-15-90-77

г

33,6

«Нефрас» 50/170

гост

18. Ветошь протирочная

гост 5354-79

кг

0,28

19. Спирт ректификованный

гост 18300-72

г

26,52

20. Тампон бязевый

г

0,6

21. Кольцо нумерационное

чертеж изготовит.

шт.

2

22. Нитрокраска

г

30

При монтаже соединительной муфты на
восьмиволоконном оптическом кабеле позиции: 1, 12, 17, 19, 20 следует
умножить на 2.

Состав
монтажных материалов и деталей для монтажа соединительной муфты СМОК
оптического кабеля ГТС составлен в соответствии с «Временными
производственными нормами расхода материалов на монтаж соединительных муфт СМОК
городских оптических кабелей связи», утвержденными Заместителем Министра
связи СССР т. Зубаревым Ю.Б. 5.06.87.

Приложение 4.

Перечень инструментов, устройств и приборов, применяющихся
на прокладке и монтаже оптических кабелей ГТС

Наименование

ГОСТ, ТУ, чертеж

Е. из

К-во

1

2

3

4

1. Установка
передвижная АКМ-4 или:

ТУ 45-78

компл.

1

насос водоотливный
(ППН-2м, НДМ-4,»Гном», «Лягушка»),

АХП
2.968.000ТУ

шт.

1

вентилятор
ВПКК-5

«

1

2.
Трансформатор понижающий 220/12

«

1

3.
Газоанализатор ПГФ-2м или СТС-1 непрерывного действия

ГОСТ 7018-75

«

1

4.
Ограждения-барьеры

чертеж
изготовит.

«

2

5.
Предупредительные знаки

ГОСТ
12.4.026-56

«

2

6.
Ограждения универсальные

чертеж
изготовит.

«

4

7. Ломик с
наконечником из цветного металла

-«-

«

2

8. Фонарь
электрический типа ЭФ-3

ТУ
45-78.6с2.424.ООТУ

«

1

9. Лестница
монтерская

Каталог ОТСС
с. 55 (М., ОТСС, 1971)

«

5

10. Ведро
оцинкованное

«

2

11. Лампа
12/100 Вт со шнуром и защитной сеткой

ГОСТ
2239-79

«

2

12. Рукавицы
х/б

ГОСТ
12.4.010-75

пара
на рабочего

1

13. Палатка
брезентовая колодезная

ТУ 45-115-74

шт.

1

14. Перчатки
резиновые диэлектрические

ТУ
38-105-977-76

пара

1

15.
Спасательный пояс

ГОСТ
12.4.011-75

по
числу рабочих

15. Канат
пеньковый (веревка)
Æ 4,6 мм

ГОСТ 483-75

м

6

17. Комплект
приспособлений и устройств для прокладки оптических кабелей ГТС в кабельной
канализации

чертежи ССКТБ

компл.

1

18. Полотно
ножовочное по металлу

ГОСТ 6645-68

шт.

5

19. Рамка ножовочная
ручная

ГОСТ
17270-71

«

2

20. Рулетка
измерительная на 50 м.

ГОСТ
11900-66

«

2

21. Нож
монтерский

чертеж
изготовит.

«

2

22. Кордная
металлическая щетка

ГОСТ 1465-80

«

1

23.
Напильник трехгранный

ГОСТ 1465-80

«

1

24. Газовая
горелка с заправленным баллоном или

ТУ 45-76 сб.
2.977 СОСТУ

«

1

паяльная
лампа, заправленная бензином (0,5 л)

ТУ 45-343-72

«

1

25.
Плоскогубцы

ГОСТ 7236-73

«

2

26. Кусачки
боковые

ТУ 45-346-72

«

2

27. Метр
складной деревянный

РСТ 149-76
Латв. ССР

«

1

28. Паяльник
молотковый

«

1

29. Кисточки
для ПБК 26 м

чертеж
изготовит.

«

1

30. Кисть
для метки кабеля и муфты

«

2

31.
Устройство для сварки ОВ КСС-1П

АРБ М2.322.007

«

1

Измерительные
приборы:

1.
Нормализующее устройство

чертеж
изготовит.

шт.

1

2. Катушка с
оптическим волокном длиной не менее 1000 м.

-«-

«

1

3. Тестер
оптический ОМКЗ-76

ЕЭ 2.746.616
ТУ

«

2

4. Измеритель
затухания ИФ 193-1 (ИФ 193-2)

ИФ
193-00.ОООТУ

«

1

5. Ваттметр
поглощаемой мощности ОМЗ-65 (66)

Е.71.301.061
ТУ

«

1

6.
Рефлектометр обратного рассеивания «Фельтон и Гильом» (ФРГ), или
«Анрицу» (Япония)

*

«

I

Источники
электропитания:

Аккумулятор
не менее 5 А, напряжением 12 В

шт.

1

Блок питания
220/12 В

чертежи
ССКТБ АХП 1. 400.003 ПС

шт.

1

Устройства для служебной
оперативной связи:

Радиостанция типа «Лен» или
«Кактус»

компл.

3

Телефон типа «МБ» с индукторным вызовом с
источником эл. питания микрофона

шт.

3

Приложение 5

ПАСПОРТ
на смонтированную соединительную муфту «СМОК» ОК ГТС

Муфта
№ ___________

Оптическая
линия связи ___________________________________________________

Регенерационный
участок __________________________________________________

Марка
оптического кабеля _________________________________________________

_________________________________________________________________________

(наименование
монтажной организации)

Монтаж
производился _____________________________________________________

(Ф.И.О.
Монтажников)

_________________________________________________________________________

_________________________________________________________________________

»
» ____________ 198 г

Сведения о
ремонте _______________________________________________________

_________________________________________________________________________

Обратная сторона
паспорта

(Указываются
номера оптических волокон)

Измерительные приборы …………..……………………………………….

№№ ОВ

Направление
измерения

А-Б

Б-А

Затухание

1

2

3

4

5

6

7

8

Приложение 6

Паспорт регенерационного участка

Регенерационный
участок ________________

№ № ОВ

Мощность излучения

Результаты расчета

Дата измерения

Рвых един. мощности

Рвх един. мощности

Затухание А, дБ

Коэффициент затухания a,
дБ/км

Направление
А — Б

Направление
Б — А

Измерения
производил ____________________________

Приложение 7.

СОДЕРЖАНИЕ

Оптическое волокно (ВОЛС), как среда для передачи больших объемов информации находит все более широкое применение в мире и в нашей стране в частности. Оптический кабель имеет массу преимуществ перед медным. Однако его применение несет и ряд непростых проблем. Главная из которых — прокладка ВОЛС.

Прокладка ВОЛС: в чем сложность?

Сложность в том, что к прокладке ВОЛС нужно подходить с особой аккуратностью. Нельзя забывать, что какой бы бронированный не был оптический кабель, всё равно внутри него находится стекло, со всеми его недостатками. Его нельзя сильно растягивать, изгибать и раздавливать. Все эти параметры указываются в паспорте на кабель, в соответствующих нормативных документах и правилах прокладки ВОЛС (список таких документов вы найдете в конце статьи).

Успешная реализация любого проекта, связанного с прокладкой оптоволоконного кабеля, зависит от выполнения правил прокладки ВОЛС.

Этапы прокладки ВОЛС

В целом процесс прокладки ВОЛС состоит из подготовительного и основного этапов.

В рамках первого из них производится выбор способа монтажа кабеля: непосредственно в грунт, канализацию, подвеска на нижней траверсе ЛЭП или прокладка в грозотроссе, монтаж под водой или укладка в асфальтное покрытие и др. Опираясь на принятое решение, выбирается необходимый тип кабеля.

Перед началом прокладки ВОЛС, оптический кабель должен обязательно пройти первичный контроль. Процедура первичного контроля подробно будет описана в других наших статьях.

Далее необходимо подготовить трассу для монтажа кабеля. Эта процедура включает установку необходимых устройств, защищающих кабель при протяжке от чрезмерных изгибов и повреждения изоляции. Это могут быть различные ролики, кабельные изгибы, направляющие и др.

В некоторых случаях, например при прокладке кабеля в кабельной канализации, необходимо заготовить канал. В зависимо от того, как будет производится протяжка, используется либо УЗК, либо УЗК и кабельная лебедка.

Только теперь можно переходить к основной фазе прокладки ВОЛС. Прокладывать кабель необходимо плавно, не превышая указанное в паспорте на кабель тяговое, раздавливающее и другие ограничения. В случае подвески – не допускайте падения кабеля с опоры, а, если такое случилось, лучше сразу отрежьте упавший кусок, чтобы не пришлось из-за одного сломанного волокна потом переделывать всю муфту.

Выбор в пользу прокладки ВОЛС по опорам целесообразен, когда прокладывать кабель в канализации или траншейным методом невозможно или затруднительно. При строительстве магистральных и внутризоновых оптоволоконных сетей распространено применение соответствующего кабеля в грозозащитном тросе. В свою очередь, на местных и внутризоновых и линиях применяется также подвеска самонесущего кабеля с креплением на нижнем траверсе. Встречаются также случаи навивки тонкого оптоволоконного кабеля на нулевой или фазный провод ЛЭП.

Прокладка ВОЛС

Прокладка ВОЛС в грунте дороже воздушной прокладки кабеля, но такая линия связи значительно надежнее. Чаще всего применяется два основных способа прокладки оптоволоконного кабеля в грунт. Первый: укладка кабеля непосредственно в грунт траншейным способом; чаще это кабель с защитной броней из стальной проволоки или с ленточным покрытием. Второй: бестраншейный метод с применением кабелеукладчиков. Существует также масса других, более дорогих и поэтому менее популярных способов. Например, монтаж в мини траншею в асфальтном покрытии или монтаж при помощи горизонтально направленного бурения.

В больших населенных пунктах чаще всего выполняется прокладка ВОЛС в каналах кабельной канализации. Это более трудоемкий способ организации ВОЛС, но и надежность такой линии связи значительно выше. Прокладка ВОЛС в этом случае происходит в асбесто-цементной, бетонной или пластиковой кабельной канализации. Наиболее распространены у нас трубы для прокладки ВОЛС из бетона или асбестоцемента. Они получили такое распространение благодаря своей неподверженности коррозии и гниению, а также низкой теплопроводности и большой прочности. Однако в последнее время все чаще для прокладки ВОЛС используются более легкие и практичные пластиковые аналоги.

При строительстве междугородних ВОЛС получила распространение прокладка оптического кабеля в специальных защитных полиэтиленовых трубах (ЗПТ) с последующим вдуванием в них оптического кабеля. Внутри такие трубы имеют слой твердой смазки с низким коэффициентом трения. За счет этого в смонтированных участках труб возможна прокладка оптоволоконных кабелей большой длины — от двух до шести километров.

При прокладке ВОЛС внутри зданий возможно использование оптоволоконного кабеля с более гибкой и легкой конструкцией, сравнительно небольшая длина трасс также существенно упрощает монтаж. Способы прокладки кабеля внутри здания, как правило, зависят от назначения помещения. Это может быть скрытая прокладка ВОЛС за фальш-полами и фальш-потолками или открытая прокладка кабеля, обычно применяемая на чердаках, в технических помещениях и в подвалах.

Прокладка ВОЛС через водные преграды – наиболее затратный способ организации оптоволоконной линии связи. Прокладка кабеля может вестись по мосту через реку с использованием воздушных опор или по дну водоема. В таких случаях на берегу оптоволоконный кабель соединяется с линией, проложенной в грунт. Преодоление водных препятствий возможно и способом горизонтально-направленного бурения или подвеса, если есть такая возможность. Развитие технологий укладки оптоволоконных кабелей позволяет организовать ВОЛС и на дне моря/океана. С помощью специально оборудованных судов оптоволоконный кабель укладывается от одного берега до другого за один проход.

Перечень некоторых документов, регламентирующих правила прокладки ВОЛС

  • Р 50-601-40-93. Рекомендации. Входной контроль. Основные положения.- М. 1993Б.

  • РД.45.200-2001. Применение волоконно-оптических средств на сетях доступа. Рук.тех.материал.

  • Руководство по строительству линейных сооружений магистральных и внутризоновых оптических линий связи, 1993г.

  • Руководство по строительству международных и национальных волоконно-оптических линий связи. М., 1995г.

  • Правила проектирования, строительства и эксплуатации волоконно-оптических линий связи на воздушных линиях электропередачи напряжением 0,4-35 кВ

  • ТУ. Лаборатория для испытания и монтажа оптического кабеля ЛИОК на автомобиле УАЗ. М., 1997г.

  • Монтаж и наладка (настройка) оборудования и систем связи и норм расходов материалов при строительстве ВОЛС (155 Мбит/с, 622 Мбит/с; 2,4 Гбит/с) и цифровых РРЛ (155 Мбит/с). Укрупненные нормы. — М., 1996г.

  • Монтаж и наладка (настройка) оборудования и систем связи и норм расхода материалов при строительстве ВОЛС и цифровых РРЛ. Комплексные нормы.- М., 1997г.

Читайте далее:

  • Правила прокладки ВОЛС
  • Прокладка ВОЛС в грунте (в земле)
  • Прокладка ВОЛС внутри зданий
  • Прокладка ВОЛС по опорам
  • Прокладка ВОЛС через водные препятствия (по дну)
  • Технология прокладки ВОЛС
  • Трубы ЗПТ для прокладки ВОЛС

Приборы и инструменты для работы с ВОЛС

Материал подготовлен

техническими специалистами компании “СвязКомплект”.

Понравилась статья? Поделить с друзьями:
  • Bose soundlink mini инструкция на русском
  • Уход олаплекс как делать инструкция по применению
  • Трактор нью холланд т7060 руководство по эксплуатации
  • Таблетки четыре с хвостиком для собак инструкция
  • Наушники hoco беспроводные руководство