Переделка компьютерного блока питания подробная инструкция

Собственно, идея сделать лабораторный блок питания с регулируемым выходным напряжением и током из компьютерного – не нова. В интернете встречается немало вариантов подобных переделок.

Преимущества очевидны:
1. Такие блоки питания буквально «валяются под ногами».
2. Они содержат в себе все основные компоненты, а главное, готовые импульсные трансформаторы.
3. Они имеют превосходные массогабаритные характеристики – подобный трансформаторный блок питания весил бы более 10 кг (этот 1,3 кг всего).

Правда, они не лишены и недостатков:
1. Из-за импульсного преобразования – выходное напряжение содержит богатый спектр высокочастотных помех, что делает их ограниченно применимыми для питания радиостанций.
2. Не позволяют гарантированно получить низкое напряжение на выходе (менее 5 В) при малых токах нагрузки. Это относится только к АТ блокам питания, в которых нет дежурного источника. В ATX напряжение регулируется от 0 В.

И, тем не менее, такой блок питания прекрасно подходит для питания автомобильной электроники в домашних условиях, при проверке и отладке электронных устройств. А наличие режима стабилизации тока позволяет использовать его как универсальное зарядное устройство для большой гаммы аккумуляторов!

Выходное напряжение — от 1 до 20 В
Выходной ток — до 10 А
Масса 1,3 кг

Внимание: это первая статья про переделку блока питания. Читайте также вторую часть!

Для начала, давайте разберёмся, какие блоки питания годятся для переделки. Лучшим образом, для лабораторного блока питания годятся как раз старые блоки питания AT или ATX, собранные на ШИМ-контроллере TL494 (он же: μPC494, μА494, KIA494, AZ494AP, M5T494P, UTC51494, KA7500, AZ7500BP, IR3M02, МВ3759, КР1114ЕУ4 и др. аналогах) мощностью 200 – 250 Вт. Таких встречается большинство! Современные ATX12B, на 350 – 450 Вт, конечно тоже не проблема переделать, но всё же они лучше годятся для блоков питания с фиксированным выходным напряжением (например, 13,8 В).

Для дальнейшего понимания сути переделки, рассмотрим принцип работы блока питания для компьютера.

Более-менее стандартизированные блоки питания (PC/XT, AT, PS/2) для компьютеров появились в начале 80-х годов благодаря компании IBM, и просуществовали до 1996 года. Давайте рассмотрим их принцип действия по структурной схеме:

Структурная схема блока питания AT

Сетевое напряжение поступает в блок питания через фильтр электромагнитных помех, который препятствует распространению высокочастотных помех от импульсного преобразователя в питающую сеть. За ним следует выпрямитель и сглаживающий фильтр, на выходе которого получаем постоянное напряжение 310 В. Это напряжение поступает на полумостовой инвертор, который преобразует его в прямоугольные импульсы и подаёт на первичную обмотку понижающего трансформатора T1.

Напряжения со вторичных обмоток трансформатора поступают на выпрямители и сглаживающие фильтры. В итоге, на выходе мы получаем необходимые постоянные напряжения.

При подаче питания, в начальный момент, инвертор запускается в режиме автогенерации, а после появления напряжений на вторичных выпрямителях, в работу включатся ШИМ-контроллер (TL494), который синхронизирует работу инвертора, подавая запускающие импульсы в базы ключевых транзисторов через развязывающий трансформатор T2.

В блоке питания используется широтно-импульсное регулирование выходного напряжения. Для увеличения напряжения на выходе, контроллер увеличивает длительность (ширину) импульсов запуска, а для уменьшения – уменьшает.

Стабилизация выходного напряжения в таких блоках питания часто осуществляется только по одному выходному напряжению (+5 В, как самому важному), иногда по двум (+5 и +12), но с приоритетом +5 В. Для этого, на вход компаратора контроллера (вывод 1 TL494, через делитель) поступает выходное напряжение. Контроллер подстраивает ширину импульсов запуска, для поддержания этого напряжения на необходимом уровне.

Также, блок питания имеет систему защиты 2 видов. Первую – от превышения суммарной мощности и короткого замыкания, и вторую, от перенапряжения на выходах. В случае перегрузки, схема останавливает работу генератора импульсов в ШИМ-контроллере (подавая +5 В на вывод 4 TL494).

Кроме того, блок питания содержит узел (на схеме не показан), формирующий на выходе сигнал POWER_GOOD («напряжения в норме»), после выхода блока питания на рабочий режим, разрешающий запуск процессора в компьютере.

Блок питания AT (PC/XT, PS/2) имеет всего 12 основных проводов для подключения к материнской плате (2 разъёма по 6 контактов). В 1995 году компания Intel с ужасом обнаружила, что существующие блоки питания не справляются с возросшей нагрузкой, и ввела стандарт на 20-ти/24-контактный разъём. Кроме того, мощности стабилизатора +3,3 В на материнской плате для питания процессора также перестало хватать, и его перенесли в блок питания. Ну и Microsoft, ввела в операционную систему Windows, режимы управления питанием Advanced Power Management (APM)… Так, в 1996 году появился современный блок питания ATX.</cut>

Рассмотрим отличия блока питания ATX от старых AT по его структурной схеме:

Структурная схема блока питания ATX

Режим Advanced Power Management (APM) потребовал отказаться от сетевого выключателя и ввести в блок питания второй импульсный преобразователь – источник дежурного напряжения +5 В. Этот маломощный блок питания работает всегда, когда сетевая вилка включена в сеть. Первичное напряжение на него поступает от того же выпрямителя и фильтра, что и на основной инвертор.

Кроме того, питание на ШИМ-контроллер в ATX поступает от этого же дежурного источника (не стабилизированные 12 — 22 В), а автозапуск инвертора отсутствует. Поэтому, блок питания стартует только при наличии импульсов запуска от контроллера. Включение основного блока питания осуществляется включением генератора импульсов ШИМ-контроллера сигналом PS_ON (замыканием его на массу) через схему защиты.

При переделке БП ATX, источник дежурного напряжения нужно сохранить. Во-первых, он будет питать достаточным напряжением ШИМ-контроллер при установке на выходе основного выпрямителя очень низкого напряжения (вплоть до 0 В). Во-вторых, от него можно запитать вентилятор, через 12 В стабилизатор. Характерные особенности переделки именно ATX БП изложены во второй части статьи.

Вот, и все основные отличия.

Как выбрать блок питания для переделки?

Как известно, блоки питания изготавливаются в Китае. А это может повлечь за собой отсутствие некоторых компонентов, которые они сочли «лишними»:

1. На входе может отсутствовать фильтр электромагнитных помех. Самое главное в фильтре – это дроссель, намотанный на ферритовом кольце. Обычно, его прекрасно видно сквозь лопасти вентилятора. Вместо него могут оказаться проволочные перемычки. Наличие фильтра – косвенный признак качественного блока питания!

Элементы фильтра электромагнитных помех

2. Также, нужно посмотреть на размер понижающего трансформатора (тот который побольше). От него зависит максимальная мощность блока питания. Высота его должна быть не менее 3 см. Встречаются блоки питания с трансформатором высотой менее 2 см. Мощность таких 75 Вт, даже если написано 200.

3. Для проверки работоспособности блока питания подключите к нему нагрузку. Я использую автомобильные лампы фар мощностью 50 – 55 Вт напряжением 12 В. Обязательно одну подсоедините к цепи +5 В (красный провод), а вторую, к цепи +12 В (жёлтый провод). Включите блок питания. Отсоедините разъём вентилятора (или, если на нём сэкономили китайцы, просто остановите рукой). Блок питания не должен пищать.

Спустя минуту отключите его от сети и пощупайте рукой температуру радиаторов и дросселя групповой фильтрации в фильтре вторичных напряжений. Дроссель должен быть холодный, а радиаторы тёплыми, но не раскалёнными!

Я использовал блок питания 1994 года выпуска мощностью 230 Вт – тогда ещё не экономили.

Переделка блока питания

Начать нужно с чистки блока питания от пыли. Для этого отсоедините (отпаяйте) от платы сетевые провода и провода к переключателю 110/220 – он нам больше не понадобится, т.к. в положении 220 В выключатель разомкнут. Выньте плату из корпуса. Пылесос, жёсткая кисточка, и вперёд!

Далее, нужно попытаться найти электрическую принципиальную схему вашего блока питания, или хотя бы максимально на неё похожую (отличаются они не существенно). Она вам поможет ориентироваться в номиналах «отсутствующих» компонентов. Рекомендую искать здесь. Я не исключаю, что, как и мне, вам придётся некоторые узлы срисовывать с платы.

Далее нужно выполнить несколько общих модификаций по установке недостающих частей и умощнению цепей первичного напряжения и инвертора. Рассмотрим на примере электрической схемы моего блока питания.

Схема фильтра электромагнитных помех, выпрямителя первичного напряжения с фильтром, и инвертора после переделки

Номиналы заменяемых компонентов на схеме выделены красным цветом. У вновь устанавливаемых компонентов, красным цветом выделены позиционные обозначения.

1. Проверьте наличие всех конденсаторов и дросселя в фильтре электромагнитных помех. При отсутствии – установите их (у меня отсутствовал только C2). Я также установил второй, дополнительный фильтр помех, выполненный в виде гнезда для подключения сетевого шнура.

2. Посмотрите типы используемых диодов в выпрямителе (D1 – D4). Если там стоят диоды с током до 1 А (например, 1N4007) – замените их минимум на 2-х амперные, или установите диодный мост. У меня стоял 2-х амперный мост.

3. В подавляющем большинстве блоков питания в фильтре первичного напряжения установлены конденсаторы ёмкостью не более 200 мкФ (С5 – С6). Для отдачи полной мощности, замените их конденсаторами ёмкостью 470 – 680 мкФ, подходящими по размерам, напряжением не менее 200 В. Предпочтение следует отдавать группе 105°C.

4. Транзисторы в полумостовом инверторе (Q1, Q2) могут быть самые разнообразные. В принципе, большинство из них греется не криминально. Для снижения нагрева, их можно заменить на более мощные – например, 2SC4706, установив их на радиатор, через изолирующие прокладки. Я пошёл ещё дальше и заменил оба радиатора на более эффективные.

5. В процессе испытания блока питания под максимальной нагрузкой, у меня нагрелся и лопнул конденсатор С7 (обычно это 1 мкФ 250 В). Этот конденсатор не должен греться вообще. Я думаю, он был неисправен, но заменил его всё же на 2,2 мкФ 400 В.

Теперь рассмотрим структурную схему переделанного блока питания:

Структурная схема лабораторного блока питания

Для модификации нам потребуется удалить все вторичные выпрямители, кроме одного (правда, заменив в нём почти все компоненты), удалить схему PS_ON (что бы БП ключался автоматически), переделать схему защиты, добавить схему управления, шунт (R1, входит в состав амперметра) и измерительные приборы. Элементы схемы POWER_GOOG тоже можно удалить. Теперь подробнее.

Для снятия выходного напряжения используется 12-ти вольтовая обмотка понижающего трансформатора T1. В наиболее мощных и качественных БП, цепи выпрямителя и фильтра +12 В уже имеют второй дроссель и достаточно места для установки электролитических конденсаторов. Но если в цепи фильтра +12 В нет второго дросселя, то лучший вариант — монтировать всё на месте 5-ти вольтового, а затем, перекинуть на него выводы обмотки 12 В. Ниже я опишу именно второй вариант.

Выпрямитель вторичных напряжений и фильтр, после переделки должны выглядеть следующим образом:

Схема выпрямителя вторичных напряжений после переделки

1. Выпаяйте все элементы выпрямителей и фильтров +5, +12 и -12 В. За исключением демпферных цепочек R1, C1, R2, С2 и R3, C3 и дросселя L2. Впоследствии, при выходном напряжении порядка 20 В я заметил нагрев резистора R1 и заменил его на 22 Ом.

2. Отрежьте дорожки, ведущие от 5-ти вольтовых отводов обмотки трансформатора T1 к диодной сборке выпрямителя +5 В, сохранив при этом её соединение с диодами выпрямителя –5 В (он нам ещё понадобится).

3. На месте диодной сборки выпрямителя +5 В (D3) установите сборку на диодах Шоттки на ток 2х30 А и обратное напряжение не менее 100 В, например, 63CPQ100, 60CPQ150. (Штатная 5-ти вольтовая сборка диодов имеет обратное напряжение всего 40 В, а штатные диоды в выпрямителе 12 В рассчитаны на слишком слабый ток – их использовать нельзя.) Эта сборка практически не греется при работе.

4. Соедините толстыми проволочными перемычками выводы 12-ти вольтовой обмотки с установленной диодной сборкой. Демпферные цепи R1, C1, подключенные к этой обмотке, сохранены.

5. В фильтре, вместо штатных, установите электролитические конденсаторы (C5, C6) ёмкостью 1000 – 2200 мкФ на напряжение не менее 25 В. А также добавьте керамические конденсаторы C4 и C7. Установите вместо штатного, нагрузочный резистор 100 Ом, мощностью 2 Вт.

6. Если в процессе проверки блока питания под нагрузкой, дроссель групповой фильтрации (L1) не нагревался, то его достаточно перемотать. Смотайте с него все обмотки, считая витки. (Обычно, 5 В обмотки содержат 10 витков, а 12 В – 20 витков.) Намотайте новую обмотку двумя проводами, сложенными вместе диаметром 1,0 – 1,3 мм (аналогично штатной 5-ти вольтовой) и числом витков 25-27. Если в процессе работы будет греться, то увеличьте число витков до 50-ти.

Если же дроссель грелся, то его сердечник испорчен (есть такая проблема у порошкового железа – «спекается») то придётся искать новый сердечник из порошкового железа (не ферритовый!). Мне пришлось купить кольцевой сердечник белого цвета чуть большего диаметра и намотать новую обмотку. Вообще не греется.

7. Дроссель L2 остаётся штатный, от 5-ти вольтового фильтра (обычно это несколько витков на ферритовом стержне).

8. Для питания вентилятора в БП AT используется 5-ти вольтовая обмотка, и разводка выпрямителя –5 В, которую переделываем в +12. Диоды используются штатные, от выпрямителя –5 В (D1, D2), их необходимо запаять обратной полярностью. Дроссель уже не нужен – запаяйте перемычку. А на место штатного конденсатора фильтра, установите конденсатор ёмкостью 470 мкФ 16 В, естественно, обратной полярностью. Бросьте перемычку от выхода фильтра (бывш. –5 В), к разъёму вентилятора. Непосредственно около разъёма, установите керамический конденсатор C9. Напряжение на вентиляторе у меня составляет +11,8 В, при малых токах нагрузки оно снижается.

Это самый простой способ получить «стабильные» +12 В в регулируемом БП AT для вентилятора. Если же вы переделываете БП ATX то используйте для питания вентилятора напряжение (12-22 В) дежурного источника напряжения, включив вентилятор, если требуется, через стабилизатор 12 В, например 7812. Только увеличьте ёмкости конденсаторов в этом источнике раз в 10. Подробнее этот вопрос изложен во второй части статьи.

Если в вашем БП вентилятор получал питание от схемы управления по температуре, то лучше сохранить её. Это уменьшит шум от работы БП при малых нагрузках.

9. В цепи питания ШИМ-контроллера (Vcc), необходимо увеличить ёмкости конденсаторов фильтров C10 и C11. Напряжение с конденсатора C10 (Vdd) используется для питания цифровых амперметра и вольтметра.

Если вы переделываете БП ATX, в котором имеется источник дежурного напряжения (+5V_SB), – сохраните его! В штатной схеме он используется как второй (параллельный) источник питания для ШИМ-контроллера (развязанный через диод). Это позволит сохранять высокое напряжение питания ШИМ, даже при низком напряжении на выходе блока питания (основного выпрямителя). Подробнее этот вопрос изложен во второй части статьи.

Схема защиты по превышению суммарной мощности остаётся без изменений. Вообще, в блоках питания встречается великое множество вариантов реализации схем защиты по превышению мощности. Не пытайтесь её переделать по этой схеме! Я лишь показал на примере схемы защиты своего БП. Сохраните вашу родную, добавив неё цепочку защиты от перенапряжения.

Изменяется только схема защиты от перенапряжения на выходе. Вот, окончательная схема:

Схема блока защиты после переделки

При увеличении нагрузки на инверторе свыше допустимой, увеличивается ширина импульсов на обмотке связи развязывающего трансформатора T2. Диод D1 детектирует их, и на конденсаторе C1 увеличивается отрицательное напряжение. Достигнув определённого уровня (примерно –11 В), оно открывает транзистор Q2 через резистор R3. Напряжение +5 В через открытый транзистор поступит на вывод 4 контроллера, и остановит работу его генератора импульсов. В вашем блоке питания такая защита может быть организована иначе.

Из схемы выпаиваются все диоды и резисторы, подходящие от вторичных выпрямителей к базе Q1, и устанавливается стабилитрон D3 на напряжение 22 В, например, КС522А, и резисторы R8, R9.

В случае аварийного увеличения напряжения на выходе блока питания выше 22 В, стабилитрон «пробьётся» и откроет транзистор Q1. Тот в свою очередь откроет транзистор Q2, через который на вывод 4 контроллера поступит напряжение +5 В, и остановит работу его генератора импульсов.

Осталось собрать схему управления, и подключить её к ШИМ-контроллеру.

Схема управления представляет собой два усилителя (тока и напряжения), которые подключаются к штатным входам компараторов ошибки контроллера. Их у него 2 (выводы 1 и 16 TL494) и работают они по ИЛИ. Это и позволяет получить как стабилизацию напряжения, так и тока. Окончательная схема блока управления:

Схема блока управления

На операционном усилителе DA1.1 собран дифференциальный усилитель в цепи измерения напряжения. Коэффициент усиления подобран таким образом, что при изменении выходного напряжения блока питания от 0 до 20 В (с учётом падения напряжения на шунте R7), на его выходе сигнал меняется в пределах 0…5 В. Коэффициент усиления зависит от соотношения сопротивлений резисторов R2/R1=R4/R3.

Обратите внимание: для корректного измерения напряжения, резисторы R1 и R3 подключены отдельными тонкими проводами непосредственно к присоединительным клеммам выходного напряжения.

На операционном усилителе DA1.2 собран усилитель в цепи измерения тока. Он усиливает величину падения напряжения на шунте R7. Коэффициент усиления подобран таким образом, что при изменении тока нагрузки блока питания от 0 до 10 А, на его выходе сигнал меняется в пределах 0…5 В. Коэффициент усиления зависит от соотношения сопротивлений резисторов R6/R5.

В качестве датчика тока (R7) я использовал стандартный измерительный шунт от встроенного амперметра 75ШИП1500.5 с довольно низким сопротивлением – 1,5 миллиОма. Поэтому, в цепь измерения я включил ещё и соединительные провода, которыми присоединяется шунт. Это позволило отказаться от дифференциального усилителя и снизить количество проводов. Резистор R5 подключен непосредственно к общему проводу вблизи операционного усилителя, а неинвертирующий вход (вывод 5) подключен к тому же проводу (от R3), идущему к отрицательной клемме.

Измерительный шунт 75ШИП1500.5

Порядок действий следующий: сначала находите подходящий амперметр с собственным шунтом (внешним или внутреним), и его же используете в качестве измерительного шунта R7 схемы управления. Сопротивление шунта не важно – пределы регулировки тока потом можно выставить практически под любой шунт, изменением сопротивления R5 (и, при необходимости, – R6) в схеме управления, таким образом, чтобы максимальный предел регулировки стабилизации тока соответствовал 10 А. (Не пугайтесь, с некоторыми шунтами номиналы R5 и R6 получались 1,8 кОм и 30 кОм, соответственно.)

Сигналы с обоих усилителей (напряжения и тока) подаются на входы компараторов ошибки ШИМ-контроллера (выводы 1 и 16 DA2). Для установки необходимых значений напряжения и тока, инвертирующие входы этих компараторов (выводы 2 и 15 DA2) подключены к регулируемым делителям опорного напряжения (переменные резисторы R8, R10). Напряжение +5 В для этих делителей снимается с внутреннего источника опорного напряжения ШИМ-контроллера (вывод 14 DA2).

Резисторы R9, R11 ограничивают нижний порог регулировки. Конденсаторы C2, C3 устраняют возможный «шум» при повороте движка переменного резистора. Резисторы R14, R15 также установлены на случай «обрыва» движка переменного резистора.

На операционном усилителе DA1.4 собран компаратор для индикации перехода блока питания в режим стабилизации тока (LED1).

В схеме я использовал счетверённый операционный усилитель LM324A, но можно использовать и другие, работающие в широком диапазоне питающих напряжений, например, LM2902, KIA324, AN6564, HA17324, KA2504, TLE2024, К1401УД2 (у отечественного выводы питания расположены зеркально!), или использовать два сдвоенных – LM358, LM2904, MC4558, AN6561, HA17904, TLE2022, К1040УД1. Питание на него (Vcc) подаётся от цепи питания ШИМ-контроллера (от вывода 12 DA2) которое варьируется в пределах 5…25 В, в зависимости от выходного напряжения блока питания.

Несколько улучшенный вариант блока управления приведён во второй части статьи.

Элементы регулировки R8 – R11, а также конденсаторы C2 и C3 расположены на небольшой отдельной плате, привинченной к передней панели блока питания. Все остальные элементы схемы расположены на свободном месте печатной платы блока питания. Если места на плате нет, то схему управления можно собрать на отдельной плате. Скачать печатную плату можно здесь.

Для подключения усилителей к ШИМ-контроллеру (DA2), нужно предварительно отпаять от него все штатные компоненты, идущие к выводам 1, 2, 3, 15 и 16. Конденсаторы C4 и C5 расположены в непосредственной близости от TL494 (по сути, в штатных местах).

Для измерения и отображения выходного напряжения и тока я использовал готовые цифровые вольтметр и амперметр, подключенные по схеме согласно прилагаемой к ним инструкции. Питание на них подаётся с конденсатора C10 (см. схему вторичных выпрямителей). Если в вашем распоряжении окажется блок питания ATX с источником дежурного питания, то питание на измерители (Vdd) подавайте от этого источника – он имеет выход нестабилизированного напряжения +12…+22 В.

Для подключения этих приборов удобно использовать разъёмы для Floppy дисководов, имеющиеся на штатных проводах блока питания AT.

Обратите внимание, что измерительные выводы вольтметра присоединяются отдельными тонкими проводами непосредственно к выходным клеммам блока питания. А измерительные выводы амперметра – непосредственно к измерительным контактам шунта. Это отображено на схеме.

Часть штатного металлического корпуса (дно и боковая стенка) блока питания в моей конструкции выполняет роль шасси для платы и для шунта.

Для снижения уровня высокочастотных помех, непосредственно на выходных клеммах расположены керамические конденсаторы ёмкостью 1 мкФ (C6, C7 на схеме блока управления).</cut>

Для своего блока питания я использовал готовый корпус с ручкой для переноски. Для охлаждения используется вентилятор Ø50 мм. Он гонит воздух внутрь корпуса. Для этого в корпусе было вырезано необходимое отверстие напротив радиаторов, а на противоположной стороне и задней стенке, высверлены отверстия для выхода воздуха. Идея оформления зависит только от вашего вкуса.

Если вы намереваетесь использовать такой блок питания для радиостанций, то я настоятельно рекомендую сохранить в конструкции штатный металлический корпус – он отлично экранирует и снижает уровень электромагнитных помех, излучаемых инвертором.

Внимание: это первая статья про переделку блока питания. Читайте также вторую часть статьи, где я привожу дополнительные рекомендации попеределки БП ATX и усовершенствованную схему управления..

Источники питания » Блоки питания


Переделка компьютерного блока питания

Переделка компьютерного блока питания.

Подробное описание.

Хороший лабораторный блок питания — это довольно дорогое удовольствие и не всем радиолюбителям оно по карману.
Тем не менее в домашних условиях можно собрать не плохой по характеристикам блок питания, который вполне справится и с обеспечением питания различных радиолюбительских конструкций, и так же может служить и зарядным устройством для различных аккумуляторов.
Собирают такие блоки питания радиолюбители, как правило из компьютерных БП АТХ, которые везде доступны и дешевы.

В этой статье уделено мало внимания самой переделке АТХ, так как переделать компьютерный БП для радиолюбителя средней квалификации в лабораторный, или для каких то иных целей, обычно не составляет особого труда, а вот у начинающих радиолюбителей возникает по этому поводу много вопросов. В основном какие детали в БП нужно удалить, какие оставить, что добавить, чтобы такой БП превратить в регулируемый, ну и так далее.

Вот специально для таких радиолюбителей, я хочу в этой статье подробно рассказать о переделке компьютерных блоков питания АТХ в регулируемые БП, которые можно будет использовать и как лабораторный блок питания, и как зарядное устройство.

Для переделки нам понадобится исправный блок питания АТХ, который выполнен на ШИМ контроллере TL494 или его аналогах.
Схемы блоков питания на таких контроллерах в принципе отличаются друг от друга не сильно и все в основном похожи. Мощность блока питания не должна быть меньше той, которую планируете в будущем снимать с переделанного блока.

Давайте рассмотрим типовую схему блока питания АТХ, мощностью 250 Вт. У блоков питания «Codegen» схема почти не отличается от этой.

highslide.js

Схемы всех подобных БП состоят из высоковольтной и низковольтной части. На рисунке печатной платы блока питания (ниже) со стороны дорожек, высоковольтная часть отделена от низковольтной широкой пустой полосой (без дорожек), и находится справа (она меньше по размеру). Её мы трогать не будем, а будем работать только с низковольтной частью.
Это моя плата и на её примере я Вам покажу вариант переделки БП АТХ.

Низковольтная часть рассматриваемой нами схемы, состоит из ШИМ контроллера TL494, схемы на операционных усилителях, которая контролирует выходные напряжения блока питания, и в случае их несоответствия — даёт сигнал на 4-ю ножку ШИМ контроллера на выключение блока питания.
Вместо операционного усилителя на плате БП могут быть установлены транзисторы, которые в принципе выполняют ту же самую функцию.
Дальше идёт выпрямительная часть, которая состоит из различных выходных напряжений, 12 вольт, +5 вольт, -5 вольт, +3,3 вольта, из которых для наших целей будет необходим только выпрямитель +12 вольт (жёлтые выходные провода).
Остальные выпрямители и сопутствующие им детали необходимо будет удалить, кроме выпрямителя «дежурки», который нам понадобится для питания ШИМ контроллера и куллера.
Выпрямитель дежурки даёт два напряжения. Обычно это 5 вольт и второе напряжение может быть в районе 9-10 вольт (используется для дежурного питания ТЛ-ки).
Мы и будем использовать для постоянного питания ШИМа второй выпрямитель. К нему также подключается и вентилятор (куллер).
На схеме ниже, я пометил высоковольтную часть зелёной линией, выпрямители «дежурки» — синей линией, а всё остальное, что необходимо будет удалить — красным цветом.

highslide.js

Итак всё, что помечено красным цветом — выпаиваем, а в нашем выпрямителе 12 вольт меняем штатные электролиты (16 вольт) на более высоковольтные, которые будут соответствовать будущему выходному напряжению нашего БП. Также необходимо будет выпаять в цепи 12-ой ножки ШИМ контроллера и средней части обмотки согласующего трансформатора — резистор R25 и диод D73 (если они есть в схеме), и вместо них в плату впаять перемычку, которая на схеме нарисована синей линией (можно просто замкнуть диод и резистор не выпаивая их). В некоторых схемах этой цепи может и не быть.

Далее в обвязке ШИМа на первой его ноге оставляем только один резистор, который идёт к выпрямителю +12 вольт.
На второй и третьей ноге ШИМа — оставляем только Задающую RC цепочку (на схеме R48 C28).
На четвёртой ноге ШИМа оставляем только один резистор (на схеме обозначен как R49. Да, ещё во многих схемах между 4-ой ногой и 13-14 ножками ШИМа — обычно стоит электролитический конденсатор, его (если он есть) тоже не трогаем, так как он предназначен для мягкого старта БП. В моей плате его просто не было, поэтому я его поставил.
Ёмкость его в стандартных схемах 1-10 мкФ.
Потом освобождаем 13-14 ножки от всех соединений, кроме соединения с конденсатором, и также освобождаем 15-ю и 16-ю ножки ШИМа.

После всех выполненных операций у нас должно получиться следующее.

highslide.js

Вот как это выглядит у меня на плате (ниже на рисунке).
Дроссель групповой стабилизации я здесь перемотал проводом 1,3-1,6 мм в один слой на родном сердечнике. Поместилось где то около 20-ти витков, но можно этого не делать и оставить тот, что был. С ним тоже всё хорошо работает.
На плату я так же установил другой нагрузочный резистор, который у меня состоит из двух параллельно включенных резисторов по 1,2 кОм 3W, общее сопротивление получилось 560 Ом.
Родной нагрузочный резистор рассчитан на 12 вольт выходного напряжения и имеет сопротивление 270 Ом. У меня выходное напряжение будет около 40-ка вольт, поэтому я поставил такой резистор.
Его нужно рассчитывать (при максимальном выходном напряжении БП на холостом ходу) на ток нагрузки 50-60 мА. Так как работа БП совсем без нагрузки не желательна, поэтому он и ставится в схему.

Вид платы со стороны деталей.

Теперь что необходимо будет нам добавить в подготовленную плату нашего БП, чтобы превратить его в регулируемый блок питания;

В первую очередь, чтобы не пожечь силовые транзисторы, нам нужно будет решить проблему стабилизации тока нагрузки и защиту от короткого замыкания.
На форумах по переделке подобных блоков, встретил такую интересную вещь — при экспериментах с режимом стабилизации тока, на форуме pro-radio, участник форума DWD привёл такую цитату, приведу её полностью:

«Я как-то рассказывал, что не смог получить нормальную работу ИБП в режиме источника тока при низком опорном напряжении на одном из входов усилителя ошибки ШИМ контроллера.
Более 50мВ — нормально, а меньше — нет. В принципе, 50мВ это гарантированный результат, а в принципе, можно получить и 25мВ, если постараться. Меньше — ни как не получалось. Работает не устойчиво и возбуждается или сбивается от помех. Это при плюсовом напряжении сигнала с датчика тока.
Но в даташите на TL494 есть вариант, когда с датчика тока снимается отрицательное напряжение.
Я переделал схему на этот вариант и получил отличный результат.
Вот фрагмент схемы.

Собственно, всё стандартно, кроме двух моментов.
Во первых, лучшая стабильность при стабилизации тока нагрузки при минусовом сигнале с датчика тока это случайность или закономерность?
Схема прекрасно работает при опорном напряжении в 5мВ!
При положительном сигнале с датчика тока стабильная работа получается только при более высоких опорных напряжениях (не менее 25мВ).
При номиналах резисторов 10Ом и 10КОм ток стабилизировался на уровне 1,5А вплоть до КЗ выхода.
Мне ток нужен больше, по этому поставил резистор на 30Ом. Стабилизация получилась на уровне 12…13А при опорном напряжении 15мВ.
Во вторых (и самое интересное), датчика тока, как такового у меня нет…
Его роль выполняет фрагмент дорожки на плате длиной 3см и шириной 1см. Дорожка покрыта тонким слоем припоя.
Если в качестве датчика использовать эту дорожку на длине 2см, то ток стабилизируется на уровне 12-13А, а если на длине 2,5см, то на уровне 10А.»

Так как этот результат оказался лучше стандартного, то и мы пойдём таким-же путём.

Для начала нужно будет отпаять от минусового провода средний вывод вторичной обмотки трансформатора (гибкую косу), или лучше не выпаивая её (если позволяет печатка) — перерезать печатную дорожку на плате, которая соединяет её с минусовым проводом.
Дальше нужно будет впаять между разрезом дорожки токовый датчик (шунт), который будет соединять средний вывод обмотки с минусовым проводом.

Шунты лучше всего брать из неисправных (если найдёте) стрелочных ампервольтметров (цешек), или из китайских стрелочных или цифровых приборов. Выглядят они примерно так. Вполне достаточно будет куска длинной 1,5-2,0 см.

Можно конечно попробовать поступить и так, как написал выше DWD, то есть если дорожка от косы к общему проводу достаточной длинны, то попробовать её использовать в качестве токового датчика, но я этого делать не стал, у меня плата попалась другой конструкции, вот такая, где обозначены красной стрелкой две проволочные перемычки, которые соединяли вывод косы с общим проводом, а между ними проходили печатные дорожки.

Поэтому после удаления лишних деталей с платы, я выпаял эти перемычки и на их место впаял токовый датчик от неисправной китайской «цешки».
Потом на место припаял перемотанный дроссель, установил электролит и нагрузочный резистор.
Вот ка выглядит кусок платы у меня, где я красной стрелкой пометил установленный токовый датчик (шунт) на месте проволочной перемычки.

Потом отдельным проводом необходимо этот шунт соединить с ШИМом. Со стороны косы — с 15-ой ножкой ШИМа через резистор 10 Ом, а 16-ю ножку ШИМ-а соединить с общим проводом.
С помощью резистора 10 Ом можно будет подобрать максимальный выходной ток нашего БП. На схеме DWD стоит резистор 30 Ом, но начните пока с 10-ти Ом. Увеличение номинала этого резистора — увеличивает максимальный выходной ток БП.

Как я уже раньше говорил, выходное напряжение блока питания у меня около 40-ка вольт. Для этого я перемотал себе трансформатор, но в принципе можно не перематывать, а повысить выходное напряжение другим способом, но для меня этот способ оказался удобнее.
Обо всём этом я расскажу немного позже, а пока продолжим и начнём устанавливать на плату необходимые дополнительные детали, чтобы у нас получился работоспособный блок питания или зарядное устройство.

Ещё раз напомню, что если у Вас на плате между 4-ой и 13-14 ножками ШИМа не стоял конденсатор (как в моём случае), то его желательно добавить в схему.
Так же нужно будет установить два переменных резистора (3,3-47 кОм) для регулировки выходного напряжения (V) и тока (I) и соединить их с нижеприведённой схемой. Провода соединения желательно делать как можно короче.
Ниже я привёл только часть схемы, которая нам необходима — в такой схеме проще будет разобраться.
На схеме вновь установленные детали обозначены зелёным цветом.

highslide.js

Схема вновь установленных деталей.

Приведу немного пояснений по схеме;
— Самый верхний выпрямитель — это дежурка.
— Величины переменных резисторов показаны, как 3,3 и 10 кОм — стоят такие, какие нашлись.
— Величина резистора R1 указана 270 Ом — он подбирается по необходимому ограничению тока. Начинайте с малого и у Вас он может оказаться совсем другой величины, например 27 Ом;
— Конденсатор С3 я не пометил, как вновь установленные детали в расчёте на то, что он может присутствовать на плате;
— Оранжевой линией обозначены элементы, которые может придётся подбирать или добавлять в схему в процессе наладки БП.

Дальше разбираемся с оставшимся 12-ти вольтовым выпрямителем.
Проверяем, какое максимальное напряжение способен выдать наш БП.
Для этого временно отпаиваем от первой ноги ШИМа — резистор, который идёт на выход выпрямителя (по схеме выше на 24 кОм), затем нужно включить блок в сеть, предварительно соединить в разрыв любого сетевого провода, в качестве предохранителя — обычную лампу накаливания 75-95 Вт. Блок питания в этом случае выдаст нам максимальное напряжение, на которое он способен.

Прежде, чем включать блок питания в сеть, убедитесь, что электролитические конденсаторы в выходном выпрямителе заменены на более высоковольтные!

Все дальнейшие включения БП производить только с лампой накаливания, она убережёт БП от аварийных ситуаций, в случае каких либо допущенных ошибок. Лампа в этом случае просто загорится, а силовые транзисторы останутся целыми.

Дальше нам нужно зафиксировать (ограничить) максимальное выходное напряжение нашего БП.
Для этого резистор на 24 кОм (по схеме выше) от первой ноги ШИМа, меняем временно на подстроечный, например 50 кОм, и выставляем им необходимое нам максимальное напряжение. Желательно выставить так, что бы оно было меньше процентов на 10-15 от максимального напряжения, которое способен выдать наш БП. Вернее даже не желательно, а необходимо, для того, чтобы остался небольшой запас для регулировки ШИМ, то есть для стабилизации напряжения и тока.
Потом на место подстроечного резистора впаять постоянный.

Если Вы планируете этот БП использовать в качестве зарядного устройства, то штатную диодную сборку используемую в этом выпрямителе, можно оставить, так как её обратное напряжение 40 вольт и для зарядного устройства она вполне подойдёт.
Тогда максимальное выходное напряжение будущего зарядного нужно будет ограничить выше описанным способом, в районе 15-16 вольт. Для зарядного устройства 12-ти вольтовых АКБ это вполне достаточно и повышать этот порог не нужно.
Если планируете использовать Ваш переделанный БП в качестве регулируемого блока питания, где выходное напряжение будет больше 20-ти вольт, то эта сборка уже не подойдёт. Её нужно будет заменить на более высоковольтную с соответствующим током нагрузки.
Себе на плату я поставил две сборки в параллель по 16 ампер и 200 вольт.
При конструировании выпрямителя на таких сборках, максимальное выходное напряжение будущего блока питания может быть от 16-ти и до 30-32 вольт. Всё зависит от модели блока питания.
Если при проверке БП на максимально-выдавамое напряжение, БП выдаёт напряжение меньше планируемого, и кому то нужно будет больше напряжения на выходе (30-40 вольт например), то нужно будет вместо диодной — сборки собрать диодный мост, косу отпаять от своего места и оставить висеть в воздухе, а минусовой вывод диодного моста соединить на место выпаянной косы.

highslide.js

Схема выпрямителя с диодным мостом.

С диодным мостом выходное напряжение блока питания будет в два раза больше.
Очень хорошо для диодного моста подходят диоды КД213 (с любой буквой), выходной ток с которыми может достигать до 10-ти ампер, КД2999А,Б (до 20-ти ампер) и КД2997А,Б (до 30-ти ампер). Лучше всего конечно последние.
Все они выглядят вот так;

Нужно будет в таком случае продумать крепление диодов к радиатору и изоляцию их друг от друга.
Но я пошёл другим путём — просто перемотал трансформатор и обошёлся, как говорил выше. двумя диодными сборками в параллель, так как на плате было для этого предусмотрено место. Для меня этот путь оказался проще.

Перемотать трансформатор особого труда не составляет и как это сделать — рассмотрим ниже.

Для начала выпаиваем трансформатор из платы и смотрим по плате, к каким выводам припаяны 12-ти вольтовые обмотки.

В основном встречаются двух видов. Такие, как на фото.
Дальше нужно будет разобрать трансформатор. Проще конечно будет справиться с меньшими по размеру, но и бОльшие тоже поддаются.
Для этого нужно очистить сердечник от видимых остатков лака (клея), взять небольшую ёмкость, налить в неё воды, положить туда трансформатор, поставить на плиту, довести до кипения и «поварить» наш трансформатор 20-30 минут.

Для меньших трансформаторов это вполне достаточно (можно и меньше) и подобная процедура абсолютно не повредит сердечнику и обмоткам трансформатора.
Потом, придерживая сердечник трансформатора пинцетом (можно прямо в таре) — острым ножом пробуем отсоединить ферритовую перемычку от Ш-образного сердечника.

Делается это довольно легко, так как лак размягчается от такой процедуры.
Дальше так же аккуратно, пробуем освободить каркас от Ш-образного сердечника. Это тоже довольно просто делается.

Потом сматываем обмотки. Сначала идёт половина первичной обмотки, в основном около 20-ти витков. Сматываем её и запоминаем направление намотки. Второй конец этой обмотки можно и не отпаивать от места его соединения с другой половиной первички, если это не мешает дальнейшей работе с трансформатором.

Потом сматываем все вторички. Обычно идёт 4 витка сразу обеих половин 12-ти вольтовых обмоток, потом 3+3 витка 5-ти вольтовых. Всё сматываем, отпаиваем от выводов и наматываем новую обмотку.
Новая обмотка будет содержать 10+10 витков. Наматываем её проводом, диаметром 1,2 — 1,5 мм, или набором более тонких проводов (легче мотать) соответствующего сечения.
Начало обмотки припаиваем к одному из выводов, к которым была припаяна 12-ти вольтовая обмотка, мотаем 10 витков, направление намотки роли не играет, выводим отвод на «косу» и в том же направлении, что и начинали — мотаем ещё 10 витков и конец припаиваем на оставшийся вывод.
Дальше изолируем вторичку и наматываем на неё, смотанную нами ранее, вторую половину первички, в том же направлении, как она была намотана ранее.
Собираем трансформатор, впаиваем в плату и проверяем работу БП.

Если в процессе регулировки напряжения возникают какие либо посторонние шумы, писки, трески, то чтобы избавиться от них, нужно будет подобрать RC-цепочку, обведённую оранжевым эллипсом ниже на рисунке.

В некоторых случаях можно совсем убрать резистор и подобрать конденсатор, а в некоторых без резистора нельзя. Можно будет попробовать добавить конденсатор, или такую же RC цепочку, между 3 и 15 ножками ШИМа.
Если это не помогает, то нужно установить дополнительные конденсаторы (обведены оранжевым), номиналы их приблизительно 0,01 мкф. Если это мало помогает, то установить ещё и дополнительный резистор 4,7 кОм от второй ноги ШИМа к среднему выводу регулятора напряжения (на схеме не показан).

Потом нужно будет нагрузить выход БП, например автомобильной лампой ватт на 60, и попробовать регулировать ток резистором «I».
Если предела регулировки тока будет мало, то нужно увеличить номинал резистора, который идёт от шунта (10 Ом), и снова попробовать регулировать ток.
Не следует ставить вместо этого резистора подстроечный, изменяйте его величину, только установкой другого резистора с большим или меньшим номиналом.

Может случиться так, что при увеличении тока — лампа накаливания в цепи сетевого провода загорится. Тогда нужно уменьшить ток, выключить БП и вернуть номинал резистора к предыдущему значению.

Ещё, для регуляторов напряжения и тока, лучше всего попробовать приобрести регуляторы СП5-35, которые бывают с проволочными и жесткими выводами.

Это аналог многооборотных резисторов (всего на полтора оборота), ось которого совмещена с плавным и грубым регулятором. Регулируется сначала «Плавно», потом когда у него заканчивается предел, начинает регулироваться «Грубо».
Регулировка такими резисторами очень удобна, быстра и точна, гораздо лучше, чем многооборотником. Но если их достать не удастся, то приобретите обычные многооборотные, такие например;

Ну вот вроде я всё Вам и рассказал, что планировал довести по переделке компьютерного БП, и надеюсь, что всё понятно и доходчиво.

Если у кого-то возникнут какие либо вопросы по конструкции блока питания, задавайте их ЗДЕСЬ на форуме.

Удачи Вам в конструировании!

 


Понравилась статья — нажми на кнопку!

Всего кликов: 2643

Назад

Поделись с друзьями:

Добавлять комментарии могут только зарегистрированные пользователи.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться или войти на сайт под своим именем.

Всего комментариев: 48
1 2 3 »

Порядок вывода комментариев:

Цитата

Доброго времени суток. Переделал по вашей схеме блок, дежурка поднимается, на 12 ногу TL494 приходит 14В с дежурки, и всё, 12В не даёт. При этом сильно греется R90. Куда копать следует?

Понимаю, что ответ слишком поздний, но может быть это поможет кому-то другому, кто столкнётся с подобной проблемой. Было примерно тоже самое.
Как решил: увеличил номинал R90 примерно до 600-700 Ом (чтобы не грелся сильно т.к. на 100 Ом раскалялся за пол минуты) и самое главное — резистор идущий от шунта иногда должен быть не менее ~15-20 Ом. На некоторых блоках питания (как в моём случае) на резисторе 10 Ом отсечка по току настолько мала, что блок даёт на выходе 0 ампер и соответственно 0 вольт. На ~33Ом выдаёт 7.2 ампера. Хотя может быть это связано и с шунтом. Блок питания на котором было так — Krauler 420W на микрухе AZ7500-EP1-E1.

*
* 47)
Добавил: nean Андрей (25.03.2023 10:48)
[Материал]

Цитата

Доброго времени суток. Переделал по вашей схеме блок, дежурка поднимается, на 12 ногу TL494 приходит 14В с дежурки, и всё, 12В не даёт. При этом сильно греется R90. Куда копать следует?

Чтобы знать куда копать, нужно знать, что и как переделано. Может ошиблись где-то, что-то упустили. Проверьте всё тщательно.
После удаления лишних деталей схема должна иметь такой вид, потом всё управление нужно добавить по этой схеме.
Проверьте всё и можно фотки переделки на форум скинуть, там и вопрос задать. Ссылка на форум в нижней части статьи есть. Попробуем там разобраться.
Да, ещё попробуйте вместо резистора на 100 ом поставить 560 ом — 1.0 ком и все включения БП в сеть производить только через лампу накаливания 75-110 вт.

Доброго времени суток. Переделал по вашей схеме блок, дежурка поднимается, на 12 ногу TL494 приходит 14В с дежурки, и всё, 12В не даёт. При этом сильно греется R90. Куда копать следует?

*
* 45)
Добавил: nean Андрей (12.01.2022 21:36)
[Материал]

Если будет нормально запускаться и работать, оставляйте.

Здравствуйте.Зачем закорачивать цепочку D73 и R25.У меня нет R90.Хочу оставить защиту по мощности.

*
* 43)
Добавил: nean Андрей (28.12.2021 23:25)
[Материал]

Вы проверили какое максимальное напряжение выдаёт ваш БП? В статье описано как проверить.
Ещё попробуйте заменить регулятор, может он где-то плохо контачит.

*
* 42)
Добавил: fonchi Сергей (28.12.2021 19:56)
[Материал]

Прошу прощения. Кошка толкнула в руку. Нажалась кнопка «Добавить». Продолжаю. Затем не регулируется, провал и прыжок до 25 вольт. Но это не стабильные 25 вольт, а колебания от 17 до 25 (измерения провожу мультиметром). Напряжение от дежурки колеблется от 0 до 5,1 вольт. Значительный нагрев ключа дежурки и всех трансформаторов. Заменил на дежурке конденсаторы и  C945.  Пропаял всю дежурку. Заменил перемотанный дроссель. Напряжение на дежурке колеблется от 4,8 до 5,1 вольт. Нагрев уменьшился. А при регулировке напряжении от 0 до 12 вольтах на выходе никаких колебаний.

*
* 41)
Добавил: fonchi Сергей (28.12.2021 19:21)
[Материал]

Переделывал блок Delux ATX-300W. Сначала отремонтировал. Были вздуты конденсаторы и сгоревший групповой дроссель. Заменил, перемотал 20 витков проводом 1,3. Лишнее выпаял, собрал по Вашей схеме. Включил последовательно с лампой 60 W. До 12 вольт регулируется нормально.

Доброго нового года!!
Пытаюсь повторить схему..десять раз проверил правильность сборки.. С включением в сеть сильно греются транзисторы С495, первая пара вообще раскололась, напряжение на 12 ноге 25 вольт.. При возвращении на место удаленного диода n4148 — 11 вольт.. Такое же подается на базу транзисторов. Напряжение Б-Э 25 (11) вольт.. Подскажите, где проверить, пожалуйста!!!

Здравствуйте. Все сделал по Вашей схеме. Напряжение регулируелся, а врт ток нет. Прошу помощи.

Всё выпаял (так мне кажется) на 7 — 12 ногу приходит 28 вольт, а на выходе (желтый-черный) напряжения нет. Подскажите, пожалуйста, что делать.  кстати,
на линиях 5 вольт и 12 вольт (фиолетовый — желтый) тоже 5 вольт.

Такая ситуация. Дежурка (фиолетовый — черный) — 5 вольт. Фиолетовый — желтый — 5 вольт. Черный — желтый нет напряжения. Ножки 7-12 —  0,2 вольта. На 14 ноге 2,5 вольта. Подскажите, пожалуйста, что делать.

*
* 36)
Добавил: nean Андрей (21.02.2020 09:35)
[Материал]

В процессе «ковыряния» используйте в целях безопасности разделительный трансформатор, и проверяйте и настраивайте БП через лампу накаливания 60-75 Вт (даже может в начале и на 40 Вт). Она предотвратит от пробоя силовые ключи. После того, как БП наладите на холостом ходу и под небольшой нагрузкой (пока лампа не горит), потом мощность лампы можно увеличить (150-200 Вт), так как маломощная лампа не даст проверить БП под нагрузкой. Будет гореть при увеличении нагрузки.

Спасибо, Андрей. Появились новые проблемы. В процессе «ковыряния» блока питания случайно короткое замыкание произошло. Заменил мост, силовые ключи. С дежурки идет 5 вольт, на микруху (ножки 7, 12) 26 вольт, а с самого блока питания (провод желтый, черный) нет напряжения.

*
* 34)
Добавил: nean Андрей (18.02.2020 21:52)
[Материал]

На холостом ходу не должно ничего греться. У вас возбуд где-то. Отключите выходные ключи, замените конденсаторы дежурки на конденсаторы бОльшей ёмкости, рабочее напряжение 25, мин. 16 вольт. Да, какое напряжение с дежурки на микруху идёт?. Попробуйте вместо дежурки блок питания подключить и проверьте работу с ним. Какой ток потребления? Может саму микруху заменить.
В конце статьи есть схема, попробуйте по этой рекомендации подключать конденсаторы и RC цепочки.

заменил транзисторы (7-8) и диоды (22-23), заменил резистор R90 на 2 вт — на холостом ходу за 30 сек. нагревется очень и резистор и радиатор Q1 Q2. Кстати для чего диоды D71 и D72?

*
* 32)
Добавил: nean Андрей (16.02.2020 23:53)
[Материал]

Проверьте транзисторы (7-8) и диоды (22-23), замените резистор на бОльшей мощности.

Схемы приведены для примера, так как разновидностей блоков питания множество, и в каждом своя нумерация и схемотехника, а чтобы найти пять деталей, которые необходимо оставить в обвязке TL494, даже для начинающего радиолюбителя, не такая уж и большая проблема.
А что необходимо оставить, вроде как довольно понятно описано.

на схемах неразборчиво пропечатаны нумерация радиодеталей. нет ли изображения почетче?

1-20 21-40 41-48

Время на прочтение
10 мин

Количество просмотров 385K

Всем привет!

Сегодня хотел бы рассказать Вам о своём опыте переделки самого обычного китайского БП ATX в регулируемый источник питания со стабилизацией тока и напряжения(0-20А, 0-24В).

В этой статье мы подробно рассмотрим работу ШИМ контроллера TL494, обратной связи и пробежимся по модернизации схемы БП и разработке самодельной платы усилителей ошибок по напряжению и току.

image

Честно признаться, сейчас я даже не могу назвать модель подопытного БП. Какой-то из многочисленных дешевых 300W P4 ready. Надеюсь, не нужно напоминать, что на деле эти 300W означают не больше 150, и то с появлением в квартире запаха жареного.

Рассчитываю на то, что мой опыт сможет быть кому-то полезен с практической точки зрения, а потому упор сделаю на теорию. Без нее всё равно не получится переделать БП т.к. в любом случае будут какие-то отличия в схеме и сложности при наладке.

Схема БП ATX
Для начала пройдемся по схеме БП ATX на контроллере TL494(и его многочисленных клонах).
Все схемы очень похожи друг на друга. Гугл выдает их довольно много и кажется я нашел почти соответствующую моему экземпляру.

image
Ссылка на схему в полном размере

Структурно разделим БП на следующие блоки:
— выпрямитель сетевого напряжения с фильтром
— источник дежурного питания(+5V standby)
— основной источник питания(+12V,-12V,+3.3V,+5V,-5V)
— схема контроля основных напряжений, генерация сигнала PowerGood и защита от КЗ

Выпрямитель с фильтрами это всё что в левом верхнем углу схемы до диодов D1-D4.

Источник дежурного питания собран на трансформаторе Т3 и транзисторах Q3 Q4. Стабилизация построена на обратной связи через опторазвязку U1 и источнике опорного напряжения TL431. Подробно рассматривать работу этой части я не буду т.к. знаю, что слишком длинные статьи читать не очень весело. В конце я дам название книги, где подробно рассмотрены все подробности.

Обратите внимание, в схеме по ошибке и ШИМ контроллер TL494 и ИОН дежурного питания TL431 обозначены как IC1. В дальнейшем я буду упоминать IC1 имея ввиду именно ШИМ контроллер.

Основной источник питания собран на трансформаторе Т1, высоковольтных ключах Q1 Q2, управляющем трансформаторе Т2 и низковольтных ключах Q6 Q7. Всё это дело раскачивается и управляется микросхемой ШИМ контроллера IC1. Понимание принципа работы контроллера и назначения каждого элемента его обвязки — это как раз то, что необходимо для сознательной доработки БП вместо слепого повторения чужих рекомендаций и схем.

Механизм работы примерно таков: ШИМ контроллер, поочередно открывая низковольтные ключи Q6 Q7, создает ЭДС в первичной обмотке трансформатора Т2. Видите, эти ключи питаются низким напряжением от дежурного источника питания? Найдите на схеме R46 и поймете о чем я. ШИМ контроллер также питается от этого дежурного напряжения. Чуть выше я назвал трансформатор Т2 управляющим, но кажется у него есть какое-то более правильное название. Его основная задача — гальваническая развязка низковольтной и высоковольтной части схемы. Вторичные обмотки этого трансформатора управляют высоковольтными ключами Q1 Q2, поочередно открывая их. С помощью такого трюка низковольтный ШИМ контроллер может управлять высоковольтными ключами с соблюдением мер безопасности. Высоковольтные ключи Q1 Q2 в свою очередь раскачивают первичную обмотку трансформатора Т1 и на его вторичных обмотках возникают интересующие нас основные напряжения. Высоковольтными эти ключи называются потому, что коммутируют они выпрямленное сетевое напряжение, а это порядка 300В! Напряжение со вторичных обмоток Т1 выпрямляется и фильтруется с помощью LC фильтров.

Теперь, надеюсь, в целом картину вы себе представляете и мы можем идти дальше.

ШИМ контроллер TL494.
Давайте разберемся как же устроен ШИМ контроллер TL494.
Будет лучше, если вы скачаете даташит www.ti.com/lit/ds/symlink/tl494.pdf, но в принципе я постараюсь вынести из него самое главное с помощью картинок. Для более глубокого понимания всех тонкостей советую вот этот документ: www.ti.com/lit/an/slva001e/slva001e.pdf

image

Начнем, как это ни странно, с конца — с выходной части микросхемы.
Сейчас всё внимание на выход элемента ИЛИ (помечен красным квадратом).
Выход этого элемента в конкретный момент времени напрямую управляет состоянием одного или обоих сразу ключей Q1 Q2.
Вариант управления задаётся через пин 13(Output control).

Важная вещь №1: если на выходе элемента ИЛИ лог 1 — выходные ключи закрыты(выключены). Это верно для обоих режимов.
Важная вещь №2: если на выходе элемента ИЛИ лог 0 — один из ключей(или оба сразу) открыт(включен).

Вырисовывается следующая картина: по восходящему фронту открытый ранее транзистор закрывается(в этот момент они оба гарантированно закрыты), триггер меняет своё состояние и по нисходящему фронту включается уже другой ключ и будет оставаться включенным пока снова не придет восходящий фронт и не закроет его, в этот момент опять триггер перещёлкивается и следующий нисходящий фронт откроет уже другой транзистор. В single ended режиме ключи всегда работают синхронно и триггер не используется.

image

Время, когда выход находится в лог. 1(и оба ключа закрыты) называется Dead time.
Отношение длительности импульса(лог. 0, транзистор открыт) к периоду их следования называется коэффициент заполнения(PWM duty cycle). Например если коэффициент 100% то на выходе элемента ИЛИ всегда 0 и транзистор(или оба) всегда открыт.

Простите, но стараюсь объяснять максимально доступно и почти на пальцах, потому что официальным сухим языком это можно и в даташите прочитать.

Ах да, зачем же нужен Dead time? Если коротко: в реальной жизни верхний ключ будет тянуть наверх(к плюсу) а нижний вниз(к минусу). Если открыть их одновременно — будет короткое замыкание. Это называется сквозной ток и из-за паразитных емкостей, индуктивностей и прочих особенностей такой режим возникает даже если вы будете открывать ключи строго по очереди. Чтобы сквозной ток свести к минимуму нужен dead time.

Теперь обратим внимание на генератор пилы(oscillator), который использует выводы 5 и 6 микросхемы для установки частоты.
На эти выводы подключается резистор и конденсатор. Это и есть тот самый RC генератор о котором наверное многие слышали. Теперь на выводе 5(CT) у нас пила от 0 до 3.3В. Как видим, эта пила подается на инвертирующие входы компараторов Dead-time и PWM.

С терминами и работой выходной части ШИМ контроллера более-менее определились, теперь будем разбираться при чем тут пила и зачем нам все эти компараторы и усилители ошибок. Мы поняли, что отношение длительности импульса к периоду их следования определяет коэффициент заполнения, а значит и выходное напряжение источника питания т.к. в первичную обмотку трансформатора будет вкачиваться тем больше энергии, чем больше коэффициент заполнения.

Для примера разберемся, что нужно сделать чтобы установить коэффициент заполнения 50%. Вы еще помните про пилу? Она подается на инвертирующие входы компараторов PWM и Dead time. Известно, что если напряжение на инвертирующем входе выше чем на неинвертирующем — выход компаратора будет лог.0. Напомню, что пила — это плавно поднимающийся от 0 до 3.3в сигнал, после чего резко падающий на 0в.
Таким образом, чтобы на выходе компаратора 50% времени был лог.0 — на неинвертирующий вход нужно подать половину напряжения пилы(3.3в/2=1,65в). Это и даст искомые 50% duty cycle.

Заметили, что оба компаратора сходятся на том самом элементе ИЛИ, а значит, пока какой-то из компараторов выдает лог.1 — другой не может ему помешать. Т.е. приоритет имеет тот компаратор, который приводит к меньшему коэффициенту заполнения. И если на Dead time компаратор напряжение подается снаружи, то на PWM компаратор можно подать сигнал как извне(3 пин) так и с встроенных усилителей ошибок(это обычные операционные усилители). Они тоже соединяются по схеме ИЛИ, но т.к. мы уже имеем дело с аналоговым сигналом — схема ИЛИ реализуется с использованием диодов. Таким образом контроль над коэффициентом заполнения захватывает тот усилитель ошибки, который просит меньший коэффициент заполнения. Состояние другого при этом не имеет значения.

Обратная связь.
Хорошо, теперь как на всём этом построить источник питания? Очень просто! Нужно охватить БП отрицательной обратной связью. Разница между желаемым(заданным) и имеющимся напряжением называется ошибка. Если в каждый момент времени воздействовать на коэффициент заполнения так, чтобы исправить ошибку и привести ее к 0 — получим стабилизацию выходного напряжения(или тока). Обратная связь является отрицательной до тех пор, пока реагирует на ошибку управляющим воздействием с противоположным знаком. Если обратная связь будет положительной — пиши пропало! В таком случае обратная связь будет увеличивать ошибку вместо того чтобы уменьшать ее.

Всё это работа для тех самых усилителей ошибок. На инвертирующий вход усилителя ошибки подается опорное напряжение(эталон), а на неинвертирующий заводится напряжение на выходе источника питания. Кстати внутри ШИМ контроллера есть источник опорного напряжения 5В, который является точкой отсчёта во всех измерениях.

Компенсация обратной связи
Даже не знаю как бы по-проще это объяснить. С обратной связью всё просто только в идеальном мире. На практике же если вы изменяете коэффициент заполнения — выходное напряжение меняется не сразу, а с некоторой задержкой.

К примеру усилитель ошибки зарегистрировал понижение напряжения на выходе, откорректировал коэффициент заполнения и прекратил вмешиваться в систему, но напряжение продолжает нарастать и потом усилитель ошибки вынужден снова корректировать коэффициент заполнения уже в другую сторону. Такая ситуация происходит из-за задержки реакции. Так система может перейти в режим колебаний. Они бывают затухающими и незатухающими. Блок питания в котором могут возникнуть незатухающие колебания сигнала обратной связи — долго не протянет и является нестабильным.

У обратной связи есть определенная полоса пропускания. Допустим полоса 100кГц. Это означает, что если выходное напряжение будет колебаться с частотой выше 100кГц — обратная связь этого просто не заметит и корректировать ничего не будет. Конечно, хотелось бы, чтобы обратная связь реагировала на изменения любой частоты и выходное напряжение было как можно стабильнее. Т.е. борьба идет за то, чтобы обратная связь была максимально широкополосной. Однако та самая задержка реакции не позволит нам сделать полосу бесконечно широкой. И если полоса пропускания цепи обратной связи будет шире чем возможности самого БП на отработку управляющих сигналов(прямая связь) — на некоторых частотах отрицательная обратная связь будет внезапно становиться положительной и вместо компенсации ошибки будет ее еще больше увеличивать, а это как раз условия возникновения колебаний.

Теперь от задержек в секундах давайте перейдем к частотам, коэффициентам усиления и фазовым сдвигам…
Полоса пропускания это максимальная частота, на которой коэффициент усиления больше 1.
С увеличением частоты коэффициент усиления уменьшается. В принципе это справедливо для любого усилителя.
Итак, чтобы наш БП работал стабильно должно выполняться одно условие: во всей полосе частот, где суммарное усиление прямой и обратной связи больше 1(0дБ), отставание по фазе не должно превышать 310 градусов. 180 градусов вносит инвертирующий вход усилителя ошибки.

Вводом в обратную связь различных фильтров добиваются того, чтобы это правило выполнялось. Если очень грубо, то компенсация обратной связи это подгонка полосы пропускания и ФЧХ обратной связи под реакции реального источника питания(под характеристики прямой связи).

Тема эта очень не простая, под ней лежит куча математики, исследований и прочих трудов… Я лишь стараюсь в доступном виде изложить саму суть вопроса. Могу порекомендовать к прочтению вот эту статью, где хоть и не так на пальцах, но тоже в доступном виде освещен этот вопрос и даны ссылки на литературу: bsvi.ru/kompensaciya-obratnoj-svyazi-v-impulsnyx-istochnikax-pitaniya-chast-1

От теории к практике
Теперь мы можем взглянуть на схему БП и понять что в ней много лишнего. В первую очередь я выпаял всё, что относится к контролю выходных напряжений(схема формирования сигнала Power good). Нейтрализовал встроенные в ШИМ контроллер усилители ошибок путем подачи +5vref на инвертирующие входы и посадив на GND неинвертирующие. Удалил штатную схему защиты от КЗ. Выпилил все не нужные выходные фильтры от напряжений которые не используются… Заменил выходные диоды на более мощные. Заменил трансформатор! Выпаял его из качественного БП где написанные 400W действительно означают 400W. Разница в размерах между тем, что стояло тут до этого говорит сама за себя:

image

Заменил дроссели в выходном фильтре(с того-же 400W БП) и конденсаторы поставил на 25В:

image

Далее я разработал схему, позволяющую регулировать стабилизацию выходного напряжения и устанавливать ограничение тока выдаваемого БП.

image

Схема реализует внешние усилители ошибок собранные на операционных усилителях LM358 и несколько дополнительных функций в виде усилителя шунта(INA197) для измерения тока, нескольких буферных усилителей для выдачи величины установленного и измеренного тока и напряжения на другую плату, где собрана цифровая индикация. О ней я расскажу в следующей статье. Выдавать на другую плату сигналы как есть — не лучшее решение т.к. источник сигнала может быть достаточно высокоомным, провод ловит шум, мешая обратной связи работать устойчиво. В первой итерации я с этим столкнулся и пришлось всё переделать. В принципе на схеме всё подписано, подробно комментировать ее не вижу смысла и думаю, что для тех кто понял теорию выше, должно быть всё довольно очевидно.

Отмечу лишь, что цепочки C4R10 и C7R8 это и есть компенсация обратной связи о которой я говорил выше. Честно говоря, в ее настройке очень помогла прекрасная статьи эмбэддера под ником BSVi. bsvi.ru/kompensaciya-obratnoj-svyazi-prakticheskij-podxod Этот подход реально работает и потратив денек-другой мне удалось добиться стабильной работы БП описанным в статье методом. Сейчас, конечно, я бы справился часа за два наверно, но тогда опыта не было и по неосторожности я взорвал не мало транзисторов.

Ах да, обратите внимание на емкость C7! 1uF это довольно много. Сделано это для того, чтобы обратную связь по току зажать в быстродействии. Это такой грязный хак для преодоления нестабильности возникающей на границе перехода от стабилизации напряжения к стабилизации тока. В таких случаях применяют какие-то более навороченные приёмы, но так заморачиваться я не стал. Супер точная стабилизация тока мне не нужна, к тому же к моменту, когда я столкнулся с этой бедой — проект переделки БП успел здорово надоесть!

По этой схеме лазерным утюгом была изготовлена плата:

image

Она встраивается в БП вот таким образом:

image

В качестве шунта для измерения тока выбран кусок медной проволоки длинной сантиметров 10 наверно.

Корпус я использовал от довольно качественного БП Hiper. Кажется это самый проветриваемый корпус из всех что я видел.

Также возник вопрос о подключении вентилятора. БП ведь регулируется от 0 до 24В, а значит кулер придется питать от дежурки. Дежурка представлена двумя напряжениями — стабильными 5В, которые идут на материнскую плату и не стабилизированным, служебным питанием около 13.5В которое используется для питания самого ШИМ контроллера и для раскачки управляющего трансформатора. Я использовал обычный линейный стабилизатор чтобы получить стабильные +12В и завёл их на маленькую платку терморегуляции оборотов кулера, выпаянную с того-же Hiper’a. Платку закрепил на радиаторе шурупом просто из соображений удобства подключения кулера.

image

Радиаторы кстати пришлось изогнуть ибо они не вмещались в корпус нового формата. Лучше перед изгибанием их нагревать паяльной станцией, иначе есть шанс отломать половину зубов. Терморезистор регулятора закрепил на дросселе групповой стабилизации т.к. это самая горячая часть.

В таком виде БП прошел длительные испытания, питая кучу автомобильных лампочек дальнего света и выдерживал нагрузки током порядка 20А при напряжении 14В. А еще он гордо зарядил несколько автомобильных аккумуляторов, когда у нас в Крыму выключали свет.

Будущее уже рядом
Тем временем я задумал немного нестандартную систему индикации режимов работы БП, о чем в последствии немного сожалел, но всё-же она работает!

image

Так что в следующей статье вас ждет программирование ATMega8 на C++ с применением шаблонной магии, различных паттернов и самописная библиотека для вычислений с фиксированной точкой поверх которой реализовано усреднение отсчётов АЦП и перевод их в напряжение/ток по таблице с линейной интерполяцией. Каким-то чудом всё это уместилось в 5 с копейками килобайт флэша.

Не переключайте канал, должно быть интересно.

Кстати, обещанная в начале книга:
Куличков А.В. «Импульсные блоки питания для IBM PC»
radioportal-pro.ru/_ld/0/15_caf3ebe8f7eaeee.djvu

P.S. Надеюсь, изложенное выше окажется полезным. Строго не судите, но конструктивная критика приветствуется.

Added для RO пользователей которые не могут писать комментарии: email: altersoft_пёс_mail.ру

На чтение 9 мин Просмотров 53.4к. Опубликовано
Обновлено

Часто при модернизации компьютера вполне исправный блок питания остается не у дел. Его мощности недостаточно для запитки новых комплектующих. У тех, кто занимается апгрейдом железа, таких устройств может накопиться много. Встает дилемма: утилизировать БП или найти для них практическое применение. Одним из способов дать источнику питания компьютера вторую жизнь – сделать из него лабораторный блок питания с регулируемым выходным напряжением и настраиваемым ограничением по току. Выполнить такую переделку можно своими руками.

Содержание

  1. Маркировка проводов блока питания компьютера
  2. Что понадобится для изготовления
  3. Схема для лабораторного БП
  4. Процесс переделки

Маркировка проводов блока питания компьютера

С потребителями внутри корпуса компьютера БП соединяется с помощью жгутов с разъемами. Принят стандарт, по которому маркировка каждого питающего напряжения производится проводником с соответствующим цветом изоляции.

Цвет провода Напряжение, В
Черный 0 В (земля, общий провод)
Красный +5
Оранжевый +3,3
Желтый +12
Белый -5
Синий -12

Кроме силовых цепей, в жгутах присутствуют проводники с сигналами управления (их можно найти на разъеме, идущем к материнской плате).

Цвет провода Название Функция Уровень напряжения
Зеленый Power_ON Сигнал от материнской платы – разрешение на включение +5 вольт в отсутствие разрешения, 0 вольт при получении сигнала на подачу напряжения
Серый Power_good, Power_OK Сигнал на материнскую плату — все напряжения в норме +5 вольт
Фиолетовый Stand by Дежурное напряжение, присутствует всегда, если на БП подано 220 вольт +5 вольт, служит для питания цепей включения ПК и питания схемы ШИМ внутри БП
Коричневый Sense Регулировка напряжения 3,3 вольта 3,3 вольта

Большинство цепей для переделки в ЛБП не понадобятся, в процессе работы их надо будет обрезать.

Читайте также

Распиновка разъемов блока питания компьютера по цветам и напряжению

Что понадобится для изготовления

Более 90% комплектующих для лабораторника в компьютерном блоке питания уже есть. Оставшиеся придется подбирать под конкретную схему (элементы недорогие и их будет немного), но обязательно понадобятся:

  • два потенциометра для регулировки напряжения и тока;
  • несколько оксидных конденсаторов на напряжение не ниже 35 вольт (лучше 50+) емкостью, соответствующей штатной емкости элементов канала +12 вольт (или больше, если уместятся по габаритам);
  • клеммы для подключения нагрузки (удобно использовать красную для плюсового вывода и черную для минусового);
  • вольтметр и амперметр для измерения выходных параметров (можно использовать аналоговые приборы, можно цифровые, а удобнее применять сдвоенный блок вольтметр-амперметр).

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Цифровой индикатор тока и напряжения.

Из приборов обязательно понадобится мультиметр. Не будет лишним и осциллограф – проверить наличие выходных импульсов на микросхеме ШИМ и ее реакцию на управляющее воздействие, если что-то пойдет не так. Также нужен будет паяльник с комплектом расходников и мелкий слесарный инструмент (набор отверток, кусачки и т.п.).

Схема для лабораторного БП

Для переделки ненужного блока питания компьютера в лабораторный источник с регулируемым выходным напряжением хорошо подходят БП стандарта ATX (но можно и AT), выполненные по схеме с ШИМ на микросхеме TL494 или ее аналогах.

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Структурная схема блока питания стандарта ATX.

Хотя они все построены по одной структурной схеме и работают по схожему принципу, физически реализованы источники питания могут быть по-разному. Потому первое, с чего надо начать – попытаться найти принципиальную схему от фактически имеющегося блока.

Процедуру переделки можно рассмотреть на примере модели LC-250ATX. Поняв принцип, можно будет работать и с другими подобными блоками.

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Изначальная схема блока LC-250ATX.

В основу работы LC-250ATX положен принцип ШИМ, реализованный на стандартной для таких схем микросхеме TL494. Она формирует импульсы, которые усиливаются ключами на транзисторах Q6,Q7, далее через трансформатор T2 ключами на транзисторах Q1, Q2 создаются импульсы на первичной обмотке трансформатора T1. Эти импульсы трансформируются через вторичные обмотки и подаются на выпрямители различных напряжений, из которых для переделки интересен лишь канал +12 вольт.

Схема дежурного напряжения собрана на транзисторе Q3, трансформаторе T3 и интегральном стабилизаторе 7805. Этот участок также понадобится для будущей конструкции. На операционном усилителе LM339 собрана схема формирования сигнала PWR_OK и запуска БП сигналом от материнской платы.

Процесс переделки

Перед изготовлением лабораторного блока питания из компьютерного надо открыть его корпус и очистить плату и внутреннее пространство от пыли. Лучше делать это пылесосом, при этом счищая загрязнения мягкой кистью.

Далее следует отрезать (или выпаять) от блока питания все провода, кроме одного черного и одного желтого. Если они разной толщины, то надо оставить самые толстые. Или можно оставить по два провода, соединив их параллельно.

После выпайки проводника в зеленой изоляции, освободившуюся контактную площадку надо соединить перемычкой с полигоном общего провода. Сделать это удобнее на плате по кратчайшему пути. После этой операции БП будет запускаться после подачи сетевого напряжения.

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Перемычка между контактной площадкой зеленого проводника и общим проводом.

Следующий этап – удаление лишних элементов на плате.

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Элементы, подлежащие замене или удалению.

Надо удалить все элементы выпрямителей ненужных в дальнейшем напряжений. Схему формирования сигнала PWR_OK и запуска БП, обведенную синим, можно оставить, а можно удалить. В последнем случае соединять зеленый провод с нулем не надо.

В цепи вывода питания (12) TL494 может быть цепочка из диода и резистора D73R25 (есть не во всех БП). Ее надо выпаять и обойти перемычкой. В цепи вывода 1 надо удалить все лишние резисторы, оставить один – идущий к шине +12 вольт. От четвертого вывода TL494 надо отключить все, кроме резистора. Между 4 и 13-14 ногами надо установить конденсатор (если его по факту нет) емкостью 1..10 мкФ, он обеспечит мягкий пуск. Все остальные соединения от выводов 13-14 надо отключить. Также надо полностью освободить выводы 15 и 16. От 2 и 3 выводов микросхемы надо отключить все, кроме частотозадающей RC-цепочки. Сглаживающий конденсатор в цепи 12 вольт (выделен зеленым кругом) надо заменить на другой, емкостью не ниже 1000 мкФ и напряжением не менее 35 В (можно выше по емкости и по напряжению, насколько позволит место). Также желательно увеличить сопротивление нагрузочного резистора в выходных цепях +12 вольт примерно в два раза. В итоге схема должна прийти к такому виду.

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Схема блока LC-250ATX после удаления лишних элементов.

Следующим шагом надо создать схему ограничения тока. Для этого ток надо сначала измерить. Для этого потребуется шунт от амперметра – измеряя падение напряжения на нем, можно судить о токе. Шунтовые сопротивления бывают в виде пластины или в виде проволочной спирали. Вторые удобнее – их проще монтировать в условиях ограниченного места.

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Подключение шунта, амперметра и вольтметра.

Включается шунт в разрыв соединения средней точки выходного трансформатора и земляной шины. Параллельно ему включается амперметр, заодно показана схема подключения вольтметра для измерения выходного напряжения.

Далее цепь измерения тока через резистор подключается к выводу 15 микросхемы, его величина подбирается для необходимого ограничения тока. Начинать подбор надо с минимума.

Для регулировки ограничения тока устанавливается потенциометр сопротивлением 1..15 кОм. Такой же потенциометр устанавливается для регулировки уровня выходного напряжения.

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Схема блока питания atx на tl494

Необходимость установки элементов, выделенных сними цветом, определяется в процессе наладки. Перед ее проведением надо:

  • временно выпаять резистор сопротивлением 24 кОм между выводом 1 микросхемы и шиной +12 вольт;
  • включить в разрыв сетевого провода блока питания лампу накаливания на 220 вольт (подобно предохранителю).

При наличии проблем в силовых цепях БП, лампа будет гореть в полный накал и ограничит ток. Если все в порядке, лампа гореть не будет или будет слабо светиться. В процессе наладки также желательно использовать такое включение.

Если лампа не загорелась, можно продолжать процедуру настройки. В отсутствие резистора R24 контур регулирования разомкнут, поэтому блок питания выдаст максимально возможное напряжение. Если оно недостаточно для дальнейшей эксплуатации, надо собрать выпрямитель по мостовой схеме, используя сборки или отдельные диоды на соответствующий ток и напряжение. Если все ОК, то вместо резистора надо впаять потенциометр или подстроечник сопротивлением 30..50 кОм. Вращая движок, надо добиться на выходе уровня примерно 0,85..0,9 от максимально возможного. Запас необходим для реализации стабилизации по току и напряжению. Получившееся сопротивление надо замерить и впаять в плату постоянный резистор с наиболее близким номиналом.

Резистор от шунта (по схеме 270 Ом) надо подобрать для получения максимального тока. При увеличении его сопротивления, верхняя граница тока тоже увеличивается. Задать ток можно с помощью нагрузки из автомобильных ламп накаливания соответствующей мощности.

Если наблюдается нестабильная работа под нагрузкой или при регулировке (прослушиваются свист, потрескивание и т.п.), надо попытаться устранить эти неприятные явления установкой элементов, выделенных синим цветом. Иногда добиться успеха получается без резистора 33 кОм, а иногда он нужен обязательно. В некоторых случаях помогает такой же резистор, включенный последовательно с конденсатором между 3 и 15 ножками микросхемы.

Завершающий этап – расположение органов управления и измерительных приборов на корпусе блока питания. Их можно закрепить на передней панели, оформив ее в соответствии с фантазией и возможностями, но необязательно. Если удобно, можно, например, расположить настроечные органы на одной панели корпуса, а измерительные приборы – на другой.

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Вариант размещения органов управления, индикации и выходных клемм лабораторного источника питания.

Чтобы получить двухполярный лабораторник, лучше изготовить два ЛБП по приведенной методике и соединить их последовательно. Общая точка соединения будет служить нулевым проводом. Ток и напряжение каналов можно будет регулировать раздельно.

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Двухполярный ЛБП из двух однополярных.

Процесс переделки блоков питания стандарта AT осуществляется по тому же принципу, но для их запуска не нужен сигнал с материнской платы, поэтому соединения зеленого провода с землей не потребуется в любом случае. В остальном надо лишь разобраться в схеме БП.

В завершении для наглядности рекомендуем серию тематических видеороликов.

Понравилась статья? Поделить с друзьями:
  • Ветелакт для собак инструкция по применению цена
  • Азбука ушу методическое руководство
  • Arkopharma magnesium b6 инструкция на русском
  • Руководство по эксплуатации киа спектра купить
  • Руководство ксиоми наушники