Руководства по оптоволокно


Волокна заряжены в сварочный аппарат

Здравствуйте, читатели Хабра! Все слышали про оптические волокна и кабели. Нет нужды рассказывать, где и для чего используется оптика. Многие из вас сталкиваются с ней по работе, кто-то разрабатывает магистральные сети, кто-то работает с оптическими мультиплексорами. Однако я не встретил рассказа про оптические кабели, муфты, кроссы, про саму технологию сращивания оптических волокон и кабелей. Я — спайщик оптических волокон, и в этом (первом своём) посте хотел бы рассказать и показать вам, как всё это происходит, а также часто буду в своём рассказе отвлекаться на прочие смежные с этим вещи. Опираться буду в основном на свой опыт, так что я вполне допускаю, что кто-то скажет «это не совсем правильно», «вот тут неканонично».
Материала получилось много, поэтому возникла необходимость разбить топик на части.
В этой первой части вы прочтёте про устройство и разделку кабеля, про оптический инструмент, про подготовку волокон к сварке. В других частях, если тема окажется вам интересной, я расскажу про методы и покажу на видео сам процесс сращивания самих оптических волокон, про основы и некоторые нюансы измерений на оптике, коснусь темы сварочных аппаратов и рефлектометров и других измерительных приборов, покажу рабочие места спайщика (крыши, подвалы, чердаки, люки и прочие поля с офисами), расскажу немного про крепёж кабелей, про схемы распайки, про размещение оборудования в телекоммуникационных стойках и ящиках. Это наверняка пригодится тем, кто собирается стать спайщиком. Всё это я сдобрил большим количеством картинок (заранее извиняюсь за paint-качество) и фотографий.
Осторожно, много картинок и текста.

Часть 2 здесь.

Вступление

Для начала пара слов обо мне и моей работе.
Я работаю спайщиком оптики. Начинал с телефониста и монтажника, затем поработал в аварийной бригаде на обслуживании магистральной оптики. Сейчас работаю в организации, которая берёт генподряды на строительство объектов и линий связи у различных компаний. Типичный объект строительства — кабельная линия, связывающая несколько контейнеров базовых станций GSM. Или, к примеру, несколько колец FTTB. Или что помельче — например, прокладка кабеля между двумя серверными на разных этажах здания и разварка на концах кабеля кроссов.
Если тендер выигран, ищутся подходящие субподрядчики, выполняющие работы (проектно-изыскательные и строительно-монтажные). В некоторых регионах это наши дочерние предприятия, в некоторых есть собственная техника и ресурсы, в некоторых нанимаются независимые компании. На наши же плечи главным образом ложится контроль, устранение косяков субподрядчиков и различных форс-мажоров, всевозможные согласования с собственниками земель и администрациями, иногда составление исполнительной документации по построенному объекту (документация — главным образом РД 45.156-2000, вот здесь есть перечень, плюс ещё добавляется раздел с разными лицензиями) и прочее. Зачастую нужна работа с оптикой: сварить или переварить где-то оптическую муфту или кросс, устранить последствия сбитой стритрейсером опоры или упавшего на кабель дерева, провести входной контроль барабана кабеля, снять рефлектограммы участка и прочее. Именно эти задачи я и выполняю. Ну и попутно, когда нет задач по оптике — прочие задачи: от погрузочно-монтажных через курьерско-доставочные до копировально-бумажных работ. :)

Оптический кабель, его виды и внутренности

Итак, что представляет собой оптический кабель? Кабели бывают разные.

По конструкции — от самых простых (оболочка, под ней пластиковые трубочки-модули, в них сами волокна) до супернавороченных (множество слоёв, двухуровневая броня — например, у подводных трансокеанских кабелей).

По месту использования — для наружной и внутренней прокладки (последние встречаются редко и обычно в дата-центрах высокого класса, где всё должно быть идеально правильно и красиво). По условиям прокладки — для подвеса (с кевларом или тросиком), для грунта (с бронёй из железных проволочек), для прокладки в кабельной канализации (с бронёй из гофрированного металла), подводные (сложная, сверхзащищающая многослойная конструкция), для подвеса на опорах ЛЭП (кроме передачи информации, выпоняют роль молниезащитного троса). В моей практике чаще всего встречаются кабели для подвеса на столбы (с кевларом) и для прокладки в грунт (с бронёй). Пореже попадаются с тросиком и с гофробронёй. Ещё часто встречается кабель, который по существу есть тонкий спаренный оптический патч-корд (жёлтая оболочка у одномода и оранжевая — у многомода, чуток кевлара и одно волокно; две оболочки спарены). Прочие оптические кабели (без защиты, подводные, для прокладки в помещениях) — экзотика. Почти все кабели, с которыми я работаю, имеют конструкцию, как на картинке ниже.

1 — центральный силовой элемент (проще говоря — пруток из стеклопластика, хотя может быть и тросик в полиэтиленовой оболочке). Служит для центрирования трубок-модулей, придания жёсткости всему кабелю. За него также часто закрепляют кабель в муфте/кроссе, зажимая под винт. При сильном изгибе кабеля имеет подлое свойство ломаться, ломая попутно и модули с частью волокон. Более продвинутые конструкции кабеля содержат этот пруток, одетый в полиэтиленовую оболочку: тогда его труднее сломать и разрушений в кабеле он при переломе причинит меньше. Пруток бывает и такой, как на рисунке, и совсем тонкий. Кончик такого прутка — отличный абразивный инструмент для тонких работ: например, почистить контакты реле или участок медной детали под пайку. Если его сжечь на пару сантиметров, получится хорошая мягкая кисточка. :)
2 — сами оптические волокна (на рисунке — в лаковой изоляции). Те самые тончайшие нити-световоды, ради которых всё затевается. В статье речь пойдёт только про стеклянные волокна, хотя где-то в природе существуют и пластиковые, но они — большая экзотика, не варятся аппаратами для сварки оптики (только механическое соединение) и пригодны только на очень малых расстояниях и я лично с ними не сталкивался. Оптические волокна бывают одномодовые и многомодовые, я встречался только с одномодом, так как многомод — менее распространённая технология, может использоваться только на короткие расстояния и во многих случаях прекрасно заменяется одномодом. Волокно состоит из стеклянной «оболочки» из стекла с определёнными примесями (на химии и кристаллографии останавливаться не стану, так как не владею темой). Без лака волокно имеет толщину 125 мкм (чуть толще волоса), а в центре его идёт сердечник диаметром 9 мкм из сверхчистого стекла с другим составом и с немного отличным от оболочки показателем преломления. Именно в сердечнике распространяется излучение (за счёт эффекта полного отражения на границе «сердечник — оболочка»). Наконец, сверху 125-микрометровый цилиндр «оболочки» покрыт другой оболочкой — из особого лака (прозрачного или цветного — для цветовой маркировки волокон), который ЕМНИП тоже двухслойный. Он предохраняет волокно от умеренных повреждений (без лака волокно хоть и гнётся, но плохо и легко сломать, волокно элементарно раскрошится от случайно положенного на него мобильника; а в лаке его можно смело обмотать вокруг карандаша и довольно сильно дёрнуть — оно выдержит). Случается, что пролёт кабеля провисает на одних волокнах: порвало (пережгло, порезало) все оболочки, кевлар, лопнул центральный пруток, а какие-то 16 или 32 125-микрометровых стеклянных волокна могут неделями держать вес пролёта кабеля и ветровые нагрузки! Тем не менее, даже в лаке волокна можно легко повредить, поэтому в работе спайщика самое главное — дотошность и аккуратность. Одним неловким движением можно испортить результаты целого дня работы или, если особо не повезёт и нет резервирования, надолго уронить магистральную связь (если, копаясь в «боевой» магистральной муфте, сломать волокно с DWDM-ом под корешок на выходе из кабеля).
Волокон бывает много сортов: обычное (SMF или просто SM), со смещённой дисперсией (DSF или просто DS), с ненулевой смещённой дисперсией (NZDSF, NZDS или NZ). Внешне различить их нельзя, разница — в химическом/кристаллическом составе и, возможно, в геометрии центрального сердечника и в плавности границы между ним и оболочкой (к сожалению, так для себя и не прояснил этот вопрос до конца). Дисперсия в оптических волокнах — суровая и сложная для понимания штука, достойная отдельной статьи, поэтому объясню проще — по волокнам со смещённой дисперсией можно передавать сигнал без искажений дальше, чем по простым. На практике спайщики знают два типа: простое и «со смещёнкой». В кабеле часто выделяют первый модуль под «смещёнку», а остальные — под простые волокна. Стыковать «смещёнку» и простое волокно можно, но нежелательно, это вызывает один интересный эффект, о котором я расскажу в другой части, про измерения.
3 — пластиковые трубочки-модули, в которых плавают в гидрофобе волокна.

Кабель, разделанный до модулей

Легко ломаются (точнее, внезапно перегибаются) при изгибе наподобие телескопических антенн у бытовых приёмников, ломая внутри себя волокна. Иногда модуль бывает всего один (в виде толстой трубки), а в нём пучок волокон, но в этом случае нужно слишком много разных цветов для маркировки волокон, поэтому обычно делают несколько модулей, в каждом из которых от 4 до 12 волокон. Единого стандарта на расцветку и количество модулей/волокон нет, каждый производитель делает по-своему, отображая всё в паспорте на кабель. Паспорт прилагается к барабану кабеля и обычно пришпиливается степлером к дереву прямо внутри барабана.

Паспорт кабеля


Типичный паспорт на кабель. Извиняюсь за качество.

Однако есть надежда, что, скажем, кабель «ДПС» у производителей «Трансвок» и «Белтелекабель» окажется всё-таки одинаковым по конфигурации. Но всё равно нужно смотреть паспорт на кабель, где всегда указана подробная расцветка и то, какого типа волокна в каких модулях лежат. Минимальная ёмкость «взрослого» кабеля, что я встречал — 8 волокон, максимальная — 96. Обычно 32, 48, 64. Бывает, что из всего кабеля занято 1 или 2 модуля, тогда вместо остальных модулей вкладывают чёрные заглушки-пустышки (чтобы габаритные параметры кабеля не изменились).
4 — плёнка, оплетающая модули. Играет второстепенные роли — демпфирующую, снижающую трение внутри кабеля, доп.защита от влаги, удерживающую гидрофоб в пространстве между модулей и, возможно, что-то ещё. Часто бывает дополнительно стянута нитками крест-накрест и с обеих сторон смочена гидрофобным гелем.
5 — тонкая внутренняя оболочка из полиэтилена. Доп.защита от влаги, защитная прослойка между кевларом/бронёй и модулями. Может отсутствовать.
6 — кевларовые нити или броня. На рисунке броня из прямоугольных прутков, но куда чаще встречается из круглых проволочек (в импортных кабелях — проволочки сталистые и трудноперекусываемые даже тросокусами, в отечественных — обычно из гвоздевого железа). Броня может быть и в виде стеклопластиковых прутков, таких же, как центральный элемент, но на практике не встречался с таким. Кевлар нужен, чтобы кабель выдерживал большое усилие на разрыв и при этом не был тяжёлым. Также часто используется вместо тросика там, где в кабеле не должно быть металла во избежание наводок (например, если кабель висит вдоль железной дороги, где рядом контактный провод с 27,5 кВ). Типичные значения допустимого растягивающего усилия для кабеля с кевларом — 6…9 килоньютонов, это позволяет выдержать большой пролёт при ветровой нагрузке. При разделке кевлар страшно тупит режущий инструмент. :) Поэтому его лучше резать или специальными ножницами с керамическими лезвиями, или откусывать тросокусами, что я и делаю.
Что касается брони — она призвана защитить подземный кабель, лежащий прямо в грунте, без защиты в виде пластиковой трубы, кабельной канализации и пр. Впрочем, защитить броня может только от лопаты, экскаватор всё равно рвёт любые кабели влёт. Поэтому подземный кабель закладывается в грунт на 1м 20 см, а над ним на глубине 60 см кладётся жёлтая или оранжевая сигнальная лента с принтом «Осторожно! Не копать! Ниже кабель», а также вдоль трассы ставятся столбики, предупреждающие таблички и аншлаги. Но всё равно копают и рвут.
7 — внешняя толстая оболочка из полиэтилена. Принимает на себя первой все тяготы при прокладке и эксплуатации кабеля. Полиэтилен мягкий, так что её несложно порезать при неаккуратной затяжке кабеля. Случается, что при прокладке подземного кабеля подрядчик порвёт до брони эту оболочку на несколько метров и не заметит, в грунте в кабель попадает влага несмотря на гидрофоб, а потом на сдаче, при испытаниях внешней оболочки мегаомметром, мегаомметр показывает низкое сопротивление (большой ток утечки).

Если висящий кабель касается бетонного столба или древа, полиэтилен также может быстро протереться до волокон.
Между внешней оболочкой и бронёй может присутствовать полиэтиленовая плёнка и некоторое количество гидрофобного геля.

В России, к сожалению, оптические волокна уже не производят (тут, увы, была бы уместна шутка про полимеры).

Существует российская лаборатиря, изготавливающая опытные волокна для специальных целей, как подсказал esvaf.
Их покупают у таких фирм, как Corning, OFS, Sumitomo, Fujikura и др. Но вот кабели в России и Белоруссии делают! Более того, в моей практике 95% кабелей, с которыми я работал — это кабели из России или Белоруссии. При этом в кабель закладывается импортное волокно. Навскидку из своего опыта припоминаю такие фирмы-производители кабелей, как Белтелекабель, МосКабель Фуджикура (МКФ), Еврокабель, Трансвок, Интегра-кабель, ОФС Связьстрой-1, Саранск-кабель, Инкаб. Есть и другие. Из импортных кабелей в памяти остался только Siemens. Субъективно все кабели похожи по конструкции и материалам и качеством особо не различаются.
Вот, собственно, я рассказал про устройство оптических кабелей. Идём дальше.

Разделка кабеля: необходимый инструмент и методика

Для разделки кабеля, как и для сварки, требуется ряд специфических инструментов. Типичный набор монтажника-спайщика – чемодан с инструментами «НИМ-25», в нём содержатся все нужные стрипперы, тросокусы, отвёртки, бокорезы, плоскогубцы, макетный нож и прочий инструмент, а также помпа или пузырёк для спирта, запас растворителя гидрофоба «D-Gel», нетканные безворсовые салфетки, изолента, самоклеящиеся цифры-маркеры для кабелей и модулей и прочие расходные материалы.

После доукомплектования расходными материалами (стяжки, червячные хомуты и пр) и некоторыми вспомогательными инструментами его вполне достаточно для работы с оптикой. Также существуют и другие наборы, богаче и беднее по комплектации («НИМ-Э» и «НИМ-К»). Слабое место большинства наборов – низкое качество «типа алюминиевого» кейса, который лишь выглядит красиво, но на самом деле состоит из тонкой ДВП, обклееной текстурированной/гофрированной фольгой, и алюминиевых тонких уголков на заклёпках. Он не выдерживает долго в полевых и городских условиях, и его приходится ремонтировать и усиливать. В моём случае кейс выдержал 3 года и, будучи весь подран, стянут уголками и болтами, с «колхозным» органайзером вместо родного, был сменён на обычный пластиковый ящик для инструментов. Некоторые инструменты и материалы из стандартного набора могут оказаться низкого качества. Некоторые инструменты лично мне оказались не нужны. Некоторые за 3 года работы уже были заменены. По мере расходования «фирменных» расходников некоторые заменяются «подручными» без ущерба для качества работы. Так, заводские нетканные безворсовые салфетки для протирки волокон легко заменяются туалетной бумагой типа «зевы плюс». :) Главное, чтоб была неароматизированная. Вместо дорогого (около 800 р/литр) D-Gel, если работа идёт на открытом воздухе, можно использовать бензин АИ-92.

При разделке кабелей важно выдержать длины элементов кабеля в соответствии с требованием инструкции к муфте: так, в одном случае может понадобиться оставить длинный силовой элемент, чтобы закрепить его в муфте/кроссе, в другом случае он не требуется; в одном случае из кевлара кабеля плетётся косичка и зажимается под винт, в другом случае кевлар отрезается. Всё зависит от конкретной муфты и конкретного кабеля.

Рассмотрим разделку наиболее типичного кабеля:

а) Перед разделкой кабеля, долго находившегося в сырости или без гидроизолированного торца, следует отрезать ножовкой примерно метр кабеля (если позволяет запас), так как длительное воздействие влаги негативно влияет на оптическое волокно (может помутнеть) и на прочие элементы кабеля. Кевларовые нити в кабеле — это отличный капилляр, который может «насосать» в себя воду на десятки метров, что чревато последствиями, если, например, параллельно с кабелем идут провода высокого напряжения: по мокрому кевлару могут начать гулять токи, вода испаряется, раздавливает изнутри внешнюю оболочку, кабель идёт пузырями и через пузыри от дождей попадает новая влага.

б) При наличии в конструкции кабеля отдельного троса для подвески (когда кабель в поперечном сечении имеет форму цифры «8», где в нижней части кабель, в верхней тросик) он выкусывается тросокусами и срезается ножом. При срезании троса важно не повредить кабель.

в) Для снятия внешней оболочки кабеля используется соответствующий нож-стриппер. НИМ-25 обычно комплектуется ножом «Kabifix» как на фото ниже, однако можно использовать и нож-стриппер для электрических кабелей, который с длинной ручкой.

Такой нож-стриппер имеет вращающееся во все стороны лезвие, которое можно отрегулировать по длине в соответствии с толщиной внешней оболочки кабеля, и прижимной элемент для удержания на кабеле. Важно: если приходится разделывать кабели разных марок, то перед разделкой нового кабеля нужно попробовать нож на кончике и, если прорезало слишком глубоко и повредило модули, лезвие надо подкрутить покороче. Хуже некуда, когда муфта уже сварена, и вдруг при укладке волокон одно волокно вдруг «выскакивает» из кабеля, потому что при разделке нож зацепил модуль и сломал это волокно: вся работа насмарку.
Ножом-стриппером для снятия внешней оболочки кабеля делается круговой разрез на кабеле, а затем от него – два параллельных разреза с противоположных сторон кабеля в сторону конца кабеля, чтобы внешняя оболочка распалась на две половинки.

Важно правильно выставить длину лезвия ножа-стриппера, так как при слишком коротком лезвии внешняя оболочка не разделится легко на две половинки и её придётся долго сдирать плоскогубцами, а в случае длинного лезвия можно повредить модули в глубине кабеля или затупить вращающееся лезвие о броню.

г) Если кабель самонесущий с кевларом, то кевлар срезается тросокусами либо ножницами со специальными керамическими лезвиями.

Тросокусы

Кевлар не следует срезать ножом или простыми ножницами без керамических накладок на лезвиях, так как кевлар быстро тупит металлический режущий инструмент. В зависимости от конструкции муфты может потребоваться оставить часть кевлара определённой длины для фиксации, про это будет сказано в инструкции по монтажу муфты.
Если кабель предназначен для прокладки в телефонной канализации и из брони содержит лишь металлическую гофру (чтоб крысы не прогрызли), её можно разрезать продольно специальным инструментом (усиленным плужковым ножом).Либо осторожно сделать маленьким труборезом или даже обычным ножом на гофре круговую риску и, пошатывая, добиться роста усталости металла в месте риски и появления трещины, после чего можно снять часть гофры, надкусить модули и стянуть гофру. Такую разделку нужно осуществлять особенно осторожно, так как легко повредить модули и волокна: гофра не слишком прочная, может промяться в том месте, где её ковыряют инструментами, и при стягивании с волокон острые края в месте надлома могут пропороть модули и повредить волокна. Кабель с гофрой не самый удобный для разделки.
Если кабель бронирован круглыми проволоками, их следует откусить тросокусами небольшими партиями, по 2-4 проволоки. Бокорезами получается дольше и тяжелее, особенно если проволока сталистая. Для некоторых муфт требуется определённая длина брони для фиксации, также броню (в том числе гофрированную) часто требуется заземлять.

д) Для внутренней, более тонкой оболочки, присутствующей в некоторых кабелях (например, в самонесущих с кевларом), следует использовать отдельный, заранее настроенный нож-стриппер (можно такой же, как для снятия внешней оболочки кабеля), чтобы не сбивать настройки длины ножа каждый раз при разделке кабеля. В данном случае особенно важно правильно выставить длину лезвия в ноже-стриппере, она будет меньше, чем в стриппере для снятия внешней оболочки кабеля, так как внутренняя оболочка существенно тоньше, а сразу под ней — модули с волокнами. При определённом навыке для удаления внутренней оболочки можно использовать обычный макетный нож, производя им продольный разрез, но есть существенный риск повредить модули. Можно также использовать стриппер-прищепку для разделки коаксиала.

е) С модулей при помощи салфеток и D-Gel/бензина удаляются нитки, пластиковая плёнка и прочие вспомогательные элементы. Нитки можно скручивать по одной, можно сдирать специальным острым «плужковым» крючком (может входить в конструкцию некоторых ножей-стрипперов для удаления оболочки). Для удаления гидрофоба используется растворитель D-Gel (бесцветная маслянистая жидкость, имеет запах апельсина, токсичен) или бензин. Однако с бензином аккуратно: сотрудники офиса, у которых под боком льётся бензин, не будут рады аромату. Да и пожароопасно.
Работать следует в одноразовых перчатках (хирургических, полиэтиленовых или строительных), так как гидрофоб — очень неприятная гадость (самое неприятное в работе спайщика!), тяжело отмывается, после бензина или гидрофоба руки остаются некоторое время жирными, а после разделки кабеля предстоит сварка волокон, требующая чистоты рук и рабочего места. Зимой руки, выпачканные в гидрофоб, сильно мёрзнут. Впрочем, наловчившись, можно разделывать кабели почти не пачкая руки.
После удаления ниток и разделения жгута модулей на отдельные модули каждый модуль протирается салфетками или ветошью с растворителем D-Gel/бензином, а затем спиртом до чистого состояния. Хотя, в целях экономии времени и чтоб меньше пачкаться, можно поступить следующим способом – изначально разделать кабель до модулей не до конца, а в месте откуда начинается разделка, сантиметров на 30, ничего не протирая надкусить модули (см. пункт «ё») и стянуть с волокон весь жгут модулей с намоткой и нитками, держась рукой за чистый конец кабеля как за ручку. Руки остаются почти чистыми, время экономится. Однако при таком способе разделки есть риск порвать часть волокон или приложить к волокнам чрезмерное растягивающее усилие, что отрицательно скажется на затухании волокон в будущем, а также больше вероятность повредить модули, поэтому такой способ не рекомендуется, особенно в зимнее время, когда гидрофобный заполнитель густеет. Сначала надо научиться делать правильно, а потом уже пробовать разные оптимизации.

ё) На необходимой длине каждый модуль (кроме модулей-пустышек, они выкусываются под корень, но сначала следует убедиться, что в них действительно нет волокон) надкусывается стриппером для модулей (подойдёт и для медного коаксиала), после чего модуль можно без особых усилий стянуть с волокон.

Надкусывание стриппером модулей — это очень ответственный момент. Нужно выбрать выемку точного диаметра, так как если выемка будет больше, чем нужно – модуль не надкусится достаточно, чтоб легко сняться, если меньше – есть риск перекусить волокна в модуле. Кроме того, следует внимательно следить за собачкой-фиксатором стриппера: если в момент надкусывания модуля она заблокирует обратный ход стриппера, зафиксировав его в «сомкнутом» состоянии, то чтоб разнять стриппер и откинуть фиксатор, придётся снова сомкнуть инструмент на уже надкусанном модуле, при этом есть большая вероятность перекусить модуль, что приведёт к необходимости заново разделывать кабель. Помним, что при надкусывании одного из модулей нам активно мешают прочие модули, которые надо придерживать другой рукой, и сам кабель на весу тоже как-то нужно держать. Поэтому поначалу будет очень неудобно и разделывать кабель следует вдвоём.
Существуют конструкции кабеля, где модуль единственный и имеет вид жёсткой пластиковой трубки в центре кабеля. Для качественного снятия такого модуля его следует надрезать по кругу маленьким труборезом (в НИМ-25 не входит), а затем осторожно надломить в месте круговой риски.
При стягивании модулей следует убедиться, что все волокна целы и ни одно волокно не осталось торчать из стянутого модуля.
Если температура низкая, модули тонкие, по конструкции кабеля в модулях мало гидрофоба (=смазки) или длина снимаемых модулей значительна – модуль может не стянуться с волокон без усилий. В этом случае нельзя сильно тянуть, так как растяжение может сказаться на затухании волокон в этом месте, даже если волокна не порвутся. Следует надкусывать и снимать модуль в 2-3 приёма, по частям и медленно.
При разделке кабеля следует обратить внимание на длину волокон. Она должна быть не менее указанной в инструкции, обычно это 1,5-2 метра. В принципе можно разделать и на 15 см и потом даже как-то сварить, но потом при укладке волокон в кассету возникнут большие проблемы: большой запас волокон нужен как раз для того, чтобы был простор для «манёвров» при укладке, чтобы можно было «сыграть» по длине и красиво уложить все волокна в кассету.

Иногда возникает необходимость ввариться в транзитный кабель, не разрезая его. В этом случае он так же, как обычный, разделывается до модулей, но требования к осторожности разделки жёстче: ведь по кабелю уже может идти связь. Он разделывается до модулей и модули аккуратно вводятся в «овальный» ввод муфты (в обычный круглый не войдут — сломаются), для этого ввода используется специальный комплект из термоусадки и металлический клипсы с блоком термоклея. Этот клей при усадке от высокой температуры расплавляется и заливает пространство между двух кабелей, обеспечивая герметичность. Далее тот модуль, в который надо ввариться, разрезается, те волокна из него, которые отпаивать не надо, свариваются обратно транзитом, а те, что нам нужны — привариваются к «отпайному» (ответвляющемуся) кабелю. Очень редко может возникнуть ситуация, когда нам нужно взять из модуля волокно, но резать модуль нельзя (по нему идёт важная связь). Тогда применяется комплект для продольной разделки модулей: с модуля продольно снимается «фаска», волокна из него извлекаются, протираются от гидрофоба и сортируются. Те, что нам нужны, режутся и варятся на другой кабель согласно схеме, а остальные просто укладываются в кассету. В этом случае, если заводится неразрезной кабель, длина волокон должна быть вдвое больше (2-3 м), это и понятно.

Волокна должны быть чистыми (тщательно протёртыми от гидрофоба), следует особо следить, чтобы все волокна были целыми. Волокна требуют бережного обращения, ведь в случае, когда кабели разделаны и заведены, сварка почти окончена и ломается какое-то волокно у выхода из кабеля, придётся заново провести разделку кабеля и сварку, что отнимет много времени и крайне нежелательно и убыточно при оперативном восстановлении связи на действующей магистрали.

Оптические волокна, повреждённые в результате небрежной разделки кабеля (была неверно выставлена длина лезвия стриппера для снятия внутренней оболочки кабеля, в результате чего прорезались модули и повредилась часть волокон)

ж) Волокна следует хорошо протереть безворсовыми салфетками со спиртом, чтобы полностью удалить гидрофобный заполнитель. Сначала волокна протираются сухой салфеткой, затем – салфетками, смоченными в изопропиловом либо этиловом спирте. Именной такой порядок потому, что на первой салфетке остаётся огромная капля гидрофоба (спирт тут не нужен), а вот на 4-5й салфетке уже можно призвать на помощь спирт, чтобы он растворил остатки гидрофоба. Спирт с волокон быстро испаряется.

Использованные салфетки (а также ошмётки оболочки кабеля, сколотые волокна и прочий мусор) надо обязательно за собой убирать — пожалейте природу!
Чистота волокон, особенно ближе к концам, имеет большое значение для качественной сварки. Там, где идёт работа с микронами, грязь и пыль недопустима. Волокна следует осмотреть на предмет целостности лакового покрытия, отсутствия грязи, сломанных частей волокон. Если лак на каком-то волокне повредился, но ещё не сломался — лучше не рисковать и переразделать кабель. Потратите 10-15 минут, а иначе рискуете потратить целый день.

з) На разделанные кабели одеваются специальные клеевые термоусадки, которые часто входят в комплект муфты (если муфта с патрубком для ввода кабеля). Если муфта предусматривает зажимание кабеля в сырой резине с герметиком, то термоусадка не нужна. Весьма распространённая и весьма неприятная ошибка новичка — забыть одеть термоусадку! Когда муфта сварена, термоусадка надвигается на патрубок муфты и усаживается газовой горелкой, паяльной лампой или промышленным феном, обеспечивая герметичный ввод кабеля в муфту и дополнительную фиксацию кабеля. Усаживать практичнее всего маленькой горелкой, надетой на баллончик туристического газа с ценговым зажимом: одного баллончика хватает на десятки сваренных муфт, просто зажигается в отличие от паяльной лампы, мало весит, нет зависимости от электричества в отличие от промышленного фена.
Перед усадкой патрубок муфты и сам кабель нужно зашкурить грубой наждачкой для лучшей адгезии клея. Если этим пренебречь — может получиться вот такое недоразумение:

Если термоусадку одеть всё же забыли — поможет термоусаживаемая манжета с замком (известная как XAGA). Колхозить герметизацию изолентой нельзя!
Некоторые термоусадки (например, фирмы Raychem) покрыты точками зелёной краски, которая при нагреве чернеет, указывая, что вот это место греть больше не нужно, а вот тут следует прогреть ещё. Сделано это потому, что термоусадка может лопнуть, если её перегреть в каком-то месте.
Усаживать лучше после того, как муфта сварена. Если при сварке случится неприятность (например, сломалось волокно и придётся переразделывать кабель), то не придётся ковырять ножом застывшую толстую клеевую термоусадку, и сама термоусадка не потратится зря.

и) Разделанные кабели вводятся в муфту или кросс, фиксируются, а сама муфта или кросс фиксируется на рабочем столе. При фиксации кабеля в муфте или в кроссе следует руководствоваться инструкцией по монтажу — для разных муфт там всё по-разному.В некоторых случаях (бронированный кабель и, например, муфта МТОК А1 с соответствующим комплектом для ввода) фиксация кабеля в муфте — отдельная непростая операция с подрезанием брони, намоткой герметика и пр.

Вот мы и завели разделанный кабель в муфту/кросс, теперь нужно отмерять и зачищать волокна, одевать КДЗС и варить по схеме. Об этом расскажу в следующей части, так как получается многовато для одной статьи.

Оптические муфты

Расскажу немного про оптические муфты и кроссы. Начну с муфт.

Оптическая муфта — это пластиковый контейнер, в который заводятся кабели и там соединяются. Раньше, в конце 90-х — начале 2000х, когда все специализированные материалы для оптики были дефицитом с заоблачными ценами, в качестве муфт некоторые шустрые ребята лепили канализационные фитинги или пластиковые бутылки. Иногда даже работало несколько лет. :) Сегодня это, безусловно, дикость, нормальные муфты можно купить в любом среднем и крупном городе и цены начинаются от 1500-2000 рублей. Конструкций муфт много. Наиболее массовая и привычная конструкция для меня лично — это как у серии связьстройдеталевских муфт «МТОК». Имеется оголовье, из которого снаружи торчат патрубки для ввода кабеля. Изнутри оголовья прикреплена металлическая рамка, к которой крепятся оптические кассеты. Сверху одевается колпак (который для прочности может делаться с рёбрами жёсткости), герметизируемый резинкой. Колпак фиксируется разъёмным пластиковым хомутом: муфту всегда можно открыть и закрыть, не тратя ремкомплект из термоусадок.

Вообще «Связьстройдеталь» делает в целом неплохие муфты для разных применений. Из серии МТОК мне лично больше всего нравится муфта Л6: универсальная, стоит недорого, монтируется просто.

Есть и другие муфты в серии МТОК — малогабаритные, для канализации, для ввода бронированных кабелей, для закапывания под землёй. К каждой муфте есть возможность докупить доп.комплектующие и комплекты для ввода кабеля: например, чугунная бронезащита подземной муфты «МЧЗ», лишний комплект оптической кассеты с расходниками или дополнительный комплект для ввода ещё одного кабеля.
Если надо подешевле — у них есть серия муфт «МОГ», из которой самая массовая — муфта «МОГ-У» (Муфта Оптическая Городская, Укороченная): при цене менее 2000 рублей мы получаем простую и качественную муфту, которую, врочем, некоторые считают неудобной для монтажа.

На столбе такая муфта будет смотреться не очень, да и сматывать запас кабеля с такой муфтой, стоя на лестнице, неудобно, поэтому их обычно ставят в люках. Эта муфта и создана, чтобы её клали в телефонном люке на специальные стандартные консоли. Минус «могушки» — в том, что у неё нет запорного разъёмного хомута и для её открытия придётся срезать термоусадку, а при закрытии тратить ремкомплект из широких термоусадок (если кабели заведены с одного конца) или термоусаживаемую манжету (если кабели с обеих сторон). Этим же страдают МТОКи серии А. Кроме того, если вводить кабели с двух сторон, важно не забыть заранее одеть пластиковую трубу на одну из «сторон» кабелей, иначе её потом не одеть не разрезая: этим тоже страдают новички.

Также порой встречаются муфты без патрубков, в которых кабели герметизируются путём зажатия в сырой резине или в герметике. Вот, например, муфта «SNR-A», которую мы с напарником разваривали в рамках строительства FTTB-кольца.

Такой способ герметизации кабелей требует большой аккуратности, так как иначе вода может попасть в муфту, что нежелательно. Во-первых, вода в муфте со временем может вызвать помутнение стекла волокон и порчу лака. Во-вторых, поржавеют всякие металлические конструктивные элементы, сгниёт заземляющий броню провод, если он есть. В-третьих, кевлар натянет в себя воды. И самое главное — муфту, полную воды, в мороз просто раздавит вместе с волокнами.
В оптическую муфту обычно заводится не менее двух кабелей. Конечно, можно придумать дикую схему разварки, когда будет вводиться один кабель и развариваться сам на себя, но обычно вводится 2-3 кабеля. Если вводится 4-5 кабелей, да ещё все кабели разные с разной расцветкой и разным количеством волокон в модулях, то муфта получается сложная для монтажа и последующего разбора что куда припаяно. Первую такую свою муфту я с напарником варил 3 дня! :) Так что лучше проектировать сеть так, чтобы в муфту не входило более 3 кабелей.

Оптические кроссы

Оптический кросс предназначен для оконечивания кабеля в месте, куда его подвели: на базовой станции, в ИВЦ, в дата-центре, в серверной. Типичный кросс представляет собой металлический ящик типоразмера 19″ для крепления в стандартной стойке, сзади в него вводится оконечиваемый кабель, спереди расположены планки с портами.

Сваренный кросс на 24 порта типа FC/APC, одноюнитовый


Сваренный кросс на 64 порта типа LC, 2-хюнитовый


Рабочий кросс на 96 портов типа FC

Бывает и вариант подешевле — когда из кросса выкидывают всё, что можно, тогда получается как-то так:

Открытый кросс на 8 портов типа SC/APC, 1 юнит. Плох тем, что оптические пиг-тейлы ничем не защищены и их могут поломать те, кто будут копаться в ящике/стойке, протаскивая, скажем, новый кабель.

Все эти кроссы монтируются в стойку, однако существуют и настенные варианты, и прочие редко встречающиеся.

Настенный кросс на 16 портов типа FC. Кстати, сварен плохо: жёлтые оболочки пиг-тейлов не заходят в КДЗС и волокна могут сломаться, а волокна в кассете уложены с маленькими радиусами изгиба

Вводящийся в кросс кабель сваривается с так называемыми пиг-тейлами: на фотографиях это тонкие жёлтые шнурки внутри кроссов. Каждое волокно — к своему пиг-тейлу. Другая сторона пиг-тейла содержит оптический коннектор-«вилку», которая вставляется в оптический адаптер-«розетку» изнутри кросса.Снаружи кросса коммутация выполняется оптическими патч-кордами (толстые жёлтые шнуры). От пиг-тейла патч-корд отличается более прочным коннектором и наличием кевлара внутри, чтобы в случае, если кто-то зацепится за патч-корд и дёрнет, трудно было вырвать. Ну и коннекторы у патч-кордов с обеих сторон, а у пиг-тейлов только с одной. При необходимости из двух пиг-тейлов можно сварить временный патч-корд.

В принципе в кросс можно завести несколько кабелей, часть волокон из них сварить между собой, а часть вывести на порты. Тогда получится нечто, что можно назвать «кроссомуфта», при этом мы экономим на материалах и сварках. Так иногда делают при монтаже FTTB, однако делать так нежелательно, так как повышается сложность схемы.

Адаптеры и коннекторы

Оптические кроссы характеризуются используемыми в них адаптерами (проще — оптическими розетками). Их существует также большое количество стандартов и подстандартов.

На этой картинке — лишь часть «родов» и «видов» оптических розеток

Стандартом является комплекс из адаптера (розетки) и коннектора (вилки). Конечно, есть переходники между разными стандартами, однако это костыли, которые сгодятся только для измерений и которых следует избегать в постоянно работающей линии связи. Чем меньше в линии всяческих сварных и особенно механических соединений, тем лучше. Конечно, если расстояние маленькое, линия будет работать, даже если на каком-то из кроссов будет теряться пара децибелл. В случае коротких линий иногда специально ставят оптические аттенюаторы. Но вот для очень длинных линий, где оборудование работает на пределе, добавление ещё одного кросса или муфты (то есть каких-то 0,05-0,1 дБ потерь) может оказаться фатальным: линия не поднимется.

Наконечник «вилки» — это, грубо говоря, цилиндр с тоненьким сквозным отверстием под волокно по центру. Торец этого цилиндра не плоский, а чуть-чуть выпуклый. Состоит наконечник из обалденно твёрдой и стойкой к губительным царапинам металлокерамики, хотя очень редко встречаются и металлические. Ходят слухи, как люди ломали бокорезы, пытаясь раскусить этот наконечник. :) Я сам легко царапал этими наконечниками сталь и стекло. Тем не менее обращаться с ними надо осторожно, не допускать попадания пыли, не касаться торца коннекторов пальцем, а если коснулись — протереть смоченной в спирте салфеткой. В идеале используется специальный микроскоп (оптический или с камерой) для контроля состояния патч-кордов. Грязные — чистить, исцарапанные, если царапина пересекает центр со вклеенным волокном — под списание или полировку. Грязные и исцарапанные розетки и патч-корды — частая причина затуханий в линии.
Оптическое волокно фиксируется в наконечнике путём вклейки эпоксидным (или каким-то другим) клеем и последующей шлифовки на специальной машинке, хотя этим занимаются лишь если надо сделать длинные нестандартные патч-корды: проще и дешевле купить готовые. Цена обычного оптического патч-корда длиной 2 метра — около 200-400 рублей.

Изготовление патч-кордов. Эмилинк

На практике чаще всего используются такие стандарты, как FC, SC, LC. Пореже встречаются FC/APC, SC/APC, ST. LC бывает как дуплексный, так и одиночный.

FC

Плюсы — отличное качество соединения, поэтому подходит для ответственных магистралей. Старый проверенный стандарт. Металл (трудно сломать). Если пошевелить рукой хорошо прикрученный коннектор — на связи это не скажется.
Минусы — долго откручивать/закручивать при переключениях. Если на кроссе расположены тесно — бывает очень неудобно подлезть, чтобы открутить какой-то из коннекторов в толпе прочих.
Сам коннектор фиксируется неподвижно благодаря пазу на нём и выемке на адаптере, а пальцами крутится только гайка с насечкой.

Контактная сторона наконечника не плоская, а чуток выпуклая (это также касается других стандартов), чтобы два волокна из двух наконечников по разные стороны розетки (пиг-тейла и патч-корда) гарантированно совместились без воздуха и пыли между ними.
Розетка содержит в себе полый тонкостенный цилиндрик из керамики, имеющий продольный разрез. Когда в розетку вставляют вилку, разрез раздаётся на какие-то микроны, подпружинивая и центрируя вилку. Таким образом достигается прецизионная юстировка двух коннекторов в розетке (помним, что сигнал передаётся по сердечнику волокна диаметров 9 мкм и смещение даже на 1 мкм вызывает потерю мощности сигнала на розетке и паразитное обратное отражение). Поэтому пыль и грязь губительна для оптических кроссов, патч-корды и пиг-тейлы надо регулярно протирать безворсовой салфеткой со спиртом, а розетки — продувать сжатым воздухом или чистить специальными чистящими палочками. Частая причина пропадания связи — это лопнувшая керамическая вставка в розетке.
Чтобы коннекторы плотно прижимались в розетке друг к другу, в каждом коннекторе FC и FC/APC (будь то коннектор патч-корда или пиг-тейла) металлокерамический наконечник подпружинен и может «вдавливаться» внутрь вилки где-то на миллиметр-полтора. В стандартах SC, LC, ST подпружинена вся вилка, а в случае ST фиксирующий элемент очень похож на тот, который использовался в локальных сетях на тонком коаксиале.

SC

Всё то же самое, что в FC, только адаптер и коннектор квадратные, пластиковые и коннектор фиксируется вщёлкиванием, а не прикручиванием. Плюсы — дешевле FC, удобнее и быстрее переключать, минусы — пластик легче сломать, меньше ресурс подключений-отключений. Иногда бывает, что величина отражения и затухания на соединении заметно меняется после прикосновения к подключённому коннектору, что нежелательно для ответственных линий. Цвет разъёмов обычно синий.

LC и LC Duplex

Похожи свойствами на SC, но имеют намного меньшие габариты: двухюнитовый кросс на LC вмещает целых 64 порта, а на SC — только 32. За счёт маленьких габаритов часто монтируются прямо на платы оптических мультиплексоров.

FC/APC, SC/APC, LC/APC

То же самое, что FC, SC и LC, но с косой (A — angle, угол) полировкой наконечника.

Разница между керамическими наконечниками с обычной и косой полировками. Изображение немного неточное: на самом деле в случае и той, и другой полировки торцы не плоские, а немного выпуклые, соответственно при соединении соприкасаться будут только центры наконечников, где волокно.

Такие адаптеры и коннекторы делаются зелёного цвета и при сравнении с обычной полировкой UPC (или просто PC) разница глазом видна. Это нужно, чтобы уменьшить обратное отражение на стыке двух коннекторов. Насколько я знаю, этот тип полировки разрабатывался для передачи аналогового телевидения по оптике, чтобы не возникало двоения изображения на экране, но я могу и ошибаться.
Состыковать между собой «обычную» и «косую» полировку можно, но только если необходимо снять рефлектограмму по принципу «лишь бы было видно длину трассы»: большой воздушный промежуток даст сильные потери и сильное обратное отражение.

На сегодня мой рассказ окончен. Задавайте вопросы, постараюсь ответить. Если вам эта тема окажется интересной — я напишу продолжение.

  • Основной компонент ВОЛС: оптическое волокно

    • Как передается сигнал по оптоволокну

    • Принципы передачи сигнала в современных ВОСП

  • Применение волоконно-оптического кабеля

    • Классификация волоконно-оптических кабелей связи

Развитие телекоммуникационных сетей во всем мире в первую очередь основывается на использовании волоконно-оптических линий связи (ВОЛС).

Волоконно-оптический кабель (ВОК), основой которого являются оптические волокна (ОВ), в настоящее время считается самой совершенной направляющей системой как для телекоммуникационных магистралей большой протяженности, так и для локальных сетей передачи данных. Объясняется это тем, что ОК по своим характеристикам значительно превосходят электрические кабели.

По сравнению с линиями, построенных на электрических кабелях связи, преимущества ВОЛС в следующем:

  1. Широкая полоса пропускания кабеля (до сотен ГГц) позволяет получить существенно большее число каналов и трактов различного назначения по одному ОВ — пропускная способность по одному ОВ возможна до десятков Гбит/с.
  2. Малая величина коэффициента затухания ОВ (до десятых долей дБ/км) позволяет увеличить длину ретрансляционного участка до сотен километров.
  3. Малые габаритные размеры и масса ВОК облегчают их производство и прокладку.
  4. Постоянное и непрерывное совершенствование технологии производства ВОК обеспечивает снижение их стоимости. В настоящее время стоимость кварцевого ОВ не превышает половины стоимости медной пары.
  5. Отсутствие внешних электромагнитных воздействий и переходных помех между волокнами ВОК повышает качество и надежность передачи информации.
  6. Практическое отсутствие внешнего электромагнитного излучения обеспечивает высокую скрытность связи, т. е. защищенность от несанкционированного доступа.
  7. Постоянное совершенствование ВОСП по мере появления новых источников оптического излучения, оптических волокон, фотоприемников и оптических усилителей с улучшенными характеристиками позволяет наращивать пропускную способность существующих трактов.
  8. Полная электрическая изоляция (оптическое волокно — диэлектрик) обеспечивает безвредность работы во взрывоопасных средах. Следовательно, улучшаются условия техники безопасности при строительстве и эксплуатации ВОЛС.
  9. Отсутствие в конструкции ВОК цветных металлов.

Ближайшие семинары в нашем учебном центре

Некоторым недостатком современных ВОЛС можно назвать высокую стоимость интерфейсного и монтажного оборудования. Однако улучшение конструкции и повышение надежности оптических передатчиков, приемников и пассивных элементов линейного тракта позволяют постоянно снижать стоимость производства волоконно-оптической продукции, а совершенствование технологии монтажа ВОК и соединительных элементов, а также упрощение используемого оборудования приводят к существенному уменьшению трудоемкости строительно-монтажных работ.

Началом масштабного применения ВОК для задач связи в России следует считать реализацию крупнейшим оператором связи России —ПАО «Ростелеком» — проекта трансроссийской линии связи, национальной цифровой транспортной линии международной и междугородной оптической связи. Примерно с 1996 г. развитие магистральной и внутризоновых сетей ведется с применением ВОК, на этих сетях практически полностью прекратилось применение медножильных кабелей связи при новом строительстве.

На начальном этапе внедрения ВОК их поставки осуществлялись зарубежными компаниями, российские кабельные заводы не могли составить им конкуренцию. К 2000 году ситуация изменилась уже в пользу российских предприятий.

Дальнейшее развитие ВОЛС по мнению специалистов будет заключаться в разработке и внедрении в сетях ЕСЭ (Единая Сеть Электросвязи РФ) различного назначения новых волоконно-оптических технологий, направленных на повышение эффективности ВОЛС. На линиях дальней связи основное внимание по-прежнему будет уделяться повышению скорости передачи информации, увеличению длины регенерационных участков и повышению надежности. Широкое распространение получат промежуточные оптические усилители и методы волнового (спектрального) мультиплексирования. Большие надежды возлагаются на использование среднего инфракрасного диапазона. Применение новых материалов (фтористых стекол и других соединений) позволило изготовить ОК с затуханием не более 0,01 дБ/км.

Доминирующей особенностью развития волоконно-оптических технологий в местных и локальных сетях будет приближение ОВ к конечному пользователю сети (абоненту). Рост потребности в новых видах информационного обслуживания абонентов, а также совершенствование и постоянное снижение стоимости аппаратуры и средств коммутационной техники готовят окончательный переход сетей доступа на ОВ.

Сегодня и в ближайшей перспективе альтернативы ВОЛС нет.

Основной компонент ВОЛС: оптическое волокно

Основным элементом волоконно-оптического кабеля (ВОК) является волоконный световод. Волоконный световод, или, более привычно, оптическое волокно (ОВ) по которому осуществляется передача микронных длин волн, что соответствует диапазону частот 1014… 1015 Гц. Оптическое волокно, как правило, имеет двухслойную конструкцию и состоит из сердцевины и оболочки с разными показателями преломления n1 и n2.

Как передается сигнал по оптоволокну

Среда с более высоким значением показателя преломления называется оптически более плотной средой. В волокне такой средой является сердцевина, выполняющая роль среды распространения света. Показатель преломления оболочки, окружающей сердцевину немного меньше, чем у сердцевины и за счет этого на границе «сердцевина-оболочка» происходит отражение света. На этом эффекте основана передача информации по волокну.

Сердцевина ОВ — это центральная область ОВ, через которую передается основная часть оптической мощности сигнала. Диэлектрическим материалом для сердцевины и оболочки ОВ служит плавленый кварц (кварцевое стекло), чистый или с примесями химических элементов и их соединений, небольшие пропорции которых способствуют изменению оптических свойств плавленого кварца должным образом. Плавленый кварц — это аморфное, прозрачное вещество с химической формулой двуокиси кремния SiO2. Если сердцевина служит для передачи электромагнитной энергии, то оболочка — для создания лучших условий отражения на границе раздела сердцевина-оболочка, защиты сердцевины волокна от механических повреждений, а также для защиты от излучений энергии в окружающее пространство и поглощения нежелательного излучения извне. Снаружи располагается защитное покрытие для предохранения волокна от механических воздействий и нанесения расцветки.

Подробно о различиях видов ОВ читайте в наших материалах:

  • Одномодовое и многомодовое оптическое волокно: отличия, характеристики, применение
  • Типы и стандарты оптического волокна

Напомним, в чём состоит отличия SM и MM волокон.

На рис. 1 схематично показано строение MM-волокна и ход лучей в его сердцевине.

Схема передачи сигнала в MM-волокне

Рис. 1. Строение MM-волокна

Конструктивно такое волокно имеет сердцевину значительного диаметра (если сравнивать с оболочкой) — 50 мкм (первые марки MM-волокон имели диаметр сердцевины 62,5 мкм). Такая особенность обуславливает возбуждение в сердцевине целого набора световых пучков, так называемых «мод» излучения. Их большое количество приводит к появлению главного недостатка таких ОВ — межмодовой дисперсии сигнала, что ограничивает протяжённость линий связи, построенных на таких ОВ. Из-за дисперсии становится необходимым снижать частоту модулирующего излучения, что, в свою очередь, приводит к снижению скорости передачи сигнала. Протяжённость ВОЛС на «многомоде» ограничена 2-мя километрами. Но большой диаметр сердцевины делает возможным применения поверхностных лазеров, работающих в диапазоне длин волн от 800 до 1300 нм. Это значительно снижает стоимость оборудования и делает выгодным использование ВОК на основе ММ-волокон, если длина линии будет не более 2-х км. Передача в таких ОВ ведется на двух длинах волн — 850 нм и 1300 нм.

На рис. 2. показана схема работы SM-волокна.

Схема передачи сигнала в SM-волокне

Рис. 2. Строение SM-волокна.

Как видим, диаметр сердцевины выбран значительно меньшим. Обычно он составляет 8–10 мкм, что обеспечивает прохождение излучения в одномодовом режиме. Это позволяет добиться протяжённости линии связи до 1000 км и практически не влияет на ширину полосы передачи сигнала. А это в свою очередь делает возможной скорость передачи данных на одной несущей частоте до 10 Гбит/с. Но с такими ОВ усложняется и схема согласования излучателя с торцом волокна — требуется более высокая точность изготовления согласующих элементов. Это, а также более высокая стоимость самих лазеров (с торцевым излучением), приводит к удорожанию приёмо-передающих систем, а также повышению требований к качеству монтажа. Но большим плюсом одномодовых ОВ является то, что передача сигналов в них ведётся при необходимости на любых длинах волн в очень широком диапазоне — от 1260 нм до 1675 нм.

На рис. 3 показана диаграмма основной характеристики кварцевого ОВ — километрического затухания в зависимости от длины волны проходящего излучения.

Схема километрического затухания в зависимости от длины волны

Рис. 3. Затухание в кварцевом ОВ в зависимости от длины волны.

Условно небольшие диапазоны, в которых экспериментально полученные значения затуханий имели минимальные значения стали называть «окнами прозрачности» (I, II и III). Стандартными длинами волн для работы SM-волокон стали 1310 нм и 1550 нм. Вторая из них является самой выгодной с точки зрения минимизации потерь. У современных SM-волокон типичным значением затухания является на 1550 нм является α=0,2 дб/км.

Также на рис. 3 можно заметить локальное увеличение потерь между вторым и третьим окнами прозрачности (точнее, на λ=1383 нм). Этот всплеск называют «водяным пиком». Его появление связано с попаданием воды в структуру ОВ при его производстве. Вытягиваемое из расплавленной части заготовки, ОВ требует охлаждения и наиболее эффективно этот процесс реализуется с применением водяного пара. Частицы пара проникают в незастывшее волокно и вызывают дополнительное поглощение оптической мощности. Надо сказать, что современные SM-волокна (конкретно ОВ соответствующие стандарту ITU-T Rec.652D) лишены этого недостатка, так как современные технологии позволяют избежать попадания частиц воды в ОВ (если быть точнее, то поглощение вызывают ионы водорода, содержащиеся в воде).

Принципы передачи сигнала в современных ВОСП

Волоконно-оптической системой передачи (ВОСП) называется комплекс технических средств, обеспечивающий формирование каналов и трактов передачи с использованием в качестве направляющей среды оптического кабеля и передачей по нему оптических сигналов. Под оптическим сигналом понимается модулированное оптическое излучение определенной длины волны.

На рис. 4 показана обобщённая структурная схема волоконно-оптической системы передачи. Для простоты показана одно направление передачи данных. Встречная передача строится аналогично.

Схема волоконно-оптической системы передачи (ВОСП)

Рис. 4. Обобщённая структурная схема ВОСП.

Кратко рассмотрим основные технические комплексы, входящие в состав ВОСП.

Каналообразующее оборудование тракта передачи (КООпер) обеспечивает формирование определенного числа каналов или групповых трактов со стандартной требуемой скоростью передачи.

Оборудование сопряжения тракта передачи (ОСпер) необходимо для преобразования многоканального сигнала на выходе КООпер в сигнал, пригодный для передачи по линейному тракту и обеспечивающий высокое качество передачи информации.

Оптический передатчик (ОПер) обеспечивает преобразование электрического сигнала в оптический сигнал, длина волны которого совпадает с одним из окон прозрачности оптического волокна. В состав ОПер входят:

  • источник оптического излучения (ИОИ) или оптической несущей;
  • модулятор (М), с помощью которого один из параметров оптической несущей модулируется электрическим многоканальным сигналом, поступающим с ОСпер;
  • согласующее устройство (СУпер), необходимое для ввода оптического излучения в оптическое волокно оптического кабеля с минимально возможными потерями.

Как правило, источник оптического излучения, модулятор и согласующее устройство образуют единый блок, называемый передающим оптоэлектронным модулем (ПОМ). Типичный ПОМ содержит ИОИ на основе полупроводникового лазера (ППЛ) или светоизлучающего диода (СИД), а также устройство преобразования входного электрического сигнала и схему стабилизации режимов работы активных элементов ПОМ.

Оптический кабель (ОК) содержит оптические волокна (ОВ), которые служат средой распространения оптического излучения.

Ретранслятор (Р) обеспечивает компенсацию затухания сигнала при его прохождении по ОВ, коррекцию различного вида искажений и обеспечение заданной помехозащищенности. Ретрансляторы могут быть обслуживаемыми или необслуживаемыми и устанавливаются через определенные расстояния, называемые ретрансляционными участками. В ретрансляторе может производиться обработка (усиление, коррекция, регенерация и т. д.) как электрического сигнала, который получается путем преобразования оптического сигнала и последующего преобразования скорректированного электрического сигнала в оптический, так и оптического сигнала с помощью оптических устройств. В последнем случае ретранслятор называется оптическим усилителем.

Оптический приемник (ОПр) обеспечивает прием оптического излучения и преобразование его в электрический сигнал. ОПр включает в себя:

  • согласующее устройство (СУпр), необходимое для вывода оптического излучения из ОВ и ввода его в приемник оптического излучения с минимальными потерями;
  • приемник оптического излучения (ПОИ), преобразующий оптический сигнал в электрический.

Совокупность согласующего устройства и приемника оптического излучения образует приемный оптоэлектронный модуль (ПРОМ). Типичный ПРОМ включает фотодетектор оптического излучения на основе p-i-n, или лавинных фотодиодов, электронные схемы обработки электрического сигнала и устройства стабилизации режимов работы активных элементов ПРОМ.

Оборудование сопряжения тракта приема (ОСпр) осуществляет преобразования обратные тем, которые выполнялись в ОСпер.

Каналообразующее оборудование тракта приема (КООпр) осуществляет преобразование многоканального сигнала с выхода ОСпр в сигналы отдельных типовых каналов и трактов.

Для модуляции оптической несущей многоканальным электрическим сигналом можно использовать частотную (ЧМ), фазовую (ФМ), амплитудную (АМ), поляризационную (ПМ) модуляции, модуляцию по интенсивности (МИ) и др.

При модуляции интенсивности (МИ) именно величина P изменяется в соответствии с модулирующим сигналом. Обладая волновой природой, оптическое излучение в то же время является дискретным. Оно излучается и поглощается только в виде дискретных квантов — фотонов. Поэтому мощность оптического излучения P характеризуется интенсивностью потока фотонов (средним числом в единицу времени). Можно считать, что при модуляции интенсивности модулируется интенсивность потока фотонов.

Именно МИ нашла самое широкое применение при построении волоконно-оптических систем передачи, так как приводит к относительно простым техническим решениям при реализации устройств управления (модуляции) интенсивностью излучения полупроводниковых источников и обратного преобразования оптического сигнала в электрический, т. е. демодуляции.

Разумеется, показанная выше схема является очень общей, то есть, относится к любым ВОЛС с теми или иными различиями.

Задавшись целью классифицировать ВОСП, как и традиционные системы, работающие по электрическим кабелям связи, можно это сделать следующим образом.

В зависимости от каналообразующего оборудования:

  • аналоговые волоконно-оптические системы передачи, в которых каналообразующее оборудование строится на основе аналоговых систем передачи с частотным разделением каналов (ЧРК) и соответственно аналоговых методов модуляции параметров несущей частоты (амплитудная, частотная, фазовая модуляции и их комбинации) или параметров периодической последовательности импульсов (амплитудно-импульсная, широтно-импульсная, фазоимпульсная модуляции и их комбинации);
  • цифровые волоконно-оптические системы передачи, в которых каналообразующее оборудование строится на основе импульсно-кодовой модуляции (ИКМ), дельта-модуляции и их разновидностей; самое широкое применение находят цифровые ВОСП на основе ИКМ с временным разделением каналов.

Отметим, что на ранних этапах развития волоконно-оптической техники связи проводились научно-исследовательские работы по разработке аналоговых ВОСП, которые показали, что практическая реализация таких систем с большим числом каналов связана с непреодолимыми техническими трудностями.

Во-первых, это связано с высоким уровнем квантовых шумов и собственных шумов фотодиодов, используемых в приемниках оптического излучения. Уровень квантового шума в оптическом диапазоне значительно выше уровня собственной помехи. Для получения необходимого качества передачи сообщений в аналоговых системах требуются специальные методы приема и обработки аналоговых оптических сигналов, а при использовании цифровых системы то же качество передачи обеспечивается при снижении требований к отношению сигнал/шум на 30. . . 40 дБ. Поэтому реализация цифровых ВОСП намного проще по сравнению с аналоговыми ВОСП.

Во-вторых, источники оптического излучения имеют нелинейные модуляционные характеристики, что приводит к существенным трудностям в реализации требований к допустимым помехам нелинейного происхождения. При выполнении этих требований длина усилительного участка аналоговой ВОСП оказывается соизмеримой с длиной усилительного участка систем передачи по симметричным или коаксиальным кабелям. В связи с этим применение аналоговых ВОСП оказывается нецелесообразным по технико-экономическим показателям, особенно учитывая принятый мировым сообществом курс на «цифровизацию» телекоммуникаций.

В настоящее время все многоканальные телекоммуникационные системы передачи по оптическим кабелям являются цифровыми. Поэтому объектом дальнейшего рассмотрения являются исключительно цифровые ВОСП.

В зависимости от организации двусторонней связи ВОСП подразделяются на:

  • двухволоконные однополосные однокабельные, в которых передача и прием оптических сигналов ведется по двум оптическим волокнам (ОВ) на одной длине волны λ. При этом каждое ОВ является эквивалентом двухпроводной физической цепи. Так как взаимные влияния между оптическими волокнами кабеля отсутствуют, то тракты передачи и приема различных систем организуются по одному кабелю, что характерно для любой схемы организации двусторонней связи;
  • одноволоконные однополосные однокабельные, особенностью которых является использование одного оптического волокна для передачи сигналов в двух направлениях на одной и той же длине волне λ;
  • одноволоконные двухполосные однокабельные, в которых передача в одном направлении ведется на длине волны оптического излучения λ1, а в обратном — λ2.

В зависимости от назначения и места в иерархии первичных сетей Единой сети электросвязи Российской Федерации (ЕСЭ РФ) ВОСП подразделяются:

  • на магистральные ВОСП, предназначенные для передачи сообщений на тысячи километров и соединяющие между собой центры республик, краев, областей, крупные промышленные и научные центры и др.;
  • зоновые или внутризоновые ВОСП, предназначенные для организации связи в административных пределах республик, краев и областей;
  • ВОСП для местных сетей, предназначенные для организации межстанционных соединительных линий на городских и сельских телефонных сетях.

Кроме того, цифровые ВОСП можно классифицировать по специфическим параметрам, характерным только для них. Например, в настоящее время очень широко применяется технология спектрального уплотнения каналов с разделением по длинам волн — WDM (Wavelength Division Multiplexing). Эта технология, имеющая несколько разновидностей, подразумевает передачу не одного, а нескольких сигналов по одному волокну линейной части ВОСП — при этом сигналы, чтобы оставаться независимыми, должны иметь различные длины волн. В частности, самым простым случаем уплотнения будет передача по ОВ двух сигналов с λ=1310 нм и λ=1550 нм. В этом случае получаем два канала связи (встречнонаправленные) в одной физической среде. Такие системы очень часто применяются в местных сетях.

Другой разновидностью является CWDM (Coarse Wavelength Division Multiplexing) — разреженное (или грубое) мультиплексирование. Тут используется весь рабочий диапазон кварцевых одномодовых волокон от 1260 нм до 1675 нм. Как правило, используются ВОК с волокнами стандарта G.652D. Передаются сигналы, модулированные излучением на длинах волн, имеющих шаг 20 нм. Например, 1270 нм, 1290 нм и т. д. Таким образом, по одному ОВ в линейной части могут сразу же передаваться до 16 отдельных потоков данных. Эти, достаточно простые для реализации, настройки и обслуживания системы очень популярны в городских и внутризоновых линиях связи.

И, наконец, самой производительной и сложной является разновидность DWDM (Dense Wavelength Division Multiplexing) — плотное мультиплексирование с разделением по длинам волн. В этом случае разделение идёт с шагом менее 1 нм (в зависимости от подвида оборудования), что позволяет добиться реализации до 96 (!) каналов в одном волокне линейного тракта. Эту технологию широко применяют при строительстве магистральных линий связи, когда протяжённость участков регенерации составляет 100 и более км.

При описании принципиальных различий линий связи мы использовали термин волоконно-оптические системы передачи (ВОСП). Но в дальнейшем, и это будет случаться чаще, мы будем использовать термин волоконно-оптические линии связи, поскольку это понятие имеет более широкий смысл, включая в себя не только аппаратуру и среду для передачи сигнала, но и всё сопутствующее оборудование и приспособления, которые используются при строительстве — кроссы, станционные шкафы, сами помещения, опоры ВЛ и прочее. Таким образом, определение «ВОЛС» более полновесно и удобно.

Применение волоконно-оптического кабеля

Как уже знаем, основной характеристикой ВОЛС считается величина затухания мощности сигнала, который в ней передаётся. За затухание в ОВ отвечают два явления — рассеяние светового излучения и поглощение этого излучения материалом волокна. Суммарно они формируют определенное значение километрического затухания, характерного для любого SM-волокна. Т. е. изначально при проектировании ВОЛС мы уже знаем величину этого самого затухания, поскольку можем подсчитать, сколько децибел мощности потеряется в самом ОВ и на его соединениях. Однако, к сожалению, есть ещё одна причина увеличения потерь, которая может появиться в самый неподходящий момент — изгибные потери.

На рис. 5 схематично показано, как могут распространяться лучи света в изогнутой сердцевине.

Оптические потери на изгибе ОВ

Рис. 5. Появление оптических потерь на изгибе ОВ.

В месте изгиба часть светового потока будет падать на границу раздела сердцевины и оболочки под недопустимым углом, при котором не будет выполняться условие полного внутреннего отражения. Излучение частично будет переходить в оболочку, а это равносильно потере части полезного сигнала.

Различают понятия микроизгиб и макроизгиб. Микроизгиб относится к непрямолинейности формы ОВ внутри кабеля. ОВ находятся в модулях в свободном (извилистом) состоянии, а сами модули — в виде скрутки. Макроизгиб — это ОВ, изогнутое в виде дуги.

Потери на макроизгибах резко возрастают и становятся недопустимо большими, как только радиус изгиба уменьшается до критического значения, которое для типичных ОВ составляет несколько сантиметров. Конкретно, в «Правилах применения оптических кабелей связи, пассивных оптических устройств и устройств для сварки оптических волокон» утвержденных приказом Министерства информационных технологий и связи Российской Федерации №47 от 19 апреля 2006 г. увидим следующее требование — допустимый радиус изгиба ОВ (любого типа) должен быть не менее 30 мм. Это требование нужно выполнять всегда, когда мы работаем с волокном, например, при его сварке.

Если же говорить о кабеле в целом, то здесь тоже необходимо придерживаться строгого правила по допустимому радиусу изгиба. В «Правилах применения оптических кабелей связи, пассивных оптических устройств и устройств для сварки оптических волокон» есть и это значение — радиус изгиба ВОК должен быть не менее 20 наружных диаметров этого кабеля. Для примера, внешний диаметр кабеля — 12 мм, минимальный радиус изгиба равен 240 мм. Делаем вывод, что минимальный радиус изгиба ОК зависит от его внешнего диаметра.

Это правило носит общий характер, для более точного ознакомления со всеми требованиями к конкретной разновидности кабеля при его монтаже и эксплуатации рекомендуем пользоваться инструкциями, разработанными производителем. Например, для продукции «Инкаб» смотрите инструкции по ссылке: https://incab.ru/useful-information/documents/#!instructions

Также при проектировании ВОЛС необходимо предусматривать конструктивные элементы, ограничивающие до необходимых пределов радиус изгиба.

Деформация ОВ при изготовлении кабеля (микроизгибы, скрутка, сжатие) является другой причиной появления дополнительных потерь. При соответствующем выборе кабельных материалов, конструкции и технологии изготовления ВОК эти потери в многомодовых и одномодовых ОВ составляют не больше 20% от полных потерь. Дополнительные потери мощности практически постоянны в диапазоне длин волн 800…1700 нм.

Во избежание увеличения этих потерь необходимо правильно использовать ВОК, причём делать это необходимо ещё до начала прокладки.

Например, на рис. 6 видим, как нельзя хранить кабельные барабаны.

Рис. 6. Кабельный барабан, лежащий на «щеке».

Многие удивятся, почему такой способ размещения назван неправильным. Однако, есть множество подтверждений тому, что подобное положение барабана неизбежно приведёт к сползанию верхних и сдавливанию нижних колец ВОК, а это, в свою очередь, приведёт к сдавливанию ОВ. Причём, чем дольше так лежит барабан, тем заметнее и необратимее будет деформация кабеля. А на ОВ уже проложенного кабеля с такого барабана сможем обнаружить недопустимо возросшие километрические затухания.

При строительстве и эксплуатации оптических кабельных линий возможно появление так называемых эксплуатационных потерь. Прежде всего эти потери связаны с макроизгибами, которые неизбежно возникают при прокладке ОК. Другая причина — постепенное увеличение собственных потерь ОВ. Основной причиной постепенного увеличения собственных потерь ОВ является влага, проникающая в ВОК. Под ее действием, в случае замерзания, происходит образование микротрещин в структуре ОВ, которые визуально воспринимаются как помутнение стекла. Для защиты от влаги производители применяют влагозащитные оболочки и гидрофобное заполнение.

К сожалению, не всегда усилия производителя ВОК, направленные на защиту их продукции от воздействия окружающей среды гарантируют сохранность кабеля на протяжении всего срока эксплуатации. Иногда, и не так уж и редко, можно встретить нарушения технологии прокладки ВОК, которые приводят к появлению дополнительных потерь. Причём это могут быть как устранимые нарушения, так и необратимые — речь идёт о трещинах в ОВ, а их появление неизбежно приводит к самому критическому состоянию линии связи — к обрыву.

Как избежать подобных проблем? Перечислим требования к ВОК:

  • возможность прокладки в тех же условиях, в каких прокладываются электрические кабели связи;
  • возможность сращивания и монтажа в полевых условиях;
  • устойчивость к внешним механическим и климатическим воздействиям в процессе строительства и эксплуатации;
  • эксплуатационная надежность с заданными показателями безотказности, долговечности и ремонтопригодности и др.

Классификация волоконно-оптических кабелей связи

Конструкции ВОК в основном определяется назначением и областью их применения. Они различаются видом защитных покровов ВОК, характером компоновки ОВ в составе кабельного сердечника, характером и способом упрочнения ВОК от продольных и радиальных воздействий.

По своему назначению ВОК подразделяются по месту в первичной сети ЕСЭ РФ на:

  • магистральные;
  • зоновые (внутризоновые);
  • местные (городские, районные);
  • объектовые и монтажные.

Магистральные и зоновые ВОК предназначаются для передачи информации на большие расстояния и организации большого числа каналов. Они содержат ОВ, обладающие большой широкополосностью, малыми затуханием и дисперсией.

Местные ВОК используются в качестве соединительных линий между городскими и районными АТС. Они рассчитаны на работу без промежуточных регенераторов, т. е. на сравнительно короткие расстояния (до нескольких десятков км) и относительно небольшое число каналов.

Объектовые ВОК служат для передачи различной информации на малые расстояния внутри объекта и содержат, как правило, большое число ОВ.

Монтажные ВОК предназначаются для внутри- и межблочного монтажа аппаратуры.

В зависимости условий прокладки и эксплуатации ВОК подразделяются на:

  • ВОК для наружной прокладки;
  • ВОК для внутренней прокладки.

Кабели наружной прокладки применяются на любых (сельских, городских, зоновых и магистральных) линиях связи и по условию прокладки их можно разделить на подвесные, подземные, подводные.

Подвесные ВОК

Подвесные кабели подвешиваются на опорах различного типа и в свою очередь подразделяются на кабели:

  • самонесущие — с несущим тросом или без него, подвешиваемые на опорах различного типа, в том числе на опорах ЛЭП и контактной сети железных дорог;
  • прикрепляемые — крепятся к несущему проводу с помощью специальных зажимов;
  • навиваемые — навиваются вокруг несущего, например, фазового, провода или грозотроса;
  • встраиваемые в грозотрос (ОКГТ).

Это, пожалуй, самая уязвимая разновидность прокладки, тут кабелю угрожает много разных внешних факторов.

Более подробно о разных нарушениях и их последствиях рассказано в статье, посвящённой подвесному кабелю: Особенности монтажа ОКСН

Для наглядности такой пример:

Разрушение кабеля неправильно смонтированным гасителем вибрации

Рис. 7. Разрушение кабеля неправильно смонтированным гасителем вибрации.

Всевозможных ухудшений состояния ВОЛС, проложенной методом подвеса, можно избежать, если:

  1. Cтроительство ВОЛС ведётся по проекту, разработанному квалифицированным проектировщиком, учтены все эксплуатационные нагрузки, правильно подобрана арматура и т. д.
  2. Монтаж ВОК, муфт, арматуры и пр. ведётся по инструкции.

Грунтовые ВОК

Кабели подземной прокладки подразделяются:

  • на прокладываемые в кабельной канализации (в асбестоцементных или пластмассовых трубах диаметром – несколько ВОК в одной трубе);
  • закладываемые в грунт (непосредственно в грунт, в полотне железной дороги, в асфальте автомобильной дороги);
  • прокладки в специальных трубах, например, ЗПТ.

Основными видами угроз в данном случае будут смещения грунтов различной природы (эрозия почвы, вымывание грунтовыми водами, вечномерзлотные процессы и т. п.). В случае непосредственного воздействия на кабель, грунт может создавать изгибную и раздавливающую нагрузку чрезвычайных значений и это необходимо учесть заранее — при выборе кабеля нужно руководствоваться рекомендованными значениями МДРН и допустимой раздавливающей нагрузки кабеля для каждого типа грунта (табличное значение). При прокладке кабеля в грунт необходимо формировать песчаную подушку, а сам кабель должен быть уложен в виде «змейки». Ну и наконец, стараться не повредить ВОК при прокладке. Как, например, на рис. 8.

Рис. 8. «Баран» на кабеле.

Подобное случается, если кабель затягивается (как правило, чаще это случается при прокладке в кабельной канализации) без разматывания бухты — иногда условия не позволяют этого сделать и кабель просто скидывается с бухты кольцами.

Подводные ВОК

Подводные кабели подразделяются:

  • на укладываемые на дно несудоходных рек, неглубоких озер и болот;
  • укладываемые на дно морей и океанов.

В случае подводной прокладки необходимо знать глубину окончательного залегания ВОК и выбрать марку с соответствующими прочностными характеристиками.

Внутриобъектовые ВОК

Кабели внутренней прокладки используются внутрителефонных станций, офисов, зданий и помещений. По условиям прокладки эти кабели подразделяются:

  • на кабели вертикальной («riser») и горизонтальной («distribution») прокладки;
  • шнуры коммутации.

Во избежание появления дополнительных потерь, необходимо правильно подобрать марку ВОК под соответствующие условия его прокладки. Нельзя, например, прокладывать кабель типа «riser» в горизонтальной плоскости — на поворотах трассы неизбежно появление заломов на его жёсткой оболочке. Кабель типа «distribution» не должен быть пережат или сдавлен. При коммутации оборудования оптическими шнурами не допускать ситуации, напоминающей изображённую на рис. 9.

Рис. 9. «Мочалка» из патч-кордов.

Таким образом, именно соблюдение инструкций по работе с ВОК, с оптическими муфтами и прочим монтажным оборудованием обеспечит выполнение требования к минимальному сроку службы проложенного ВОК, указанному в «ГОСТ Р 52266-2020. Кабели оптические. Общие технические условия», пункт 6.5 Требования надежности. Согласно этим требованиям срок службы оптоволоконного кабеля должен быть не менее 25 лет.

FTTH проектирование

Часть 1.   Часть 2.  Часть 3.  Часть 4.  Часть 5.  Часть 6.

Основные термины и определения

Настоящее руководство составлено специалистами Московского представительства фирмы TE Connectivity. Оно охватывает вопросы проектирования, строительства и обслуживания пассивных оптических сетей доступа (ПОН/PON), построенных по технологии FTTH («Волокно до абонента») с использованием пассивных оптических разветвителей сигнала (сплиттеров).

Структурно сеть PON состоит из трех главных элементов (рис. 1): OLT, сплиттеров и ONT. OLT устанавливается в узлах связи и обеспечивает взаимодействие с внешними сетями. Для передачи данных и голоса используются длины волн 1490 нм в прямом потоке (от сетевого узла до абонента) и 1310 нм в обратном потоке (от абонента к сетевому узлу). Между OLT и ONT размещаются один или несколько сплиттеров, которые обеспечивают распределение оптического сигнала от ОLT к группе ONT. Число ONT, подключенных к одному OLT, определяется параметрами карт ОLT, бюджетом оптической мощности и максимальной скоростью приемо-передающей аппаратуры. ONT устанавливается в помещении абонента и обеспечивает подключение таких устройств абонента как компьютер, телефон, телевизор, сетевой роутер, системы пожарной и охранной сигнализации.

Таким образом, сеть PON можно разделить на следующие участки:

 — Станционный участок (Центральный узел) — включает в себя активное оборудование OLT (Optical Line Terminal) и опти-ческий кросс высокой емкости в котором размещаются оптические панели для сращивания и коммутации оптических волокон опорного магистрального кабеля с портами активного оборудования OLT. Активное и пассивное оборудование, как правило, размещается на узле связи в стационарном помещении АТС или в АТС «контейнерного» типа.

Магистральный участок — включает в себя опорный магистральный волоконно-оптический кабель, магистральные муфты средней емкости (до 96 сварных соединений), обеспечивающие соединение строительных длин кабеля.

Распределительный участок — включает в себя зоновый магистральный волоконно-оптический кабель, оптические кабели абонентской разводки, распределительные пассивные устройства с установленными оптические разветвителями (сплиттерами), а также сварные и/или коммутационные соединения.

Абонентский участок — включает в себя абонентскую розетку, внутриобъектовый одноволоконный (реже двухволокон-ный) оптический кабель и ONT в помещении абонента. Допускается использование быстроустанавлимаемых коннекторов.В данном Руководстве не рассматриваются изделия, применяемые для построения станционного сегмента сети FTTH. Структурная схема сети PON

Рис. 1. Структурная схема сети PON

1.1 Выбор схемы деления оптического сигнала в сетях FTTH

Среди возможных вариантов архитектуры сети FTTH, существующих сегодня и планируемых в будущем, лучшим решением следует признать то, которое будет наиболее экономически эффективным, гибким и масштабируемым. Важным вопросом в процессе планирования строительства распределительного участка сети является выбор схемы деления (сплиттерования) оптического сигнала. Существуют две базовые схемы деления оптического сигнала — централизованная (рис. 2) и каскадированная (рис. 3).
В настоящее время существуют терминалы оптических линий (OLT) с картами, которые могут обслуживать до 128 абонентов. Наиболее распространены и доступны OLT, обслуживающие 32–64 абонента. Для примера возьмем OLT на 32 абонента, предполагая, что результаты, полученные при выборе того или иного варианта схемы сплиттерования, можно масштабировать в зависимости от параметров используемых карт OLT.

Централизованная схема деления сигналаКаскадированная схема деления сигнала

 Рис. 2. Централизованная схема деления сигнала                       Рис. 3. Каскадированная схема деления сигнала

В рассматриваемом примере в случае централизованного деления сигнала используется сплиттер 1×32, устанавливаемый в муфте или шкафу. Такую точку можно назвать зоновым узлом агрегации (ЗУА) сети. Вход сплиттера подключается в порту OLT на станции, а выходы к волокнам распределительного кабеля для подключения 32 абонентов через коммутационные поля, соединительные муфты и демаркационные точки.
Каскадное деление оптического сигнала, как правило, предполагает использование двух или более сплиттеров, подключенных последовательно. В общем случае общий коэффициент деления дерева сплиттеров соответствует заданной емкости порта OLT. В рассматриваемом нами примере — 32. Таким образом, в случае двухкаскадной схемы можно говорить о вариантах каскадирования 1×2–1×16, 1×4–1×8 и т.п. В случае трехкаскадной схемы возможна конфигурация 1×2–1×4–1×4 или подобные. Для упрощения расчета примем, что все одноуровневые ветви дерева, образованного при использовании такого подхода, симметричны с точки зрения потерь сигнала и не используются сплиттеры с несимметричным коэффициентом деления.
Первый сплиттер каскада, как и в случае централизованного подхода, устанавливается в распределительной муфте или шкафу ЗУА. Сплиттеры второго или следующих уровней располагаются в муфтах, размещенных как можно ближе к абонентам. Такие муфты можно назвать узлами абонентской агрегации (АУА) или терминалами доступа.
Одним из наиболее важных вопросов является обеспечение эффективности использования каждой карты OLT. В крупных проектах неэффективное использование карт OLT стоимостью около 150 тыс. руб. может заметно увеличить начальные затраты на развертывание сети.
В то же время необходимо учитывать и планировать стоимость материалов и работ по строительству сети, которые сопоставимы, а зачастую и превышают стоимость активного оборудования сети. Также необходимо учитывать опережающее падение цен на активное оборудование по сравнению с ценами пассивных компонентов.
Не меньшее значение имеет возможность модернизации сети для адаптации будущих технологических изменений, так как телекоммуникационная отрасль продолжает развиваться значительными темпами.

1.2 Эффективность использования портов OLT

Максимальная эффективность схемы централизованного деления оптического сигнала в части использования портов OLT проявляется в случае отличия числа абонентов в кластере от значения коэффициента деления схемы. Каждый абонент при такой топологии подключается к порту OLT через один и тот же сплиттер. Например, кластер из 32 абонентов в случае централизованного деления подключается к одному порту OLT (рис. 4). При использовании двухкаскадной топологии, например, 1×8–1×4 и терминалов, обслуживающих менее 4 абонентов, потребуется потребуется более одного порта OLT (рис. 5). Схема централизованного деления оптического сигнала является более эффективной и в случае, когда планируется невысокий про-цент подключений абонентов на начальном этапе развертывания сети FTTH. В этом случае поставщик услуг (провайдер) имеет значительную гибкость в использовании волокон для обеспечения физического подключения абонентов, вне зависимости от физического месторасположения.
В общем случае количество требуемых портов OLT для обслуживания заданного количества абонентов (Nаб) и, соответственно, количество магистральных опорных волокон, а также эффективность использования портов OLT можно высчитать по следующей методике:
1. Определяется количество абонентских кластеров (КлАб), исходя из предполагаемого коэффициента деления второго каскада (Кд2). В случае централизованного деления сигнала примем за коэффициент деления второго каскада 1.
2. Определяется теоретическое количество портов OLT (Nolt) по формуле Nolt = Округление(КлАб×д2/32,0)
3. Эффективность использования портов OLT (Kolt) определяется по формуле Kolt= Nаб/32/ Nolt×100Рассмотрим жилую зону, состоящую из 357 абонентов.
В случае централизованной схемы деления сигнала и непрерывного сплиттерного поля (кластер состоит из одного абонента) для обслуживания зоны необходимо 12 портов OLT, что дает 92.97% эффективность использования портов.

Централизованная схема (кластер из 32 абонентов)

Каскадированная схема (кластер из 32 абонентов)

 Рис. 4. Централизованная схема деления сигнала  Рис. 5. Каскадированная схема деления сигнала

В случае каскадной схемы деления оптического сигнала (1×8–1×4) число портов OLT остается тем же вплоть до 96 абонентских кластеров. В случае, если кластер состоит лишь из 3 абонентов, для обслуживания зоны потребуется 15 портов OLT, что даст 74.38% эффективность использования портов.

1.3 Возможность проведения измерений параметров сети

Выбор централизованной или каскадной схемы деления оптического сигнала может оказывать влияние на порядок и способы проведения измерений оптических параметров, а также на технологию устранения неисправностей на сетях доступа. На начальном этапе развития технологии PON операторы сталкивались с трудностями применения оптических рефлектометров (OTDR) при проведении измерений «от станции». Проблемы возникали при тестировании сети с оптическими сплиттерами, которые затрудняли контроль оптических параметров нескольких абонентских участков сети с событиями (коннекторы, сварное соединение волокна и пр.), расположенными на относительно одинаковом расстоянии от точки ветвления оптического сигнала.
Вторым моментом, усложняющим измерение параметров сети, была невозможность проведения измерений без отключения абонента. Решением данной проблемы является использование рефлектометров, работающих на длине волны 1625 нм и имеющих режекторные фильтры, препятствующие проникновению в приемник измерительного прибора сигналов с длиной волны менее 1620 нм.
Можно выделить три этапа «жизни» сети: строительство, ввод в эксплуатацию и обслуживание. Каждый из этапов предполагает свой, оптимизированный подход к тестированию сетей PON. Более подробно ознакомиться с измерениями на каждом этапе можно в книге «Рефлектометрия оптических волокон» (А.В. Листвин, В.Н. Листвин. — М. ЛЕСАРарт, 2005. — 208 с.) В общем случае работы, связанные с определением параметров сети, можно свести к получению количественных значений конкретных параметров либо получению качественной оценки функционирования отдельных элементов сети.
Первый подход может быть рекомендован на этапе строительства сети и проведения приемо-сдаточных испытаний. В этом случае работы по проведению измерений выполняются квалифицированными специалистами с использованием дорогостоящего оборудования. Как правило, затраты времени на проведение таких работ являются довольно значительными.
Второй подход сводится к локализации «проблемных» элементов сети за ограниченное время и восстановлению работоспособности за ограниченное время и с минимальными затратами. Для решения такой задачи представляется разумным использование простого набора оборудования, который может состоять из излучателя видимого оптического сигнала и детектора активного волокна.
Таким образом, можно сделать следующие выводы:
– имеющееся специализированное измерительное оборудование с одинаковым успехом справляется с проведением количественных измерений параметров оптической сети как с централизованной, так и с каскадированной схемой деления сигнала;
– при проектировании сети, строительстве, разработке процедур технического учета и последующем обслуживании необходимо соблюдать баланс между дорогостоящими измерениями и экономичными способами контроля работоспособности сети и локализации неисправностей.

1.4 Потери оптического сигнала

При выборе централизованной либо каскадной схемы построения сети возникает необходимость оценить потери оптического сигнала в случае применения той или иной топологии.В качестве примера приводятся максимальные параметры внесенных (прямых) потерь сплиттеров эконом-класса производства компании ТЕ Connectivity и теоретические (расчетные) показатели:

Таблица 1. Прямые потери в оптических сплиттерах

Сплиттер

Реальные потери мощности,
дБ
Теоретические потери мощности,
дБ
Максимальные потери, определенные
стандартом ITU-N G.671, дБ
1×32 17.0 15.05 18.6
1×16 13.3 12.04 15.0
1×8 10.4 9.03 11.4
1×4 7.0 6.02 7.8
1×2 3.5 3.01 4.2

Возьмем для примера две возможные топологии каскадного построения сети и оценим вносимые потери в сравнении с централизованной схемой:
1×2-1×16. 3.5+13.3= 16.8 дБ
1×8-1×4. 10.4+7.0=17.4 дБ
1×32. 17.0 дБ
Видим, что дополнительные вносимые потери не превышают 0.6 дБ.
Справедливости ради стоит упомянуть, что в приведенных расчетах не учитывались потери на соединении сплиттерных каскадов, которые составят 0.05 дБ для сварного соединения и 0.3 дБ в случае применения разъемного соединения.

1.5 Процент подключенных абонентов и стоимость кабеля

процент подключенных абонентов в контексте выбора топологии сети безусловно оказывает влияние на решение об эффективном использовании карт OLT. Этот вопрос более подробно рассматривался выше. Как было отмечено, наличие абонентских кластеров с числом абонентов, соответствующим коэффициенту деления, и процент подключенных абонентов более 75 позволяет достаточно эффективно использовать каскадную схему сплиттерования. В прочих случаях необходимо более внимательно оценить экономическую целесообразность применения централизованной топологии.
Необходимо отметить еще одно преимущество каскадной схемы построения сплиттерного поля, а именно уменьшение количества необходимых оптических волокон в сети, что может заметно повлиять на стоимость каблирования зоны.
Экономия в значительной части обеспечивается не фактом использования кабеля с меньшим числов волокон, но суще-ственно меньшим объемом работ по терминации оптических волокон.
Ниже приведены сравнительные оценочные стоимостные характеристики кабелей ОКСН (Оптический Кабель СамоНесущий) различных производителей, содержащие 16 или 32 оптических волокна:

Таблица 2. Оценочные стоимостные характеристики кабелей

Производитель Марка кабеля Кол-во волокон Цена за тыс.руб/1км
без НДС
Siemens A-D(T)H 15 мм2 1×32 E9/125 0.38F3.5+0.23 H18 32 57,3
Siemens A-D(T)H 15 мм2 1×16 E9/125 0.38F3.5+0.23 H18 16 44,5
Alcatel LL-SG5LV(FT-KKT25) 2×16 FSN 9/125 32 111.2
Alcatel LL-SG5LV(FT-KKT25) 2×8 FSN 9/125 16 90.0
Москабель-Фуджикура ОКСН 8 8 35,6
Москабель-Фуджикура ОКСН 16 16 40,5
Москабель-Фуджикура ОКСН 32 32 49,6
Москабель-Фуджикура ОКСН 64 64 69,9

Как указывается в документе «РУКОВОДЯЩИЙ ДОКУМЕНТ ОТРАСЛИ. ЛИНИИ ПЕРЕДАЧИ ВОЛОКОННО-ОПТИЧЕСКИЕ НА МАГИСТРАЛЬНОЙ И ВНУТРИЗОНОВЫХ ПЕРВИЧНЫХ СЕТЯХ ВСС РОССИИ. ТЕХНИЧЕСКАЯ ЭКСПЛУАТАЦИЯ» РД 45. 047-99, утвержденным письмом Минсвязи России от 27.12.1990 №7934, стоимость cтроительно-монтажных работ (СМР) напрямую зависит от стоимости прокладываемого кабеля с коэффициентом ×1.1.
Пример упрощенного расчета стоимости строительства зоны из 32 абонентов:

Таблица 3. Влияние каскадирования сплиттеров на стоимость, время инсталляции
и оптический бюджет зоны из 32 абонентов длиной 480 м

Топология 1х32

1х8 — 1х4

Количество волокон в кабеле 32 8
Длина кабеля с кольцами запаса, м 520 520
Количество сварок волокна 65.0 17.0
Количество разъемных соединений 65.0 41.0
Количество последовательных соединений 3 3
Количество последовательных разъемов 3.00 3.00
     
Стоимость кабеля, руб/м 49.6 35.6
Стоимость подвеса кабеля, руб/м 54.56 39.16
Стоимость работ по сварке волокна, руб 300.00 300.00
Стоимость работ по соединению, руб/разъем 30.00 30.00
     
Время сварки, мин/волокно 5.00 5.00
Время соединения, мин/разъем 0.10 0.10
     
Прямые потери на сварном соединении, дБ 0.05 0.05
Прямые потери на разъемном соединении, дБ 0.30 0.30
Прямые потери в сплиттере 1×32, дБ 17.00
Прямые потери в сплиттере 1×8, дБ 10.40
Прямые потери в сплиттере 1×4, дБ 7.00
     
ИТОГО    
Стоимость, руб 75,613.00 45,205.00
Время (без времени подвеса кабеля), мин 331.50 89.10
Оптический бюджет, дБ 18.05 18.45

Исходя из вышеприведенного анализа стоимости и времени строительства можно сделать вывод об экономической целе-сообразности применения каскадной топологии построения сети.

Часть 1.   Часть 2.  Часть 3.  Часть 4.  Часть 5.  Часть 6.

Основные термины и определения

Понравилась статья? Поделить с друзьями:
  • Новалон удобрение инструкция по применению на клубнике
  • Руководство по строительству канализации
  • Инструкция к мультиварке панасоник sr tmj181
  • Wireless n wifi repeater инструкция на русском языке
  • Пикамилон инструкция по применению цена таблетки 50мг для чего он