Руководство по монтажу волс

6.1. Особенности и организация строительства ВОЛС

6.2. Прокладка и подвеска оптических кабелей

6.2.1. Прокладка ОК в телефонной канализации

6.2.2. Прокладка ОК в трубах, лотковой канализации, коллекторах и туннелях

6.2.3. Прокладка ОК в грунт

6.2.4. Прокладка ОК через водные преграды

6.2.5. Подвеска кабелей на опорах воздушных линий и стойках

6.3. Оптические соединители, конструкции муфт ОК и особенности их монтажа

6.3.1. Потери при соединении волокон

6.3.2. Подготовка ОВ к сращиванию

6.3.3. Способы сращивания ОВ

6.3.4. Оконцовка волокна

6.3.5. Конструкции муфт ОК и особенности их монтажа

6.1. Особенности и организация строительства ВОЛС

Общая информация, относящаяся к прокладке кабелей электросвязи, приведена в руководстве МСЭ-Т «Технология линейно-кабельных сооружений для сетей общего пользования». В нем содержится только информация особо важного значения или относящаяся исключительно к волоконно-оптическим кабелям линий связи.

Волоконно-оптические кабели имеют более низкие предельные нагрузки, чем металлические кабели, и при определенных обстоятельствах могут потребоваться специальные меры предосторожности и мероприятия, позволяющие обеспечить их успешную прокладку.

Это относится, в основном, к изгибам и натяжению ОК. При строительстве важно обращать особое внимание на рекомендации изготовителя, приведенные в ТУ, и установленные физические ограничения, а также не превышать заданные нормы нагрузки для любого конкретного кабеля. Повреждение, вызванное чрезмерной нагрузкой в процессе прокладки, может проявиться не сразу, однако оно может привести к отказу в процессе эксплуатации кабеля.

Минимальный радиус изгиба и максимальное натяжение являются критическими параметрами. Допустимые значения минимального радиуса изгиба и максимального натяжения различны для прокладки и последующего периода эксплуатации. Увеличивающееся натяжение сначала вызывает обратимое увеличение затухания, затем — необратимое и, наконец, может привести к повреждению волокна. При прокладке допускается большее значение натяжения, чем при эксплуатации. Минимальный радиус изгиба при прокладке, напротив, больше аналогичной величины, допустимой для последующей стадии, так как при увеличении нагрузки растет допустимое значение этого параметра. Поскольку во время прокладки кабель находится под нагрузкой, следовательно, и радиус кривизны должен быть больше. Допустимый после завершения прокладки радиус изгиба зависит от растягивающей нагрузки.

Значения минимального радиуса изгиба и максимальной нагрузки для кабелей внутренней прокладки (внутриобъектовых ОК) во время прокладки и во время эксплуатации ОК [1] приведены в табл. 6.1.

Таблица 6.1. Минимальный радиус изгиба и максимальное растягивающее усилие внутриобъектового ОК

Параметр

Условия, для которых он нормируется

Размерность

Значение

параметра

Растягивающее усилие

При прокладке

После прокладки

Н

400

50

Минимальный радиус изгиба

При прокладке без натяжения

После прокладки без натяжения

После прокладки при полном натяжении

мм

150

30

130

Строительство волоконно-оптических линий связи так же, как и электрических кабельных линий связи, осуществляется строительно-монтажными управлениями (СМУ), а также передвижными механизированными колоннами (ПМК), в системе которых организуются линейные или прорабские участки. Силами этих участков выполняется разбивка трассы линии и определение мест установки НРП на местности в соответствии с проектом на строительство, доставка кабеля, оборудования и других материалов на кабельную трассу, испытание, прокладка и монтаж кабеля и оконечных устройств, проведение приемосдаточных испытаний.

Организация, технология проведения линейных и монтажных работ имеет ряд отличий по сравнению с работами на традиционных электрических кабелях связи. Эти отличия в значительной степени обусловлены отсутствием параметров, характеризующих состояние элементов кабельного сердечника и его защитных покровов (сопротивление и электрическая прочность изоляции, герметичность оболочки), а также своеобразием конструкции ОК: критичностью к растягивающим усилиям; малыми поперечными размерами и массой; большими строительными длинами; сравнительно большими величинами затухания сростков ОВ; трудностями в организации служебной связи в процессе строительства ВОЛС с ОК без металлических элементов; недостаточным развитием методов и отсутствием доступных по цене серийно выпускаемых приборов для измерений и отыскания повреждений на ОК.

Подготовительные работы по строительству ВОЛС. Строительство и реконструкция ВОЛС осуществляются по утвержденным техническим проектам. В процессе подготовки к строительству, как правило, выполняются следующие основные виды работ: изучается проектно-сметная документация; составляется проект производства работ (ППР); решаются организационные вопросы взаимодействия строительной организации с представителями заказчика; проводится входной контроль ОК; решаются задачи материально-технического обеспечения; проводится подготовка персонала по выполнению основных строительно-монтажных операций.

Одним из основных документов строительства конкретной ВОЛС является ППР, который составляется производственно-техническим отделом строительной организации с участием прораба (мастера), руководящего строительством объекта. Проект производства работ составляется на основе подробного изучения проектно-сметной документации и обследования на местности трассы строящейся ВОЛС. В процессе ознакомления с трассой особое внимание должно быть обращено на такие сложные участки как: речные переходы; пересечения автомобильных, железнодорожных и трамвайных путей, трубопроводов; прокладку кабеля по мостам, тоннелям, в заболоченных местах, на скальных и гористых участках, в населенных пунктах. На основании этих данных выбирают наиболее оптимальные планы прокладки ОК на различных участках трассы, детализируют технологию строительства ВОЛС, составляют календарный план производства работ по участкам с учетом трудоемкости операций, рассчитывают потребность машин и механизмов, определяют пункты возможного размещения кабельных площадок и помещений для проведения входного контроля ОК. Кроме того, решаются вопросы организации служебной связи.

Проведение входного контроля и группирование строительных длин ОК. При строительстве ВОЛС необходимо проводить 100%-й входной контроль ОК, поступающего от заказчика или завода-изготовителя. Вывоз барабанов с кабелем на трассу и прокладка кабеля без проведения входного контроля не разрешается.

В процессе входного контроля производятся внешний осмотр и измерение затухания. Кабель, не соответствующий нормам и требованиям технических условий, прокладке и монтажу не подлежит. Если при внешнем осмотре установлена неисправность барабана, то обнаруженные незначительные повреждения устраняются собственными силами. Если барабан на месте отремонтировать невозможно, то с уведомления заказчика кабель с него перематывается на исправный барабан плотными и ровными витками. Не допускается перемотка с барабана на барабан, установленный на щеку. При перемотке необходимо визуально контролировать целостность наружной оболочки кабеля.

Входной контроль по затуханию проводится в сухих отапливаемых помещениях, имеющих освещение и розетки для подключения электрических приборов. Перед измерением затухания необходимо предварительно просветить ОВ любым источником света (например, гелиевым лазером). Если какие-либо оптические волокна не просвечиваются, то измерение затухания следует начинать с этих волокон. Результаты измерения затухания ОВ сравнивают с паспортными данными. Наиболее удобно при строительстве ВОЛС измерять затухание методом обратного рассеяния с помощью рефлектометра. В случае заметного расхождения с паспортными данными измерения можно перепроверить методом обрыва.

Следует отметить, что отличие результатов измерения затухания от паспортных данных может возникать за счет использования разных приборов и методов измерения.

Группирование строительных длин кабеля проводится после получения точных сведений о нахождении на трассе прокладки кабеля различных коммуникаций, пересечений железных и шоссейных дорог, речных переходов, газопроводов, о фактических длинах пролетов построенной канализации и типах колодцев. Для этого производится обследование трассы, и вносятся корректировки в проектную документацию.

При подборе строительных длин следует исходить из того, что на одном регенерационном участке (соединительной линии) должен быть кабель, изготовленный одним заводом (кроме случаев стыковки с ОК для подводных переходов), только одной марки, с одним типом ОВ и его защитных покрытий. При группировании строительных длин кабеля, прокладываемого в грунте, расчет производят таким образом, чтобы различные пересечения трассы приходились как можно ближе к концу строительной длины, а место расположения соединительной муфты было доступно для подъезда монтажно-измерительной автомашины.

При группировании строительных длин кабеля, прокладываемого в кабельной канализации, исходят из того, что после выкладки отходы кабеля должны быть минимальными. При этом учитывают длины пролетов, форму транзитных колодцев, запас ОК на монтаж. Длина запаса кабеля для монтажа муфты должна составлять 10 м с каждой стороны при прокладке в грунте и 8 м при прокладке в канализации [2].

По результатам группирования составляется укладочная ведомость, которая вместе с паспортами прикладывается к сдаточной документации ВОЛС.

Группирование кабеля по дисперсии требует принятия специальных мер. Как упоминалось ранее, современные транспортные системы с большой пропускной способностью используют усилители на основе волокна, легированного эрбием, и метод мультиплексирования путем разделения времени (TDM) и/или метод мультиплексирования путем волнового уплотнения (DWDM) для максимизации пропускной способности одномодового волокна.

Оптический сигнал, распространяясь по волокну, подвергается различным искажениям, одним из которых является расширение сигнала за счет хроматической дисперсии. Расширение зависит от дисперсии волокна, ширины спектра лазерного источника и выбранной для данного канала скорости передачи. Для современного состояния технологии построения передатчиков удельный вес такого искажения возрастает как квадрат скорости передачи. Таким образом, системы со скоростью передачи 10 Гбит/с требуют максимальной величины дисперсии в 1/16 от допустимой дисперсии в системах, работающих при скоростях передачи 2,5 Гбит/с.

Другой вид искажений может иметь место в системах с мультиплексированием за счет волнового уплотнения, когда по волокну одновременно распространяются несколько несущих с различными длинами волны. Здесь возможно смешивание несущих и возникновение нелинейного эффекта, известного под названием «смешивания четырех волн». Подобный эффект вызывает взаимные помехи между каналами и может стать главной причиной ограничения показателей качества для систем с оптическими усилителями.

Волокно TrueWave, разработанное для преодоления эффектов расширения импульсов и смешивания четырех волн, возникающих в системах с оптическими усилителями и многоканальных системах при больших скоростях передачи, запатентовано фирмой Lucent Technologies. Хроматическая дисперсия в данном волокне имеет специально подобранное оптимальное значение в пределах полосы пропускания оптических усилителей и достаточно мала, чтобы поддерживать высокие скорости передачи на большие расстояния без средств компенсации дисперсии. В то же время, дисперсия волокна достаточно велика для подавления эффекта смешивания четырех волн. Последнее достигается благодаря снижению до минимума возможности совпадения фаз несущих разных каналов в системе с мультиплексированием за счет волнового уплотнения.

Волокно TrueWave имеет коэффициент хроматической дисперсии от 1,3 до 5,8 пс/(нм км) в полном диапазоне длин волн от 1530 до 1565 нм, что определяется стандартными параметрами волокна с ненулевой дисперсией. Такое волокно допускает скорость передачи 10 Гбит/с и способно передавать сигналы на расстояния до 250 км между точками регенерации. Еще больших расстояний можно достичь, либо за счет использования передатчиков с отрицательным чирпом, либо за счет использования компенсации с целью уменьшения положительной дисперсии в волокне TrueWave.

Протяженность передачи сигналов для волокна типа TrueWave может быть увеличена за предел в 250 км путем включения в линию участков компенсирующего дисперсию волокна. Большая отрицательная дисперсия этих участков приводит к тому, что импульсы, расширившиеся благодаря положительной дисперсии волокна типа TrueWave, снова сжимаются. Компенсирующее дисперсию волокно обычно оформляется в виде компенсирующих модулей, включаемых в одной или нескольких точках расположения повторителей. Эти модули увеличивают допустимую длину участков, нормально ограниченную дисперсией, но в то же время занимают место и вносят в линию дополнительные оптические потери. Эти потери, в свою очередь, могут потребовать дополнительных усилителей, которые нельзя исключить за счет использования линий с управляемой дисперсией. Такие линии строятся из волокна, знак дисперсии в котором периодически изменяется.

Для управления дисперсией линию передачи составляют из волокон, имеющих положительную и отрицательную дисперсии. Этот метод применяется уже в течение многих лет при создании подводных оптико-волоконных линий, теперь управление дисперсией доступно и для наземных линий [3].

В наиболее элементарной форме линия с управляемой дисперсией строится как линия, состоящая из чередующихся участков кабеля с волокнами с отрицательной дисперсией, (TrueWave–), и участков кабеля с волокнами с положительной дисперсией (TrueWave+), либо обычного кабеля с волокном с несмещенной дисперсией. Каждый из таких участков подавляет местное образование таких нелинейных эффектов, как смешение четырех волн, в то время, как малая средняя величина дисперсии вдоль участка между регенераторами снижает эффект расширения импульса. Если правильно выбрать длину каждого из отмеченных выше участков, то линия практически не будет требовать компенсации дисперсии. Подобную линию можно назвать «самокомпенсирующейся».

Волокно TrueWave+ [коэффициент хроматической дисперсии от 1,3 до 5,8 пс/(нм км)] обеспечивает передачу с волновым уплотнением в пределах всего диапазона длин волн от 1530 до 1564 нм. Волокно TrueWave — [коэффициент хроматической дисперсии от — 5,5 до— 1,0 пс/(нм км)] представляет собой добавку с отрицательной дисперсией. Совместное использование этих волокон осуществляет взаимную компенсацию, минимизируя эффект расширения импульсов и исключая необходимость в специальном компенсирующем оборудовании. Наименьшая абсолютная величина отрицательной дисперсии в волокне (TrueWave — ) обеспечивает оптимальное согласование с учетом сжимающего импульсы влияния эффекта фазовой самомодуляции, возникающего в волокне (TrueWave+).

Таким образом, управление дисперсией при использовании волокон TrueWave практически устраняет необходимость в дополнительных затратах и включении дополнительных деталей; открывает всю полосу пропускания от 1530 до 1565 нм.

В сбалансированном кабеле TrueWave волокна с положительной и отрицательной дисперсиями в дальнейшем можно перекомбинировать для достижения скоростей передачи 20 Гбит/с и 40 Гбит/с по одному каналу, а протяженность этих линий увеличивается до 1000 км при скорости передачи в 10 Гбит/с по оному каналу. Пример группирования длин ОК с волокнами TrueWave по длине трассы приведен на рис. 6.1.

Для обеспечения идеальной компенсации дисперсии волокна TrueWave+ и TrueWave– должны иметь слегка отличные дисперсии. Например, была осуществлена передача на расстояние 640 км по 32 каналам , несущая в каждом из которых модулировалась со скоростью 10Гбит/с [3]. Это было достигнуто попеременным включением участков волокон TrueWave с положительной и отрицательной дисперсиями без использования дополнительных средств компенсации дисперсии (рис. 6.2).

Рис. 6.2. Линия с управляемой дисперсией, использующая волокна (TrueWave+) и (TrueWave — )

Рис. 6.2. Линия с управляемой дисперсией, использующая волокна (TrueWave+) и (TrueWave — )

Фирма Lucent Technologies предлагает методику создания сетей, основанную на двух следующих способах создания линий с управлением дисперсией [3]:

  • два типа кабелей. Один кабель содержит только волокна TrueWave+, другой—только волокна TrueWave-. Эти кабели прокладываются через определенные интервалы;
  • кабель одного типа, а именно сбалансированный TrueWave кабель, который содержит одинаковое количество волокон TrueWave+ и TrueWave-. При монтаже муфт волокна перекрещиваются через определенные интервалы по длине трассы.

Сбалансированный кабель TrueWave дает возможность устранить некоторые из препятствий, возникающих при внедрении управления дисперсией. При этом можно заказывать, устанавливать и снабжать соответствующей документацией только один тип кабеля. Более того, в любом месте всегда будет доступно волокно с нужным знаком дисперсии.

6.2. Прокладка и подвеска оптических кабелей

6.2.1. Прокладка ОК в телефонной канализации

Общие требования к прокладке ОК. Технология прокладки ОК, в основном, та же, что и для электрических кабелей связи. Специфика прокладки ОК определяется более низким уровнем допускаемой механической нагрузки; поскольку от нее зависит затухание ОВ. Кроме того, нагрузка, превышающая допустимый уровень, может сразу привести либо к разрыву волокна, либо к дефектам ОВ (микротрещины и т. п.), которые в процессе эксплуатации кабеля за счет действия механизма усталостного разрушения также приведут к повреждению ОВ. Особенно чувствительны ОВ к механическим нагрузкам при низких температурах.

Для сокращения числа соединений и соответственно потерь на сростках используются большие строительные длины ОК, что создает при их прокладке дополнительные нагрузки.

Чтобы уровень нагрузки не превышал допустимый, необходимо принимать дополнительные меры и использовать специальное оборудование.

В условиях эксплуатации прокладка и монтаж кабелей производится при замене поврежденных участков, изменении емкости или трассы кабеля, а также при реконструкции сети.

В каналы кабельной канализации кабели затягивают через смотровые устройства. Каналы предварительно проверяют и при необходимости прочищают. ОК должен прокладываться при температуре воздуха не ниже минус 10оС, допускается прокладка при температуре до минус 20оС после прогрева их на барабанах. В частности, нормативно-технической документацией предусматриваются непрерывный контроль продольных нагрузок на ОК, а также меры, ограничивающие механические нагрузки на ОК в процессе его прокладки и обеспечивающие защиту в процессе эксплуатации.

Механические нагрузки при затягивании ОК в каналы кабельной канализации и меры по их ограничению. Прокладка ОК в кабельной канализации может выполняться вручную или механизированным способом с использованием комплекта приспособлений для прокладки кабеля. При разработке технологии прокладки ОК необходимо учитывать метраж строительных длин ОК, уровень допустимых механических нагрузок на кабель и соответственно их ограничение при прокладке кабеля.

Растягивающее усилие (T) зависит от массы единицы длины кабеля (Ро), коэффициента трения (КТ), длины кабеля (l) и характера трассы кабельной канализации. Эту величину можно определить по следующим формулам:

для прямолинейного участка

, (6.1)

для участков с углом наклона α

, (6.2)

где g — ускорение свободного падения, равное 9,81 м/с2.

Коэффициент трения между оболочкой ОК и каналом кабельной канализации зависит от диаметра кабеля, скорости тяжения и параметров канала кабельной канализации. Для полиэтиленовых труб он равен 0,29, для асбоцементных — 0,32, для бетонных — 0,38 [2].

Затягивание кабеля в канал кабельной канализации неизбежно связано с повышением изгиба, на которых имеет место поперечное сжатие ОК. При малых радиусах изгиба возникают и развиваются дефекты ОВ, вызывающие увеличение потерь в волокне и разрушение его как при прокладке в кабельной канализации, так и при эксплуатации. При изгибах трассы кабельной канализации растягивающее усилие, прикладываемое к кабелю, возрастает.

Увеличение тягового усилия на изгибе трассы на угол и, рассчитывается по формуле:

. (6.3)

При этом боковое давление на кабель

, (6.4)

где Rизг — радиус изгиба кабеля.

Расчетные значения натяжения ОК типа ОКЛБг-2-М12 производства ОАО «Одескабель» при прокладке в разных видах труб кабельной канализации на секции с искривлением трассы приведены в табл. 6.2. Из таблицы видно, что при поворотах трассы на угол α = 90о тяговое усилие, прикладываемое к кабелю длиной в 2 км в полиэтиленовых и асбестоцементных трубах, увеличивается по сравнению с тяговым усилием на прямолинейном участке (α = 0о) примерно на 1000 Н, а в бетонных трубах — 2000 Н.

Таблица 6.2. Натяжение кабеля ОКЛБг-2-М12 массой 323 кг на секции с искривлением трассы

Угол α

Полиэтилен, Кт=0,29

Асбестоцемент, Кт = 0,32

Бетон, Кт = 0,38

l=1 км

l =2 км

l =км

l =2 км

l =1 км

l =2 км

0

917,966

1835,932

1012,928

2025,856

1202,852

2405,704

30

1068,495

2136,985

1197,692

2395,385

1467,651

2935,301

45

1152,773

2305,546

1302,353

2604,706

1621,168

3242,335

60

1243,702

2467,404

1416,159

2832,318

1790,743

3581,485

90

1447,642

2895,284

1674,475

3348,951

2184,961

4369,922

Если не применять специальных мер, то при затягивании ОК возникает осевое закручивание. Кроме того, при эксплуатации кабель, проложенный в канализации, подвергается механическим воздействиям. Таким воздействиям например, подвергаются уже проложенные в каналах кабели при заготовке канала для прокладки другого кабеля (особенно при использовании металлических палок в заиленных каналах и т.д.), докладке тяжелых массивных кабелей, вытяжке уже проложенных кабелей из канала.

Для защиты ОК от механических перегрузок при прокладке и эксплуатации применяют трубы кабельной канализации с уменьшенным коэффициентом трения и используют при прокладке тяговую систему с распределением тягового усилия [2]. Особое внимание при прокладке ОК следует уделить мерам по снижению коэффициента трения. В основном они сводятся к использованию механизма вращения барабана и тягового каната (троса) оптимальных конструкций, а также вспомогательных (защитных) трубопроводов (субканалов).

В качестве защитных трубопроводов применяются полимерные трубы, проложенные в канале кабельной канализации. Они фактически разделяют канал, позволяют оставлять место для последующей прокладки новых кабелей и обеспечивают защиту проложенных в них ОК в процессе эксплуатации при производстве работ в данном канале кабельной канализации. В одном канале кабельной канализации (диаметром 100 мм) располагают не более трех-четырех вспомогательных трубопроводов из полиэтиленовых труб диаметром 32 мм.

Применение вспомогательных трубопроводов существенно снижает коэффициент трения кабеля (троса) при затягивании кабеля и создает условия для прокладки ОК большой длины. Наиболее распространены вспомогательные трубопроводы из гладких пластмассовых труб. Более эффективны с точки зрения уменьшения трения гофрированные вспомогательные трубопроводы. Применяют также вспомогательные трубопроводы ребристой конструкции, имеющие более высокий предел прочности на растяжение по сравнению с гофрированными и меньший коэффициент трения по сравнению с гладкими трубопроводами. Кроме того, наружные ребра трубопровода обеспечивают линейность прокладки в главном канале.

Для уменьшения трения при затягивании кабеля во вспомогательный трубопровод используются смазочные материалы на основе минеральных масел, смазка должна быть безопасна и безвредна для кабеля, окружающей среды и обслуживающего персонала.

В качестве смазочного материала, вводимого во вспомогательный трубопровод, чешская фирма Sitel предложила использовать мультивискозную смазку Lubaduk, которая является высококачественным лубрикантом для кабелей. В состав лубриканта входит смесь из воды, силиконового масла, пластиковых микросфер и материала, повышающего чувствительность скольжения [4]. Смазка Lubaduk вводится в субканал после сращивания строительных длин трубок и перед прокладкой ОК (рис. 6.3).

Чешская фирма Dura-line СТ на внутреннюю поверхность субканалов наносит твердую сухую смазку типа Silikor. Равномерное распределение этой смазки по поверхности трубы уменьшает коэффициент трения между субканалом и оболочкой кабеля до 0,1. Silikor обладает стабильными параметрами в течение 50 лет [5]. Из-за отсутствия прилипания к субканаиу ОК его можно, при необходимости, заменять в любое время.

Для уменьшения значения коэффициента трения оболочки ОК о внутреннею поверхность трубы кабель прокладывают с помощью вдувания микрошариков [2]. При подготовке к вдуванию ОК в каналы кабельной канализации или в субканалы кабель присоединяется к поршню с помощью кабельного захвата. На конец трубопровода крепится ниппель для сжатого воздуха, снабженный уплотнительным кольцом, и устанавливается приводной механизм двигателя. При подаче сжатого воздуха поршень, находящийся в трубе, движется вперед, затягивая за собой кабель. Скорость вдувания потока воздуха регулируется. Система вдувания обеспечивает прокладку кабеля длиной до 2000 м и более.

Рис. 6.3. Оптический кабель во вспомогательном трубопроводе со смазкой Lubaduk

Рис. 6.3. Оптический кабель во вспомогательном трубопроводе со смазкой Lubaduk

Чем длиннее кабель, тем медленнее он протягивается в трубопроводе. Скорость протягивания определяется до начала прокладки с учетом характера трассы. Она плавно увеличивается после начала протягивания и затем поддерживается постоянной. Рывки недопустимы. При использовании материалов, уменьшающих трение, скорость протягивания может достигать на прямолинейных участках 10…30 м/мин, а в изогнутых трубах — 3…10 м/мин.

При прокладке ОК с помощью нейлоновых микрошариков используется специальный пистолет, с помощью которого на кабель в смотровых устройствах кабельной канализации наносятся шарики размером от 200 до 500 мкм. Шарики могут выстреливаться и в трубу. Микрошарики резко снижают коэффициент трения, так как кабель в данном случае не скользит, а катится. Для труб из полиэтилена коэффициент уменьшается с 0,25…0,5 до 0,045…0,06.

Наиболее эффективно большие длины ОК в канализацию затягиваются с помощью промежуточных тяговых устройств. Лебедка, используемая для промежуточного тяжения кабеля, должна иметь стабильное тяговое усилие меньше допустимого натяжения кабеля. Чтобы кабель не сплющивался давление на кабель не должно быть большим. Лебедка должна быть компактной и легкой, чтобы можно было ее монтировать в кабельном колодце.

При затягивании ОК большими длинами применяется такая организация работ, когда вся длина кабеля затягивается ступенями с образованием и последовательной выборкой петель. Наиболее распространен способ укладки ОК восьмеркой, когда кабель затягивается в канализацию от середины участка в обе стороны.

В тех случаях, когда прокладывают ОК в каналы, занятые электрическими кабелями, появляется опасность повреждения ОК при его затяжке по причине заклинивания, а также при проведении ремонта ранее проложенных электрических кабелей. В таких случаях необходимо длины прокладываемого ОК выбирать так, чтобы избежать превышения допустимой для данного типа кабеля нагрузки.

Для предотвращения повреждения кабеля и получения требуемого радиуса изгиба на входе и выходе канала кабельной канализации, а также в угловых колодцах применяется специальное оборудование, включающее направляющие устройства и обеспечивающее плавный поворот прокладываемого кабеля. При коэффициенте трения 0,5 и угле поворота трассы прокладки 90о усилие тяжения возрастает в 2,2 раза по сравнению с усилием тяжения на прямолинейном участке такой же длины [2]. Специальные направляющие устройства и приспособления снижают коэффициент трения до 0,2, а тяговое усилие до 40 %. Для предотвращения осевого закручивания ОК предусматриваются компенсаторы кручения.

Механические нагрузки на кабель в процессе его прокладки в канализации во многом определяются случайными факторами [1]. Поэтому при прокладке ОК обязательно используются устройства, обеспечивающие измерение и ограничение (управление) силы натяжения, фактически действующей в кабеле. Тяговое усилие измеряется либо в начале кабеля, либо на лебедке, поскольку именно в этих точках сила натяжения, действующая на кабель, максимальна.

Измерение тягового усилия в начале кабеля дает возможность оценить величину натяжения, реально действующего в кабеле, а также избежать превышения максимально допустимого тягового усилия. Для этого лебедка оборудуется тягово-измерительным тросом, передающим информацию о тяговом усилии от головки кабеля к регистратору лебедки (по медному проводу, вмонтированному в трос), либо используется барабанная лебедка с обычным стальным тросом, оборудованная чувствительным измерительным прибором (ограничителем тяжения) и устройством регистрации. Использование простых лебедок, измерительного (ограничительного) устройства и обычного троса, который дешевле тягово-измерительного по крайней мере в 5 раз, не требует дополнительного обучения обслуживающего персонала. При этом обеспечивается безопасное протягивание кабеля, поскольку сила натяжения в начале кабеля всегда меньше силы, регистрируемой на лебедке.

Устройства, которые размещаются в месте стыка кабель — трос, включают механические плавкие предохранители (растяжение или разрыв) и датчики, с которых можно снимать информацию, относящуюся к управлению лебедками. Устройства на лебедке включают (в зависимости от типа лебедки) механические зажимы, остановочные моторы и гидравлические перепускные клапаны, установленные на заранее определенную нагрузку, и системы динамометр/кабель, контролирующие величину натяжения кабеля, что обеспечивает обратную связь для управления лебедкой [1].

Все эти системы предназначены для ограничения или остановки работы лебедок, когда нагрузки, которым подвергается кабель, приближаются к опасному уровню.

Подготовка кабельной канализации, приспособления и устройства для прокладки ОК. Подготовка кабельной канализации к прокладке ОК включает устройство ограждений, подготовку колодцев и каналов кабельной канализации, прокладку полиэтиленовой трубы (вспомогательного трубопровода) в канале, заготовку вспомогательного трубопровода. После установки ограждений открывают люки смотровых устройств и проверяют их на наличие углекислого газа и метана. При наличии газов смотровые устройства вентилируют. Откачку воды из колодцев и их вентилирование проводят, как правило, с помощью универсального устройства АКМ-4.

Для прокладки ОК по возможности используют каналы, расположенные в середине блока кабельной канализации по вертикали и у края канализации по горизонтали. ОК предпочтительнее прокладывать в полиэтиленовых трубах, например, типа ПНД-32 (вспомогательных трубопроводах), предварительно проложенных в каналах канализации.

Рис.6.4. Установка противоугона на субканал

Рис.6.4. Установка противоугона на субканал

Кабель в свободных каналах прокладывается только, если в эти каналы не будут докладываться другие кабели связи с металлическими проводниками. Для докладки используются только однотипные ОК и прокладывают их 5 — 6 шт в свободном канале в полиэтиленовой трубе. Строительные длины кабеля 2000 м и более прокладываются обязательно в полиэтиленовых трубах. Полиэтиленовую трубу прокладывают либо с бухты, установленной у колодца на передвижном тамбуре, либо с бухты вручную. Конец трубы, оснащенный наконечником, вводят в канал и поступательным движением проталкивают на всю длину пролета (пролетов). При наличии транзитных колодцев трубу подтягивают. Если трубу из-за препятствий в канале невозможно продвинуть, ее надо несколько раз повернуть вокруг оси с одновременным проталкиванием.

В каждом колодце полиэтиленовую трубу обрезают ножовкой, оставляя запас 200…250 мм от канала и устанавливают противоугон (рис. 6.4), который представляет собой упор, препятствующий смещению трубы при ее заготовке проволокой (тросом) и прокладке (с учетом направления).

Заготовку труб кабельной канализации и субканалов производят стальной оцинкованной проволокой диаметром 3 мм или стальным тросом. Выполняют это стеклопластиковым прутком или пневмопроходчиком.

Стеклопластиковый пруток наиболее эффективен при наличии на трассе большого числа коротких пролетов. Пневмопроходчик рекомендуется применять на пролетах от 80 до 150 м.

Перед началом работ на пруток надевают головной и хвостовой наконечники и закрепляют их. К последнему при проходе всего прутка в полиэтиленовую трубу прикрепляют заготовку– проволоку или трос. Протяжка прутка с заготовкой ведется монтажниками, которые рассредоточиваются по транзитным колодцам.

Заготовка полиэтиленовой трубы с помощью пневмоустройства осуществляется двумя рабочими. У головного колодца устанавливают канатную лебедку и заряженный баллон со сжатым воздухом (можно использовать компрессор). К канату присоединяют компенсатор кручения, а затем поршень пневмозаготовочного устройства. Поршень вводят в заготавливаемую полиэтиленовую трубу. На входе трубы устанавливают торцевую пробку, через котоpyю пропускают канат, и подводят пневмомагистраль. Собранное устройство вводят до упора и вручную максимально сжимают резиновый уплотнитель. Открывают вентиль баллона и устанавливают рабочее давление 0,7…0,8 МПа (7…8 атм). Затем резко нажимают рычаг пневмокрана, при этом через гибкий рукав в канал подается воздух. Под действием сжатого воздуха поршень движется, затягивая в канал канат. Окончание прострела определяют по ослабеванию каната. После этого рычаг пневмокрана отпускают и перекрывают вентиль. Затем с помощью каната в трубу затягивают проволоку или трос.

Рис.6.5. Ручная лебедка

Рис.6.5. Ручная лебедка

Заготовку свободного канала при прокладке кабеля без вспомогательного трубопровода производят в соответствии с инструкцией прокладки электрических кабелей связи. Заготовка канала, в котором уже проложен ОК без вспомогательного трубопровода, должна осуществляться либо стеклопрутком, либо полиэтиленовой трубкой. В состав комплекта для прокладки ОК в канализации в обязательном порядке должны входить:

  • лебедка проволочная ручная или лебедка универсальная для заготовки каналов, прокладки полиэтиленовой трубы с помощью проволоки (троса), затягивания кабеля (рис. 6.5);
  • устройство для размотки кабеля с барабанов, кабельный транспортер (рис. 6.6) или козлы-домкрат;
  • труба направляющая гибкая для ввода кабеля через люк колодца от барабана до канала канализации (рис. 6.7);

Рис. 6.6. прокладка кабеля в канализации кабельной машиной

Рис. 6.6. прокладка кабеля в канализации кабельной машиной:

1-колено; 2-кабель; 3-предохранительная втулка (воронка); 4-блок; 5-штанга; 6-серьга; 7-чулок; 8-карабин; 9-компенсатор кручения; 10-заготовка

Рис. 6.7. Прокладка ОК в кабельной канализации вручную

Рис. 6.7. Прокладка ОК в кабельной канализации вручную:

а — вид сбоку; б — вид сверху;

1 — труба направляющая ТНГ; 2 — барабан с кабелем; 3 — устройство УРКР; 4 — воронка канальная БКП; 5 — ролик верхний; 6 — ролик нижний; 7 — лебедка проволочная ручная ЛПР; 8 — чулок кабельный ЧСК-12; 9 — компенсатор кручения ККР; 10 — распорка РГВ; 11 — блок кабельный БЛК

  • комплект люкоогибных роликов для направления прохождения заготовки (троса, проволоки) и кабеля через люк последнего колодца (рис. 6.5 и 6.8);
  • горизонтальная распорка внутренняя и блок кабельный для внутреннего поворота кабеля в угловом колодце (по числу угловых колодцев) (рис. 6.9);
  • воронки направляющие на трубу кабельной канализации и на полиэтиленовую трубу, проложенную в канале, для предотвращения повреждения кабеля и Обеспечения требуемого радиуса изгиба на входе и выходе канала (по две штуки в колодец) (рис. 6.6 и 6.7);
  • чулок кабельный ЧСК-12К с наконечником, чулок кабельный ЧСК-12 и наконечник НКС для тяжения кабеля за центральный силовой элемент и полиэтиленовую оболочку (рис. 6.10);
  • компенсатор кручения для исключения осевого скручивания прокладываемого кабеля (рис. 6.10 а, б);

Рис. 6.8. Устройство нижнего ролика для обхода нижней кромки люка колодца

Рис. 6.8. Устройство нижнего ролика для обхода нижней кромки люка колодца

  • противоугон для предотвращения смещения вспомогательного трубопровода при его заготовке проволокой или тросом и прокладке кабеля (рис. 6.4).

Рис. 6.8. Устройство для плавного изменения направления тяжения ОК

Рис. 6.8. Устройство для плавного изменения направления тяжения ОК: 1-горизонтальная распорка; 2-поворотное устройство

Для прокладки волоконно-оптических кабелей в подземной канализации вполне пригодны большинство управляемых лебедок и систем, рассчитанных на обычные скорости работы. К ним относятся концевые лебедки для протяжки с первичными двигателями различных типов, промежуточные лебедки для прокладки больших строительных длин, и, в случае необходимости, устройства дистанционного управления прокладкой кабелей. Промежуточные лебедки (кабестан или на гусеничном ходу) и/или оборудование дистанционного управления прокладкой кабеля должны работать синхронно, что позволит избежать чрезмерных усилий, прикладываемых к волокну; следует учитывать тот факт, что некоторые промежуточные лебедки (типа кабестана) могут закручивать кабель. Для прокладки волоконно-оптического кабеля необходимы заготовки (тросы или шнуры), с малым удельным весом и большим модулем упругости. Длинные заготовки могут успешно использоваться только при правильной технологии прокладки. Применять шнуры и тросы нужно с большой осторожностью, если в канализации уже проложены волоконно-оптические кабели. Следует избегать узлов на шнурах или тросах.

Рис. 6.10. Кабельный наконечник для одновременного натяжения за армирующий элемент и оболочку ОК (а);

Рис. 6.10. Кабельный наконечник для одновременного натяжения за армирующий элемент и оболочку ОК (а);

кабельный наконечник с компенсатором кручения и чулком (б); чулок без наконечника (в):

1-армирующий элемент; 2-оболочка кабеля; 3-компенсатор кручения; 4-резьбовой соединитель; 5-кабельный чулок; 6-ОК

Чтобы не превышать допустимых растягивающий усилий при натяжении в процессе прокладки ОК необходимо удостовериться в пригодности направляющих систем и устройств и учитывать критерии изгиба, установленные ТУ на кабель [б, 7]. Как правило, минимальный радиус изгиба должен в 12 раз превышать диаметр кабеля, однако при прокладке с натяжением рекомендуется удваивать это соотношение [8]. Большинство направляющих устройств можно использовать как для волоконно-оптических, так и для металлических кабелей, однако при работе с большими строительными длинами может потребоваться много направляющих элементов, причем все они должны иметь малый вес и малое трение.

Технология прокладки ОК в кабельной канализации. При прокладке очень больших длин волоконно-оптического кабеля необходимо рассчитать максимальное натяжение кабеля, которое можно сравнивать с установленными механическими характеристиками данного кабеля в ТУ. Если эти значения близки, то рассматривается вопрос о методах, обеспечивающих возможность прокладки, таких как альтернативное применение другой конструкции кабеля, укорочение трассы, изменение трассы или направления прокладки, использование промежуточных лебедок, либо принятие специальных мер предосторожности в конкретных местах.

Расчет максимального натяжения ОК согласно трассы кабельной магистрали приведен на рис. 6.11 [8].

Рис.6.11. Схема трассы кабельной магистрали

Рис.6.11. Схема трассы кабельной магистрали

Натяжение кабеля рассчитывается по выражениям (6.1), (6.2) и (6.3), при этом натяжение в конце секции на прямолинейном участке Tl определяется как

, (6.5)

где Т0 — натяжение ОК в начале секции; Тn – натяжение ОК, полученное на длине этого участка.

Натяжение ОК на секции с наклоном Tl определяется из выражения

, (6.6)

где Тα — натяжение ОК на участке с углом наклона;

а на секции с изгибом α1 из выражения

. (6.7)

Суммарная величина натяжения ОК равна сумме натяжений на каждой секции. Результаты расчетов натяжения ОК по маршруту А — G (рис. 6.11) представлены в табл. 6.3.

В расчетах было принято Р0 = 0,92 кг/м, КТ = 0,55.

После проведения расчетов натяжения ОК в зависимости от рельефа трассы определяют первый колодец, с которого начинают прокладку кабеля. Если трасса прямолинейна, имеет не более одного-двух угловых колодцев, на ней отсутствуют изгибы и снижения, то за одну протяжку можно затянуть в одном направлении всю строительную длину кабеля. Если трасса не прямолинейна, имеет больше двух угловых колодцев и т. д., необходимо определить первый колодец и проложить кабель от этого колодца в двух направлениях. Желательно, чтобы это был угловой колодец.

Таблица 6.3. Результаты расчетов натяжения ОК

Секция

Длина,

м

Натяжение,

кН

Наклон,

радианы

Натяжение,

кН

Отклонение, радианы

Натяжение,

кН

Суммарное натяжение, кН

А-В

250

0,10

1,47

1,47

в В

1,57

3,49

3,49

В-С

160

0,17

4,51

4,51

С-D

100

5,01

5,01

D-Е

20

5,11

5,11

в Е

0,79

7,87

7,87

E-F

60

8,16

8,16

в F

0,52

10,88

10,88

F-G

200

0,13

11,65

11,65

Примечание. Если в каждом канале проложено не по одному кабелю, величина натяжения может сильно возрасти, поэтому следует учитывать этот фактор и применять при расчетах поправочные коэффициенты. Коэффициенты изменяются в зависимости от числа кабелей, материалов, из которых выполнены кабель и его оболочка, геометрических размеров кабеля и канала кабельной канализации, гибкости кабеля и т. д. Значения могут составлять порядка 1,5-2 для двух кабелей, 2-4 для трех и 4-9 для четырех.

С барабана удаляют обшивку и устанавливают со стороны трассы прокладки так, чтобы смотка шла сверху. Барабан должен свободно вращаться от руки. Конец кабеля освобождают от крепления к барабану, от защитного колпачка, очищают, заделывая в одном из приспособлений ЧСК-12; ЧСК-12К; НКС. Тяжение кабеля производится за центральный силовой элемент и оболочку. Компенсатор кручения с заготовочной проволокой соединяют обычной скруткой. Скрутка не должна выступать за габариты наконечника и компенсатора кручения.

Кабель прокладывают с помощью лебедки с ограничителем тяжения, вращение ее должно быть равномерным без рывков. С противоположной стороны кабель разматывают с барабана вручную. Разматывать барабан тяжением кабеля недопустимо [6]. Во время прокладки необходимо следить за прохождением кабеля через угловые колодцы; он должен проходить по центру поворотного колеса и фиксироваться прижимными роликами. Средняя скорость прокладки кабеля составляет 5…7 м/мин.

Если из-за сложного рельефа трассы тяговое усилие лебедки превышает допустимое значение, в транзитных колодцах ОК подтягивают с усилием не более 600… 700 Н [2]. Подтягивание может осуществляться вручную в промежуточных точках. При подтяжке кабеля нельзя упираться ногами в стенки колодца или его арматуру. Нельзя также допускать перегибов кабеля в руках. Необходимо следить, чтобы не образовалась петля и чтобы кабель равномерно уходил в противоположный канал. Для обеспечения синхронности подтяжки ОК необходима служебная радиосвязь для подачи команд.

Если из соображений ограничения нагрузки невозможна прокладка больших строительных длин волоконно-оптического кабеля при расположении тянущего устройства только на одном конце, то применяют метод разделения продольной нагрузки. В зависимости от условий прокладку выполняют либо статическими, либо динамическими методами [8].

Самый элементарный статический метод известен как «метод восьмерки», при котором барабан с кабелем располагают в промежуточном пункте, а кабель сматывают с барабана в одном направлении данного маршрута с помощью обычного метода протяжки с одного конца. После этого оставшийся кабель снимают с барабана и укладывают на земле в виде восьмерки. Затем лебедку перемещают на другой конец секции и кабель протягивают с одного конца. При этом методе необходимо место для размещения кабеля, укладываемого восьмеркой.

Более сложным является метод разделения динамической нагрузки; он требует и большего объема оборудования, и его установки. Однако в этом случае кабель прокладывают в одном направлении непосредственно с барабана с помощью специальных кабельных лебедок на промежуточных пунктах. Максимальная нагрузка, приходящаяся на кабель, зависит от расстояния между промежуточными пунктами. При использовании промежуточных лебедок все усилия переходят на оболочку кабеля; т.е. следует принимать в расчет конструкцию конкретного кабеля. Использование промежуточных или распределенных лебедок требует хорошего согласования, синхронизации и связи между промежуточными пунктами в процессе проведения работ. Промежуточные лебедки типа кабестан могут вызвать дополнительно перекрутку кабеля.

По окончании прокладки конец кабеля возле наконечника (чулка) обрезают и герметизируют полиэтиленовым колпачком.

Оптические кабели выкладывают по форме транзитных колодцев, укладывают их на консоли соответствующего ряда в ближайших к кронштейну ручьях (желательно на первое консольное место) и закрепляют перевязкой. Выкладываемый кабель не должен перекрещиваться с другими кабелями в том же ряду, и заслонять собой отверстия каналов.

Запас кабеля, оставляемый в колодце для монтажа муфты, сворачивают кольцами диаметром 1000…1200 мм, укладывают к стене и прикрепляют к кронштейнам. При последующем монтаже муфты в монтажно-измерительной машине запас кабеля после выкладки составляет 8 м, а при монтаже муфты в колодце (в зависимости от типа колодца) — 3… 5 м [2].

После выкладки кабеля снимают все противоугоны, направляющие воронки, другие устройства и устанавливают их на следующем участке трассы. Затем производят контрольное измерение затухания ОВ, которое должно быть в пределах установленной километрической нормы. После проверки проложенной длины полиэтиленовые колпачки на концах кабеля должны быть восстановлены.

6.2.2. Прокладка ОК в трубах, лотковой канализации, коллекторах и туннелях

В трубах кабели прокладывают так же, как и в каналах телефонной канализации. На выходе кабеля из трубы канал герметизируется.

В лотковую канализацию кабели прокладывают с барабана, установленного на транспортере или в кузове автомобиля на козлах. Перекрытия лотков снимают и укладывают на землю по одну сторону лотков. Вдоль другой стороны канализации везут барабан, разматывают кабель и укладывают его на консоли или на дно лотков. После прокладки всей строительной длины кабель перекладывают со дна лотков на консоли. Если вдоль канализации нельзя проехать, то барабан устанавливают на земле на козлах и кабель разносят на руках [9].

Для протягивания ОК в коллекторах (туннелях) используют практически те же технические средства, что и при протяжке в кабельной канализации и укладке их в открытую траншею. Кабель во избежание локальных трещин и остаточного напряжения поддерживают желобами, соединительными плоскими лентами и т.д.

Технологическая последовательность прокладки ОК в коллекторах принципиально не отличается от традиционных приемов и способов, но необходимо более строго следить за соблюдением допустимого радиуса изгиба кабеля. Преграды и другие препятствия могут налагать ограничение на длину протягиваемого кабеля, кроме того, при значительных вертикальных подъемах принимаются специальные меры, чтобы возникающие при этом нагрузки не превышали допустимых.

В коллекторы мелкого заложения кабели затягивают через люк. Внутри коллектора кабели тянут по роликам или разносят на руках. В коллекторы глубокого заложения и в тоннели метро кабели подают через вертикальные шахты: их либо спускают с барабана с одновременным креплением кабеля к несущему канату через каждые 1,5-3 м, либо поднимают с опущенного вниз барабана путем тяженйя каната за надетый на кабель концевой чулок. В вертикальных шахтах кабели крепят накладками к скобам, заделанным в бетонированных стенах или закрепленным к побингам. В тоннелях метро кабели прокладывают с грузовых платформ, а в транспортных тоннелях — с транспортеров или автомобилей. Первоначально кабели выкладывают и выравнивают на дне коллектора или тоннеля, а затем перекладывают на консоли [9].

В шахты станций кабели затягивают из станционного колодца или подают из коллектора.

Вытягивание кабеля из канализации производят после демонтажа всех муфт на заменяемом участке и выполнения оконечных заделок на концах рабочих кабелей. Кабели, не подлежащие дальнейшему использованию, вытягивают канатом, прикрепленным к надетому на кабель концевому чулку. Канат тянут лебедкой, установленной от колодца на расстоянии, равном длине вытягиваемого участка кабеля, или автомашиной. На выходе из канала, люка и в колодце во всех местах, где кабель соприкасается с его частями, подкладывают кабельные колена. На поверхности земли кабель тянут по роликам. Вытянутый кабель наматывают на барабан.

Кабели, подлежащие дальнейшему использованию, вытягивают короткими участками тяжением каната за надетый на конец кабеля сквозной чулок. Вытянутые участки кабеля наматывают на барабан. Затем канат отпускают, сквозной чулок перемещают по кабелю ко входу в трубопровод и снова вытягивают кабель.

6.2.3. Прокладка ОК в грунт

При прокладке волоконно-оптического кабеля непосредственно в грунт применяются обычные методы прокладки. Глубина прокладки, та же что и для металлических кабелей, однако интенсивность трафика или какие-либо соображения безопасности могут потребовать прокладки кабеля на большей глубине. При прокладке кабеля в траншее необходимо выбирать такие материалы и способы засыпки, чтобы усилия, воздействующие на волокно, не превышали предельных значений.

Оптический кабель прокладывают в грунтах всех категорий (кроме подверженных мерзлотным деформациям), при пересечении неглубоких болот, несудоходных и несплавных рек со спокойным течением (с обязательным заглублением). Способы прокладки ОК через болота и водные преграды должны определяться отдельными проектными решениями.

Прокладка ОК в грунт может выполняться ручным способом в ранее отрытую траншею или бестраншейным с помощью ножевых кабелеукладчиков. Если используется защитный трубопровод, то можно сначала в грунт укладывать трубопровод (полиэтиленовая труба с внешним диаметром до 34 мм), а затем в него затягивать ОК, либо прокладывают трубопровод с заранее уложенным в него ОК.

Трассовая прокладка кабелей связи — это сложный процесс в техническом и организационном плане; он еще более усложняется для ОК, имеющих большие строительные длины. От линейного персонала требуется тщательное изучение местности и условий трассы, четкая и продуманная подготовительная работа, технологически обоснованный проект производства работ и строгая исполнительская дисциплина. Особое внимание уделяется выбору трассы, способам и средствам прокладки ОК на каждом участке трассы. Для обеспечения безопасности прокладки и минимальной вероятности его замены необходимо учитывать такие факторы, как топографическую карту местности, типы грунтов, возможность доступа к кабелю при любых погодных условиях, возможность ремонта, удаление трассы кабеля от подземных коммуникаций и т. д.

Прокладка ОК в траншею. Производственные процессы при прокладке кабеля в открытую траншею трудоемки, малопроизводительны и могут легко контролироваться в ходе строительно-монтажных работ. Максимальное внимание должно уделяться ограничению минимального радиуса изгиба ОК. Для этого размотку кабеля, переноску и укладку его в траншею проводят без перегибов. Нельзя волочить кабель по поверхности земли и разматывать кабель барабаном.

Качество прокладки ОК зависит также от подготовки грунтовой или песчаной постели и засыпки. Поэтому в ряде случаев перед прокладкой в траншею кабель предварительно обертывают защитным материалом.

Рис. 6.12. Прокладка ОК в траншею с автомобиля

Рис. 6.12. Прокладка ОК в траншею  с автомобиля

Размотка кабеля при прокладке в открытую траншею должна, как правило, осуществляться с помощью механизмов. Если позволяют условия трассы, то используют барабан, установленный в специально оборудованном кузове автомашины или на кабельном транспорте, передвигающемся по трассе вдоль траншеи (рис. 6.12). Скорость движения автомашины не должна превышать 1 км/ч. Расстояние от колес до края траншеи должно быть не менее 1,25 глубины траншеи [2]. Кабель разматывают так, чтобы он сходил с верха барабана и укладывают на дно траншеи или на ее бровку без натяжения. Кабель должен плотно прилегать к дну траншеи. На поворотах кабель выкладывают с соблюдением допустимых радиусов изгиба. Если условия местности не позволяют использовать технику, то вручную выносится вся строительная длина кабеля, укладывается вдоль траншеи, а затем опускается в нее. При этом барабан с кабелем устанавливают в начале участка прокладки на неподвижной основе. Нагрузка на одного рабочего не должна превышать 35 кг [9]. При недостаточном количестве рабочих применяют способ «петли»: конец кабеля оставляют у барабана в начале участка и размотку ведут с верха барабана петлей, нижнюю часть которой по мере продвижения рабочих укладывают непосредственно в траншею или на землю у траншеи [7]. По мере выкладки нижней части петли на землю освобождающиеся рабочие переходят к барабану и подхватывают новый участок кабеля. Расстояние между соседними рабочими должно быть таким, чтобы кабель не волочился по земле. До половины строительной длины петля удлиняется, а затем укорачивается по мере продвижения к концу. В результате весь кабель вытягивается в одну линию.

При наличии на трассе различных пересечений кабель прокладывают способом «петли», протягивая ее в предварительно проложенной под препятствием полиэтиленовой трубе.

Траншеи и котлованы засыпают вынутым грунтом так, чтобы наиболее рыхлый грунт отсыпался в нижние слои. Засыпку производят механизмами или вручную слоями толщиной не более 20 см.

Прокладка ОК кабелеукладчиком. Магистральные и внутризоновые ВОЛС имеют большую протяженность и прокладываются в различных климатических, почвенно-грунтовых и топографических условиях. Прокладка ОК осуществляется комплексными механизированными колоннами, в состав которых входят строительные машины и механизмы общестроительного назначения (тракторы, бульдозеры, экскаваторы и др.), а также специальные машины и механизмы для прокладки кабеля (кабелеукладчики, тяговые лебедки, пропорщики грунта, машины для прокола грунта под препятствиями и др.).

Бестраншейный способ прокладки кабеля с помощью кабелеукладчика благодаря высокой производительности и эффективности является основным. Для прокладки ОК используются кабелеукладчики с активными и пассивными рабочими органами. С помощью ножевого кабелеукладчика в грунте прорезается узкая щель, и кабель укладывается на дно, на заданную глубину залегания (0,9…1,2 м). Кабель на пути от барабана до выхода из кабеле-направляющей кассеты подвергается воздействию продольного растяжения, поперечного сжатия и изгиба, а при применении вибрационных кабелеукладчиков — вибрационному воздействию. Поэтому при прокладке кабеля с помощью кабелеукладчика конструкция между катушкой с кабелем и направляющей для кабеля должна учитывать конкретные критерии изгиба кабеля и иметь малое трение, препятствующее перегрузке волокна. Как правило, системы защиты кабеля от перегрузок не требуется, но при мощном кабелеукладчике, наличии барабана с кабелем и направляющих роликов можно включить устройство регулирования натяжения кабеля. Таким образом, в зависимости от рельефа местности и характера грунтов, конструкции и технического состояния кабелеукладчиков, а также режимов его работы механические нагрузки на кабель могут изменяться в широких пределах.

Рис. 6.13. Изменение натяжения кабеля ОЗКГ-1 от скорости прокладки кабелеукладчиком типа КНВ

Рис. 6.13. Изменение натяжения кабеля ОЗКГ-1 от скорости прокладки кабелеукладчиком типа КНВ

График изменения натяжения ОК на выходе из кассеты кабелеукладчика в зависимости от скорости прокладки, диаметра (номера) кабельных барабанов и строительной длины внутризонового кабеля марки ОЗКГ-1 [2) приведен на рис. 6.13. Из графика видно, что скорость 3,3 км/ч, допустимая при прокладке электрических кабелей, неприемлема. Чтобы растягивающая нагрузка при прокладке ОК не превышала допускаемой величины, скорость надо снижать. Область предельных скоростей прокладки ОК на рисунке заштрихована.

Рис. 6.14. Кабелеукладочный комплекс КНВ-1К

Рис. 6.14. Кабелеукладочный комплекс КНВ-1К: 1 — бульдозер; 2- кабелеукладчик; 3- направляющая система; 4- нож; 5 — кассета

Основные характеристики прицепных кабелеукладчиков, используемых в отечественной практике при бестраншейной прокладке ОК, приведены в табл. 6.4. Можно применять и другие кабелеукладчики при условии исключения превышения механических нагрузок. В настоящее время наиболее полно предъявляемым требованиям отвечает кабелеукладочный комплекс на базе вибрационного кабелеукладчика КНВ-1К. Этот комплекс предназначен для работы на трассах любой протяженности, а также для работы в стесненных условиях, населенных пунктах, вблизи дорог, в лесу (рис. 6.14). Комплекс состоит из навесного вибрационного кабелеукладчика КНВ-1К и специально оборудованного бульдозера. При прокладке обе машины соединяются тяговым канатом. Спецоборудование бульдозера состоит из бульдозерного отвала, П-образной коробчатого сечения рамы, на поперечной балке которой установлены две пары вилочных захватов для погрузки, разгрузки и установки на них барабанов.

Таблица 6.4. Основные характеристики прицепных кабелеукладчиков

Характеристика

Значения для кабелеукладчика

КУК-3М

ЛПК-20-2

КУ-120В

КУК-4

КУК-5М

КУК-6

НКПО

КПЛС

Комплекса КНВ-1К

Оптимальная скорость прокладки ОК, км/ч

1,35

1,4

1,4

1,2

0,9

0,9

0,9

0,9

0,4

Число барабанов

2 (4)

2 (4)

2

4 (2)

4 (2)

2

1

2

2

Номера барабанов

17 (18)

17 (18)

18

18 (22)

18 (26)

20

14

14

20

Число одновременно прокладываемых кабелей ОК

1…4

1 или 2

1 или 2

1…4

1…4

1 или 2

1

1 или 2

1

Число обслуживающего персонала, чел.

3…5

2

1…3

3…5

3…5

2

2

2

2

При прокладке ОК кабелеукладчиком недопустимо: вращение барабана под действием натяжений кабеля, возникающих при движении кабелеукладчика по трассе, рывки кабеля при прокладке в сложных грунтах, наличии препятствий в грунте, на трассе и т.п. Бестраншейная прокладка не исключает непосредственный контакт ОК в полиэтиленовой оболочке с острыми твердыми каменистыми включениями, оказывающими сосредоточенные боковые давления на кабель.

Для предотвращения превышения допустимых нагрузок на ОК при его прокладке необходимо обеспечить:

  • принудительное вращение барабана в момент начала движения кабелеукладчика и синхронизированную его размотку;
  • ограничение боковых давлений на кабель за счет применения различного рода мероприятий и конструкций, снижающих трение (например, использование в кассетах специальных роликовых направляющих устройств, обеспечивающих минимально допустимый радиус изгиба ОК;
  • размещение роликов кассеты так, чтобы уменьшить радиальное давление на кабель);
  • допускаемый радиус изгиба ОК от барабана до укладки на дно щели на всем участке подачи кабеля через кассету;
  • исключение засорения кассеты кабелеукладочного ножа и остановок вращения барабана при движении кабелеукладчика.

Желательно использование соответствующих технических средств непрерывного контроля, сигнализирующих о достижении пороговых значений тяговых усилий и ограничивающих режимы нагружения кабеля с остановкой процесса прокладки.

Перед началом строительных работ необходимо проверить подготовку трассы. За проведением всех строительных работ должен осуществляться постоянный контроль, так как ошибки проекта или плохой подготовки трасс трудно исправлять непосредственно в полевых условиях.

Обязательной является планировка трассы перед прокладкой ОК бульдозером. Подъемы и уклоны трассы не должны превышать 30′. В сложных грунтах необходима предварительная пропорка грунта для обнаружения скрытых препятствий, которые могли бы повредить кабель. Грунт на таких участках разрабатывается с помощью бурильных и взрывных работ, машин и механизмов для разработки траншей и т.п.

Способы прокладки кабеля в грунте чередуются в зависимости от условий прокладки. На отдельных участках трасс предварительно может укладываться жесткий защитный трубопровод, в который затем затягиваются ОК. Для выбора способа прокладки может потребоваться исследование грунта.

Прокладку кабеля рекомендуется выполнять под постоянным контролем, осуществляемым по результатам измерения затухания ОВ кабеля с помощью оптического тестера, оптического рефлектометра или других аналогичных средств измерения. Для обеспечения постоянного оп тического контроля строительной длины ОК освобождают закрепленный на щеке барабана верхний и нижний концы кабеля, разделывают их и подготавливают к сварке шлейфа.

Рис. 6.15. Схема соединения волокон ОК (шлейфа) для постоянного оптического контроля при прокладке

Рис. 6.15. Схема соединения волокон ОК (шлейфа) для постоянного оптического контроля при прокладке

Схема шлейфа для кабеля, включающего четыре ОВ, показана на рис. 6.15. Сварка ОВ производится с помощью сварочного устройства. Место сварки защищают гильзой ГЗС или другим способом. Волокна укладывают и крепят к центральному силовому элементу. На концы кабеля укладывают полиэтиленовые пакеты и закрепляют их. Нижний конец кабеля выкладывают на внешней стороне щеки барабана и закрепляют металлическими пластинами. Верхний конец закрепляют металлическим желобом на внутренней стороне щеки барабана. После этого барабан зашивают и отправляют на трассу. На загородных участках при отсутствии посторонних подземных сооружений кабели прокладывают в грунт механизированным способом с помощью кабелеукладчика.

Кабельные переходы на пересечениях с железными и шоссейными дорогами, трубопроводами и другими коммуникациями оборудуются методом скрытой прокладки без прекращения движения транспорта. Кабели на переходах прокладывают в трубах, закладываемых в скважины.

Работу по устройству скважин допускается выполнять только при наличии рабочих чертежей и в присутствии представителей дороги, под которой устраивается скважина. Скважины нельзя устраивать под железнодорожными путями на криволинейных участках (поворотах) или под стрелками. Скважины длиной до 40 м и диаметром 130-300 мм устраивают, как правило, с помощью пневмопробойников ИП-4603 (с обратным ходом) или ИП-4601, работающих от компрессорной установки ЗИФ-55. Для продавливания скважин длиной до 50 м в непесчаных и до 20 м в песчаных грунтах может быть использован гидропресс БГ-3. Он позволяет получить скважины диаметром 130-200 мм с расширителем и 50 мм без расширителя. При больших объемах работ используется комплексная машина для продавливания грунта марки КМ-143М, собранная на базе автомобиля ГАЗ-63А и оснащенная гидропрессом БГ-3[9]. Для подготовки скважин при скрытой прокладке может использоваться и другое зарубежное сертифицированное оборудование.

Возможна прокладка труб через железные и шоссейные дороги и открытым способом. Прокладка труб под препятствиями, как правило, проводится до начала прокладки кабеля в районе пересечения. Отдается предпочтение таким способам, при которых не требуется разрезать ОК. При подходе кабелеукладчика к подземному препятствию ОК сматывают с барабана и укладывают «восьмеркой». Затем протягивают кабель под препятствием в заготовленную трубу, снова наматывают на барабан, заряжают в кассету кабелеукладчика и продолжают прокладку.

Если под препятствием труба не прокладывается, то сначала под препятствием откапывают котлован, барабан снимают с кабелеукладчика и, освободив кабель от разборной кассеты, устанавливают на козлы перед препятствием. Кабелеукладчик перемещают за препятствие, опускают нож в котлован, заправляют предварительно протянутый под препятствием ОК в кассету и продолжают прокладку. Для предохранения кабеля от перегибов под препятствием устанавливают кабельное колено или ролики. При этом необходимо обеспечивать свободную подачу кабеля с барабана, установленного на козлах, и подтяжку кабеля, проходящего по поверхности земли.

Трассы подземных кабелей на загородных участках отмечают железобетонными заметными столбиками или другими приспособлениями. Столбики устанавливают в местах расположения муфт, на поворотах трассы, на ее пересечениях с водными преградами, дорогами и подземными сооружениями. Столбики размещают на расстоянии 0,1 м от кабеля или муфты со стороны поля.

Заглубление кабеля проводят в тех случаях, где глубина его залегания меньше установленной нормы. Кабель открывают на всем участке заглубления и дополнительно на 2—3 м с каждой стороны (для обеспечения его слабины). Затем вдоль открытого кабеля откапывают траншею на установленную глубину и перекладывают в нее кабель.

Извлечение кабеля из земли производят при замене поврежденного участка или упразднении линии. При замене кабеля откапывают и демонтируют муфты, ограничивающие заменяемый участок. На концах рабочего кабеля выполняют оконечные заделки. Определяют трассу заменяемого кабеля (например, кабелеискателем при подключении генератора к экрану кабеля в пластмассовой оболочке) и намечают ее на местности колышками, канавками или другими отметками. На концах заменяемого кабеля выполняют оконечные заделки. Затем кабель откапывают и наматывают на барабан, который перевозят по трассе на транспортере или в кузове автомобиля. Если барабан установлен на земле на козлах, то кабель перекладывают со дна траншеи на бровку, поднимают и по мере намотки подносят к барабану.

6.2.4. Прокладка ОК через водные преграды

Способы прокладки речных подводных ОК зависят от характера водоема, ширины, глубины, наличия судоходства, времени прокладки, массы кабеля и имеющихся в распоряжении технических средств прокладки. Кабель может быть проложен по мостам, либо в водоем с помощью кабелеукладчика или плавучих средств (баржа, баркас, плот, лодка и т.д.)

Рис. 6.16. Трассы подводного перехода

Рис. 6.16. Трассы подводного перехода

Трасса кабельного перехода располагается по возможности на прямолинейных участках реки с неразмываемым руслом, отлогими, не подверженными разрушениям берегами, с наименьшей шириной поймы. Для предохранения кабеля от заторов льда переход через судоходные и сплавные реки, как правило, размещается ниже (по течению реки) магистральных автомобильных и железнодорожных мостов.

Перед началом работ проводят разбивку трассы. Трассы подводного перехода обозначают реперами (рис. 6.16). В необходимых случаях перед прокладкой проводится водолазное обследование трассы кабельного перехода. Для защиты от повреждений якорями речного транспорта, при ледоходе движущимися массами льда, затонувшими бревнами, камнями, при чистке и углублении водоемов и т.п. кабели заглубляются в дно.

ОК на размываемых берегах, имеющих уклон более 30о, на подъемах и спусках прокладывается вручную зигзагообразно (змейкой) с отклонением от оси направления прокладки на 1,5 м на участке длиной 5 м. На крутых берегах и в скальных грунтах вырубают штробу. В скальных грунтах кабель прокладывают на песчаной подушке с толщиной верхнего и нижнего слоев не менее 15 см [2].

Опыт прокладки традиционных электрических кабелей связи через горные и сплавные реки показывает, что существующая технология (устройство вантовых переходов, значительное заглубление в дно рек с проведением дополнительных мер защиты) применима лишь для высокопрочных конструкций ОК. Прокладка ОК без металлических элементов через отдельные водные преграды вызывает определенные трудности. Например, при небольших перемещениях донных грунтов кабель может всплыть. При сильном течении кабель находится под дополнительной нагрузкой и нужно контролировать, чтобы уровень этой нагрузки не превысил допустимый. Поэтому кабель рекомендуется прокладывать в защитном трубопроводе, заглубленном в дно. Полиэтиленовые трубы, а на опасных участках стальные трубы, могут прокладываться (как подземный кабель) на глубине до 1,2 м.

Прокладка кабелей через водные преграды осуществляется, как правило, по мостам. Если подход к мосту существенно увеличивает протяженность трассы или мост имеет разводную часть, то оборудуют подводные переходы. Через узкие водоемы кабели прокладывают в трубах или делают воздушно-кабельные переходы.

По мостам кабели прокладывают в специальных каналах. При отсутствии каналов кабели прокладываются в асбестоцементных или стальных трубах (рис. 6.17 а). Их располагают так, чтобы они не мешали движению транспорта и пешеходов и не подвергались прямому действию солнечных лучей. Трубы должны иметь уклон от середины моста к его концам. Наиболее часто трубы располагаются под фермами мостов или сбоку. По обе стороны от моста трубы заглубляют в грунт до уровня прокладки подземного кабеля. Открытая прокладка кабелей по мостам не допускается. Для защиты ОК в трубах или специальных каналах от вредного действия вибрации применяется рессорная подвеска кабеля (рис. 6.17 б).

Рис. 6.17. Прокладка кабеля

Рис. 6.17. Прокладка кабеля:

а — под пешеходной частью моста; б- рессорная подвеска кабеля;

1- труба; 2- кабель; 3- рессора

На подводных переходах через крупные реки применяют кабели с круглой проволочной броней. На подводных участках магистральных линий ГТС прокладывают два рабочих кабеля. Емкость каждого из них должна соответствовать половине числа ОВ подземного кабеля. В городах на набережных трубопроводы канализации вводят в береговые колодцы, от которых до выхода в воду закладывают стальные трубы. Они должны заходить в подводную часть перехода на 3 м и заглубляться на 1 м, считая от наинизшего уровня воды [9].

При прокладке магистральных ОК первичной сети на переходах через внутренние водные пути — судоходные и сплавные реки, водохранилища — осуществляется так же резервирование кабельного перехода путем прокладки кабелей по двум створам (верхнему и нижнему), расположенным на расстоянии не менее 300 м друг от друга. При наличии на трассе мостов автомобильных дорог общегосударственного значения допускается прокладка одного из кабелей по мосту. В основном и резервном кабелях включается по 50 % ОВ.

Если невозможна бестраншейная прокладка, кабели на переходах через водные преграды прокладываются в предварительно разработанные подводные траншеи. На судоходных реках подводные траншеи в русле при глубине до 0.8 м можно разрабатывать экскаваторами. При больших глубинах экскаваторы устанавливают на понтонах, перемещаемых по створу перехода с помощью тросов лебедками [2].

Весьма эффективным и простым средством разработки траншей для прокладки ОК являются гидромониторы, с помощью которых водолазами размывается грунт. Гидромониторы используются для размывания траншей глубиной до 2 м на водных преградах глубиной 8… 12 м.

Разработанные на заданную глубину подводные траншеи должны приниматься по акту комиссией. Акт приемки готовой траншеи является единственным документом, разрешающим прокладку кабелей на водных переходах.

На переходах через мелкие несудоходные водоемы глубиной до 3 м, шириной не более 40 м, со скоростью течения не более 1,5 м/с без лесосплава прокладывают бронированные кабели тех марок, которые используют на данной подземной линии. В остальных случаях через водные преграды прокладываются кабели с круглой проволочной броней. Место соединения подводного кабеля с подземным располагают в незатопляемой части на расстоянии 30 м от воды.

Через узкие водоемы (каналы, арыки и т.д.) шириной до 1,5 — 2,0 м кабели прокладывают в стальных трубах или на глубину, определяемую проектом. По действующим нормам прокладка ОК через судоходные реки, сплавные и несудоходные реки шириной до 300 м, глубиной до 6 м со скоростью течения до 1,5 м/с при ровном рельефе дна может осуществляться с помощью прицепного ножевого кабелеукладчика колонной тракторов. Другими словами кабелеукладчики рекомендуется применять только на мелководье, так как на больших глубинах нельзя проконтролировать процесс прокладки кабеля. Грунты при этом не должны быть выше III категории.

6.2.5. Подвеска кабелей на опорах воздушных линий и стойках

Требования к сооружениям и технологии подвески ОК на несущих тросах по столбам и стоечным опорам на крышах зданий, а также к самонесущим кабелям не отличаются от установленных требований для электрических кабелей связи.

Для воздушной подвески используют полностью диэлектрические ОК, прикрепляемые к имеющимся воздушным линиям связи тросом; ОК с самонесущим тросом, либо самонесущие ОК. При подвеске следует учитывать прочность ОК при растяжении, длину пролета, стрелу провеса, механическую нагрузку (статическую и динамическую), колебания температуры, конструкцию опоры, способ натяжения ОК, конструкцию крепления к несущему тросу (если трос не встроен в кабель), защиту от грызунов, заземление, величину натяжения ОК при прокладке, способ выравнивания стрелы провеса, изменение натяжения ОК.

Несущий трос (отдельный или встроенный в кабель) должен обеспечивать минимальный радиус изгиба ОК и ограничивать оказываемую на него нагрузку.

Подвеска кабелей, содержащих стальной трос, производится после установки консолей на всех опорах. Барабан с кабелем устанавливают на транспортере или в кузове автомобиля на козлах. На конце строительной длины трос отделяют от кабеля и крепят к опоре оконечной вязкой. Барабан с кабелем везут по трассе, разматывают и поднимают на ролики, закрепленные на консолях (рис. 6.18). После размотки кабеля на длине пяти — шести пролетов кабель поверх пластмассового покрытия троса захватывают зажимом и натягивают блоками или лебедкой, укрепленными к опоре. Кабель вынимают из роликов и последовательно крепят в консолях на всех промежуточных опорах, начиная от опоры, смежной с той, на которой выполнена оконечная вязка троса. При этом обеспечивают требуемые стрелы провеса троса в пролетах. После закрепления кабеля в консолях на первом участке, его разматывают на втором и всех последующих.

Рис. 6.18. Подвеска кабеля

Рис. 6.18. Подвеска кабеля:

а-ролик; б-положение ролика на опоре; в-кабель, поднятый на ролики; г-подъем кабеля двойным роликом;

1-оконечное крепление; 2-ролик; 3-блоки; 4-двойной ролик; 5-тяговый канат

Подвеска кабеля, не содержащего в своей конструкции троса, производится после подвески троса или проволоки. Трос разматывают и подвешивают в той же последовательности, но по участкам в восемь — десять пролетов. Кабель крепят к тросу с земли, для чего канат после подвески и регулировки стрел провеса опускают с консолей на участках по пять — шесть пролетов. Кроме тогo, кабель может быть поднят к канату с помощью двойного ролика или каретки и закреплен подвесами с лестницы. Установка подвесов выполняется таким образом, чтобы они плотно обжимали кабель и свободно висели на тросе. Подвесы закрепляют металлическими поясками.

На стоечных линиях ГТС также возможна подвеска ОК. Если кабель подвешивают индивидуально, то в качестве опор применяют не стойки, а вводные трубы. Подвеска кабелей производится так же, как на воздушных линиях.

Несущие канаты заземляют на оконечных опорах, а также на промежуточных — в населенных пунктах через каждые 250 м, а вне населенных пунктов — через 2 км. Провод заземления соединяют с тросом зажимом. Величины сопротивления заземления нормируются в зависимости от удельного сопротивления грунта (ГОСТ 464 — 68).

При замене подвесных кабелей первоначально намечают места обрезки кабелей. Их выбирают около опор и отмечают проволочными бандажами. Трос опускают с консолей на таком участке, чтобы все работы можно было проводить с земли. Предварительно на опускаемом участке отключают от троса провода заземления. Кабель перерезают по проволочным отметкам. Если кабель подвешен к тросу, то подвесы поочередно снимают и укладывают кабель на земле. Затем заменяемый кабель наматывают на барабан. Новый кабель прокладывают на земле под тросом, крепят к нему подвесами и монтируют с концами рабочего кабеля. Трос на опущенном участке поднимают и крепят в консолях, после чего к нему присоединяют провода заземления.

Если трос нельзя опустить, то работы производят с лестниц. На недоступных участках или стоечных линиях кабель с обеих сторон заменяемого участка перерезают. К одному из концов кабеля привязывают веревку. С другой стороны заменяемого участка кабель вытягивают к опоре, поочередно снимая подвесы, опускают кабель на землю или крышу здания и выкладывают кольцами. Если подвесы тормозят движение кабеля и набегают друг на друга, то тяжением за веревку кабель несколько перемещают назад, а затем продолжают вытягивать к опоре.

Для подвески ОК на линиях электропередач используют кабели без металлических элементов, подвешиваемые на опорах ЛЭП; самонесущие без металлических элементов, подвешиваемые традиционным способом; встроенные в грозозащитный трос. Пролет между опорами линий электропередач, на которых монтируется ОК, должен быть, как правило, не более 400м, при этом необходимо обеспечить требуемый габарит подвески от земли. Прочность заделки кабеля в зажиме должна быть не менее 34 кН. Такие требования к креплению ОК могут успешно выполнить спиральные зажимы, которые навиваются на кабель. В случае приложения нагрузки зажим равномерно на значительной площади соприкосновения при малом удельном давлении обжимает кабель без деформации. Спиральные зажимы просты в монтаже и при малых затратах времени на их установку обеспечивают гарантированное качество крепления.

Крепления ОК на промежуточных опорах осуществляется поддерживающими, а на анкерно-угловых опорах натяжными зажимами (рис. 6.19.).

Рис. 6.19. Зажимы для крепления ОК на опорах линий электропередачи

Рис. 6.19. Зажимы для крепления ОК на опорах линий электропередачи:

а-натяжной; б-поддерживающий;

1-коуш; 2-зажим; 3-протектор; 4-амортизатор

Оптические кабели типа OPGW, встроенные в грозозащитный трос (Optical fiber composite ground wire), используются для подвески на опорах ЛЭП напряжением от 330 до 750 кВ. Наличие грозозащитного слоя обеспечивает механическую прочность кабеля, а также позволяет избежать мешающего влияния электрического поля.

Известен также способ подвески ОК типа GWWOP (Ground wire wrapped optical fiber cable) путем навивки его на грозотрос или один из проводов ЛЭП. Однако при этом способе кабель должен выдерживать увеличение температуры несущего проводника, а также значительно увеличивается нагрузка на опоры при образовании гололеда и больших напорах ветра за счет увеличения поверхности провода или троса. Подвеска этим способом осуществляется установкой, состоящей из тяговой и обмоточной машин (рис. 6.20). Скорость подвески навивных ОК с помощью этой установки составляет 25 м/мин [7].

Рис. 6.20. Машины для подвески навивных ОК

Рис. 6.20. Машины для подвески навивных ОК:

а — тяговая, б — обмоточная

6.3. Оптические соединители, конструкции муфт ОК и особенности их монтажа

6.3.1. Потери при соединении волокон

Для соединения различных частей оптических телекоммуникационных систем производят в основном кабели стандартной длины, например 2, 4, 6 км. Для информационных систем всегда существует необходимость соединения строительных длин кабеля между собой, так как только на коротких участках длиной 2 — 6 км можно использовать одну строительную длину кабеля. ВОЛС большой длины состоят из некоторого количества строительных длин по 2-6 км каждая, которые могут соединяться между собой различными способами [10]:

  • постоянные соединения — это сварные соединения, используемые в основном для соединения волокон в сетях большой протяженности, и механические соединения, преимущественно используемые в сетях локальной инсталляции;
  • полупостоянные соединения, преимущественно используемые в сетях, где абоненты перемещают оборудование или, где вся сеть постоянно перестраивается, т.е. в локальных сетях LAN, а также при установлении временных соединений во время организации кабельных вставок во время аварий на магистральных и соединительных ВОЛС.

Разъемный соединитель (разъем, коннектор) — устройство для подключения волокна к источнику, детектору или к другому волокну. В его конструкции заложена возможность многократного подключения и отключения волокна. Неразъемный соединитель (сплайс,«сварка») предназначен для постоянного соединения одного волокна с другим. Некоторые производители предлагают многоразовые сплайсы, позволяющие разрывать соединение или переконфигурировать волоконную цепь.

Ключевым моментом волоконно-оптического соединения является точное размещение сердцевин ОВ (или несущих свет областей в одномодовом волокне) для обеспечения максимально полной передачи света от одного волокна к другому. При этом необязателен непосредственный контакт между волокнами. Условие точного размещения тонких волокон (одно относительно другого) ставит перед производителями соединителей сложную задачу. Например, при соединении двух ОВ с диаметром оболочки 125 мкм их юстировку в процессе сварки выполняют с точностью в несколько тысячных миллиметра и даже лучше. Поэтому требования, предъявляемые к соединителям и коннекторам, могут быть сформулированы в виде:

  • установка соединителей должна приводить к небольшим потерям оптической мощности на соединении;
  • соединители должны легко и быстро устанавливаться, не требуя дорогостоящего оборудования или длительного обучения персонала;
  • разъем должен гарантировать многократное подключение и отключения без каких-либо изменений уровня потерь;
  • потери должны быть регламентированы вне зависимости от времени установки соединителя;
  • цена соединителей и оборудования для их установки должна быть невысокой.

Исходя из этих факторов, техника соединения методом сварки используется, в основном, на сетях большой протяженности, где требования к качеству соединения и его затуханию особенно строги. Механические соединители используются, как правило, при прокладке оптического кабеля внутри помещений. Безусловно, потери, вносимые сварным соединением, значительно меньше, нежели при механическом соединении, а дорогой коннектор обладает меньшим затуханием, чем дешевый.

Согласно накопленного опыта [10] требования к потерям на соединителе следующие:

  • 0,2 дБ и менее для телекоммуникационных систем или для дальних линий связи;
  • 0,3-1 дБ для соединителей, используемых в контуре внутри здания: для локальных сетей или линий управления производством;
  • 1-3 дБ для соединителей в системах, где такого рода потери приемлемы и основным соображением выступает низкая стоимость. В таких системах, как правило, используется пластиковое волокно.

Как известно, существуют три причины возникновения потерь в волоконно-оптическом соединении:

  • внутренние причины, связанные с нестабильностью параметров самого волокна;
  • внешние причины, связанные непосредственно с соединителем;
  • системный фактор, отражающий параметры системы в целом.

Внутренние причины. Рассматривая соединение одного волокна с другим исходят из того, что оба волокна идентичны. Однако обычно это не так. Производство волокон оставляет некоторые допуски на воспроизводимость их параметров, варьирующихся в установленных пределах вблизи номинальных (специфицированных) значений. Потери в волокне обусловлены различием: диаметров модового поля, числовых апертур, диаметров сердцевины, диаметров оболочек, некруглостью сердцевины и/или оболочки; неконцентричностью сердцевины/оболочки.

На рис. 6.21 схематически представлены вариации параметров волокон, наиболее важных с точки зрения их влияния на потери.

Если диаметр сердцевины передающего волокна отличается от диаметра сердцевины приемного волокна, диаметр модового поля тоже будет шире или уже. В этом случае затухание сигнала изменяется в обоих направлениях, и определяется опытным путем с помощью рефлектометра при прохождении сигнала в одном из направлений. Соединение волокон с различными диаметрами модового поля дают неожиданные результаты в затухании сигнала (рис. 6.21 а).

Если передающее волокно имеет большую числовую апертуру, чем приемное волокно, то возникают потери. Свет будет излучаться в оболочку приемного волокна (рис 6.21 б). Когда NAпер, передающего волокна больше, чем NAприем приемного волокна, потери можно рассчитать по формуле [10]:

. (6.8)

Когда диаметр сердцевины передающего волокна больше, чем диаметр сердцевины приемного волокна, будут происходить потери, обусловленные тем, что некоторое количество света из передающего волокна вытекает в оболочку приемного волокна. Различие в диаметрах сердцевин также влияет на диаметр модового поля (рис. 6.21 в). Потери, обусловленные различием диаметров сердцевин соединяемых волокон, рассчитываются по формуле:

. (6.9)

При производстве волокна допуски на диаметр оболочки составляют ±2 мкм. Это означает, что волокно с диаметром 123 мкм может соединяться с волокном диаметром 127 мкм. При соединении методом сварки вязкость расплава обеспечивает относительно правильно съюстированные друг относительно друга волокна, но при механическом или полупостоянном соединении эти различия могут дать значительное возрастание потерь, особенно для одномодовых волокон (рис. 6.21 г). Особо большие потери возникают при соединении волокон с максимально большим различием диаметров оболочек. Для волокон с допуском 125±2 мкм максимальные потери составляют 1,4 дБ. Если допуск является ниже 125±1 мкм, максимальные потери снижаются до 0,7 дБ. Если кабели, содержащие одномодовые оптические волокна, оконцованны коннекторами, волокна и коннекторы должны быть очень точно съюстированны друг с другом, чтобы снизить потери из-за различия диаметров оболочек.

Рис. 6.21. Схематически представленные вариации параметров соединяемых волокон, наиболее важных с точки зрения их влияния на потери

Рис. 6.21. Схематически представленные вариации параметров соединяемых волокон, наиболее важных с точки зрения их влияния на потери

Некруглость сердцевины и оболочки могут оказывать такое же влияние, как и различие в диаметре сердцевины. Это влияние особенно очевидно в полупостоянных соединителях, где коннектор не имеет направляющих пазов, например SMA коннектор. В результате некруглость приведет к потерям во время каждого соединения (рис. 6.21 д).

Сердцевина волокна должна размещаться прямо в центре волокна. Неконцентричность приведет к потерям в соединении (рис. 6.21 е).

Внешние причины. Сами соединители также привносят определенные потери в соединение. Если центральные оси двух волокон недостаточно точно совмещены, потери возникают даже при отсутствии вариаций характеристик волокон.

Четыре основные причины возникновения потерь в соединителе, которые необходимо контролировать, это радиальное смещение, продольное смещение, угловое рассогласование ориентации осей, гладкость поверхности скола.

Радиальное смещение. Волокно в соединителе должно размещаться вдоль его центральной оси. Если центральная ось одного волокна не совпадает с центральной осью другого, то неизбежно возникновение потерь. Зависимость потерь от отношения абсолютной величины смещения L к диаметру волокна 2a представлена на графике рис. 6.22. Из графика видно, что относительное смещение в 10 % приводит к потерям на уровне 0,5 дБ. Для волокна с диаметром сердцевины 50 мкм относительное смещение в 10 % означает реальное смещение на уровне в 5 мкм, что, в свою очередь, соответствует смещению в каждом соединителе на 2,5 мкм. Очевидно, что контроль бокового смещения особенно затруднен в волокнах малого диаметра. Производители соединителей стремятся ограничить смещение до уровня менее 5 % от диаметра ядра.

Рис. 6.22. Потери от бокового смещения волокон

Рис. 6.22. Потери от бокового смещения волокон

Рис. 6.23. Потери от зазора между сколами

Рис. 6.23. Потери от зазора между сколами

Продольное смещение. Соединение двух волокон, разделенных небольшим зазором, подвержено двум видам потерь (рис. 6.23). Первый — это френелевское отражение, связанное с разнитей показателей преломления волокон и среды в зазоре (обычно воздуха). Френелевское отражение происходит как на выходе из первого волокна, так и на входе во второе волокно. В стеклянных волокнах, разделенных воздушным зазором, потери от френелевского отражения составляют около 0,34 дБ. Френелевские потери могут быть существенно снижены при использовании в зазоре жидкости с согласованным показателем преломления. Такая жидкость представляет собой либо оптически прозрачную среду, либо гель, имеющий показатель преломления, близкий к показателю преломления стекла.

Второй вид потерь в многомодовых волокнах связан с потерей мод высокого порядка при прохождении светом зазора и на входе в сердцевину второго волокна. Свет, выходящий из первого волокна, распространяется в некотором конусе. Величина потерь, связанных с этим эффектом, зависит от величины NA волокон. Волокно с большим значением NA не допускает столь большого зазора между волокнами при том же уровне потерь, что волокно с меньшим значением NA.

Рис. 6.24. Потери от углового рассогласования ориентаций осей

Рис. 6.24. Потери от углового рассогласования ориентаций осей

Для уменьшения потерь волокна следует соединять вплотную. В большинстве неразъемных соединителей волокна действительно устанавливаются вплотную. В разъемах иногда нужен небольшой зазор для предотвращения появления царапин на сколе при подключении. Волокна, прижатые друг к другу с большим усилием при подключении соединителя, могут даже потрескаться. Поэтому некоторые соединители сконструированы таким образом, чтобы был небольшой зазор между волокнами, в других используется фиксированное прижимающее давление для мягкого контакта волокон, исключающего появление повреждений. Физический контакт волокон часто необходим для регулирования обратных, отражений, которые обсуждаются ниже в этой главе.

Угловое рассогласование ориентации осей. Сколы обработанных волокон должны быть перпендикулярны осям волокон и параллельны друг другу при соединении. Потери (рис. 6.24) связаны с угловым рассогласованием ориентации волокон относительно друг друга. Снова, как и ранее, уровень потерь определяется NA волокон. Влияние NA в данном случае противоположно эффекту наличия зазора между волокнами. Большее значение NA допускает большее угловое рассогласование для ограничения потерь на том же уровне, что и при меньшем значении апертуры.

При правильном использовании соединителя угловое рассогласование ориентации практически исключается, так что связанные с этим эффектом потери существенно меньше потерь, связанных с боковым смещением. При скалывании волокна и полировке стекла контролируется перпендикулярность поверхности по отношению к оси волокна.

Гладкость поверхности скола. Поверхность скола должна быть гладкой и не содержать трещин, выбоин и заусениц (рис. 6.25). Неровная поверхность разрушает геометрическую картину световых лучей и рассеивает их, что затрудняет ввод лучей во второе волокно [10].

Рис. 6.25. Возможные поверхности скола ОВ

Рис. 6.25. Возможные поверхности скола ОВ

Потери в системе. Потери, возникающие в соединении, могут быть связаны не только с волокном или соединителем, но и непосредственно с системой. Первоначально волокно может быть переполнено или полностью насыщено излучением источника света, при этом свет переносится также в модах оптической оболочки и в модах высокого порядка. С расстоянием эти моды будут покидать систему. При достижении равновесного модового состава волокно со сглаженным профилем показателя преломления имеет меньшее значение NA и меньшую активную площадь сердцевины, используемую для переноса света.

Рассмотрим соединитель, подключенный к источнику [1]. Волокно на передающей стороне соединителя может быть переполнено модами. Большая часть энергии света, находящегося в модах оптической оболочки и модах высокого порядка, не попадает во второе волокно, хотя и присутствует в соединении. В условиях равновесного модового состава свет в таких модах отсутствует, поэтому энергия заключенного света не теряется в соединении.

Рассмотрим принимающую часть волокна. Некоторая порция света после прохождения соединения волокон оказывается в модах оптической оболочки и в модах высокого порядка принимающего волокна. Если измерить принимаемую оптическую мощность на небольшом расстоянии от соединения, то эти моды еще присутствуют в общем потоке. На некотором расстоянии от соединения они теряются, так что их присутствие является временным.

Аналогичные эффекты наблюдаются, если точка соединения находится далеко от источника и в ней уже достигнуто состояние равновесного модового состава. Поскольку активная площадь волокна со сглаженным профилем уже уменьшена, боковое смещение не оказывает существенного влияния, особенно когда принимающее волокно имеет ограниченную длину. Свет снова переносится в модах высокого порядка и в модах оптической оболочки. Данные моды теряются в протяженном принимающем волокне.

Итак, передаточная характеристика соединителя зависит от модовых условий и положения соединителя в системе (состояние отдельной моды изменяется вдоль волокна). Проводя оценку затухания волоконно-оптического соединителя, надо принимать во внимание условия по обе стороны соединения. Существует четыре различных условия [1]:

  • короткий передающий сегмент, короткий принимающий;
  • короткий передающий сегмент, длинный принимающий;
  • длинный передающий сегмент, короткий принимающий;
  • оба сегмента длинные.

При заданных постоянных параметрах передаточная характеристика соединителя зависит от условий испускания и приема света. Например, в серии измерений, проведенных с одним соединителем при большой длине передающей части волокна, потери составляли 0,4 — 0,5 дБ, при небольшой длине 1,3 — 1,4 дБ. Таким образом, разница в 1 дБ может возникать из-за различия в условиях приема света.

Величина потерь в соединении многомодовых ОВ определяется [11] из выражению вида:

, (6.10)

где αd — потери, обусловленные разницей в диаметрах сердцевины d1 и d2 соединяемых волокон (6.9); αNA — потери, обусловленные разницей числовых апертур волокон (6.8); αC потери, обусловленные поперечным радиальным смещением L осей волокон; αθ — потери, обусловленные угловым смещением ОВ; αF— потери, обусловленные несогласованием показателей преломления — френелевскими потерями.

Потери αC, αθ определяются выражениями вида [11]:

, (6.11)

, (6.12)

где Вθ — коэффициент передачи соединения для многомодовых ОВ.

При ступенчатом и градиентном ППП этот коэффициент определяется выражениями вида:

, (6.13)

, (6.14)

где к=п1/п0и Δ=(п1-п2)/п1; п0— показатель преломления воздуха.

Потери, обусловленные френелевским рассеянием, определяются выражением вида:

, (6.15)

Величина потерь в соединении одномодовых ОВ определяется [11] по выражению вида:

, (6.16)

где αW потери, обусловленные несогласованностью диаметров модовых полей волокон.

Эти потери могут быть определены по выражению вида [11]:

, (6.17)

где w1 и w2 — диаметр модового поля первого и второго ОВ, соответственно.

Величина wi может быть приближенно определена при Гауссовом распределении поля по выражению:

(6.18)

Потери αС и αθ могут быть определены из выражений:

, (6.19)

, (6.20)

Не все факторы одинаково влияют на потери в соединениях при разных типах ОВ и соединителей [11]. Для многомодовых ОВ с градиентным ППП наиболее значимыми являются факторы, определяемые разницей диаметров сердцевин и разницей числовых апертур волокон, радиальным смещением и непараллельностью осей ОВ.

Для одномодовых ОВ по важности влияния на суммарную величину потерь в соединении следует отметить поперечное и угловое смещения осей, деформацию сердцевины, несогласованность размеров модовых полей ОВ.

6.3.2. Подготовка ОВ к сращиванию

Процесс подготовки ОВ к сращиванию включает снятие первичного защитно-упрочняющего покрытия волокна, скалывание для получения хорошо обработанной торцевой поверхности волокна, обтирку зачищенных концов мягким материалом, пропитанным растворителем (спиртом).

В настоящее время часто используются ОВ с эпоксиакрилатным первичным защитно-упрочняющим покрытием. Такое покрытие может быть удалено либо механическим, либо химическим способом.

Для удаления эпоксиакрилатного покрытия механическим способом используется инструмент, основным рабочим элементом которого служат стальные лезвия толщиной 0,3 мм. Защитное покрытие желательно удалять за один проход, при этом повреждение поверхности световода должно быть минимальным. Необходимо тщательно подобрать усилие зачистки, что требует приобретения навыков и постоянной тренировки. Механический способ удаления покрытия уменьшает прочность сварного соединения примерно на 10 %. Надрезание покрытия и последующее его стягивание вызывают на поверхности ОВ миниатюрные повреждения вследствие фрикционных сил. Зачищенное ОВ закрепляют в держателях сварочного аппарата, что также повреждает его поверхность.

Наиболее удобным, исключающим указанные дефекты, является химический способ снятия эпоксиакрилатного покрытия с помощью подогретого до определенной температуры растворителя. Для этой цели целесообразно использовать специальное нагревательное устройство типа УН-1. Конец ОВ погружают в подогретый растворитель (например, ацетон) и выдерживают в течение некоторого времени (как правило, около 20 … 25 с). Покрытие разбухает, отстает от поверхности световода и легко снимается чистой мягкой ветошью.

Оптимальные режимы для снятия эпоксиакрилатного покрытия с помощью различных растворителей [2]приведены в табл. 6.5.

Таблица 6.5. Режимы для снятия эпоксиакрилатного покрытия ОВ

Растворитель

Время выдержки ОВ в растворителе до полного размягчения защитного покрытия, мин., при температуре, оС

Класс опасности растворителя

+24

+50

Ацетон

3

1

4

Муравьиная кислота

3

1

2

Дихлорэтан

1

2

Уксусная кислота

1

2

Диметилформамид

1

2

Растворитель 646

3

Растворитель 647

3

Чистота поверхности ОВ перед сваркой играет значительную роль. Нагретый свыше 480оС кварц активно вступает в реакцию с жирами и другими веществами, загрязняющими близлежащую поверхность. Образующаяся стеклянная корка легко растрескивается, что может привести изделие в негодность. Посторонние примеси, частицы на поверхности свариваемого ОВ могут стать центром развития процесса расстекловывания, что снижает прочность места сварки. Плохая очистка (остатки материала защитного покрытия или просто посторонние частицы) служит причиной образования пузырей в месте сварки, включений, что увеличивает вносимые потери на стыке.

С поверхности ОВ желательно также удалить трещины, возникающие при снятии покрытия и уменьшающие прочность места сварки. Это осуществляют либо травлением ОВ в растворе плавиковой кислоты, либо плавлением поверхности волокон при действии высокой температуры. Вследствие указанных выше причин в настоящее время механические способы удаления покрытия ОВ применяются лишь при подготовке концов волокна к производству измерений. При монтаже муфт ОК первичное эпоксиакрилатное покрытие ОВ удаляют химическим способом (в горячем ацетоне).

Для получения хорошо обработанной торцевой поверхности ОВ проводят операцию скалывания: на поверхность световода с удаленным первичным покрытием наносят насечку с последующим приложением к ней растягивающей, изгибающей нагрузок или их комбинации, вызывающих рост трещины и облом световода в данном месте. Существуют механические и электронные устройства скола ОВ.

При монтаже многомодовых ОК используется механический инструмент, позволяющий получить скол ОВ достаточно высокого качества. Образование ровного и перпендикулярного относительно оси скола обеспечивается за счет нанесения резцом надреза на поверхности предварительно напряженного, растянутого и изогнутого ОВ. Резец с определенным углом заточки выполнен в виде стальной пластинки с алмазным напылением или из специального твердого сплава. Инструмент такого типа показан на рис. 6.26.

Инструмент состоит из основания 1, на котором жестко закреплены планка 2 и прикрепленная на ней пластина 3. На конце этой пластины закреплена подложка 4, которая имеет направляющую канавку для укладки ОВ. Прижим 5, прижимаемый пружиной 6, и крышка 9, на которой укреплен резец 7, соединены с основанием 1 посредством оси 8. Крышка 9, прижимом 5 фиксирует волокна в положении зажима.

Рис. 6.26. Механический инструмент для скола ОВ

Рис. 6.26. Механический инструмент для скола ОВ:

а — общий вид; б — процесс скола

В ручном полуавтоматическом инструменте для скола ОВ обеспечивается фиксация волокна с удаленным покрытием. При нажатии рычага (кнопки) управления инструмента одновременно с натяжением волокна резцом наносится надрез (насечка) на его поверхности. Растягивающие усилия, прикладываемые к ОВ, и сила удара резца поддерживаются постоянными и регулируются. Смещение резца относительно ОВ после нанесения насечки увеличивает рабочий участок режущей поверхности и срок службы инструмента. Инструмент позволяет стабильно получать удовлетворительные сколы ОВ.

Стабильно высокое качество сколов ОВ при минимальных требованиях к квалификации персонала получают при использовании автоматических устройств — электронных скалывателей. Волокно с удаленным покрытием фиксируется в инструменте. Под действием электронноуправляемого двигателя резец вибрирует с низкой частотой и нарастающей амплитудой, приближаясь к волокну, которое натягивается синхронно с частотой вибрации резца. При нанесении резцом насечки на поверхности волокна под действием растягивающих усилий ОВ обламывается. Электронные скалыватели могут быть использованы как при монтаже, так и при подготовке к измерениям много- и одномодовых кабелей. Скол одномодовых ОВ рекомендуется выполнять только с помощью электронных скалывателей.

В электронных скалывателях фирмы Sumitomo Electric и фирмы Ericsson сколы выполняются без деформацииторцевой поверхности ОВ (рис. 6.27).

6.3.3. Способы сращивания ОВ

Для соединении ОВ кабелей связи применяют сварку ОВ; соединение с помощью механических сростков; склеивание.

Сварку проводят с помощью электрической дуги, кислородно-водородной горелки, хлороводородной горелки, СО-лазера, плазменного генератора. Из всех способов практическое применение при монтаже ОК в процессе строительства и эксплуатации ВОЛС нашел только способ сварки с помощью электрической дуги.

Методы сварки электрической дугой многомодовых ОВ основаны на явлении возникновения сил поверхностного натяжения расплавленного кварца, которые уменьшают имеющееся смещение осей свариваемых волокон. Действие этих сил может регулироваться выбором оптимальных значений и тщательным контролем расстояния между электродами, величины дуги тока, длительности предварительного оплавления торцов ОВ, длины хода сжатия (усилия сдавливания ОВ), времени нагрева при сварке и температуры нагретого ОВ. Возникающих центрирующих усилий вполне хватает, чтобы вносимые в месте сварки многомодовых ОВ потери были незначительными. Как показали исследования, эти потери в месте сварки с надежностью 85 % не превышают 0,1 дБм.

При сварке одномодовых волокон приходится решать сложные инженерные задачи, связанные с необходимостью обеспечения малых значений осевого и углового смещений. Например, осевое смещение свариваемых одномодовых ОВ не должно превышать 0,1 мкм. Жесткий допуск по смещению продольных осей соединяемых одномодовых ОВ обусловлен тем, что силы поверхностного натяжения не могут обеспечить для данного типа волокна с диаметром сердцевины 5…8 мкм точную юстировку. Такие допуски при юстировке одномодовых ОВ не могут быть достигнуты вручную. В комплектах для сварки одномодовых ОВ используются системы автоматической юстировки со специальными микроподвижками, системой контроля качества юстировки и электронным блоком управления. Согласно [10] простая иллюстрация наиболее важных шагов при сварке ОВ представлена на рис. 6.28.

Процесс сварки ОВ в современных сварочных аппаратах может быть представлен следующим образом. Концы волокон устанавливаются друг относительно друга, каждое волокно фиксируется в подвижном V-образном блоке с магнитными зажимами. В большинстве современных сварочных аппаратов весь процесс является автоматическим. С помощью микропроцессора и электронной технологии сканирования концы волокон юстируются друг относительно друга с точностью 1/10000 мм [10]. Эта юстировка также контролирует угол скола и чистоту концов волокна. Концы волокна нагреваются с помощью электрической дуги между двумя точечными электродами и затем соединяются вместе образуя единое соединение.

В процессе сварки берут определенное количество электронных сканированных изображений, с которых можно наблюдать визуально или с помощью математического анализа качество соединения.

Рис.6.28. Иллюстрация наиболее важных шагов сварного соединения

Рис.6.28. Иллюстрация наиболее важных шагов сварного соединения

Места соединения ОВ защищают одним из следующих способов: восстановлением защитного покрытия, заливкой места стыка эпоксидным компаундом и с помощью специальных гильз для защиты соединений световодов.

Рис.6.29. Конструкция гильзы для защиты сростка ОВ

Рис.6.29. Конструкция гильзы для защиты сростка ОВ: 1-трубка из сэвилена; 2-металлический стержень; 3-термоусаживаемая трубка; 4-ОВ

Защитное покрытие восстанавливают, используя материалы с аналогичными свойствами. При этом соблюдают допуски, установленные на покрытия ОВ, а также технологические приемы их нанесения. Сросток ОВ укладывают в пресс-форму, наносят эпоксиакрилатную композицию, обладающую малой усадкой и хорошей адгезией к кварцу. Затем композицию отверждают с помощью ультрафиолетового излучения. Пресс-форма содержит вкладыш из прозрачного для ультрафиолетового излучения материала, в котором сформирован канал для ОВ. За счет этого диаметр восстановленного покрытия и концентричность соответствуют параметрам исходного волокна. В полевых условиях данный способ применять сложно. Для защиты сростка ОВ эпоксидным компаундом используют, как правило, специальные приспособления (ложементы) из металла или пластмассы. Волокно помещают внутрь приспособления и заливают эпоксидной смолой. Ускорение процесса полимеризации компаунда обеспечивается подогревом.

Однако на практике наиболее широко применяется способ защиты сростков ОВ с помощью специальных гильз: ГЗС (гильзы для защиты сростков) или КДЗС (комплект деталей для защиты сростков) [2]. Конструкция ГЗС (рис. 6.29) содержит термоусаживаемую трубку, внутри которой находится несущий металлический стержень диаметром 1,0 мм, и трубку из материала высокой текучести — сэвилена.

Перед сваркой волокон гильзу надевают на один из сращиваемых концов ОВ. После сварки ее надвигают на место сварки и нагревают. В процессе нагрева и усаживания трубки сэвилен расплавляется и уплотняется вокруг ОВ. Несущий металлический элемент надежно защищает ОВ от изгиба внутри термоусаживаемой трубки.

Рис.6.30. Механический сросток типа Fiberlock

Рис.6.30. Механический сросток типа Fiberlock: а-соединитель при укладке ОВ; б, в-соединитель в собранном виде; 1-волокно; 2-пластмассовая крышка; 3-металлический выравнивающий элемент; 4-пластмассовое основание

Наиболее успешно со сваркой конкурирует способ соединения ОВ с помощью специальных соединителей — механических сростков. Подготовка ОВ в данном случае проводится так же, как и для сварки. Для механического соединения концы подготовленных волокон поочередно укладывают в каналы, образованные выравнивающими элементами устройства, после чего обе половины устройства соединяют, фиксируя ОВ. Под действием давления выравнивающих элементов соединяемые волокна юстируются. Наиболее известны механические сростки типа Fiberlok фирмы ЗМ (США) (рис. 6.30). Потери в таком соединении не превышают 0,1 дБм [12].

Часть механических соединителей реализуется с помощью трубок с прецизионными отверстиями (рис. 6.31). При реализации этого вида соединения ОВ два конца волокна соединяются внутри одной и той же трубки, часто заполненной жидкостью с согласующим показателем преломления. Соединение защищено эпоксидным клеем [10].

Рис.6.31. Механический соединитель, реализованный на базе трубки с прецизионным отверстием

Рис.6.31. Механический соединитель, реализованный на базе трубки с прецизионным отверстием

Еще одним видом механического соединения ОВ является соединение, реализованное на базе трех прутков. Такой соединитель быстро и легко изготавливается и состоит из трех стальных прутов с таким диаметром, что когда пруты лежат продольно друг с другом между ними формируется канал имеющий тот же диаметр, что и соединяемые волокна (рис. 6.32).

Рис.6.32. Соединитель из трех стальных прутков

Рис.6.32. Соединитель из трех стальных прутков

Рис.6.33. Метод механического соединения до12 лент с волокнами в соединительной матрице

Рис.6.33. Метод механического соединения до12 лент с волокнами в соединительной матрице

Термоусаживающаяся трубка держит пруты вместе. После внесения жидкости с согласующим показателем преломления концы волокон вставляются с различных концов в канал, образуя таким образом простое полупостоянное соединение. Соединитель из трех прутов используется в основном для различных измерений, где требуется быстрое соединение с лазером или измерителем мощности. При использовании жидкости с согласующим показателем преломления могут быть получены потери около 0,2 дБ [10].

Большое количество сложных механических соединителей требуется для изготовления соединения кабеля с ленточной укладкой волокон. Общий вид такого соединителя показан на рис. 6.33. Оба конца лент с волокнами зачищаются от первичного и вторичного покрытий. Волокна помещаются друг против друга между двумя силиконовыми пластинками, одна из которых имеет протравленные с большой точностью канавки. Затем две пластинки фиксируются с помощью пружинных зажимов. Волокна соединяются друг с другом и согласующая жидкость вводится в канавки. Несколько таких пластинок могут крепиться одна на другую, образуя таким образом соединительную матрицу для многоволоконного кабеля. До 144 волокон могут быть соединены таким образом [10].

Основной недостаток, ограничивающий применение механических сростков, это чрезвычайно высокие требования, предъявляемые к стабильности геометрических размеров соединяемых с их помощью волокон, в том числе и к диаметру волокна по первичному покрытию. Наибольшее распространение механические сростки находят на одномодовых ВОЛС.

Основным фактором, сдерживающим внедрение соединения ОВ методам склеивания, является отсутствие клея-запоЛнителя с оптическими характеристиками, близкими к кварцу, и способного за короткое время (до 10 мин) обеспечить жесткое фиксирование ОВ в конструкции соединителя. Применяемые в большинстве случаев клеи на основе эпоксидных компаундов, обладающие хорошими оптическими и прочностными характеристиками, имеют время полимеризации 2…24 ч. При повышенной влажности, что характерно для полевых условий, этот процесс еще более замедляется. Известен способ, когда для быстрого протекания реакции полимеризации в эпоксидную смолу марки Э-20 включают добавки алюминиевой пудры (около 5% объема смолы), создают необходимые температурные условия и подвергают сросток ультрафиолетовому излучению. Для этого сросток помещают в специальную камеру [2].

В практике при строительстве и эксплуатации ВОЛС метод склеивания самостоятельно пока не применяется. Волокна склеивают в механических сростках. Потери в таких соединениях составляют менее 0,1 дБм [2].

Совсем другие проблемы возникают в полупостоянных соединителях. Они должны соединяться и разъединяться много раз без увеличения затухания. Это означает, что к ним предъявляются требования на механическую прочность и долговечность и это практически применимо к коннекторам для соединения одномодовых волокон.

Можно сформулировать дополнительные требования к полупостоянным соединителям [10]. Они должны иметь точную концентричность; эффективную защиту против пыли и влаги. Соединение должно выдержать растягивающую нагрузку без увеличения затухания. Соединитель должен легко соединяться с кабелем (даже в случае полевого соединения), а также легко соединяться и разъединяться. Соединение должно быть долговечным.

Сегодня на рынке много различных видов механических соединителей, которые делятся на цилиндрический наконечник; конический наконечник; соединитель с расширенным излучением; коннектор для ленты с волокнами.

Рис.6.33. Метод механического соединения до12 лент с волокнами в соединительной матрице

Рис.6.33. Метод механического соединения до12 лент с волокнами в соединительной матрице

Рис.6.34. Два соединителя с цилиндрическим наконечником, вмонтированным в соединительную муфту

Рис.6.34. Два соединителя с цилиндрическим наконечником, вмонтированным в соединительную муфту

Наиболее простым и недорогим видом изготовления механического соединителя является изготовление цилиндрического наконечника в виде стального или керамического наконечника. Наконечник одноволоконного оптического кабеля центрируется против наконечника одноволоконного кабеля в цилиндрической втулке (рис. 6.34). Выполнение этого вида механического соединения (некоторые из которых могут быть пригодны в полевых условиях) зависит в большой степени от концентричности отверстия в наконечнике и соединительной втулке. Среднее значение потерь составляет 0,2 — 1 дБ, в зависимости от формы и конечной поверхности (плоская или полусферическая).

Механический соединитель более сложной конструкции имеет конический наконечник. Концы содиняемых наконечников отшлифованы в конической форме для удобства центоовки (рис. 6.35). Соединительная втулка, в которую они вставляются, имеет биконическую форму отверстия. Качество соединения полностью зависит от качества шлифовки концов наконечников. Соединители с таким видом наконечников изготавливаются в заводских условиях. Среднее значение потерь составляет 0,3 дБ.

В соединителе с расширенным излучением свет из передающего волокна расширяется через линзу, создающую поток параллельных лучей света, который имеет большой диаметр (по сравнению с волокном). После соединения лучи направляются снова через линзу в приемном волокне (рис. 6.36). Этот метод используется для соединения военных кабелей в полевых условиях [10]. Преимущества этого метода в том, что соединяемые концы не подвергаются загрязнению как в случае ряда других видов механических соединителей. Обычно несколько волокон соединяются в одном соединителе.

Рис. 6.36. Схематическое изображение соединителя с расширенным излучением

Рис. 6.36. Схематическое изображение соединителя с расширенным излучением

Механический соединитель для ленты с волокнами имеет не цилиндрическую конструкцию. Лента с волокнами может иметь 1,4,8 или более параллельных волокон в первичном покрытии зафиксированных вместе в виде ленты. Поэтому соединитель должен иметь определенное количество отверстий диаметром 125 мкм, расположенных в ряд. Расстояние между отверстиями должно соответствовать расстоянию между волокнами в ленте. Основная конструкция соединителя для ленточной укладки волокон приведена на рис. 6.37 [10].

Рис. 6.37. Схематическое изображение соединителя для ленты с восьмью волокнами

Рис. 6.37. Схематическое изображение соединителя для ленты с восьмью волокнами

6.3.4. Оконцовка волокна

Для стыковки двух ОВ с помощью коннекторов каждое волокно должно иметь на конце соединитель. В большинстве случаев неразъемный соединитель является более простым устройством, чем разъемный соединитель (разъем). Одноразовый (неразъемный) соединитель состоит всего лишь из нескольких частей, сварочный — в простейшем варианте вообще не имеет дополнительных компонент. Волоконно-оптический соединитель должен [1]: закреплять волокно вдоль оптической оси; предохранять волокно; связывать волокно с кабелем. Под этим подразумевается, что кабель, обычно имеющий силовые элементы, также предохраняет волокно от прилагаемого натяжения.

Части оконцованного соединителя связываются друг с другом соединительным патроном (рис. 6.38). Патрон имеет высверленное с высокой точностью отверстие и внешние зажимы для быстрого закрепления частей устройства. Высверленная часть бывает либо чисто металлической, либо содержит пластиковую вставку, обеспечивающую эластичное уплотнение соединителя.

Рис. 6.38. Соединитель

Рис. 6.38. Соединитель

В большинстве соединителей для поддерживания волокна вдоль оптической оси используются специальные наконечники. В каком-то смысле многие соединители отличаются только корпусами, включающими в себя наконечники. Керамические наконечники позволяют достичь лучшего качества, чем металлические и пластиковые, кроме того, они наиболее предпочтительны для одномодовых волокон. Керамика является прочным материалом, позволяющим высверливать отверстие под волокно с высокой точностью. Кроме того, она имеет прекрасные температурные и механические свойства, которые практически остаются прежними при изменении температурных и других внешних условий.

Пластиковые наконечники снижают стоимость соединителя, но обеспечивают менее качественное соединение. Наконечники из нержавеющей стали имеют промежуточные характеристики. Их популярность объясняется прочностью и меньшей хрупкостью по сравнению с керамикой.

Для наконечников используется два вида керамик: окись алюминия и окись циркония. Первоначально применяли окись алюминия — твердый, неэластичный материал, позволяющий очень точно выдерживать допуски. Коэффициент теплового расширения окиси алюминия — степень увеличения или уменьшения линейных размеров образца при изменении температуры — очень близок аналогичному коэффициенту для стекла. Недостатком данного материала является его хрупкость и разрушение при незначительных давлениях. Кроме того, полировка окиси алюминия достаточно сложна, особенно в полевых условиях.

Окись циркония — более мягкий вид керамики и более устойчивый по отношению к механическим ударам. Он к тому же достаточно прочен и позволяет выдерживать допуски подобно окиси алюминия, но, в отличие от нее, легче полируется. Наиболее популярный размер наконечника равен 2,5 мм в диаметре, что фактически стало стандартом.

Рис. 6.39. LME коннектор

Рис. 6.39. LME коннектор

LME коннектор с цилиндрическим наконечником для использования с многомодовыми волокнами был разработан фирмой Ericsson. Он может быть рассмотрен как предшественник SMA коннектора. В отличие от SMA (на который существует мировой стандарт) ЬМЕ коннектор имеет направляющий соединитель, который удерживает неподвижно наконечники для их соединения (рис. 6.39).

SMА коннектор является одним из первых стандартизованных коннекторов для волоконно-оптического кабеля, принятый к эксплуатации во многих странах мира. Коннектор, предназначенный для соединения только многомодового волокна, (рис. 6.40) имеет цилиндрическую форму с непружинным наконечником диаметром 3,174 мм. В нем существует воздушная прослойка между двумя частями коннекторов, которые скручены в соединительной втулке. Существует риск повреждения при соединении этих частей коннектора. Волокна приклеиваются в наконечнике, и затем полируются и шлифуются. После полировки наконечник должен иметь длину 9,808 мм. При шлифовке наконечника получают три степени точности. Силовые элементы кабеля зажимаются с помощью пластикового рукава на другом конце коннектора. SMA коннектор применяется для соединения или разъединения в полевых условиях и исполыуется преимущественно для соединения в сетях передачи данных, структурированных сетях, датчиках и другом оборудовании, использующем многомодовые волокна.

Рис. 6.40. SMA коннектор

Рис. 6.40. SMA коннектор

FC коннектор был разработан первоначально японской фирмой NTT. В отличие от коннекторов, описанных выше, FC коннектор имеет пружинный наконечник цилиндрической формы (рис. 6.41). Наконечник имеет диаметр 2,499 мм, который немного меньше диаметра наконечника SMA коннектора. Наконечник имеет отшлифованную поверхность, которая отражает свет в обратном направлении к передатчику. Поэтому FC коннектор рекомендуется только для использования с передатчиком, имеющим лазерный источник света. Преимущество пружинного наконечника заключается в том, что конечные поверхности коннекторов могут лежать друг против друга и нет строгих норм к длины наконечника.

Рис. 6.41. FC коннектор

Рис. 6.41. FC коннектор

В дальнейшем был разработан FC/РС коннектор с уменьшенным отражением от конечной поверхности. Конечная поверхность была отшлифована в полусферической форме (рис. 6.42). Конец сначала отшлифовывался с радиусом кривизны 60 мм, но для большего уменьшения отражения в настоящее время радиус составляет 20 мм. В случае использования в качестве передатчика лазерного диода рекомендуется использовать PC коннектор, потому что у него маленький коэффициент отражения. PC коннектор также рекомендуется использовать в тех случаях, когда в будущем планируется заменить светодиодный источник света на лазерный.

Рис. 6.42. Шлифовка наконечника формы сферического изгиба

Рис. 6.42. Шлифовка наконечника формы сферического изгиба: а-супер РС методом; б-ультра РС методом

Наконечники в FC и FC/РС коннекторах сделаны из нержавеющей стали с керамическими капиллярами или являются полностью керамическими. Последний вид исполненная имеет низкую стоимость; более лучший физический контакт и долговечность.

FC/РС коннектор преимущественно используют в телефонных распределительных панелях, повторителях и на линиях большой протяженности для соединения активных элементов или в высокоскоростных передатчиках (лазеры или там, где требуется низкий коэффициент отражения).

Коннекторы монтируются на одно- или двухволоконный кабели (пигтейл), которые затем соединяются (механически или методом сварки) с волокнами волоконно-оптического кабеля. Патчкорды используют для соединения и разъединения передающего или измерительного оборудования.

Рис. 6.43. SC коннектор

Рис. 6.43. SC  коннектор

SC коннектор это новый стандартный коннектор, разработанный японской фирмой NNT (рис. 6.43). Корпус коннектора — пластиковая прямоугольная коробочка с фиксирующейся за глушкой. Наконечник выполняется из керамики и фиксируется пружиной. Диаметр наконечника такой же как и у FC и FC/PC коннекторов. Он имеет в основном те же оптические характеристики, что и РС коннектор, но его плотность увеличена в 8 раз. Все части, не влияющие на оптические характеристики коннектора, изготовлены из пластика. Область его использования та же, что и у коннекторов, описанных выше.

Рис. 6.44. ST коннектор

Рис. 6.44. ST  коннектор

ST коннектор выпускают как для одномодового так и для многомодового волокна (рис.6.44) ST коннектор соединяется и разъединяется методом штыкового соединения, это похоже на BNC коннектор для коаксиальных кабелей. Наконечники обоих коннекторов выпускаются или металлокерамическими или полностью керамическими.

Рис. 6.45. LС коннектор

Рис. 6.45. LС коннектор

Малогабаритные коннекторы типа LC (рис. 6.45) относятся к новому поколению оптических коммутационных изделий и разработаны американской компанией Lucent Technologies в 1997 г. Конструкция соединителя, выпускаемая как в одномодовом, так и в многомодовом вариантах, основана на применении керамического наконечника диаметром 1,25 мм и пластмассового корпуса с внешней лепестковой защелкой для фиксации в гнезде соединительной розетки. Коннектор допускает как одиночное, так и дуплексное использование.

Наконечник с внешним диаметром 1,25 мм и специальными конструктивными решениями существенно улучшает массогабаритные показатели коннектора и розетки. Розетка по своим посадочным местам полностью соответствует стандартному гнезду RJ-45 и за счет этого позволяет установку во все стандартные из cтандартные изделия Lucent Technologies при увеличении плотности портов вдвое без изменения внешних габаритов. Разработчики коннектора гарантируют до 500 циклов включения-отключения без ухудшения характеристик потерь. Этому, наряду с использованием керамического наконечника, способствует принцип линейного включения вилки в гнездо (push pull).

Для установки коннектора LС применяются стандартные процедуры заклейки на эпоксидной смоле. Конструкция коннектора допускает его монтаж как на волокне в буферном покрытии 0,9 мм, так и на соединительных шнурах с 2,4-мм шлангом. При этом монтаж на 900-микрометровое волокно может производиться в полевых условиях, тогда как наклейка на кабель в шланге 2,4 мм в процессе изготовления соединительных шнуров из-за малых габаритов выполняется только на производстве.

FDDI коннектор разработан преимущественно для высокоскоростных сетей передачи данных, что требовало передачи сигналов на большие расстояния (свыше 2 км между пунктами). FDDI коннектор имеет конструкцию сдвоенного волоконного кольца (рис. 6.46).

Рис. 6.46. Коннектор для FDDI сети. Коннектор содержит оконцовку входного и выходного волокна

Рис. 6.46. Коннектор для FDDI сети. Коннектор содержит оконцовку входного и выходного волокна

Коннектор с линзовым расширением луча разработан для использования в особенно жестких условиях эксплуатации. Волокно снабжено линзами на концах коннектора. Линзы расширяют луч, выходящий из волокна, затем он передается через коннектор на другой конец, где похожая линза производит обратный процесс. Расширенный луч менее чувствителен к загрязнению.

Коннектор с линзовым расширением луча может использоваться для оконцовки от одного до четырех волокон (рис. 6.47).

Рис. 6.47. Коннектор с линзовым расширением луча

Рис. 6.47. Коннектор с линзовым расширением луча

Рис. 6.48. MТконнектор

Рис. 6.48. MТконнектор

MT коннектор используется для соединения 1,4,8 волоконных оптических ленточных кабелей.(рис.6.48). Он имеет исключительно маленькие размеры 3х7х10 мм. В качестве направляющих для юстировки оптических волокон в его конструкции используются два металлических стержня. Поверхности коннектора зашлифованы параллельно, и коннектор держится вместе с пружиной. Потери в МТ коннекторе не должны превышать 1 дБ.

Рассмотрев конструкции соединителей ОВ можно отметить следующее. Оптические волокна соединяются с помощью постоянных или полупостоянных соединений. Наилучшее соединение получается при сварке волокон вместе с помощью сварочного аппарата. Этот метод соединения является недорогим, если делать большое количество сварок. Для линий небольшой длины, где требования к потерям на соединение не такие строгие, в качестве более дешевой альтернативы используют механические соединители.

Существует большое количество различных коннекторов. Для структурированных сетей и низкоскоростных оптических сетей коннекторы могут быть подготовлены, отшлифованы и отполированы прямо на месте установки специальным оборудованием, индивидуальным для каждого вида монтажа. На телефонных станциях ГТС и междугородных ОРП оконцовка кабелей больших телекоммуникационных сетей всегда осуществляется коннекторами, отшлифованными заводским способом. Существуют коннекторы для многомодовых и одномодовых волокон. В последнее время разработаны специальные виды коннекторов, например FDDI коннекторы, разработанные для соединения сетей с высокими требованиями.

6.3.5. Конструкции муфт ОК и особенности их монтажа

Муфты ОК различают по назначению: для магистральных и городских сетей связи; для кабелей, прокладываемых в канализации, в грунт, под водой и подвешиваемых на опорах; прямые и разветвительные муфты (перчатки). По конструкции муфты могут быть проходными (рис.6.49) и тупиковыми (рис. 6.50).

Рис. 6.49. Схемы проходных муфт

Рис. 6.49. Схемы проходных муфт:

а — прямая; б — разветвительная;

1 — основной кабель; 2 — муфта; 3 — ответвляющиеся кабели

Поскольку существует большое количество конструкций ОК, а также многообразие условий их прокладки, то и весьма велик перечень оптических муфт, обеспечивающих их соединение.

Рис. 6.50. Схемы тупиковых муфт

Рис. 6.50. Схемы тупиковых муфт: а-прямая; б-разветвительная; 1 — основной кабель; 2 — муфта; 3 — ответвляющиеся кабели

За рубежом применяют различные варианты сборных муфт, которые могут использоваться многократно. Герметичность подобных муфт обеспечивается с помощью специальных прокладок, резьбовых и болтовых соединений. В России и Украине сертифицированы муфты зарубежных фирм, среди которых, в первую очередь, следует назвать муфты фирм Тусо Electronics Raychem и Reichle & De-Massari (рис. 6.51).

В СССР производство оптических муфт было освоено в середине 80-х годов опытным заводом треста «Мостелефонстрой». В настоящее время ведущим производителем таких муфт на территории СНГ является юридический преемник завода — ЗАО «Связьстройдеталь». Производимые в настоящее время муфты сформировались в результате сотрудничества ЗАО «Связьстройдеталь» с такими ведущими операторами связи как Московская ГТС, АО «Ростелеком», АО «Транстелеком», строительными организациями и кабельными заводами. Разрабатывает конструкции и производит оптические муфты также опытный завод АО «Лентелефонстрой» (С.-Петербург). Подробно познакомиться с конструкциями оптических муфт и методами их монтажа можно в [13]. Здесь ограничимся лишь краткой характеристикой основных типов муфт производства ЗАО «Связьстройдеталь».

Рис. 6.51. Муфты для ОК фирм

Рис. 6.51. Муфты для ОК фирм:

e — Raychem (FOSC 400 А4); б — Reichle 8 De-Massari (R301389)

Ни один изготовитель не в состоянии создать универсальный комплект муфты, который подходил бы для любого кабеля и для любого места установки муфты. Поэтому, как правило, создаются минимальные, так называемые базовые комплекты, которые при необходимости пополняются всеми нужными деталями и материалами. «Связьстройдеталь» все дополнительные детали и материалы группирует в специальные комплекты: базовые, монтажные, эксплуатационные, установочные, защитные, заземляющие и ремонтные.

Рис. 6.52. Муфта оптическая городская МОГ-01-IV (проходная)

Рис. 6.52. Муфта оптическая городская МОГ-01-IV (проходная)

В базовый комплект входит минимальный набор деталей: корпус муфты, внутренний кронштейн и крепежные детали, одна кассета для выкладки оптических волокон и фиксации защитных гильз, материалы и детали для герметизации корпуса. Стандартными являются также ремонтные комплекты для оптической и устанавливаемой в котлованах поверх нее чугунной защитной муфты. Все остальные комплекты составляются из отдельных деталей и узлов с учетом особенностей кабелей и мест установки муфт у конкретного заказчика.

Муфты оптические городские типа МОГ (рис. 6.52) предназначены для сращивания ОК в кабельной канализации, коллекторах и туннелях. Выпускаются в стандартном МОГ (длина — 1130 мм, укороченном МОГУ (длина 820 мм) и тупиковом МОГ (длина — 686 мм) вариантах.

Основу базового комплекта муфты МОГ составляют полиэтиленовая труба диаметром 90 мм, два полиэтиленовых конуса, лоток и кассета с крышкой. В комплект разветвительных муфт МОГ входят оголовники с двумя или тремя патрубками. Муфты позволяют сращивать до 32 (при установке одной кассеты), до 64 ( при установке двух) и до 96 оптических волокон (при установке трех). Герметизация муфт осуществляется «горячим» (с помощью термоусаживаемых трубок) либо «холодным» способом (с использованием герметизирующих и упрочняющих лент компании 3M или аналогичных отечественного производства).

Модернизированные муфты МОГ-М и МОГу-М имеют по три патрубка с каждой стороны. Муфта МОГт-М — один оголовник с тремя патрубками.

Рис.6.53. Муфта оптическая тупиковая МТОК 96-01-IV

Рис.6.53. Муфта оптическая тупиковая МТОК 96-01-IV

Муфты тупиковые типа МТОК 96 предназначены для сращивания до 96 волокон магистральных и внутризоновых ОК с любыми бронепокровами, прокладываемыми в грунтах всех категорий, в кабельной канализации, а также подвешиваемых на опорах воздушных линий связи и линий электропередач. Муфты имеют прямой и разветвительный варианты. Их наружные детали и кассеты выполнены из пластмассы.

Для монтажа кабелей, прокладываемых в грунте, изготавливается муфта МТОК-96-01-IV (рис. 6.53).

Для установки в грунте муфта поставляется в комплекте с чугунной муфтой МЧЗ длиной 520 мм и диаметром 192 мм. Чугунная муфта герметизируется с помощью двухкомпонентного герметика. При установке в кабельной канализации МТОК 96-01-IV используется без МЧЗ и фиксируется горизонтально на специальном кронштейне.

Муфты МТОК 96B-01 IV предназначены для кабелей, проходящих через водные преграды и имеющих двойную проволочную броню. Они монтируются всегда как прямые. Муфты МТОК 96В размещаются внутри чугунных муфт МЧЗ и укладывается на дно водоема. На выходе из чугунной муфты кабели фиксируются с помощью дополнительных маталлических элементов.

Муфты МТОК 96Т-01-IV и МТОК 96TI-01-IV являются универсальными и не привязываются к кабелям определенного типа. Поэтому базовые комплекты этих муфт вообще не имеют узлов ввода, которые включаются в монтажные комплекты в зависимости от конкретного заказа. Эти муфты могут использоваться, в частности, для сращивания подвесных самонесущих кабелей с повивом из синтетических нитей или с броней из стеклопластиковых прутков, а также ОК с металлическим гофрированным бронепокровом или с алюмополкзтипеновой оболочкой и повивом из синтетических нитей, прокладываемых в канализации или защитных пластиковых трубах. При необходимости в муфты МТОК 96 Т и МТОК 96 T1 можно ввести кабели транзитных модулей.

Все стыки на муфтах типа МТОК 96 герметизируются отрезками термоусаживаемых трубок с подклеивающим слоем, за исключением МТОК 96 Tl-01-IV, на которой стык оголовника с корпусом герметизируется механическим зажимом.

Муфты подвесные тупикового типа МОПГ-01-IV предназначаются для прямого и разветвительного сращивания строительных длин магистральных самонесущих ОК и ОК, встроенных в грозотрос. Муфты рассчитаны на установку в них до четырех кассет с общим числом сростков ОВ до 128. МОПГ имеет металлический корпус, оснащенный пятью портами для установки и крепления в них узлов ввода кабелей.

Муфты МОПГ, устанавливаемые на опорах ЛЭП вне охранных зон, должны быть защищены металлическими защитными кожухами. Смонтированые муфты герметичны.

Рис. 6.54. Укладка соединительных ОВ и защитных гильз в кассете

Рис. 6.54. Укладка соединительных ОВ и защитных гильз в кассете

Очень важным этапом, от которого зависит надежность работы ОВ, являются выкладки их в кассете и фиксация защитных гильз. На рис. 6.54 показана укладка ОВ и защитных гильз в кассете. Кассету закрывают крышкой и в двух местах скрепляют липкой лентой. Одновременно к ней прикрепляют паспорт на смонтированную муфту.

Центральные силовые элементы в виде стальных тросов или проволок в муфтах ЗАО «Связьстройдеталь» соединяются и закрепляются на лотках и кронштейнах в специальных узлах, входящих в комплекты муфт. Эти же узлы позволяют закреплять и силовые элементы из нитей СВМ (синтетический высокопрочный материал). Металлические элементы ОК в виде проволочной брони фиксируются в узлах ввода. В муфтах МТОК 96 обеспечивается электрическое соединение брони сращиваемых ОК и вывод общего провода заземления, либо изолирование брони каждого кабеля и вывод от каждого ОК отдельного провода заземления.

  • Организация строительства ВОЛС

  • Методы прокладки ВОК

  • Прокладка ВОК в грунт

  • Прокладка ВОК на переходах через подземные коммуникации

  • Прокладка ВОК в кабельной канализации

  • Прокладка ВОК методом подвеса

  • Прокладка ВОК в защитных пластмассовых трубках (ЗПТ)

  • Прокладка оптического кабеля через водные преграды

  • Прокладка оптического кабеля внутри зданий

  • Монтаж волоконно-оптического кабеля

  • Монтаж муфт

  • Монтаж оконечного оборудования ВОЛС

  • Монтаж кросса

  • Сращивание оптических волокон

  • Приемо-сдаточные испытания ВОЛС

Организация строительства ВОЛС

Строительство линейных сооружений ВОЛС начинается с проектирования и завершается приемо-сдаточными испытаниями. После этого сеть или линию сдают в эксплуатацию. В дальнейшем сеть может изменяться или расширяться.

План строительных работ составляют на основании изучения проектно-сметной документации, исследования на местности трасс и условий работ, районов размещения узловых и оконечных пунктов, обслуживаемых и необслуживаемых регенерационных пунктов (ОРП, НРП), а также расположения и состояния дорог, складов линейных и строительных материалов, выбора способа строительства на сложных участках трассы (горы, болота, водные преграды и т. д.). Должны быть подготовлены необходимые строительные механизмы, автотранспорт, измерительное оборудование, решены вопросы размещения строительно-монтажных подразделений и организации служебной связи.

Все вопросы, относящиеся к проектированию, рассматриваются подробно в цикле отдельных статей. Рекомендуем начать знакомство с нашего материала про общие принципы проектирования.

Ближайшие семинары в нашем учебном центре

На подготовительном этапе к строительству выполняют входной контроль волоконно-оптического кабеля (ВОК) и группирование строительных длин. Входной контроль заключается в общем осмотре всех барабанов с ВОК, простейшем просвечивании ОВ и измерении их оптических параметров. Осмотр ведется на кабельной площадке, а измерения — в сухих отапливаемых помещениях, имеющих достаточное освещение и возможность подключения приборов. При входном контроле проверяют соответствие строительных длин и параметров передачи паспортным данным.

Группирование строительных длин проводится из соображений прокладки на одном регенерационном участке ВОК одной конструкции с одним типом ОВ и защитного покрытия, изготовленных одним заводом. Исключение — случаи соединения ВОК разных типов для подводных и воздушных переходов. При группировании строительных длин одномодовых ВОК дополнительно учитываются параметры передачи: затухания отдельных строительных длин складываются арифметически, а дисперсии — алгебраически, т. е. с учетом знака. Законы сложения параметров передачи строительных длин многомодовых ОВ имеют сложный характер, что вызывает значительные трудности при их практической реализации.

По результатам группирования строительных длин ВОК по всем регенерационным участкам составляют укладочную ведомость. Кабель развозят по трассе и приступают к его прокладке.

В этом материале рассмотрим основные виды работ, производимых при строительстве. Их можно в общем случае разделить на следующие этапы:

  • прокладка ВОК;
  • монтаж муфт и оконечных устройств (кроссов);
  • приёмо-сдаточные испытания.

Методы прокладки ВОК

Специфические особенности ВОК привели к тому, что их прокладку могут выполнять не только традиционными методами и оборудованием, которые применяют для медножильных кабелей аналогичного назначения, но и принципиально новыми методами, которые уже сейчас способны резко сократить сроки строительно-монтажных работ и снизить их стоимость.

Нечувствительность ВОК к электромагнитным влияниям и ударам молний позволяет прокладывать их в таких местах и условиях, где использование электрических кабелей невозможно, например, совместно с линиями электропередачи (ЛЭП) или силовыми электрическими кабелями.

Малые габариты, масса и большая гибкость позволяют разместить на одном барабане непрерывный ОК большой длины. Значительное увеличение строительной длины особенно важно, потому что малое затухание ОВ делает неразъемные соединители ОВ основным источником потерь линейного тракта.

При строительстве линейных сооружений ВОЛС применяют следующие (основные) методы прокладки ВОК:

  • прокладка в грунте;
  • прокладка в кабельную канализацию;
  • прокладка методом подвеса;
  • прокладка в защитных полиэтиленовых трубах;
  • прокладка под водой;
  • прокладка внутри помещений

Выбор метода прокладки зависит от многих факторов. В некоторых случаях он достаточно очевиден, например, когда кабели прокладывают непосредственно в грунте или внутри помещений. Иногда экономичнее прокладывать ВОК по мосту, чем под водой.

Выбор между воздушной и подземной прокладками зависит от рельефа местности, категории грунта и даже плотности населения. При выборе подземного варианта необходимо решать вопрос, прокладывать ли ВОК непосредственно в грунте или в защитных пластмассовых трубках и т. д.

Очень важно, чтобы при любом методе прокладки предусматривалась дополнительная длина ОК на обоих концах участка, на котором проводят измерения и сращивание. Запас по длине должен быть достаточным для того, чтобы можно было выполнять повторные соединения в муфтах.

Подготовка траншеи для прокладки ВОК в грунт

Прокладка ВОК в грунт

Условия производства работ

Прокладка кабеля в грунт производится при температуре окружающего воздуха не ниже –10° С. Кабель прокладывают в грунтах всех категорий, кроме подверженных мерзлотным деформациям, в воде при пересечении неглубоких болот, несудоходных рек со спокойным течением (с обязательным заглублением). Способы прокладки ВОК через болота и водные преграды должны определяться отдельными проектными решениями.

Возможные два способа прокладки ВОК в грунт: ручной в ранее отрытую траншею или бестраншейный с помощью ножевых кабелеукладчиков. Кроме того, ВОК может прокладываться с применением защитного трубопровода. При этом различают два способа: в первом способе сначала в грунт укладывается защитная полиэтиленовая труба (ЗПТ), а затем в неё затягивается ВОК, второй способ — это прокладка ЗПТ с заранее уложенным в неё ВОК.

Трассовая прокладка кабелей связи является сложным процессом в техническом и организационном плане. Этот процесс еще более усложняется для ВОК, имеющих большие строительные длины. Особое внимание уделяется выбору трассы, способов и средств прокладки ВОК на каждом участке трассы. Для обеспечения безопасности прокладки и минимальной вероятности его замены в будущем необходимо учитывать такие факторы, как топографическая карта местности, типы грунтов, возможность доступа к кабелю при любых погодных условиях, простота выполнения возможного ремонта, удаление трассы кабеля от подземных коммуникаций и т. д.

Подписывайтесь на канал ВОЛС.Эксперт

Показываем, как правильно выполнять монтаж оптических муфт и кроссов, разбираем частые ошибки, даем полезные советы специалистам.

Прокладка ВОК в траншею

Производственные процессы при прокладке кабеля в открытую траншею трудоемки, малопроизводительны и могут легко контролироваться в ходе строительно-монтажных работ. Максимальное внимание должно быть обращено на ограничение минимального радиуса изгиба ВОК. Для этого размотку кабеля, а при ручном способе прокладки переноску и укладку его в траншею проводят без перегибов. Не допускаются волочение кабеля по поверхности земли и размотка барабана кабелем.

Качество прокладки ВОК зависит также от подготовки для него грунтовой или песчаной постели и соответственно его засыпки. Поэтому в ряде случаев перед прокладкой кабеля в траншею его предварительно обертывают защитным материалом.

Размотка кабеля при прокладке его в открытую траншею должна, как правило, осуществляться с помощью механизмов. Если позволяют условия трассы, для этой цели используют барабан, установленный в специально оборудованном кузове автомашины или на кабельном транспорте, передвигающемся по трассе вдоль траншеи. Кабель опускается сразу в траншею или на ее бровку. Скорость движения автомашины не должна превышать 1 км/ч.

Расстояние от колес до края траншеи должно быть не менее 1,25 глубины траншеи. В случае, если условия местности не позволяют использовать технику, прокладка производится с выноской вручную всей строительной длины кабеля, который укладывается вдоль траншеи, а затем опускается в нее.

При этом барабан с кабелем устанавливают в начале участка прокладки на неподвижной основе. При недостаточном количестве рабочих допускается осуществлять прокладку способом «петли»: конец кабеля оставляют у барабана в начале участка прокладки и размотку ведут с верха барабана петлей, нижнюю часть которой по мере продвижения рабочих укладывают непосредственно в траншею или на землю у траншеи. По мере выкладки нижней части петли на землю освобождающиеся рабочие переходят к барабану и подхватывают новый участок кабеля. Расстояние между соседними рабочими должно быть таким, чтобы кабель не волочился по земле. До половины строительной длины кабеля петля удлиняется, а затем укорачивается по мере продвижения к концу. В результате весь кабель оказывается вытянутым в одну линию.

При наличии на трассе различных пересечений кабель прокладывают способом «петли», протягивая ее в предварительно проложенной под препятствием полиэтиленовой трубе.

После прокладки кабеля в траншею производят фиксацию его трассы в технической документации и засыпку траншеи с помощью траншее засыпщиков, бульдозерами, а в стесненных местах — вручную.

Механизированная прокладка ВОК

Строительство магистральных и внутризоновых ВОЛС характеризуется большой протяженностью, различными климатическими, почвенно-грунтовыми и топографическими условиями. Прокладку ВОК осуществляют комплексные механизированные колонны, в состав которых входят строительные машины и механизмы общестроительного назначения, а также специальные машины и механизмы для прокладки кабеля (кабелеукладчики, тяговые лебедки, баровые машины, машины для прокола грунта под препятствиями и др.).

Бестраншейный способ прокладки кабеля с помощью кабелеукладчика благодаря высокой производительности и эффективности является основным. Он широко применяется на трассах с различными рельефами местности и разными грунтами. С помощью ножевого кабелеукладчика в грунте прорезается узкая щель, и кабель укладывается на ее дно на заданную глубину залегания (0,9…1,2 м). При этом на кабель действуют механические нагрузки. Надо помнить, что кабель на пути от барабана до выхода из кабеленаправляющей кассеты подвергается воздействию продольного растяжения, поперечного сжатия и изгиба, а в случаях применения вибрационных кабелеукладчиков — вибрационному воздействию.

Машины и механизмы для механизированной прокладки кабелей в ЗПТ производятся и зарубежными компаниями, но отечественное оборудование в большей степени приспособлено к тяжелым условиям кабельных трасс в России и заметно дешевле импортного.

При прокладке ВОК кабелеукладчиком недопустимым является вращение барабана под действием натяжений кабеля, возникающих при движении кабелеукладчика по трассе. Особенно опасны рывки кабеля. Крайне неблагоприятным для кабеля может быть момент начала движения (трогания) кабелеукладчика, при котором не исключается разгон вращения барабана под действием натяжения кабеля. Рывки кабеля могут иметь место при прокладке в сложных грунтах, наличии препятствий в грунте, на трассе и т. п.

Для предотвращения превышения допустимых нагрузок на ОК при его прокладке необходимо обеспечить:

  • принудительное вращение барабана в момент начала движения кабелеукладчика и синхронизированную его размотку;
  • ограничение боковых давлений на кабель за счет применения различного рода мероприятий и конструкций, снижающих трение (например, использование в кассетах специальных роликовых направляющих устройств, обеспечивающих минимально допустимый радиус изгиба ОК; размещение роликов кассеты так, чтобы уменьшить радиальное давление на кабель);
  • допускаемый радиус изгиба ОК от барабана до укладки на дно щели на всем участке подачи кабеля через кассету;
  • исключение случаев засорения кассеты кабелеукладочного ножа и остановок вращения барабана при движении кабелеукладчика.

Желательно применение соответствующих технических средств непрерывного контроля, сигнализирующих о достижении пороговых значений тяговых усилий и ограничивающих режимы нагружения кабеля с остановкой процесса прокладки. Обязательной является планировка трассы перед прокладкой ОК бульдозером. Подъемы и уклоны трассы не должны превышать 30°. При прокладке ВОК в сложных грунтах обязательно должна применяться предварительная пропорка грунта. Цель предварительной пропорки — обнаружение скрытых препятствий, которые могли бы повредить кабель.

При обнаружении таких препятствий грунт на этих участках разрабатывается с помощью бурильных и взрывных работ, машин и механизмов для разработки траншей и т. п.

Способы прокладки кабеля в грунте должны чередоваться на трассе в зависимости от условий прокладки. Для выбора способа прокладки может потребоваться исследование грунта. Перед началом работ необходимо проверить подготовку трассы. За проведением всех строительных работ должен осуществляться постоянный контроль, так как в случае наличия ошибок в проекте или при плохой подготовке трасс строительному персоналу трудно исправить эти ошибки непосредственно в полевых условиях.

Прокладку кабеля рекомендуется выполнять под постоянным оптическим контролем. Контроль осуществляется по результатам измерения затухания ОВ кабеля с помощью оптического тестера или оптического рефлектометра.

Прокладка ВОК на переходах через подземные коммуникации

На пересечениях с шоссейными, железными дорогами, водопроводами и другими коммуникациями ВОК затягивают в асбоцементные или пластмассовые трубы, которые прокладываются закрытым (горизонтальным проколом, бурением) или открытым способом. Прокладка труб под препятствиями, как правило, проводится до начала прокладки кабеля в районе пересечения. При этом необходимо отдавать предпочтение таким способам, при которых не требуется разрезать ВОК. При подходе кабелеукладчика к подземному препятствию ВОК сматывают с барабана и укладывают восьмеркой.

Затем протягивают кабель под препятствием в заготовленную трубу, снова наматывают на барабан, заряжают в кассету и продолжают прокладку.

Если под подземным препятствием труба не прокладывается, то проложить ВОК без разрезания можно следующим способом. Под препятствием откапывают котлован, барабан с ВОК снимают с кабелеукладчика и, освободив кабель от разборной кассеты, устанавливают на козлы перед препятствием. Кабелеукладчик перемещают за препятствие, опускают нож в котлован, заправляют предварительно протянутый под препятствием ВОК в кассету и продолжают прокладку. Для предохранения кабеля от перегибов под препятствием устанавливают кабельное колено или ролики. При этом необходимо обеспечивать свободную подачу кабеля с барабана, установленного на козлах, и подтяжку кабеля, проходящего по поверхности земли.

Для сокращения трудоемкости работ рекомендуется в местах пересечения использовать укороченные строительные длины ВОК, так называемые короткомеры, которые по согласованию с заказчиком могут поставляться в небольшом количестве с кабельных заводов.

Для ознакомления с этой технологией читайте наш материал про прокладку оптического кабеля в грунт.

Прокладка ВОК в кабельной канализации

Общие требования к прокладке

В общих чертах технология прокладки ВОК та же, что и для электрических кабелей связи. Специфика прокладки ВОК определяется более низким уровнем допускаемой к ним механической нагрузки, поскольку от нее зависит затухание ОВ. Кроме того, нагрузка, превышающая допустимый уровень, может сразу привести либо к разрыву волокна, либо к дефектам ОВ (микротрещины и т. п.), которые позднее в процессе эксплуатации кабеля за счет действия механизма усталостного разрушения ОВ также приведут к его повреждению.

Особенно чувствительны ОВ к механическим нагрузкам при низких температурах.

Для сокращения числа соединений и соответственно потерь на сростках используются большие строительные длины ВОК, что создает при их прокладке дополнительные нагрузки. Чтобы уровень нагрузки не превышал допустимый, необходимо принимать дополнительные меры и использовать специальное оборудование.

В частности, нормативно-технической документацией не допускается прокладка ВОК при температуре ниже –10° С, предусматриваются непрерывный контроль продольных нагрузок на ВОК, а также меры, ограничивающие механические нагрузки на ВОК в процессе его прокладки и обеспечивающие защиту в процессе эксплуатации.

Методы прокладки

Прокладка ВОК в КК ведется как традиционным методом протаскивания, который используется для электрических кабелей, так и методом задувки (пневмопрокладки).

При протаскивании используются управляемые лебедки, тросы и направляющие устройства. Лебедки всегда оборудуются устройствами, которые ограничивают усилие протаскивания или даже останавливают работу, когда нагрузка, которой подвергается ВОК, приближается к опасному уровню.

Направляющие устройства ограничивают изгиб ВОК. Как правило, целесообразным считается минимальный радиус изгиба, примерно в 12 раз превышающий диаметр кабеля. Однако при прокладывании с натяжением рекомендуется удваивать это соотношение.

При прокладке больших строительных длин, а также на сложных участках трассы со множеством поворотов применяют различные методы разделения продольной нагрузки.

Самый простой и наиболее распространенный из них известен как «метод восьмерки», когда прокладка ВОК с одного барабана ведется в две стороны. При этом барабан устанавливается у колодца, находящегося примерно посередине участка. Сначала ВОК протаскивается с барабана в одну сторону, а затем остаток ВОК равномерно сматывается с барабана, укладывается на земле в виде восьмерки и протаскивается в противоположную сторону. Этот метод требует наличия необходимого места для размещения ВОК и защиты его от загрязнения.

Более сложный метод разделения продольной нагрузки связан с использованием на промежуточных пунктах специальных кабельных лебедок. ВОК прокладывают непосредственно с барабана в одну сторону, а максимальная нагрузка на кабель зависит от расстояния между промежуточными пунктами. Однако при проведении работ необходимо хорошее согласование концевой и промежуточных лебедок.

Прокладка ВОК в кабельной канализации методом задувки может осуществляться как непосредственно в канале, так и в полиэтиленовых трубках, предварительно заложенных в канал, когда сначала вдуваются (или протаскиваются) полиэтиленовые трубки, а уже в них прокладывается ВОК. Такой вариант обычно применяется в тех случаях, когда канал уже занят другим кабелем, и непосредственная прокладка может привести к заклиниванию ВОК. Впрочем, этот метод достаточно экзотичен для прокладки в КК, если говорить о строительстве в нашей стране.

Смотрите подробную инструкцию по прокладке ВОК в кабельную канализацию.

Прокладка ВОК методом подвеса

Прокладка ВОК методом подвеса

Общие требования к прокладке

Требования к сооружениям и технологии подвеса ВОК на несущих тросах по столбам и стоечным опорам на крышах зданий, а также к самонесущим кабелям не отличаются от требований для электрических кабелей связи.

Варианты подвеса ВОК имеют ряд достоинств по сравнению с другими способами строительства:

  • отсутствие необходимости отвода земель и согласований с заинтересованными организациями;
  • уменьшение сроков строительства;
  • уменьшение объема возможных повреждений в районах городской застройки и промышленных зонах;
  • снижение капитальных и эксплуатационных затрат в районах с тяжелыми грунтами.

Подвес ВОК производится на уже установленные опоры и не требует тщательной предварительной подготовки трассы прокладки, поэтому более технологична и проще, чем укладка в грунт.

Особенностью применения ВОК для подвеса на опорах является его способность к упругому продольному растяжению до 1,5% без возникновения нагрузок в оптических волокнах. В настоящее время используются следующие технологии разновидности подвеса на опорах различных телекоммуникационных и электрических сетей:

  • подвес самонесущего ВОК;
  • подвес ВОК со встроенным несущим тросом;
  • подвес кабеля с креплением к внешним несущим элементам;
  • подвес грозозащитного троса со встроенным ВОК (ОКГТ);
  • навивка ВОК на фазные провода.

Широко используется подвес ВОК на опорах линий электропередач различного напряжения, опорах контактной сети и автоблокировки железнодорожного транспорта, а также опорах осветительной сети, опорах силовых сетей наземного электрического транспорта и другим опорах.

Для строительства ВОЛС методом подвеса кабеля на опорах высоковольтных ЛЭП и железнодорожного транспорта используется только диэлектрический самонесущий ВОК, который во время эксплуатации испытывает значительные колебания температуры, скорости ветра, осадков и вибраций, накладывающих определенные ограничения на технологию подвески. Одним из главных является принцип ограничения механических воздействий на саму оболочку, растяжения ВОК, сдавливающих нагрузок и углов поворота трассы.

Технология подвеса ВОК должна обеспечить сохранность тонкого покрытия оболочки кабеля от повреждений при протяжке. Эти повреждения вызваны трением о различные предметы, расположенные вдоль трассы. Поврежденная внешняя защитная оболочка кабеля становится источником и местом сосредоточенной нагрузки при гололеде, повышенной влажности и ветровой нагрузке. Если же при этом имеются еще и загрязнения оболочки, то под воздействием лучей солнца может возникать нагрев загрязненных участков оболочки до температур, на которые кабель не рассчитан, что может привести к его быстрому старению.

Увеличенный угол поворота трассы кабеля, может привести к деформации сердечника ВОК, что может вызвать остаточное напряжение в волокнах. Поэтому недопустимы углы поворота трассы более чем 30° при нормальных силах тяжения.

Ведение строительных работ по подвесу ВОК осуществляется при температуре не ниже –10°С. Только в исключительных случаях допускается проведение работ при температуре ниже –10°С, при этом необходимо соблюдать все меры предосторожности. Подвести с максимально возможной скоростью, поддерживать обогрев кабельного барабана.

Одним из наиболее важных моментов при подвеске ВОК является правильный выбор технологического оборудования, используемого при строительстве ВОЛС. Стандартный комплект технологического оборудования включает:

  • лебедку с регулируемой силой тяжения;
  • кабельный домкрат с тормозным устройством;
  • диэлектрический трос (трос-лидер);
  • специальные барабаны;
  • кабельные чулки (транзитные и концевые);
  • компенсатор вращения;
  • набор больших и малых монтажных роликов;
  • динамометр.

В качестве трослидера, применяемого при подвеске ВОК, используют специальный диэлектрический канатик сложной конструкции, имеющий высокую прочность, малый коэффициент растяжения и низкий коэффициент кручения. Поверхность канатика имеет полиуретановое покрытие, что обеспечивает его износостойкость. Стандартная длина трос-лидера — 1 км или 500 м, что позволяет при помощи специальных соединителей комплектовать его в соответствии со строительными длинами кабеля. При этом длина трос-лидера должна на одну стандартную длину превышать строительную длину ВОК, размотка должна осуществляться с помощью барабанов. Для соединения стандартных длин троса-лидера используются соединители.

Соединение ВОК с тросом-лидером осуществляется с помощью кабельного чулка.

Для защиты ВОК от нагрузок вращения, возникающих при размотке, которые могут привести к его разрыву, используют специальные компенсаторы вращения — вертлюги, которые включаются между кабельным чулком и тросом-лидером.

Для подвеса самонесущего ВОК (ОКСН) широко применяются ролики двух типов: малые, с внешним диаметром 200 мм и внутренним — 138 мм, для подвески ВОК на прямолинейных участках, и большие, с внешним диаметром 676 мм и внутренним — 604 мм, для прохождения трассы через повороты, превышающие 20 от прямолинейного хода трассы подвески.

Эти технологические ролики должны иметь низкий коэффициент трения, обладать конструкцией, обеспечивающей легкую их установку (и снятие) на кронштейны, установленные на опоры. Они также должны обеспечить надежную защиту ВОК от заклинивания в теле ролика и защиту от торможения ролика в случае касания его элементов крепления.

Оптический кабель может подвешиваться на опорах при условии, что их несущая способность достаточна, чтобы выдержать все дополнительные нагрузки, связанные с подвеской ВОК, а расположение ВОК не будет препятствовать нормальному техническому обслуживанию линии, на которой он подвешивается.

Современная технология подвеса ВОК состоит из двух разнесенных во времени этапов.

Первый этап — подготовительный, включающий в себя общие строительные работы, замену дефектных и поврежденных опор, установку дополнительных опор, заказ и приобретение специальных кронштейнов крепления ВОК в соответствии с типами, указанными в проекте, кронштейнов для крепления запасов кабеля и оптических муфт, анкерных узлов.

Второй этап связан с самим подвесом ВОК — это крепление кронштейнов на опорах, крепление на кронштейнах технологических роликов для протяжки трос-лидера (а в дальнейшем с его помощью кабеля), крепление кабеля, монтаж муфт, крепление запасов ВОК. За этим следует подключение кабеля к кроссовому оборудованию, измерения и паспортизация пассивной части ВОЛС.

Все работы по подвесу ВОК на опорах выполняются в соответствии с действующими правилами, нормами и техническими условиями, заложенными в проектах.

При строительстве ВОЛС методом подвески на опоры высоковольтных линий напряжением 110 кВ и выше применяют:

Неметаллический (диэлектрический) кабель малого диаметра, который с помощью специальной навивочной машины наматывается с определенным шагом намотки на фазный провод или на грозотрос. Этот метод строительства применяют на ВЛ 110 кВ и выше.

Навивка оптического кабеля на фазный провод практически исключает его обледенение, которое, так же как и вибрации на пролетах между опорами из-за ветровых нагрузок, является основной причиной обрыва воздушных проводов. Достигается это благодаря разогреванию обвитой вокруг провода влагозащитной полиэтиленовой оболочки оптического кабеля под действием электромагнитного поля ЛЭП (примерно на 1°С при напряжении поля 10 кВ/м). Кроме того, увеличение турбулентности воздушных потоков, обтекающих систему «Оптический кабель — провод ЛЭП» на 40–60% снижает уровень вибрации.

Специальный грозозащитный трос с размещенными в его конструкции ОВ (ОКГТ). Он, как правило, используется для замены существующего грозотроса или при реконструкции высоковольтной линии или при временном отключении ее от нагрузки, даже в режиме ее нормального функционирования преопределенных условиях. Этот способ подвески используется на существующих ВЛ 110 кВ и выше.

Смотрите инструкцию по монтажу ОКГТ-С и ОКГТ-Ц.

Для строительства ВОЛС местных сетей связи широко используется подвес ВОК с выносным тросом (внешним силовым элементом — ВСЭ) или подвеска кабеля z-креплением к внешним несущим элементам (например, стальному или стеклопластиковому тросу). В обоих случаях используются те же кронштейны, устанавливаемые на опорах, что и при подвесе самонесущего ВОК.

При подвесе ВОК с ВСЭ анкерные и поддерживающие зажимы имеют другое конструктивное исполнение, обеспечивающее крепление и натяжение ВОК.

При строительстве ВОЛС методом подвеса ВОК к внешнему стальному тросу в первую очередь подвешивается и натягивается сам стальной трос.

При этом используется натяжная и поддерживающая арматура как в предыдущем варианте. ОК крепится к стальному тросу на подвесах из листовой оцинкованной стали или алюминия. Подвесы устанавливаются через каждые 700 мм так, чтобы они плотно обжимали кабель и свободно висели на тросе.

Стальной трос, на котором подвешен кабель, заземляется в начале и в конце линии, а также через каждые 250 м.

В настоящее время разработана технология навивки маловолоконного ОК (6–16 волокон) диаметром от 3,5 до 6,2 мм на один из фазных проводов низковольтных ЛЭП 6, 10 и 33 кВ. Соединительные муфты крепятся непосредственно к фазному проводу. На концах линии и в местах ответвления кабеля устанавливаются сводные изоляторы. Снижение стоимости монтажа достигается за счет следующих факторов:

  • себестоимость производства тонкого, маловолоконного ОК, имеющего более простую структуру армирующих элементов, ниже, чем у других кабелей такой же жильности;
  • использование существующей инфраструктуры ЛЭП в качестве «кабельной канализации» облегчает проход препятствий;
  • малая масса кабеля и навивочного оборудования позволяет обойтись ручным трудом и средствами малой механизации;
  • добавки к ветровым и гололедным нагрузкам на опоры ЛЭП невелики, что позволяет не проводить работы по их усилению.

Преимуществами ВОЛС, построенных указанным способом, также являются:

  • высокая надежность, практически совпадающая с надежностью ЛЭП;
  • высокая скорость прокладки (несколько километров в день);
  • высокая степень защиты от вандализма, так как все элементы находятся под напряжением.

После подвеса строительных длин ВОК производятся измерения затухания оптических волокон и оценивается их соответствие паспортным данным. Протоколы измерений представляются в исполнительной документации по окончании строительства ВОЛС.

Больше нюансов это технологии читайте в нашей статье — Прокладка ВОЛС по опорам.

Прокладка ВОК в защитных пластмассовых трубках (ЗПТ)

Прокладка оптического кабеля в предварительно проложенных защитных пластмассовых трубках (ЗПТ) нашла широкое применение во всем мире. Этот способ наиболее полно использует преимущества ВОК и весьма эффективен при прокладке магистральных и зоновых ВОЛС.

Предварительное создание междугородной кабельной канализации удлиняет строительный сезон и сокращает сроки строительства благодаря возможности прокладки трубок на трудных и стесненных участках трасс, в населенных пунктах, в зимний период. Эффективно решаются многие вопросы эксплуатации, аварийно-восстановительных работ и особенно, последующей модернизации и развития телекоммуникационной сети.

Использование ЗПТ позволяет в свою очередь использовать легкие небронированные ОК, строительная длина которых достигает 6 км и более.

Для сооружения трубопроводов обычно применяют трубки из полиэтилена или из поливинилхлорида. Наружный диаметр выпускаемых трубок 25…63 мм.

Для уменьшения трения оболочки ВОК при прокладке внутренняя поверхность трубок покрыта твердой смазкой, срок службы которой не меньше срока службы трубки. Длина выпускаемых трубок от 600 до 4000 м. Их наматывают на барабан и обычно прокладывают бестраншейным способом или в подготовленную траншею при температуре окружающей среды от –10 до +50 °С. При монтаже трубок используются пластмассовые и металлические соединительные муфты, а также переходные и компенсирующие температурное изменение длины муфты.

Прокладку ВОК в трубках осуществляют двумя способами: протаскиванием (или проталкиванием) и задувкой (пневмопрокладка в проложенные ЗПТ).

Протаскивание ВОК

Протаскивание в трубке обычно осуществляется с помощью лебедки и троса. В большинстве случаев трос прокладывают с помощью плотно пригнанной по размерам трубки тележки-поводка, которая приводится в движение сжатым воздухом. Иногда трос заранее прокладывается в трубке.

Трение между ОК и трубкой вызывает увеличение усилия протаскивания, особенно возрастающее на поворотах и изгибах траектории.

Это усилие ограничивает длину, которая может быть проложена за одно протаскивание. Контроль за усилием на лебедке позволяет максимальное усилие на ВОК поддерживать ниже определенного предела.

Пневмопрокладка (задувка) ВОК

Одной из возможностей распределения усилий вдоль кабеля является применение метода задувки, который первоначально был разработан для легких и гибких городских ВОК, а в последнее время стал широко применяться для прокладки ВОК на магистральных и зоновых ВОЛС.

При методе задувки в трубку вдоль ВОК с помощью обычного компрессора нагнетается высокоскоростной поток воздуха, и на кабель начинает действовать распределенная сила. Появление этой силы вызвано тяговым усилием вязкого, перемещающегося с большой скоростью воздуха. Суммарное по длине ВОК усилие задувки по величине на порядок меньше усилия протаскивания, что уменьшает опасность повреждения ВОК и позволяет существенно облегчить его конструкцию за счет силовых и армирующих элементов. Тем не менее, монтажные длины ВОК за одну процедуру задувки в большинстве случаев сравнимы с монтажными длинами при протаскивании, а на извилистых трассах даже превышают их. Последнее обстоятельство, а именно слабая зависимость результатов использования метода от степени искривления траектории трубки, чрезвычайно упрощает распределение кабельных колодцев по трассе.

Пневмопрокладка ВОК в микротрубки

Технология прокладки ВОК в ЗПТ получила свое дальнейшее развитие с созданием миниатюрных ВОК (диаметром несколько миллиметров), пневмопрокладка которых обеспечивается в микро-трубки диаметром от 7 до 12 мм. Данная технология предназначена для прокладки миниатюрных ВОК на городских, локальных и внутриобъектовых сетях связи. При этом предварительно осуществляется ввод микротрубок в ЗПТ, а затем по мере необходимости в них производится пневмопрокладка миниатюрных ВОК. Оборудование для пневмопрокладки ВОК в микротрубки аналогично аппаратуре для пневмопрокладки ВОК в ЗПТ, однако при этом используются менее мощные компрессоры и малогабаритные устройства подачи кабелей.

Прокладка оптического кабеля через водные преграды

В данном разделе подводная прокладка рассматривается как часть или отрезок подземной прокладки, когда приходится пересекать реки, ручьи, болота, озера, искусственные водоемы, каналы. По действующим нормам прокладка кабеля связи через судоходные реки, сплавные и несудоходные реки глубиной до 3 м проводится с минимальным заглублением до 1 м. Без заглубления прокладка допускается при глубине водоемов более 8 м по согласованию с организациями, эксплуатирующими водоем. Заглубление кабеля в дно оросительного канала и арыка является обязательным. Практически целесообразность заглубления кабеля и его величина определяются проектом.

Указанные требования распространяются также на ВОК связи и соответственно на способы и приемы производства прокладочных работ: укладку кабелей с буксирных или самоходных судов, понтонов, барж в подводные траншеи.

Для такой прокладки используются ВОК с металлическими упрочняющими элементами и металлическими оболочками. Эти кабели более герметичны, и их механические характеристики позволяют использовать традиционные технические средства прокладки. В процессе прокладки подводных кабелей вертикальный угол кабеля, когда он сходит с горизонтальной плоскости плавсредства, во избежание чрезмерного натяжения должен быть в пределах 30…60°. При этом, чем больше глубина подводной прокладки, тем больше этот угол.

Кабелеукладчики рекомендуется применять только на мелководье, так как на больших глубинах невозможно проконтролировать процесс прокладки кабеля.

Прокладка ВОК без металлических элементов через отдельные водные преграды вызывает определенные трудности. Например, не исключается возможность всплывания кабеля при небольших перемещениях донных грунтов. При сильном течении кабель находится под дополнительной нагрузкой и нужно контролировать, чтобы уровень этой нагрузки не превысил допустимый. Поэтому прокладку кабеля рекомендуется выполнять с применением укладки защитного трубопровода и его заглублением в дно. Полиэтиленовые трубки, а на опасных участках стальные трубы могут прокладываться (как подземный кабель) на глубине до 1,2 м. Преимуществом применения трубок является то, что при встрече с неожиданным препятствием (даже при пропорке грунта) возможные повреждения ограничиваются трубкой, а не кабелем.

При прокладке магистральных ВОК первичной сети на переходах через внутренние водные пути — судоходные и сплавные реки, водохранилища — осуществляется резервирование кабельного перехода путем прокладки кабелей по двум створам (верхнему и нижнему), расположенным на расстоянии не менее 300 м друг от друга. При наличии на трассе мостов автомобильных дорог федерального значения допускается прокладка одного из кабелей по мосту. При этом в основном и резервном кабелях включается по 50% ОВ.

При невозможности бестраншейной прокладки ВОК кабелеукладчиками, кабели на переходах через водные преграды прокладываются в предварительно разработанные подводные траншеи. Траншеи разрабатываются техническими средствами специализирующихся на подводных работах организаций. На судоходных реках подводные траншеи в русле при глубине до 0,8 м можно разрабатывать экскаваторами. При больших глубинах экскаваторы необходимо устанавливать на понтонах, перемещаемых по створу перехода с помощью тросов лебедками.

Прокладка оптического кабеля внутри зданий

Для прокладки внутри зданий и объектов используют ВОК различных конструкций. Их характерные особенности: неметаллические, без гидрофобного заполнения, легко монтируются в стесненных условиях, оболочка должна препятствовать распространению огня.

Одно и двухволоконные ВОК обычно прокладывают вручную с соблюдением необходимых радиусов изгиба.

При горизонтальной прокладке, как правило, настилается фальшпол. Чтобы закрепить кабель непосредственно на стене, применяются крепежные планки и скобы. Часто кабели укладывают на стойках или в желобах.

Многоволоконные ВОК прокладывают по готовым закладным устройствам, подобно электрическим кабелям связи. Однако в последнее время более широкое применение находит метод задувки ВОК в заранее проложенные пластмассовые трубки.

Монтаж оптического кабеля

Монтаж волоконно-оптического кабеля

Состав и условия проведения монтажных работ

В состав монтажных работ входят:

  • входной контроль ВОК и проверка их после прокладки;
  • сращивание в муфтах строительных длин кабелей, проложенных в кабельной канализации, коллекторах, непосредственно в грунте, по стенам зданий, подвешенных на столбовых и стоечных опорах;
  • ввод и включение кабелей в оптические оконечные устройства;
  • измерения оптических и электрических характеристик кабелей в процессе контрольных измерений смонтированных линий;
  • отделка трассы, укладка и крепление муфт и запасов ВОК в колодцах, установка консолей и специальных кронштейнов в колодцах, крепление и защита муфт на опорах; укладка и защита муфт в котлованах;
  • маркировка кабелей, муфт и оконечных устройств;
  • выполнение мероприятий по защите кабельных линий от коррозии, влияния линий высокого напряжения и других помех.

Монтаж ВОК следует производить в монтажной машине, кабельных колодцах или в монтажных палатках над котлованом при плюсовой температуре, необходимой для нормальной работы сварочных устройств.

При необходимости должен быть обеспечен постоянный обогрев окружающего воздуха средствами, обеспечивающими выполнение требований пожарной безопасности и охраны труда.

Читайте наш материал с обзором инструментов и технологии разделки оптического кабеля.

Монтаж ВОК в муфте

Монтаж муфт

После того, как проложены строительные длины ВОК, их соединяют при помощи соединительных муфт. Размеры и конструкция муфт должны быть такими, чтобы ОВ были защищены от действия окружающей среды, а внутри муфт имелось достаточно места для размещения сварных соединений и запаса ОВ с необходимым радиусом изгиба. Кроме того, в конструкции муфты должны быть предусмотрены детали для закрепления наружной оболочки и бронепокровов ВОК, узлы для обеспечения механической непрерывности силовых элементов и устройства для обеспечения в случае необходимости электрической связи и заземления.

Основные требования к конструкциям соединительных муфт изложены в Рекомендациях МСЭ-Т. На территории РФ действует Приказ Мининформсвязи РФ от 10.04.2006 N 40 “Об утверждении Правил применения муфт для монтажа кабелей связи”. Согласно этим правилам, необходимо учитывать условия их работы (в колодцах кабельной канализации, непосредственно в грунте, на опоре, под водой или в помещении), которые определяют особенности монтажа и последующей эксплуатации.

Необходимо учитывать также совместимость конструкций и материалов ВОК и муфты, электрохимические реакции между ними недопустимы.

Наибольшей эксплуатационной надежностью должны обладать те элементы муфт, которые осуществляют защиту ОВ от механических воздействий и проникновения воды. В конструкции муфты всегда предусматриваются кассеты, предназначенные для размещения и фиксации сварных соединений ОВ. Для размещения резервных ОВ устанавливают дополнительные кассеты. Узлы заделки бронепокровов защищают от проникновения воды под броней.

Все монтажные работы проводят в соответствии с инструкциями и руководствами заводов-изготовителей по монтажу конкретных типов ВОК и соединительных муфт.

Многообразию ВОК и условий их прокладки и эксплуатации соответствует такое же многообразие видов оптических муфт и комплектов для их монтажа, установки и защиты. В соответствии с условиями прокладки и назначением кабеля также различаются места монтажа и размещения оптических муфт. Муфта может размещаться, например, на дне реки, в болоте, котловане, колодце, коллекторе, в помещении ввода кабелей на АТС, на опорах контактных сетей или ЛЭП и т. д.

Во всех местах установки требуется жестко закрепить муфту и технологический запас сращиваемых ВОК, а также обеспечить механическую защиту муфты там, где это необходимо.

По типу соединения строительных длин различают:

  • проходные муфты, в которые ВОК вводятся с двух сторон;
  • тупиковые муфты, в которые ВОК вводятся с одной стороны.

Однако следует учитывать, что конструкции многих проходных муфт позволяют использовать их и как тупиковые, осуществляя ввод ВОК только с одной стороны. В этом случае отверстие с другой стороны муфты закрывают специальными заглушками или заказывают муфты, у которых с обеих сторон имеются заглушенные патрубки (МОГ-С, МОГ-У).

Муфты тупикового типа обладают рядом преимуществ перед проходными муфтами, например, при их установке в грунт не возникают изгибающие и осевые напряжения, в тупиковых муфтах проще производить соединение элементов муфты и ремонтные работы. Тем не менее встречаются условия, где применение тупиковых муфт связано с дополнительными затратами, например, в колодцах кабельной канализации. Поэтому применяются оба этих типа муфт.

Организация рабочего места и процесс монтажа

Монтаж муфт на кабелях местных сетей связи, как правило, производят в специально оборудованной монтажной машине на базе автомобиля повышенной проходимости с кузовом микроавтобуса или КУНГ.

Допускается монтаж оптических муфт в колодцах, городских коллекторах, помещениях ввода кабелей на АТС, в палатках, установленных около колодцев, котлованов или опор. Рабочие места, подготовленные в перечисленных выше условиях, должны быть сухими, должны иметь достаточное освещение и вентиляцию и обеспечивать размещение рабочего стола для сварочного устройства и мест для двух монтажников. Температура окружающего воздуха на рабочем месте должна быть такой, при которой возможна нормальная работа оборудования и приборов.

Перед монтажом муфт сращиваемые строительные длины ВОК, проложенные в канализации, в грунте, или подвешенные на опорах, должны быть проверены на соответствие оптических характеристик волокон паспортным данным. На бронированных ВОК, проложенных в грунте, сопротивление изоляции наружных оболочек проверяется на соответствие установленным нормам.

Монтажу подлежат только те ВОК, у которых после прокладки все проверяемые характеристики соответствуют паспортным данным и установленным нормам.

Концы сращиваемых ВОК, при любом месте размещения муфты, подают к организованному рабочему месту (в монтажную машину, в палатку и т. п.), разделывают и выполняют монтаж в соответствии с руководством по монтажу муфты данного типа. Смонтированные комплекты для ввода ВОК вводят в муфты, закрепляют и после этого готовые к монтажу муфты подают в монтажную машину или палатку.

Оптические муфты закрепляют на монтажных столах с применением монтажных кронштейнов, позволяющих установить муфту в любом положении в непосредственной близости к сварочному устройству.

Для обеспечения свободной, без напряжений, укладки запасов кабелей, кольца запаса следует сформировать еще до ввода ВОК в муфту. При этом следует стараться придать бухте ВОК ту форму и тот диаметр, который сам кабель принимает после разматывания с барабана.

Запасы концов кабеля для монтажа проходных муфт следует подавать из колодца, не раскручивая бухты запаса, а осторожно растягивая их в спирали, доходящие до места монтажа. При укладке проходных муфт в колодец кольца спиралей запаса осторожно собирают в бухты, скрепляют проволокой и подвешивают рядом с муфтой.

При монтаже тупиковых муфт запасы кабелей в колодце собирают в общей точке, из которой сращиваемые кабели общим пучком подают к месту монтажа.

После монтажа тупиковой муфты один из монтажников в колодце должен постепенно укладывать кольца запаса в бухту, в предназначенном для ее установки месте. Второй монтажник подает первому общий пучок запаса с поверхности и при этом проворачивает муфту вокруг оси пучка, чтобы предотвратить возможные напряжения ОК.

Монтаж оптических муфт должен производиться в строгом соответствии с указаниями инструкций (руководств, технологических карт) по их монтажу.

Общими при монтаже всех оптических муфт являются следующие монтажные операции:

  • разделка ВОК: очистка, надрезы и удаление оболочек, брони, гидрофобного заполнения сердечника и модулей, обрезание излишков силовых элементов, очистка волокон от гидрофобного заполнителя;
  • надевание частей муфты — оголовников, деталей вводных комплектов на предварительно очищенные концы кабелей;
  • выполнение продольной герметизации ВОК с помощью трубок ТУТ или ленточных герметиков — мастик;
  • закрепление ВОК на внутренних элементах муфты (лотках, кронштейнах и т. п.);
  • сращивание металлических элементов ОК или вывод проводов заземления от брони каждого ОК;
  • укладка запаса оптических модулей;
  • формирование пучков оптических модулей для ввода их на отдельные кассеты;
  • маркировка модулей при помощи липких маркеров;
  • закрепление пучков модулей на входах кассет;
  • подготовка оптических волокон к сварке: разметка, надевание КДЗС на одно из сращиваемых волокон, удаление защитных покрытий с ОВ, скалывание ОВ, укладка подготовленных к сварке ОВ в зажимы сварочного устройства;
  • сварка ОВ и проверка затухания сварного соединения с помощью рефлектометра;
  • принятие решения об оставлении или о переделке сварного соединения;
  • усадка гильзы КДЗС в специальном блоке сварочного устройства;
  • укладка КДЗС в ложемент кассеты, и одновременная укладка запасов ОВ под лапки кассеты;
  • сварка ОВ во всех кассетах муфты;
  • установка кассет на кронштейны муфт, сборка кассет в блок и установка крышки на верхнюю кассету блока, закрепление блока кассет на кронштейне муфты;
  • закрепление внутри муфты пакета с силикагелем;
  • сборка корпуса муфты, обезжиривание и зачистка кабелей и частей муфты в местах усадки трубок ТУТ или на местах наложения ленточных герметиков;
  • проверка всех сварных соединений на целостность оптическим рефлектометром;
  • принятие решения о герметизации муфты;
  • герметизация муфты: усадка ТУТ, затяжка хомутов и т. п.;
  • укладка муфты и запасов ВОК в колодец (котлован), подвес муфты и запасов ВОК;
  • крепление и защита муфты и запасов ВОК в месте установки;
  • проверка всех сварных соединений оптическим рефлектометром с целью выяснения, не увеличилось ли затухание стыков после укладки муфты. Если затухание стыков увеличилось в процессе укладки муфты и запасов ВОК, то запасы следует вновь размотать и уложить так, чтобы напряжения в кабеле не возникали, и затухание не увеличивалось.

Больше информации и видеоинструкции смотрите в отдельном материале про монтаж оптических муфт.

Заземление металлических элементов оптических кабелей

Важно помнить, что металлические элементы оптических кабелей должны заземляться при вводах ВОК в станционные сооружения, в технические помещения, где устанавливается оборудование ВОЛП.

Проектами могут предусматриваться заземления проволочной брони, стальной гофрированной брони и алюмополиэтиленовой оболочки.

На АТС, в помещениях ввода кабелей имеются стационарные щитки заземления. Металлические элементы ВОК должны быть выведены на эти щитки проводами сечением не менее 4 мм².

Для обеспечения заземления металлических элементов ВОК в помещении ввода кабелей должна быть смонтирована оптическая муфта с выводом провода заземления или выполнен разрыв брони на прямолинейном участке ВОК, а с линейной стороны разрыва должен быть присоединен к броне провод заземления.

Монтаж оконечного оборудования ВОЛС

К оконечному оборудованию ВОЛС относят оптическое распределительное и коммутационное кроссовое оборудование: распределительные коробки, панели, шкафы, оптические кроссовые устройства.

Оптическое кроссовое оборудование предназначено преимущественно для эксплуатации в помещениях объектов связи и только в некоторых случаях — в подземных или наземных контейнерах необслуживаемых регенерационных пунктов (НРП) либо в уличных распределительных оптических шкафах.

Ввод ВОК в объекты связи производится через помещение ввода кабелей с учетом требований по заземлению кабеля. В помещении ввода кабелей линейный ВОК монтируется с внутриобъектовым ВОК (не содержащим металлических конструктивных элементов, с оболочкой из материала, не распространяющего горение), который подключается к кроссовому оборудованию.

Допускается прокладка линейного ВОК непосредственно до кросса в случае защиты кабеля материалом, не распространяющим горение.

Оптическое кроссовое оборудование используется для концевой заделки и коммутации оптических кабелей, подключения оптических волокон к аппаратуре оптических систем передачи или оборудованию пользователя, а также для контроля характеристик ВОК в процессе эксплуатации.

Оптический кросс в общем случае представляет собой конструктив, в состав которого входят узлы ввода, крепления и концевой заделки волокон ВОК.

Независимо от конструктивного исполнения оптический кросс содержит:

  • каркас или корпус (стойку, шкаф, блок и т. д.), который может быть при необходимости влагозащитным или герметичным;
  • узел ввода ВОК;
  • панель коммутации с устанавливаемыми на ней адаптерами оптических соединителей;
  • коммутационные одноволоконные оптические шнуры, терминированные с обоих концов оптическими соединителями (шнуры типа patchcord).

Обычно в качестве каркаса для монтажа оптических кроссов используются стандартные стойки и шкафы 19″. Основным, с точки зрения эксплуатации, элементом оптического кросса является панель коммутации с оптическими соединителями.

Монтаж кросса

Общими при монтаже оптических оконечных устройств являются следующие монтажные операции:

  • разметка линейного кабеля: определение длины разделки элементов ВОК;
  • определение длины запаса ВОК;
  • подведение ВОК к оконечному устройству;
  • разделка ВОК;
  • ввод ВОК в оконечное устройство и его крепление;
  • заземление металлических элементов оптического кросса (ОК);
  • укладка запаса оптических модулей;
  • формирование пучков оптических модулей для ввода их на отдельные кассеты;
  • маркировка модулей при помощи бумажных самоклеящихся маркеров;
  • закрепление пучков модулей на входах кассет;
  • подготовка ОВ к сварке: разметка, надевание КДЗС на одно из сращиваемых волокон, удаление защитных покрытий с ОВ, скалывание ОВ, укладка подготовленных к сварке ОВ в зажимы сварочного устройства;
  • сварка ОВ и проверка потерь на сварном соединении с помощью рефлектометра;
  • принятие решения об оставлении или о переделке сварного соединения;
  • усадка гильзы КДЗС;
  • укладка КДЗС в ложемент кассеты, и одновременная укладка запасов ОВ под лапки кассеты;
  • сварка ОВ во всех кассетах;
  • установка кассет на шпильки, сборка кассет в блок и установка крышки на верхнюю кассету блока, закрепление блока кассет на шпильках;
  • установка кросса на его место в стойке или на стене;
  • крепление технологического запаса ВОК.

Подробно про инструмент и порядок работ в материале — Монтаж оптического кросса.

Сращивание оптических волокон

Сварка ОВ является завершающим этапом монтажа ВОК в муфтах и кроссах. Процесс сварки состоит из шести операций:

  • очистка конца волокна от защитного покрытия при помощи специального инструмента;
  • проведение операций для получения качественного скола торца волокна;
  • помещение подготовленных концов свариваемых волокон в аппарат для сварки и их юстировка;
  • сварка волокон;
  • анализ качества полученного сварного соединения;
  • защита места сварки.

Подробно все этапы и особенности читайте в материале про сварку ОВ.

Приемо-сдаточные испытания ВОЛС

Сдача в эксплуатацию линейных сооружений и объектов ВОЛС организуется и проводится в соответствии с официально утвержденными положениями и руководствами по приемке. Основным нормативным документом, регламентирующим составление подрядчиком исполнительной документации (ИД) является руководящий документ отрасли РД.45.156.2000. Специальным комиссиям, в состав которых входят представители заказчика и производителя работ, представляется для проверки вся исполнительная документация и сама ВОЛС.

В состав исполнительной документации входят:

  • паспорт ВОЛС;
  • проектная документация на строительство, полученная от заказчика и откорректированная в соответствии с реально выполненными работами;
  • протоколы измерений на усилительных и регенерационных участках ВОЛС.

В паспорте ВОЛС для линейных сооружений содержится карта сети, на которой показаны трассы прокладки ОК и расположение всех строительных объектов и построек. Существенной особенностью этого документа (особенно в отсутствие в ВОК металлических проводников) являются повышенные требования к точности карты. Если в электрических кабельных линиях трасса прохождения кабеля определяется с помощью кабелеискателей, то в ВОК без металлических проводников подобный метод отыскания трассы неприемлем. Поэтому трассы прохождения ВОК и данные о расстояниях до реперных точек (НУП, НРП, замерные столбики, ориентиры на местности и т. д.) должны быть указаны на карте с точностью до 0,3…0,4 м.

Оптические кабели на карте нумеруют, а их типы, длины и конечные пункты сводят в таблицы.

Протоколы измерений на усилительных и регенерационных участках должны содержать следующую информацию:

  • общее затухание трассы и участков;
  • количество неразъемных (сварных) соединений ОВ и вносимые потери в них;
  • длину волны измерения;
  • тип и модель измерительной аппаратуры.

При приемке в эксплуатацию линейных сооружений ВОЛС проверяют соответствие выполненных строительно-монтажных работ проектной документации, стандартам, строительным нормам и правилам проведения работ. Производят визуальный осмотр трассы, внешнее состояние проложенного или подвешенного ВОК, правильность установки и монтажа соединительных муфт и устройств ввода ВОК в технические помещения. Выполняют измерение оптических потерь каждого регенерационного участка с помощью сертифицированного оптического рефлектометра и оптического тестера в прямом и обратном направлениях.

При этом измерение полного затухания регенерационных пунктов ведется методом вносимых потерь. Нормы и объемы обязательных измерений определяются техническими требованиями и зависят от конструкции ВОК, назначения ВОЛС и системы передачи.

Для измерений в полевых условиях используют специально оборудованные передвижные лаборатории.

После приемо-сдаточных испытаний сеть или линию сдают в эксплуатацию на весь срок ее службы. При расширении или любых изменениях сети в паспорте ВОЛС должны быть внесены соответствующие коррективы.

Заключение

При не соблюдении технологий прокладки и монтажа ВОК, монтаж оптических муфт и кроссов неминуемо пострадает долговечность этих изделий и, конечно же, срок службы всей линии в целом. Каждый из аспектов указанных в статье, мы подробно разбираем во время практических занятий в Учебном центре «ВОЛС.Эксперт».  Ждем вас на обучении!

Найти:
Где:
Тип документа:
Отображать:
Упорядочить:

Скачать Руководство по прокладке, монтажу и сдаче в эксплуатацию волоконно-оптических линий связи ГТС (Линейно-кабельные сооружения)

Дата актуализации: 01.01.2021

Руководство по прокладке, монтажу и сдаче в эксплуатацию волоконно-оптических линий связи ГТС (Линейно-кабельные сооружения)

Статус: Действует
Название рус.: Руководство по прокладке, монтажу и сдаче в эксплуатацию волоконно-оптических линий связи ГТС (Линейно-кабельные сооружения)
Название англ.: Guide to the Installation, Installation, and Commissioning of Fiber Optic Communications Lines for Urban Telephone Networks (Cable Line Facilities)
Дата добавления в базу: 01.09.2013
Дата актуализации: 01.01.2021
Дата введения: 08.07.1987
Область применения: Изложены основные положения, определяющие порядок и технологию прокладки, монтажа и сдачи в эксплуатацию оптических кабелей связи ГТС, предназначенных для применения по ним аппаратуры цифровой системы передачи на межстанционной связи.
Оглавление: 1 Введение
   1.1 Общие положения
   1.2 Конструкция оптических кабелей и их оптические характеристики
   1.3 Механические параметры оптических кабелей
2 Подготовительные работы
   2.1 Проведение входного контроля
   2.2 Группирование строительных длин кабеля
3 Прокладка оптического кабеля
   3.1 Подготовка кабельной канализации к прокладке оптического кабеля
      3.1.1 Общие положения
      3.1.2 Прокладка полиэтиленовой трубы в канале кабельной канализации
      3.1.3 Заготовка полиэтиленовой трубы, проложенной в канале кабельной канализации
   3.2 Подготовка приспособлений и устройств к прокладке оптического кабеля
      3.2.1 Общие положения
      3.2.2 Проверка комплектности и работоспособности приспособлений и устройств
   3.3 Установка приспособлений и устройств на трассе
      3.3.1 Порядок установки
   3.4 Транспортирование барабанов с кабелем
   3.5 Прокладка оптического кабеля
      3.5.1 Установка прокладка кабеля
      3.5.2 Установка барабана с кабелем
      3.5.3 Оснастка конца кабеля для прокладки
      3.5.4 Прокладка кабеля
      3.5.5 Выкладка оптического кабеля
      3.5.6 Прокладка оптического кабеля в коллекторах, шахтах, нишах и по кабельростам
      3.5.7 Контроль оптического кабеля после прокладки
4 Монтаж оптического кабеля
   4.1 Организация рабочего места
   4.2 Состав монтажной бригады
   4.3 Монтажные материалы и детали для монтажа соединительной муфты СМОК
   4.4 Монтаж соединительной муфты СМОК
   4.5 Проверка герметичности смонтированной муфты
5 Ремонт соединительных муфт
   5.1 Вскрытие соединительной муфты
   5.2 Восстановление соединительной муфты
6 Маркировка кабеля и муфт
   6.1 Маркировка
   6.2 Метка кабеля и муфт
7 Сдача регенерационных участков в эксплуатацию
   7.1 Подготовка смонтированных регенерационных участков волоконно-оптической линии к сдаче в эксплуатацию
   7.2 Сдача в эксплуатацию
8 Техника безопасности
Приложение 1 Перечень технологических карт и карт трудового процесса на прокладку и монтаж оптических кабелей ГТС
Приложение 2 Протокол входного контроля и укладочная ведомость строительных длин
Приложение 3 Состав монтажных материалов и деталей для монтажа соединительной муфты СМОК оптического кабеля ГТС
Приложение 4 Перечень инструментов, устройств и приборов, применяющихся на прокладке и монтаже оптических кабелей ГТС
Разработан: ССКТБ
Утверждён: 08.07.1987 Минсвязи СССР (USSR Minsvyazi )
Принят: ГСС (GSS )
ГУТС (GUTS )
ЦНИИС (TsNIIS )
ЦНИЛОТ (TSNILOT )
Издан: ССКТБ ТОМАСС (1987 г. )
Расположен в: Техническая документация
Экология

ТЕЛЕКОММУНИКАЦИИ. АУДИО-И ВИДЕОТЕХНИКА

Волоконно-оптическая связь

Волоконно-оптические системы в целом

Строительство

Нормативные документы

Отраслевые и ведомственные нормативно-методические документы

Проектирование и строительство объектов связи
Нормативные ссылки:
  • ГОСТ 2239-79 «Лампы накаливания общего назначения. Технические условия»
  • ГОСТ 12.4.010-75 «Система стандартов безопасности труда. Средства индивидуальной защиты. Рукавицы специальные. Технические условия»
  • ГОСТ 10354-82 «Пленка полиэтиленовая. Технические условия»

Скачать

Руководство по прокладке, монтажу и сдаче в эксплуатацию волоконно-оптических линий связи ГТС (Линейно-кабельные сооружения)

МИНИСТЕРСТВО СВЯЗИ СОЮЗА ССР

ГЛАВНОЕ УПРАВЛЕНИЕ
ПО СТРОИТЕЛЬСТВУ СООРУЖЕНИЙ СВЯЗИ

СПЕЦИАЛИЗИРОВАННОЕ
КОНСТРУКТОРСКО-ТЕХНОЛОГИЧЕСКОЕ
БЮРО СТРОИТЕЛЬНОЙ ТЕХНИКИ СВЯЗИ

УТВЕРЖДАЮ

ЗАМЕСТИТЕЛЬ НАЧАЛЬНИКА ГЛАВНОГО

НАУЧНО-ТЕХНИЧЕСКОГО УПРАВЛЕНИЯ

МИНИСТЕРСТВА СВЯЗИ СССР

Е.С. МАМОНОВ

» 8 » июля 1987 г.

РУКОВОДСТВО

ПО ПРОКЛАДКЕ, МОНТАЖУ И СДАЧЕ
В ЭКСПЛУАТАЦИЮ
ВОЛОКОННО-ОПТИЧЕСКИХ ЛИНИЙ СВЯЗИ ГТС

(Линейно-кабельные
сооружения)

МОСКВА — 1987

(Руководство согласовано
с ГСС, ГУТС, ЦНИИС, ЦНИЛОТ)

1. ВВЕДЕНИЕ

1.1.
Настоящее «руководство…..» является переработанным «Временным
руководством по прокладке, монтажу и сдаче в эксплуатацию волоконно-оптических
линий ГГС» (М., ССКТБ, 1986) вследствие чего, последнее отменяется. В
переработанном «руководстве…..» изложены основные положения,
определяющие порядок и технологию прокладки, монтажа и сдачи в эксплуатацию
оптических кабелей связи ГТС, предназначенных для применения по ним
аппаратуры цифровой системы передачи на межстанционной связи. Для более
подробного руководства при выполнении отдельных трудовых процессов исполнителям
необходимо пользоваться комплектами технологических карт и карт трудового
процесса, разработанных ССКТБ (их перечень приведен в приложении 1), а также картами, которые будут
выпускаться по мере накопления опыта строительства оптических линий связи ГГС.

К прокладке и
монтажу оптических кабелей допускаются монтажники связи, имеющие опыт работы на
кабельных линиях ГТС и прошедшие специальную подготовку.

По общим
вопросам производства работ, не нашедших отражения в
«руководстве…..», следует обращаться к «Общей инструкции по
строительству линейных сооружений ГТС» (М., «Связь», 1978),
именуемой в дальнейшем здесь, как «Общая инструкция».

1.2. Конструкция оптических кабелей и их оптические
характеристики

При
строительстве волоконно-оптических линий ГТС применяются линейные
оптические кабели, работающие на длине волны 0,85 мкм, выпускаемые
промышленностью по ТУ 16-705-296-86 следующих марок:

ОК-50-2-5-4 —
четырехволоконный с коэффициентом затухания не более 5 дБ/км;

ОК-50-2-5-8 —
восьмиволоконный с коэффициентом затухания не более 5 дБ/км;

ОК-50-2-3-4 —
четырехволоконный с коэффициентом затухания не более 3 дБ/км;

1. Центральный силовой
элемент (нити СВМ или стальной трос в ПВХ оболочке)

2. Упрочняющие нити

3. Кордели заполнения

4. Оболочка оптического
модуля

5. Оптическое волокно в
оболочке

6. Скрепляющие пластмассовые
лента или нити

7. Полиэтиленовая оболочка

ОК-50-2-3-8 —
восьмиволоконный с коэффициентом затухания не более 3 дБ/км.

Оптический
кабель (ОК) ( Рис.
1.) содержит четыре или восемь оптических волокон, расположенных
вокруг центрального силового элемента из стального троса или упрочняющих нитей
СВМ, помещенных в поливинилхлоридную оболочку.

Оптическое
волокно состоит из сердцевины, оболочки и защитного покрытия. Геометрические
размеры волокна:

диаметр
сердцевины — 50±3 мкм;

отклонение от
геометрии круга сердцевины — менее 6%;

диаметр
оболочки — 125±3 мкм;

отклонение от
геометрии круга оболочки — 2%;

Числовая
апертура оптического волокна — 0,2±0,02.

Наружный
диаметр волокна по защитному покрытию не нормируется и зависит от материала
покрытия. Применяются оптические волокна со следующими защитными покрытиями:

полиамидным;

эпоксиакрилатным;

полиарилатным.

Каждое
оптическое волокно помещено во фторопластовую или поливинилхлоридную трубку. Сочетание
оптического волокна и трубки именуется — модулем. При применении трубок из
поливинилхлоридного пластиката внутри трубки помещается синтетические нити.
Модули с наружным диаметром (2,5±0,2) мм скручены вокруг центрального силового
элемента. В четырехволоконном кабеле модули чередуются с корделями заполнения с
наружным диаметром (2,5±0,2) мм, состоят из упрочняющих нитей (СВМ,
терлон, стеклонить), помещенных в поливинилхлоридную оболочку. Два соседних
модуля в восьмиволоконном или два корделя заполнения в четырехволоконном кабеле
должны отличаться по цвету друг от другая от остальных элементов в повиве (или
иметь другой отличительный признак). Допускается маркировка фторопластовых
модулей цветными нитями.

Поверх
скрутки наложены скрепляющие ленты или нити, поверх которых наложена оболочка
из полиэтилена с минимальной толщиной 1,5 мм. Наружный диаметр кабеля
должен быть (13,0±1,0) мм. В кабеле могут быть мерная лента или мерные метки
по наружной оболочке (с 01.01.89 они обязательны).

Межмодульное
пространство сердечника кабеля равномерно заполнено гидрофобной массой.

Кабель в
партии, отправляемой в один адрес, должен иметь центральный силовой элемент
одного типа, одинаковый материал трубки модуля и покрытия оптического волокна,
одинаковую расцветку кодирующих элементов.

1.3. Механические параметры оптических кабелей

До 01.01.88
строительная длина кабеля должна быть не менее 1000 м. Допускается поставка
кабеля длинами не менее 500 м в количестве 20%. До 01.01.89 допускается
поставка кабеля длинами не менее 500 м в количестве 10%. Далее
строительная длина оптического кабеля должна быть не менее 2000
м. Допускаться будет поставка кабеля длинами не менее 1000 м в
количестве 10%.

По
согласования с заказчиком (кроме организации п/я Г-4650) возможна поставка кабеля
любыми длинами. Масса 1 км оптического кабеля указана в табл. 1.

Таблица 1.

Тип кабеля

Масса 1 км
кабеля, кг

номинальная

расчетная

максимальная

ОК без стальных
элементов

ОК со стальными
элементами

ОК без стальных
элементов

ОК со стальными
элементами

4-х вол.

135

15

155

170

8-ми вол.

130

150

Кабель
выдерживает растягивающее усилие:

1200 Н (120
кгс) с центральным элементом из нитей упрочняющих СВМ;

2200 Н (220
кгс) с металлическим центральным элементом (тросом).

Кабель
выдерживает раздавливающее усилие 1000 Н/см.

Допустимый
радиус изгиба кабеля (250±10) мм.

2. ПОДГОТОВИТЕЛЬНЫЕ РАБОТЫ

2.1. Проведение входного
контроля

2.1.1. Проверка барабанов с кабелем

Барабаны с
оптическим кабелем, поступившие на кабельную площадку, подвергаются внешнему
осмотру на отсутствие механических повреждений. Если в результате внешнего
осмотра будут выявлены серьезные повреждения барабанов или кабеля, которые
могут привести к повреждению последнего в процессе транспортирования или
прокладки, а также к снижению эксплуатационной надежности, должен быть
составлен коммерческий акт с участием эксперта или акт с участием
представителей подрядчика, заказчика и других заинтересованных организаций. При
этом следует руководствоваться инструкциями о порядке приемки продукции
производственно-технического назначения и товаров народного потребления по
количеству и качеству, утвержденными постановлениями Госарбитража СССР № П-6 от
15.06.65 и № П-7 от 25.04.66 (с изменениями и дополнениями, внесенными
постановлениями Госарбитража СССР № 81 от 29.12.73, № 98 от 14.11.74, № 115 от
23.07.75).

При наличии
незначительных повреждений, они должны быть устранены собственными силами. Если
барабан на месте отремонтировать невозможно, то с уведомлением заказчика кабель
с него должен быть перемотан на исправный барабан плотными и ровными витками.
Не допускается перемотка с барабана на барабан, установленных на щеки. При
перемотке необходимо осуществлять визуальный контроль целостности наружной
оболочки кабеля.

После
вскрытия обшивки барабана проверяют наличие заводских паспортов, соответствие
маркировки строительной длины, указанной в паспорте, маркировке, указанной на
барабане, проверяют внешнее состояние кабеля на отсутствие вмятин, порезов,
пережимов, перекруток и т.д.

В паспорте на
кабель должна быть указана длина кабеля, тип покрытия оптического волокна, коэффициент
затухания оптических волокон и предел значений полосы пропускания, материал
трубки модуля, материал упрочняющего центрального силового элемента.

При
отсутствии заводского паспорта на кабель, следует запросить его дубликат у
завода-изготовителя. Если дубликат не будет получен, то необходимо вызвать
представителя завода-изготовителя для производства паспортизации кабеля на
месте в присутствии заказчика.

В том случае,
если выведенный на щеку барабана нижний конец кабеля имеет длину меньше 2 ±0,3 м
(запас для измерений), то кабель необходимо перемотать, выведя необходимый
запас нижнего конца на щеку барабана. Во время перемотки необходимо
осуществлять визуальный контроль за целостностью наружной оболочки кабеля.

2.1.2. Измерение затухания оптических волокон кабеля

При наличии
заводских паспортов производят измерение затухания оптических волокон,
предварительно просветив их электрическим фонарем или переносной электрической
лампой.

Измерение
затухания оптических волокон следует производить комплектом приборов для
измерения методом «обрыва», в соответствии с действующими
инструкциями.

В случае
обрыва оптических волокон или превышения их километрического затухания от
установленной нормы для данного кабеля более чем на 0,3 дБ, должен быть
составлен акт в соответствии с п. 2.1.1. «руководства…» и
строительная длина должна бить возвращена заводу-изготовителю.

После
проведения измерения затухания оптических волокон кабеля составляют протокол
входного контроля по форме 1 ( приложение 2). На концах кабеля устанавливают
полиэтиленовые колпачки. Стык колпачка с полиэтиленовой оболочкой кабеля
герметизируют пояском термоусаживаемой трубки с применением сэвилена или клея-расплава
ГИПК-14-13. При их отсутствии, герметизацию производят наплавлением
полиэтиленовой ленты под стеклолентой.

2.2. Группирование строительных длин кабеля

Перед
группированием строительных длин кабеля рабочий чертеж на прокладку его в
канализации должен быть сопоставлен с фактическими длинами пролетов и проверено
соответствие типов колодцев. При отборе кабеля следует исходить из того, что на
одном регенерационном участке должен быть кабель только одной марки, с одним
типом оптического волокна и одним типом центрального силового элемента.
Предназначенные для прокладки строительные длины кабеля должны быть
распределены так, чтобы отходы кабеля после выкладки и монтажа были
минимальными, при этом учитывают длину пролетов, форму транзитных колодцев, запас
кабеля на монтаж муфти и выкладку в колодце.

В зависимости
от рельефа трассы определяют первый колодец, с которого начинают прокладку
кабеля. Если трасса прямолинейна, имеет не более 1-2-х угловых колодцев, на ней
отсутствуют изгибы и снижения, то представляется возможным затянуть в одном
направлении в одну протяжку всю строительную длину кабеля (до 1,5 км). Если
трасса не прямолинейна, имеет более 2-х угловых колодцев и т.д., производитель
работ должен определить первый колодец так, чтобы произвести прокладку кабеля
от этого колодца в двух направлениях. Желательно, чтобы это был угловой
колодец.

По
результатам группирования для каждого регенерационного участка необходимо
составить укладочную ведомость по форме 2 ( приложение 2).

3. ПРОКЛАДКА ОПТИЧЕСКОГО КАБЕЛЯ

3.1. Подготовка кабельной
канализации к прокладке оптического кабеля

3.1.1. Общие положения

Для прокладки
оптического кабеля, по возможности, используются каналы, расположенные в
середине блока кабельной канализации по вертикали и у края канализации по
горизонтали. По решению заказчика прокладка кабеля по занятым каналам должна
производиться в полиэтиленовых трубах (ПНД 32т наружным диаметром 32 мм и
внутренним — 25 мм), предварительно проложенных в этих каналах. Применение
полиэтиленовой трубы создает условия для прокладки оптического кабеля большой
длины, а также обеспечивает защиту кабеля от возможных повреждений при
заготовке канала для прокладки другого кабеля (особенно металлическими
палками), при докладке тяжелых массивных кабелей, при вытяжке уже проложенных
кабелей из канала.

Прокладка
кабеля по свободным каналам должна производиться только при условии, что в этих
каналах не будет в дальнейшем докладки других кабелей связи с металлическими
проводниками, а только оптических, однотипных в количестве не более пяти-шести.
Если же докладка предвидится, то и в свободном канале оптический кабель должен
прокладываться в полиэтиленовой трубе.

Прокладка
строительных длин кабеля длиной 2000 м и более должна производиться только в
полиэтиленовой трубе.

3.1.2. Прокладка полиэтиленовой трубы в канале
кабельной канализации

При прокладке
полиэтиленовой трубы по каналу кабельной канализации, трубу разматывают из
бухты с передвижного тамбура или разматывают вручную на всю длину пролета. Если
на участке прокладки имеются несколько коротких пролетов, то трубу разматывают
на максимальную длину с таким расчетом, чтобы ее дальний конец (с учетом
обрезки в каждом транзитном колодце на расстояние, равное расстоянию между каналами
плюс 400 — 450 мм) пришелся на последний колодец с минимальной обрезкой. При
невозможности раскатки трубы из-за стесненных условий трассы, участок прокладки
измеряют рулеткой, а затем в доступном месте отмеряют и отрезают полиэтиленовую
трубу. Если на трассе имеются угловые колодцы, то труба должна заканчиваться в
каждом таком колодце.

Конец трубы,
оснащенный наконечником, вводят в канал кабельной канализации и поступательным
движением проталкивают по нему на всю длину пролета (пролетов). При наличии транзитных
колодцев в них производят вспомогательную подтяжку трубы рабочими кабельщиками.

Если
продвижение трубы станет невозможным из-за возникших препятствий в канале, то
трубу необходимо несколько раз повернуть вокруг оси с одновременным
проталкиванием ( рис.
2).

Рис.
2. Прокручивание трубы при прокладке по каналу кабельной канализации

В каждом
колодце полиэтиленовую трубу с одной сторону обрезают ножовкой, оставляя длину 200
— 250 мм от канала. Вначале трубу обрезают на выходе первого колодца, затем
обрезают на входе второго колодца и проталкивают вперед по каналу. Далее трубу
обрезают на входе третьего колодца и снова проталкивают по каналу. Таким
образом поступают в каждом последующем транзитном колодце.

После обрезки
трубы, в каждом колодце на входе и выходе канала, временно на период прокладки
кабеля, устанавливают по одному противоугону, представляющему упор, препятствующий
смещению трубы при ее заготовке проволокой (тросом) и при прокладке кабеля ( рис. 3).

Рис.
3. Установка противоугона

При прокладке
полиэтиленовой трубы в канализации возможны маломерные остатки. Эти остатки
необходимо перераспределять на короткие пролеты трассы, определив их по рабочим
чертежам. Допускается стыковка маломерных длин полиэтиленовой трубы с целью
использования ее для прокладки на участках трассы, не превышающих 70 — 80 м.
Стыковку производят с помощью металлической манжеты длиной 150 мм, толщиной
стенки 1,5 — 2,0 мм, устанавливаемой на стыке труб. Предварительно на торцах
труб с внутренней стороны должна быть снята фаска под углом 30°. Рядом с
установленной манжетой с обеих сторон на поверхность труб накладывают по одному
пояску в два слоя сэвилена или клея-расплава ГИПК-14-13. Поверх манжеты с
равным перекрытием поясков устанавливают и усаживают термоусаживаемую трубку
40/20 длиной 250 мм.

Если
заготовка проложенной полиэтиленовой трубы и прокладка кабеля будут
производиться не сразу же, а через некоторое время, за которое колодцы могут
наполниться водой, то для предотвращения попадания в проложенные трубы песка,
глины, ила, полиэтиленовую трубу в каждом колодце временно защищают полиэтиленовыми
колпачками с обмоткой их стыка 5 — 7 слоями липкой пластмассовой ленты.

3.1.3. Заготовка полиэтиленовой трубы, проложенной
в канале кабельной канализации

Заготовка
полиэтиленовой трубы, проложенной в канале кабельной канализации, производится заготовочной
стальной оцинкованной проволокой диаметром 3 мм или стальным тросом. Для
заготовки трубы применяют стеклопруток или пневмопроходчик. Стеклопруток
наиболее эффективен при наличии на трассе большого количества коротких
пролетов. Пневмопроходчик рекомендуется применять на пролетах от 80 до 140 и
более метров. При отсутствии стеклопрутка и пневмопроходчика полиэтиленовую
трубу можно заготовить капроновым шнуром. Заготовку производят до прокладки
трубы в канал кабельной канализации, размотав ее на поверхности вдоль трассы.
Для заготовки капроновый шнур привязывают к проходному цилиндру или шару.
Цилиндр или шар с привязанным шнуром опускают в трубу, подготовленную для
прокладки в канал. Перебирая трубу впереди себя, перемещают цилиндр или шар со
шнуром на всю длину трубы ( рис. 4). Затем, уже после прокладки трубы в канал,
с помощью шнура затягивают в трубу заготовочную проволоку или трос. На коротких
пролетах шнур нескольких длин можно связать между собой.

Заготовка
свободного канала при прокладке кабеля без полиэтиленовой трубы производится
как и обычно, в соответствии с главой 4.2. «Общей инструкции».
Заготовка канала, в котором уже проложен оптический кабель без полиэтиленовой
трубы, должна производиться либо стеклопрутком, либо полиэтиленовой трубкой.

Во всех
случаях при заготовке каналов следует стремиться к тому, чтобы проволока или
трос имели как можно меньше скруток (соединений). Рекомендуемая целая без
скруток длина для проволоки — 450 — 500 м, для троса — до 1500 м.

Рис. 4. Заготовка
полиэтиленовой трубы капроновым шнуром.

3.2. Подготовка приспособлений и устройств к
прокладке оптического кабеля

3.2.1. Общие положения

Прокладка
оптических кабелей в кабельной канализации может осуществляться как ручным, так
и механизированным способами с использованием различных механизмов и
приспособлений. В данном разделе «руководства….» не приводится их
полный перечень, т.к. они постоянно совершенствуются и дополняются новыми, а
даны только устройства, необходимые для применения в обязательном порядке.

3.2.2. Перед
выездом на трассу проверяют комплектность и работоспособность приспособлений и
устройств, применяющихся при прокладке кабеля. В состав комплекта для ручной
прокладки оптического кабеля в кабельной канализации должны входить
приспособления и устройства, максимально снижающие вероятность повреждения
кабеля и создающие благоприятные условия для прокладки больших строительных
длин. Для обеспечения этих требований в составе комплекта обязательно должны быть:

лебедка
ручная проволочная или тросовая с регулируемым ограничителем тяжения для
заготовки каналов (полиэтиленовой трубы) проволокой (тросом) и затягивания
кабеля (в дальнейшем может использоваться лебедка с бензиновым или
электрическим приводом);

устройство
для размотки кабеля с барабана;

труба
гофрированная для ввода кабеля через горловину колодца от барабана до канала
канализации (при прокладке кабеля с середины трассы в обе стороны, труба должна
иметь продольный разрез по всей длине);

ролики
люкоогибные для направления прохождения заготовочной проволоки (троса) и кабеля
через горловину последнего колодца;

горизонтальная
распорка и блок кабельный для плавного поворота кабеля в угловом колодце (по
числу угловых колодцев);

воронки
направляющие на трубу кабельной канализации и на полиэтиленовую трубу,
проложенную в канале для предотвращения повреждения кабеля и обеспечения
требуемого радиуса изгиба на входе и выходе канала (по 2 шт. на каждый
колодец);

наконечник
кабельный с чулком или без чулка для тяжения кабеля за центральный силовой
элемент и полиэтиленовую оболочку;

компенсатор
кручения для исключения скручивания прокладываемого кабеля;

После
проверки комплектности и работоспособности приспособлений и устройств,
необходимо проверить и отрегулировать (при необходимости) с помощью динамометра
тяговое усилие лебедки, которое не должно превышать:

для кабеля с
силовым центральным элементом из нитей СВМ — 1200 Н (120 кгс);

для кабеля с
металлическим силовым центральным элементом — 2200 Н (220 кгс).

В первом случае
на лебедке устанавливают усилие расцепления — 110 кг, во втором — 200 кг.

Проверку и
регулировку лебедки рекомендуется производить в присутствии представителя
заказчика с оформлением протокола.

3.3. Установка приспособлений и устройств на трассе

3.3.1.
Порядок установки

Готовые к
работе приспособления и устройства вместе с лестницами и ограждениями
доставляются автотранспортом к месту прокладки кабеля.

Устройство
для размотки кабеля с барабана устанавливают на расстоянии 1,5 — 2,0 м от люка
колодца, с которого начинают прокладку ( рис. 5).

Рис.
5. Устройство для размотки кабеля с барабана

На люк
колодца устанавливают раму с гофрированной трубой для ввода кабеля в канал
канализации.

С
противоположной стороны на люк последнего выходного колодца устанавливают
люкоогибные ролики ( рис. 6)и в двух-трех метрах — ручную лебедку.

Рис.
6. Установка люкоогибных роликов

Во всех
угловых колодцах устанавливают горизонтальную распорку и блок кабельный ( рис. 7).

Рис.
7. Установка горизонтальной распорки и блока кабельного

Во всех
транзитных колодцах на полиэтиленовую трубу или канальную трубу устанавливают
направляющие предохранительные воронки ( рис. 8 и рис. 9) (в первом
случае воронки рекомендуется устанавливать одновременно с противоугонами).

Рис. 8. Установка
направляющей воронки на полиэтиленовую трубу

Рис. 9. Установка
направляющей воронки на трубу канала кабельной канализации

3.4. Транспортирование барабанов с кабелем

Транспортирование
барабанов с кабелем к месту прокладки должно производиться с соблюдением общих
положений, на специально оборудованных бортовых автомашинах с прицепами или без
них. Погрузка барабанов и выгрузка их должны производиться автомобильными
кранами или при помощи покатей. Категорически запрещается сбрасывать их с
автомашины или свободно скатывать по покатям. Перемещение барабанов с кабелем
на короткие расстояния (до 50 м) можно осуществлять перекатыванием в
направлении, указанном стрелкой на щеке барабана. Запрещается также перевозка
барабанов, установленных на щеки.

3.5. Прокладка оптического кабеля

3.5.1. Условия прокладки
кабеля

Прокладка
оптического кабеля должна производиться при температуре окружающего воздуха не
ниже минус 10°С.

3.5.2. Установка барабана с кабелем

Барабан с
удаленной обшивкой устанавливают со стороны трассы прокладки и так, чтобы смотка
производилась сверху. Барабан должен свободно вращаться от руки.

3.5.3. Оснастка конца кабеля для прокладки

Конец кабеля
освобождают от крепления к барабану и от защитного полиэтиленового колпачка.
Прокладку производят либо с использованием наконечника без чулка, либо
наконечника с чулком (оба приспособления однозначны). Наконечник скрепляют с
компенсатором кручения. На рис. 10 показан пример установки наконечника с
чулком и компенсатора кручения.

Рис.
10. Пример установки наконечника с чулком и компенсатора кручения

В каждом
случае тяжение кабеля производится за центральный силовой элемент и
полиэтиленовую оболочку кабеля. Соединение наконечников с заготовочной
проволокой осуществляют обычной скруткой. Скрутка не должна выступать за
габариты наконечника и компенсатора кручения.

3.5.4. Прокладка кабеля

Прокладку
оптического кабеля производят с помощью лебедки с ограничителем тяжения, вращая
ее равномерно, без рывков. Прокладывать оптический кабель без лебедки, имеющей
ограничитель тяжения, категорически запрещается.

На рис. 11
показан момент работы с лебедкой.

Рис.
11. Прокладка кабеля с помощью ручной лебедки

С
противоположной стороны кабель разматывают с барабана вручную ( рис. 12).

Во время
прокладки необходимо следить за прохождением кабеля через угловые колодцы.
Кабель должен проходить по центру поворотного колеса и фиксироваться прижимными
роликами.

Для обеспечения
оперативной связи между рабочими необходимо применение служебной радиосвязи.
Для этой цели рекомендуется использовать радиостанции типа»Лен» или
«Кактус».

Рис.
12. Размотка кабеля с барабана во время прокладки

Средняя
скорость прокладки кабеля составляет 5 ¸ 7 м/мин.

Предварительно
отрегулированная лебедка будет обеспечивать тяговое усилие, не превышающее
допустимого для данного кабеля. В случае, если усилие тяжения превысит
допустимое, то необходимо, прежде всего, обследовать трассу прокладки и
определить причину. Если увеличение тягового усилия вызвано усложнившимся
рельефом трассы, то необходимо выявить (локализовать) этот трудный влияющий
участок трассы и поставить в транзитных колодцах рабочих для подтяжки кабеля
руками. При этом следует учитывать, что подтяжка руками должна производиться с
усилием не более 60 — 70 кгс. Рекомендуется заранее подготовить рабочих для
использования на подтяжке кабеля, проинструктировав их и предоставив им
возможность измерить и определить для себя допустимое усилие с помощью
динамометра. При подтяжке кабеля руками запрещается упираться ногами в стенки
колодца или его арматуру. Нельзя допускать перегибов кабеля в руках. Необходимо
следить, чтобы впереди не образовывалась петля и кабель равномерно уходил в
противоположный канал. При появлении кабеля в последнем выходном колодце
лебедку перемещают на расстояние до 20 — 25 м и продолжают вытяжку кабеля из
колодца, обеспечивая тем самым запас кабеля на выкладку и монтаж.

Если
прокладка кабеля производится с какой-то точки трассы в два направления, то
вначале прокладывают одну большую длину в одну сторону. Затем оставшийся на
барабане кабель разматывают, укладывают рядом восьмеркой и прокладывают в
другую сторону.

Прокладка
кабеля по каналам кабельной канализации, в которых уже проложен оптический
кабель, производится аналогично.

Закончив
прокладку кабеля, его конец возле наконечника (чулка) обрезают и герметизируют
полиэтиленовым колпачком (см. п. 2.1.2.),

3.5.5. Выкладка оптического кабеля

При выкладке
подтягивание кабеля в холодцах производят вручную постепенно от крайних
(первого и последнего) колодцев к середине. Оптический кабель должен быть
выложен по форме колодцев, уложен на консоли соответствующего ряда в ближайших
к кронштейну ручьях, желательно на первое консольное место, и закреплен
перевязкой. Выкладываемый кабель не должен перекрещиваться с другими кабелями,
идущими в том же ряду, и заслонять собой отверстия каналов.

В колодце, в
котором будет устанавливаться соединительная муфта, кабель сворачивают кольцами
диаметром 1000 — 1200 мм, укладывают к стенке и прикрепляют к кронштейнам.
Длина запаса кабеля, считая от канала канализации, после выкладки во всех
транзитных колодцах должна быть:

при монтаже
муфты в монтажно-измерительной автомашине — 8м;

при монтаже
муфты в колодце (в зависимости от типа колодца) — от 3 до 5м.

После
выкладки кабеля снимают все противоугоны, направляющие воронки, другие
устройства и устанавливают их на следующем участке трассы. Герметизация
полиэтиленовых труб (если они применялись) не производится.

3.5.6. Прокладка оптического кабеля в коллекторах,
шахтах, нишах и по кабельростам

При прокладке
в коллекторах небольших длин кабеля, его выносят вдоль всего коллектора на
руках и укладывают на консоли. При большой прокладываемой длине, кабель
протягивают по раскатным роликам. Укладывают кабель на консоли верхнего ряда в
ближайших к кронштейну ручьях.

Прокладка и
крепление кабеля в шахтах должны производиться в соответствии с проектом.

В нишах
оптический кабель прокладывается свободно без крепления.

На
кабельростах кабель прокладывают и крепят вместе с другими кабелями связи,
соблюдая при этом требуемый радиус изгиба. Если существующая конструкция
кабельроста это не позволяет, допускается на вертикально-горизонтальных
поворотах кабель пропускать, минуя изгиб кабельроста.

3.5.7. Контроль оптического кабеля после прокладки

После
прокладки и выкладки оптического кабеля необходимо произвести контрольные
измерения затухания оптических волокон, которое должно быть в пределах
установленной километрической нормы. После проверки проложенной длины кабеля,
полиэтиленовые колпачки на его концах должны быть восстановлены.

4. МОНТАЖ ОПТИЧЕСКОГО КАБЕЛЯ

4.1. Организация рабочего
места

Монтаж
соединительных муфт оптического кабеля может производиться в специально
оборудованных монтажно-измерительных автомашинах или непосредственно в колодцах
кабельной канализации. Во втором случае колодец должен быть большого типа, быть
сухим, иметь хорошее освещение, обогрев рабочей зоны и вентиляцию, позволять
установку в нем столика-подставки для сварочного аппарата и свободного
размещения двух монтажников. При любой погоде над колодцем должна быть
кабельная палатка. При невозможности обеспечения этих условий, монтаж должен
производиться только в монтажно-измерительной автомашине.

4.2. Состав монтажной бригады

Монтаж
соединительных муфт и контрольные измерения в процессе монтажа производятся
комплексной бригадой в составе:

инженера-измерителя;

техника-измерителя;

монтажника
связи — 6 разряда;

монтажника
связи — 5 разряда.

4.3. Монтажные материалы и детали для монтажа
соединительной муфты СМОК

Для монтажа
соединительной муфты СМОК применяется комплект деталей и материалов (ТУ
45-86.АХП4.468.049.ТУ.).

На рис. 13
показана соединительная муфта. Состав комплекта указан в приложении 3.

Рис. 13.
Соединительная муфта СМОК

4.4. Монтаж соединительной муфты СМОК

При монтаже
соединительной муфты в монтажно-измерительной автомашине оба конца кабеля, не
раскручивая колец, подают к монтажному столу. При монтаже муфты в колодце
кольца кабеля раскручивают и кабель временно выкладывают по форме колодца. Готовый к монтажу кабель протирают на
расстоянии 2000 мм от загрязнений. Отступив на 1650 — 1700 мм от концов кабеля,
на них устанавливают и приваривают методом наплавления полиэтиленовой ленты под
стеклолентой по одному полиэтиленовому конусу ( рис. 14).

Рис.
14. Приварка полиэтиленового конуса к кабелю

Под конуса
устанавливают и скрепляют с ними перевязкой половинку металлического каркаса,
входящего в состав монтажного комплекта. На уровне окончания цилиндрической
части полиэтиленовых конусов полиэтиленовую оболочку обоих концов кабеля
надрезают и удаляют с сердечника. Снимают пластмассовые ленты или нити. В
четырехволоконном кабеле кордели заполнения удаляют ножом на уровне среза
оболочки. Если оптические волокна в кабеле уложены во второпластовые трубки, то
их удаляют на расстоянии 35 — 40 мм от среза полиэтиленовой оболочки. Если
оптические волокна помещены в поливинилхлоридные трубки, то их удаляют на длине
100 мм. Освобожденные волокна или волокна в поливинилхлоридной трубке протирают
от гидрофобного заполнителя бензином Б-70,а затем насухо.

Если
центральный силовой элемент представляет собою нити СВМ в поливинилхлоридной
оболочке, то его соединяют в середине муфты металлической гильзой, обжав ее по
концам плоскогубцами, при этом встречные нити выводят наружу и связывают между
собой двойным узлом. Если центральный силовой элемент выполнен в виде стального
троса в поливинилхлоридной оболочке, то его восстанавливают путем спайки
в середине муфты припоем ПОССу 30-2 с применением пасты ПБК-26м. Место спайки
изолируют полиэтиленовой гильзой ( рис. 15. и рис. 16).

Рис. 15. Спайка
стального троса паяльником

Рис.
16. Изолирование спайки стального троса полиэтиленовой гильзой

После
соединения центрального силового элемента временное крепление полиэтиленовых
конусов к металлическому каркасу ослабляют и конуса слегка раздвигают,
обеспечивая, тем самым, натяжение центрального элемента. Далее конуса
закрепляют снова. В каркас вкладывают на всю его длину между конусами полоску
из полиэтиленовой пленки длиной 800 мм и шириной 200 мм.

Приступают к
подготовке к сварке и к сварке первого оптического волокна. Счет оптических
волокон в кабеле на конце «А» ведется по часовой стрелке, на конце
«Б» против часовой стрелки. Соблюдение счета волокон при монтаже
соединительных муфт обязательно.

На свободном
от трубки оптическом волокне на длине 30 мм удаляют защитные покрытия. В
практике чаще всего встречаются два вида покрытий:

полиамидное;

эпоксиакрилатное.

Полиамидное
покрытие удаляют инструментом, входящим в комплект устройства для сварки
КСС-111.Эпоксиакрилатное покрытие удаляют лезвием безопасной бритвы.

Освобожденный
от защитных покрытий участок оптического волокна протирают тампоном, смоченным
в бензине-растворителе «Нефрас», а затем спиртом. После протирки
производят скол оптического волокна инструментом, входящим в комплект
устройства для сварки. Скол должен быть ровным и перпендикулярным оси волокна.
Качество скола определяют через микроскоп устройства для сварки. Если скол не
получился, то операции по удалению защитных покрытий повторяют снова.
Аналогично подготавливают оптическое волокно другого конца кабеля.

Производят
сварку оптических волокон двух строительных длин кабеля в соответствии с
указаниями «Паспорта устройства для сварки». После сварки производят
контроль качества сварного соединения рефлектометром обратного рассеивания,
установленного в начале строительной длины кабеля (участка). Затухание места
сварки оптического волокна должно быть не более 0,5 дБ. Если затухание больше,
то сварку необходимо переделать. Если после двойной переделки затухание все же
будет превышать 0,5 дБ, но не более 0,8 дБ, сварное соединение оставить как оно
есть, но это увеличение постараться скомпенсировать за счет уменьшения
затухания на других сварках этого волокна в следующих муфтах так, чтобы не
превысилась норма затухания, установленная проектом на весь участок.

Если
затухание сварки превышает 0,8 дБ, необходимо вызвать представителя
завода-изготовителя, заказчика и других заинтересованных организаций и в их
присутствии составить акт в соответствии с указаниями п. 2.1.1.

Получив
положительные результаты измерений, на сварное соединение устанавливают и
усаживают защитную термоусаживаемую гильзу (ГЗС). После остывания гильзы
оптическое волокно укладывает в металлическом каркасе, а гильзу подвязывают к
центральному силовому элементу ( рис. 17). В паспорте на муфту отмечают место
установки гильзы.

Рис.
17. Укладка волокна в муфте

Кольца
оптического волокна можно связать между собой ниткой без затяжки. Они должны
оставаться в свободном состоянии.

После
выкладки оптического волокна и закрепления защитной гильзы снова производят
проверку сварного соединения рефлектометром и только потом приступают к
подготовке и сварке следующего волокна аналогично первому.

После сварки
и выкладки всех оптических волокон вкладыш из полиэтиленовой пленки
сворачивают трубкой, вкладывают паспорт на муфту ( приложение 5) с указанием
распределения защитных гильз по счету волокон в кабеле и закрывают сверху
второй частью металлического каркаса ( рис. 18).

Рис.
18. Установка второй части металлического каркаса

Поверх
каркаса надвигают две цилиндрические части полиэтиленовой муфты ( рис. 19).

Герметизацию
всех трех стыков производят поясками термоусаживаемой трубки 80/40 длиной по
100 мм, предварительно надетыми на кабель. В качестве герметика под трубку
применяют сэвилен или клей-расплав ГИПК-14-13.

На рис. 20
показана смонтированная соединительная муфта.

Рис. 19. Установка
цилиндрических частей полиэтиленовой муфты

Рис. 20.
Смонтированная соединительная муфта

4.5. Проверка герметичности смонтированной муфты

После монтажа
соединительной муфты проверяют ее герметичность местным избыточным воздушным
давлением. Для этого к корпусу муфты временно приваривают полиэтиленовый
патрубок и делают через него прокол в корпусе муфты. Через осушительный бачок с
селикагелем автомобильным насосом в муфте создают избыточное воздушное давление
порядка 98 кПа (1 кг/см2). Проверку можно производить прибором
«УЗТИ», а при его отсутствии — обмыливанием. После проверки патрубок
срезают ножом, а отверстие герметизируют предварительно надетой на кабель
полоской термоусаживаемой трубки 80/40 шириной 60 мм с применением сэвилена или
клея-расплава ГИПК-14-13.

Если монтаж
муфты производился в монтажно-измерительной автомашине, то муфту снимают с
монтажного стола и опускают в колодец. Запас кабеля снова должен сложиться
кольцами с обеих сторон от муфты. В колодце кольца кабеля скрепляют между собой
и прикрепляют к кронштейнам.

5. РЕМОНТ СОЕДИНИТЕЛЬНЫХ МУФТ

5.1. Вскрытие соединительной
муфты

При
необходимости ремонта (демонтажа) соединительной муфты пояски термоусаживаемой
трубки срезают ножом и удаляют остатки герметика. Полиэтиленовые цилиндры
сдвигают с конусов в сторону кабеля и снимают верхнюю часть металлического
каркаса, предоставляя доступ к оптическим волокнам.

5.2. Восстановление соединительной муфты

При
последующем восстановлении соединительной муфты все операции выполняют в
обратной последовательности. Стыки полиэтиленовых цилиндров между собой и с
конусами герметизируют наплавлением полиэтиленовой ленты под стеклолентой.

6. МАРКИРОВКА КАБЕЛЯ И МУФТ

6.1. Маркировка

После монтажа
на кабель возле смонтированной муфты, а также на кабель в транзитных колодцах
устанавливают свинцовое нумерационное кольцо или пластмассовую бирку. На кольце
или бирке указывают:

между какими
АТС проложен кабель;

марку кабеля;

номер кабеля.

6.2. Метка кабеля и муфты

В смотровых
устройствах на оптическом кабеле и в средней части смонтированной муфты желтой
несмываемой краской делают предупреждающую отметку размеров, примерно, 20 ´20
мм. По окружности канала кабельной канализации наносят круг желтой краски не
менее 50 мм.

7. СДАЧА РЕГЕНЕРАЦИОННЫХ УЧАСТКОВ В ЭКСПЛУАТАЦИЮ

7.1. Подготовка
смонтированных регенерационных участков волоконно-оптической линии к сдаче в
эксплуатацию

На
смонтированных регенерационных участках необходимо произвести измерения затухания
оптических волокон кабеля. Результаты измерений занести в паспорт ( приложение 6).
Затухание оптических волокон всего регенерационного участка должно
соответствовать норме, указанной в проекте.

7.2. Сдача в эксплуатацию

Сдача в
эксплуатацию должна производиться в соответствии с «Руководством по
приемке в эксплуатацию линейных сооружений проводной связи и проводного
вещания» (М., «Радио» и «Связь», 1985), с соблюдением
требований СНИП III-3-81 «Приемка в эксплуатацию законченных
строительством объектов. Основные положения» и ВСН-600-81
«Инструкция по монтажу сооружений и устройств связи, радиовещания и
телевидения».

При сдаче в
эксплуатацию рабочей комиссии, кроме установленной правилами, предъявляется
следующая исполнительная документация:

один
экземпляр рабочих чертежей, скорректированный в процессе строительства;

паспорта на
строительные длины проложенного кабеля;

паспорта на
регенерационные участки в одном экземпляре.

Рабочей
комиссией производятся измерения затухания оптических волокон кабеля по
регенерационным участкам на подтверждение данных, представленных в паспортах на
участки. Непосредственно на трассе проверяют крепление и маркировку кабеля и
муфт в смотровых устройствах.

8. ТЕХНИКА БЕЗОПАСНОСТИ

8.1. При
выполнении работ следует руководствоваться «Правилами техники безопасности
при работах на кабельных линиях связи и проводного вещания» (М.,
«Связь», 1979).

8.2. При
работе с оптическим волокном его отходы при разделке (сколе) необходимо
собирать в отдельный ящик и после окончания монтажа, освобождать ящик в
отдельно отведенном месте или закапывать отходы в грунт.

8.3. Следует
избегать попадания остатков оптического волокна в одежду. Работу с оптическим
волокном следует производить в клеенчатом фартуке.

8.4.
Монтажный стол и пол в монтажно-измерительной автомашине после каждой смены
следует обрабатывать пылесосом и затем протирать мокрой тряпкой. Отжим тряпки
следует производить в плотных резиновых перчатках.

8.5. При
работе с устройством для сварки оптических волокон, необходимо соблюдать
следующие требования:

а) все
подключения и отключения приборов, требующие разрыва электрических цепей или
соединения с высоковольтными цепями устройства, производить при полностью
снятом напряжении;

б) устройство
должно быть заземлено;

в) во время
наладочных работ следует помнить, что трансформатор, высоковольтные провода,
электроды в режиме сварки находятся под высоким напряжением;

г)
запрещается эксплуатация устройства со снятым защитным кожухом блока
электродов;

д) не реже
одного раза в неделю производить проверку исправности изоляции высоковольтных
проводов; запрещается работать на устройстве при поврежденной изоляции
высоковольтных проводов;

е) к работе с
устройством допускаются лица, прошедшие вводный инструктаж, инструктаж по
технике безопасности на рабочем месте с последующей проверкой знаний и имеющие
группу по электробезопасности не ниже III.

Приложение 1

Перечень технологических карт и карт трудового процесса на
прокладку и монтаж оптических кабелей ГТС

Технологическая
карта на прокладку оптического кабеля ГТС в кабельной канализации (1986 г.)

Технологическая
карта на монтаж соединительной муфты СМОК оптического кабеля ГТС (1986 г.)

Технологическая
карта проведения входного контроля оптического кабеля на кабельной площадке
(1987 г.)

Карта
трудового процесса монтажа соединительной муфты на оптическом кабеле связи
ОКЛ-50-2-0,7-1,5-4, прокладываемом в кабельной канализации (1986 г.)

Карта
трудового процесса заготовки канала кабельной канализации полиэтиленовой трубой
для прокладки в нее оптического кабеля связи (1986 г.)

Карта
трудового процесса заготовки полиэтиленовой трубы линейной проволокой (тросом)
для прокладки в ней оптического кабеля (1986 г.)

Карта
трудового процесса на установку наконечника с чулком на конец оптического
кабеля перед прокладкой в кабельной канализации (1987 г.)

Карта
трудового процесса на сварку оптических волокон оптического кабеля связи (1987
г.)

Карта
трудового процесса стыковки маломерных длин полиэтиленовой трубы ПНД 32т для
прокладки в канале кабельной канализации (1987 г.)

Карта
трудового процесса герметизации конца оптического кабеля полиэтиленовыми
колпачками (1987 г.)

Приложение 2.

Форма
1.

Протокол входного контроля

№ № барабан. ОК

Длина ОК, L ,м

№ № ОВ

Данные пасп.

Мощность излучения

Результаты расчета

Дата проверки

Заключение о пригодности ОК

Затухание
ОВ, А, дБ

Рвых ед. мощности

Рвх ед. мощности

Затухание, А, дБ

Коэф. затухан. a ,
дБ/км

Затухание
оптических волокон определяется по формуле:

Коэффициент
затухания оптических волокон определяется по формуле:

Проверку
производил ______________________

Укладочная
ведомость строительных длин

Регенерационный
участок________________

Марка оптического кабеля________________

№ № п/п

№ № барабанов
ОК

Номера
колодцев кабельной канализации, между которыми прокладывается строительная
длина ОК

Составил_____________
» » 198 г

Приложение 3

Состав монтажных материалов и деталей для монтажа
соединительной муфты СМОК оптического кабеля ГТС в четырехволоконном исполнении

Наименование

ГОСТ,
ТУ, чертеж

Ед.
из.

К-во

1

2

3

4

1. Гильза для защиты места сварки ОВ (ГЗС)

АХП 4.218.005

шт.

5

2. Корпус полиэтиленовый (цилиндрическая часть)

АХП 7.800.037

«

2

3. Конус полиэтиленовый

АХП 7.899.009

«

2

4. Каркас металлический (из двух частей)

АХП 8.214.029

«

1

5. Гильза алюминиевая (длиной 40 км, наружным
диаметром 6,0 мм, толщиной стенки 0,5 мм)

ГОСТ 18475-82

«

1

6. Гильза полиэтиленовая (длиной 40 мм, диаметром 8
мм)

1

7. Кольцо опорное для полиэтиленовых конусов

АХП 8.245.019

«

2

8. Сэвилен 115-01, 107-01, 118-01 (ширина ленты 30
мм) или клей-расплав ГИПК 14-13

ТУ 6-05-251-99-79

м

2,46

9. Пленка полиэтиленовая (лента 0,1 ´ 30, сорт высший)

ГОСТ 10354-82

«

1

10. Термоусаживаемая трубка 80/40(пояски 3 ´ 100)

ТУ 6-19-051-492-84

«

0,3

11. То же, (для герметизации муфты после проверки
ее на герметичность)

-«-

«

0,006

12. Нитки капроновые № 35

«

0,6

13. Стеклолента, шириной 30 мм

ГОСТ 5937-81

«

1,3

14. Патрубок из полиэтилена (отрезок полиэтиленовой
оболочки кабеля ТПП 10 ´ 2, длиной 100 мм)

шт.

1

15. Пленка полиэтиленовая вкладыш длиной 800 мм,
шириной 200 мм, толщиной 0,8 — 1,0 мм.

ГОСТ 10354-82

шт.

1

16. Бензин Б-70

гост 1012-72

л

0,39

17. Бензин-растворитель

гост 6-15-90-77

г

33,6

«Нефрас» 50/170

гост

18. Ветошь протирочная

гост 5354-79

кг

0,28

19. Спирт ректификованный

гост 18300-72

г

26,52

20. Тампон бязевый

г

0,6

21. Кольцо нумерационное

чертеж изготовит.

шт.

2

22. Нитрокраска

г

30

При монтаже соединительной муфты на
восьмиволоконном оптическом кабеле позиции: 1, 12, 17, 19, 20 следует
умножить на 2.

Состав
монтажных материалов и деталей для монтажа соединительной муфты СМОК
оптического кабеля ГТС составлен в соответствии с «Временными
производственными нормами расхода материалов на монтаж соединительных муфт СМОК
городских оптических кабелей связи», утвержденными Заместителем Министра
связи СССР т. Зубаревым Ю.Б. 5.06.87.

Приложение 4.

Перечень инструментов, устройств и приборов, применяющихся
на прокладке и монтаже оптических кабелей ГТС

Наименование

ГОСТ, ТУ, чертеж

Е. из

К-во

1

2

3

4

1. Установка
передвижная АКМ-4 или:

ТУ 45-78

компл.

1

насос водоотливный
(ППН-2м, НДМ-4,»Гном», «Лягушка»),

АХП
2.968.000ТУ

шт.

1

вентилятор
ВПКК-5

»

1

2.
Трансформатор понижающий 220/12

«

1

3.
Газоанализатор ПГФ-2м или СТС-1 непрерывного действия

ГОСТ 7018-75

«

1

4.
Ограждения-барьеры

чертеж
изготовит.

«

2

5.
Предупредительные знаки

ГОСТ
12.4.026-56

»

2

6.
Ограждения универсальные

чертеж
изготовит.

«

4

7. Ломик с
наконечником из цветного металла

-«-

»

2

8. Фонарь
электрический типа ЭФ-3

ТУ
45-78.6с2.424.ООТУ

«

1

9. Лестница
монтерская

Каталог ОТСС
с. 55 (М., ОТСС, 1971)

»

5

10. Ведро
оцинкованное

«

2

11. Лампа
12/100 Вт со шнуром и защитной сеткой

ГОСТ
2239-79

»

2

12. Рукавицы
х/б

ГОСТ
12.4.010-75

пара
на рабочего

1

13. Палатка
брезентовая колодезная

ТУ 45-115-74

шт.

1

14. Перчатки
резиновые диэлектрические

ТУ
38-105-977-76

пара

1

15.
Спасательный пояс

ГОСТ
12.4.011-75

по
числу рабочих

15. Канат
пеньковый (веревка) Æ 4,6 мм

ГОСТ 483-75

м

6

17. Комплект
приспособлений и устройств для прокладки оптических кабелей ГТС в кабельной
канализации

чертежи ССКТБ

компл.

1

18. Полотно
ножовочное по металлу

ГОСТ 6645-68

шт.

5

19. Рамка ножовочная
ручная

ГОСТ
17270-71

«

2

20. Рулетка
измерительная на 50 м.

ГОСТ
11900-66

«

2

21. Нож
монтерский

чертеж
изготовит.

«

2

22. Кордная
металлическая щетка

ГОСТ 1465-80

«

1

23.
Напильник трехгранный

ГОСТ 1465-80

«

1

24. Газовая
горелка с заправленным баллоном или

ТУ 45-76 сб.
2.977 СОСТУ

«

1

паяльная
лампа, заправленная бензином (0,5 л)

ТУ 45-343-72

«

1

25.
Плоскогубцы

ГОСТ 7236-73

«

2

26. Кусачки
боковые

ТУ 45-346-72

«

2

27. Метр
складной деревянный

РСТ 149-76
Латв. ССР

«

1

28. Паяльник
молотковый

«

1

29. Кисточки
для ПБК 26 м

чертеж
изготовит.

«

1

30. Кисть
для метки кабеля и муфты

«

2

31.
Устройство для сварки ОВ КСС-1П

АРБ М2.322.007

«

1

Измерительные
приборы:

1.
Нормализующее устройство

чертеж
изготовит.

шт.

1

2. Катушка с
оптическим волокном длиной не менее 1000 м.

-«-

«

1

3. Тестер
оптический ОМКЗ-76

ЕЭ 2.746.616
ТУ

«

2

4. Измеритель
затухания ИФ 193-1 (ИФ 193-2)

ИФ
193-00.ОООТУ

«

1

5. Ваттметр
поглощаемой мощности ОМЗ-65 (66)

Е.71.301.061
ТУ

«

1

6.
Рефлектометр обратного рассеивания «Фельтон и Гильом» (ФРГ), или
«Анрицу» (Япония)

*

«

I

Источники
электропитания:

Аккумулятор
не менее 5 А, напряжением 12 В

шт.

1

Блок питания
220/12 В

чертежи
ССКТБ АХП 1. 400.003 ПС

шт.

1

Устройства для служебной
оперативной связи:

Радиостанция типа «Лен» или
«Кактус»

компл.

3

Телефон типа «МБ» с индукторным вызовом с
источником эл. питания микрофона

шт.

3

Приложение 5

ПАСПОРТ
на смонтированную соединительную муфту «СМОК» ОК ГТС

Муфта
№ ___________

Оптическая
линия связи ___________________________________________________

Регенерационный
участок __________________________________________________

Марка
оптического кабеля _________________________________________________

_________________________________________________________________________

(наименование
монтажной организации)

Монтаж
производился _____________________________________________________

(Ф.И.О.
Монтажников)

_________________________________________________________________________

_________________________________________________________________________

»
» ____________ 198 г

Сведения о
ремонте _______________________________________________________

_________________________________________________________________________

Обратная сторона
паспорта

(Указываются
номера оптических волокон)

Измерительные приборы …………..……………………………………….

№№ ОВ

Направление
измерения

А-Б

Б-А

Затухание

1

2

3

4

5

6

7

8

Приложение 6

Паспорт регенерационного участка

Регенерационный
участок ________________

№ № ОВ

Мощность излучения

Результаты расчета

Дата измерения

Рвых един. мощности

Рвх един. мощности

Затухание А, дБ

Коэффициент затухания a ,
дБ/км

Направление
А — Б

Направление
Б — А

Измерения
производил ____________________________

Приложение 7.

СОДЕРЖАНИЕ

1. ВВЕДЕНИЕ . 1

1.2. Конструкция оптических кабелей и их оптические
характеристики . 1

1.3. Механические параметры оптических кабелей . 3

2. ПОДГОТОВИТЕЛЬНЫЕ РАБОТЫ .. 4

2.1. Проведение входного контроля . 4

2.2. Группирование строительных длин кабеля . 4

3. ПРОКЛАДКА ОПТИЧЕСКОГО КАБЕЛЯ .. 5

3.1. Подготовка кабельной канализации к прокладке
оптического кабеля . 5

3.1.1. Общие положения . 5

3.1.2. Прокладка полиэтиленовой
трубы в канале кабельной канализации . 5

3.1.3. Заготовка полиэтиленовой
трубы, проложенной в канале кабельной канализации . 6

3.2. Подготовка приспособлений и устройств к прокладке
оптического кабеля . 7

3.2.1. Общие положения . 7

3.3. Установка приспособлений и устройств на трассе . 8

3.4. Транспортирование барабанов с кабелем .. 9

3.5. Прокладка оптического кабеля . 10

3.5.1. Условия прокладки кабеля . 10

3.5.2. Установка барабана с
кабелем .. 10

3.5.3. Оснастка конца кабеля для
прокладки . 10

3.5.4. Прокладка кабеля . 10

3.5.5. Выкладка оптического
кабеля . 12

3.5.6. Прокладка оптического
кабеля в коллекторах, шахтах, нишах и по кабельростам .. 12

3.5.7. Контроль оптического
кабеля после прокладки . 12

4. МОНТАЖ ОПТИЧЕСКОГО КАБЕЛЯ .. 12

4.1. Организация рабочего места . 12

4.2. Состав монтажной бригады .. 12

4.3. Монтажные материалы и детали для монтажа
соединительной муфты СМОК .. 12

4.4. Монтаж соединительной муфты СМОК .. 13

4.5. Проверка герметичности смонтированной муфты .. 16

5. РЕМОНТ СОЕДИНИТЕЛЬНЫХ МУФТ . 16

5.1. Вскрытие соединительной муфты .. 16

5.2. Восстановление соединительной муфты .. 16

6. МАРКИРОВКА КАБЕЛЯ И МУФТ . 16

6.1. Маркировка . 16

6.2. Метка кабеля и муфты .. 16

7. СДАЧА РЕГЕНЕРАЦИОННЫХ УЧАСТКОВ В ЭКСПЛУАТАЦИЮ … 16

7.1. Подготовка смонтированных регенерационных участков
волоконно-оптической линии к сдаче в эксплуатацию .. 16

7.2. Сдача в эксплуатацию .. 16

8. ТЕХНИКА БЕЗОПАСНОСТИ .. 17

Приложение 1 Перечень
технологических карт и карт трудового процесса на прокладку и монтаж оптических
кабелей ГТС .. 17

Приложение 2 Протокол
входного контроля . 18

Приложение 3 Состав
монтажных материалов и деталей для монтажа соединительной муфты СМОК
оптического кабеля ГТС в четырехволоконном исполнении . 18

Приложение 4 Перечень
инструментов, устройств и приборов, применяющихся на прокладке и монтаже
оптических кабелей ГТС .. 19

Приложение 5 Паспорт на смонтированную соединительную
муфту «СМОК» ОК ГТС .. 20

Приложение 6 Паспорт
регенерационного участка . 20

Приложение 7. 20

Оптическое волокно (ВОЛС), как среда для передачи больших объемов информации находит все более широкое применение в мире и в нашей стране в частности. Оптический кабель имеет массу преимуществ перед медным. Однако его применение несет и ряд непростых проблем. Главная из которых — прокладка ВОЛС.

Прокладка ВОЛС: в чем сложность?

Сложность в том, что к прокладке ВОЛС нужно подходить с особой аккуратностью. Нельзя забывать, что какой бы бронированный не был оптический кабель, всё равно внутри него находится стекло, со всеми его недостатками. Его нельзя сильно растягивать, изгибать и раздавливать. Все эти параметры указываются в паспорте на кабель, в соответствующих нормативных документах и правилах прокладки ВОЛС (список таких документов вы найдете в конце статьи).

Успешная реализация любого проекта, связанного с прокладкой оптоволоконного кабеля, зависит от выполнения правил прокладки ВОЛС.

Этапы прокладки ВОЛС

В целом процесс прокладки ВОЛС состоит из подготовительного и основного этапов.

В рамках первого из них производится выбор способа монтажа кабеля: непосредственно в грунт, канализацию, подвеска на нижней траверсе ЛЭП или прокладка в грозотроссе, монтаж под водой или укладка в асфальтное покрытие и др. Опираясь на принятое решение, выбирается необходимый тип кабеля.

Перед началом прокладки ВОЛС, оптический кабель должен обязательно пройти первичный контроль. Процедура первичного контроля подробно будет описана в других наших статьях.

Далее необходимо подготовить трассу для монтажа кабеля. Эта процедура включает установку необходимых устройств, защищающих кабель при протяжке от чрезмерных изгибов и повреждения изоляции. Это могут быть различные ролики, кабельные изгибы, направляющие и др.

В некоторых случаях, например при прокладке кабеля в кабельной канализации, необходимо заготовить канал. В зависимо от того, как будет производится протяжка, используется либо УЗК, либо УЗК и кабельная лебедка.

Только теперь можно переходить к основной фазе прокладки ВОЛС. Прокладывать кабель необходимо плавно, не превышая указанное в паспорте на кабель тяговое, раздавливающее и другие ограничения. В случае подвески – не допускайте падения кабеля с опоры, а, если такое случилось, лучше сразу отрежьте упавший кусок, чтобы не пришлось из-за одного сломанного волокна потом переделывать всю муфту.

Выбор в пользу прокладки ВОЛС по опорам целесообразен, когда прокладывать кабель в канализации или траншейным методом невозможно или затруднительно. При строительстве магистральных и внутризоновых оптоволоконных сетей распространено применение соответствующего кабеля в грозозащитном тросе. В свою очередь, на местных и внутризоновых и линиях применяется также подвеска самонесущего кабеля с креплением на нижнем траверсе. Встречаются также случаи навивки тонкого оптоволоконного кабеля на нулевой или фазный провод ЛЭП.

Прокладка ВОЛС

Прокладка ВОЛС в грунте дороже воздушной прокладки кабеля, но такая линия связи значительно надежнее. Чаще всего применяется два основных способа прокладки оптоволоконного кабеля в грунт. Первый: укладка кабеля непосредственно в грунт траншейным способом; чаще это кабель с защитной броней из стальной проволоки или с ленточным покрытием. Второй: бестраншейный метод с применением кабелеукладчиков. Существует также масса других, более дорогих и поэтому менее популярных способов. Например, монтаж в мини траншею в асфальтном покрытии или монтаж при помощи горизонтально направленного бурения.

В больших населенных пунктах чаще всего выполняется прокладка ВОЛС в каналах кабельной канализации. Это более трудоемкий способ организации ВОЛС, но и надежность такой линии связи значительно выше. Прокладка ВОЛС в этом случае происходит в асбесто-цементной, бетонной или пластиковой кабельной канализации. Наиболее распространены у нас трубы для прокладки ВОЛС из бетона или асбестоцемента. Они получили такое распространение благодаря своей неподверженности коррозии и гниению, а также низкой теплопроводности и большой прочности. Однако в последнее время все чаще для прокладки ВОЛС используются более легкие и практичные пластиковые аналоги.

При строительстве междугородних ВОЛС получила распространение прокладка оптического кабеля в специальных защитных полиэтиленовых трубах (ЗПТ) с последующим вдуванием в них оптического кабеля. Внутри такие трубы имеют слой твердой смазки с низким коэффициентом трения. За счет этого в смонтированных участках труб возможна прокладка оптоволоконных кабелей большой длины — от двух до шести километров.

При прокладке ВОЛС внутри зданий возможно использование оптоволоконного кабеля с более гибкой и легкой конструкцией, сравнительно небольшая длина трасс также существенно упрощает монтаж. Способы прокладки кабеля внутри здания, как правило, зависят от назначения помещения. Это может быть скрытая прокладка ВОЛС за фальш-полами и фальш-потолками или открытая прокладка кабеля, обычно применяемая на чердаках, в технических помещениях и в подвалах.

Прокладка ВОЛС через водные преграды – наиболее затратный способ организации оптоволоконной линии связи. Прокладка кабеля может вестись по мосту через реку с использованием воздушных опор или по дну водоема. В таких случаях на берегу оптоволоконный кабель соединяется с линией, проложенной в грунт. Преодоление водных препятствий возможно и способом горизонтально-направленного бурения или подвеса, если есть такая возможность. Развитие технологий укладки оптоволоконных кабелей позволяет организовать ВОЛС и на дне моря/океана. С помощью специально оборудованных судов оптоволоконный кабель укладывается от одного берега до другого за один проход.

Перечень некоторых документов, регламентирующих правила прокладки ВОЛС

  • Р 50-601-40-93. Рекомендации. Входной контроль. Основные положения.- М. 1993Б.

  • РД.45.200-2001. Применение волоконно-оптических средств на сетях доступа. Рук.тех.материал.

  • Руководство по строительству линейных сооружений магистральных и внутризоновых оптических линий связи, 1993г.

  • Руководство по строительству международных и национальных волоконно-оптических линий связи. М., 1995г.

  • Правила проектирования, строительства и эксплуатации волоконно-оптических линий связи на воздушных линиях электропередачи напряжением 0,4-35 кВ

  • ТУ. Лаборатория для испытания и монтажа оптического кабеля ЛИОК на автомобиле УАЗ. М., 1997г.

  • Монтаж и наладка (настройка) оборудования и систем связи и норм расходов материалов при строительстве ВОЛС (155 Мбит/с, 622 Мбит/с; 2,4 Гбит/с) и цифровых РРЛ (155 Мбит/с). Укрупненные нормы. — М., 1996г.

  • Монтаж и наладка (настройка) оборудования и систем связи и норм расхода материалов при строительстве ВОЛС и цифровых РРЛ. Комплексные нормы.- М., 1997г.

Читайте далее:

  • Правила прокладки ВОЛС
  • Прокладка ВОЛС в грунте (в земле)
  • Прокладка ВОЛС внутри зданий
  • Прокладка ВОЛС по опорам
  • Прокладка ВОЛС через водные препятствия (по дну)
  • Технология прокладки ВОЛС
  • Трубы ЗПТ для прокладки ВОЛС

Приборы и инструменты для работы с ВОЛС

Материал подготовлен

техническими специалистами компании “СвязКомплект”.

Понравилась статья? Поделить с друзьями:
  • Валидол авексима инструкция по применению таблетки взрослым от чего помогает
  • Инструкция по охране труда для директора завода
  • Токарный станок 1а616 инструкция по эксплуатации скачать
  • Как написать электронное руководство
  • Форма 1 торг статистика инструкция по заполнению