Основы классической триз практическое руководство для изобретательного мышления

Основы классической ТРИЗ, Практическое руководство для изобретательного мышления, Орлов М.А., 2006.

  Рожденная в России, Теория Решения Изобретательских Задач (ТРИЗ) сегодня быстро распространяется в мире. Все ведущие компании применяют ТРИЗ, например, Mitsubishi, Samsung, Hewlett Packard, General Electric, Siemens. Книга профессора Михаила Орлова, впервые выпущенная известным издательством Springer Verlag на немецком (Берлин, Германия, 2002) и английском (Нью Йорк. США. 2003) языках, представляет основные принципы и модели ТРИЗ. Автор книги обладает не только отечественным опытом, но и более чем 10-летним опытом ТРИ 3-консалтинга и чтения лекции во многих странах. Книга иллюстрирована многочисленными примерами (более 300) и рисунками (более 200) из российского и зарубежного опыта.
Книга может быть использована для самостоятельного развития систематического, направленного, изобретательного мышления как инженерами, так и инновативными менеджерами, бизнесменами, аналитиками, экономистами, психологами, преподавателями высших и средних школ в любых читаемых дисциплинах. Книга вполне доступна и несомненно полезна студентам и старшим школьникам.

Основы классической ТРИЗ, Практическое руководство для изобретательного мышления, Орлов М.А., 2006

Открытие и изобретение.
Одним из наиболее потрясающих изобретений в истории цивилизации было создание радио (лат. radio — излучать). В 1888 году Генрих Герц установил возможность воспринимать и излучать электромагнитное поле с помощью кусочков проводящих материалов различной формы (как теперь мы сказали бы — антенн). Для генерирования поля на антенну подавался электрический ток определенной частоты и силы, а для восприятия электромагнитного поля нужно было усилить ток, наведенный в антенне воздействующим на нее полем. Однако еще немало лет отделяло эти опыты от появления технических идей и устройств, которые показали бы какие-то практические перспективы для открытых физических явлений.

К этому времени уже прошли значительный путь развития такие электротехнические системы как телеграф и телефон. Еще в 1832 году Сэмьюэль Морзе (11) изобрел способ и устройство для передачи и приема сигналов по проводам (электрический телеграф). В 1851 году первый телеграфный кабель был проложен между Англией и Францией, в 1858 году — Трансатлантический кабель между Англией и Америкой, а через 10 лет Вернер фон Сименс завершил прокладку Индоевропейской телеграфной линии Лондон—Калькутта. От первого аппарата Йоханна Раиса, опробованного им в 1861 году, телефон прошел путь к патентам 1876 года Александра Белла. Однако провода нельзя было проложить к морским судам или к автомобилю.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:

Скачать книгу Основы классической ТРИЗ, Практическое руководство для изобретательного мышления, Орлов М.А., 2006 — fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу

Скачать
— pdf — Яндекс.Диск.

Дата публикации:

Теги:

книги для студентов и школьников :: Орлов


Следующие учебники и книги:

  • Технология управления в режиме реального времени, Гаричев С.Н., Ерёмин Н.А., 2015
  • Технология управления в режиме реального времени, Часть 1, Гаричев С.Н., Ерёмин Н.А., 2015
  • Зачем металлургу математические модели, Прудковский Б.А., 2010
  • Интегрированные системы управления технологическими процессами, Харазов В.Г., 2009

Предыдущие статьи:

  • Организация железнодорожных пассажирских перевозок, Авдовский А.А., Бадаев А.С., Белов К.А., 2013
  • Интеллектуальные системы, Ясницкий Л.Н., 2016
  • Учебник по холодильной технике, Мааке В., Эккерт Г.Ю., Кошпен Ж.Л., 1998
  • Грузовые перевозки, Горев А.Э., 2013

                    Орлов Михаил – Основы классической ТРИЗ

Орлов М. А.
066 Основы классической ТРИЗ. Практическое руководство для изобретательного
мышления. — 2-е изд., испр. и доп. — М.: СОЛОН-ПРЕСС. 2006. - 432 с: ил.
ISBN 5-98003-191-Х
Рожденная в России, Теория Решения Изобретательских Задач (ТРИЗ) сегодня быстро
распространяется в мире. Все ведущие компании применяют ТРИЗ, например, Mitsubishi,
Samsung, Hewlett Packard, General Electric, Siemens. Книга профессора Михаила Орлова,
впервые выпушенная известным издательством Springer Verlag на немецком (Берлин,
Германия, 2002) и английском (Нью Йорк. США. 2003) языках, представляет основные
принципы и модели ТРИЗ. Автор книги обладает не только отечественным опытом, но и
более чем 10-летним опытом ТРИЗ-консалтинга и чтения лекции во многих странах. Книга


иллюстрирована многочисленными примерами (более 300) и рисунками (более 200) из российского и зарубежного опыта. Книга может быть использована для самостоятельного развития систематического, направленного, изобретательного мышления как инженерами, так и инновативными менеджерами, бизнесменами, аналитиками, экономистами, психологами, преподавателями высших и средних школ в любых читаемых дисциплинах. Книга вполне доступна и несомненно полезна студентам и старшим школьникам. УДК 008 ББК 71 По вопросам приобретения обращаться: ООО «АЛЬЯНС-КНИГА КТК> Тел: (495) 258-91-94, 258-91-95, www.abook.ru Сайт издательства СОЛОН-ПРЕСС: www.solon-press.ru. E-mail: solon-avtor@coba.ru ISBN 5-98003-191-Х © М. А. Орлов, 2006 © Макет и обложка «СОЛОН-ПРЕСС», 2006 Посвящаю моему сыну Алексею с любовью и уважением за его мужество, целеустремленность и великодушие Методика изобретательского творчества — не рецепт для создания изобретений. Она не заменяет и не подменяет технические знания. Методика помогает применять знания с предельной эффективностью. Изучение методики не гарантирует, что изобретатель превзойдет Попова или Эдисона. Но ведь и изучение университетского курса не гарантирует, что студент со временем превзойдет Ньютона или Эйнштейна. Генрих Альтшуллер. Крылья для Икара. Петрозаводск, 1980 Презентация книги специалистом ТРИЗ 10 февраля 2005. Сувои, Южная Корея. Прошло чуть больше недели после 5-дневного семинара-презентации профессора Михаила Орлова в Корейском Университете Технологии и Образовании (Korea University of Technology and Education, Human Resource Development Institute) и лекциипрезентации в Институте Перспективных Исследований Самсунг (Samsung Advanced Institute of Technology, Suwon, Korea). Корейские специалисты ТРИЗ и мы, обучающие их российские специалисты, были знакомы с книгой автора, которую Вы держите сейчас в руках, но на английском языке, поскольку в 2003 году эта книга была выпущена известным издательством SPRINGER в Нью-Йорке, США, вскоре после первого выхода в 2002 году на немецком языке в Германии. И сначала на лекции мы увидели уже знакомые модели, авторскую версию АР ИЗ, непривычно преобразованные ТРИЗ-таблицы. И тут же автор развернул два больших постера — полная структура классической ТРИЗ с одного взгляда! Слушатели семинара по достоинству оценили отличные иллюстрации принципов и фрагментов софтвера для психологической поддержки процесса генерации творческой идеи. Идея же создании коллективного банка ТРИЗ-примеров на основе единого стандартизованного представления этих примеров в формате предложенного автором Мета-А/горитма Изобретения представляется весьма перспективной для любого предприятии вне зависимости от его численного состава и направления деительности.
И. наконец, авторский проект новой школы ТРИЗ под названием «Современная ТРИЗ Академия» (Modern TRIZ Academy), соединиющей науку и искусство применения ТРИЗ. мог бы послужить обье-диннющим началом для ее дальнейшего развития. Автор предложил нам свои добротные практические примеры и увлекательные идеи, основанные на более чем 40-летнем личном опыте с ТРИЗ! И все это подкрепляется историческими аналогиями, установлением связи ТРИЗ-моделей с конструктивными представлениями творческого процесса, предложенными еще 100, 300. а то и все 2000 лет назад! Такой авторский подход улучшает понимание классической ТРИЗ и будет интересен не только студентам, делающим первые шаги в освоении ТРИЗ, но и опытным инженерам, которые используют ТРИЗ в своем творчестве. Полагаю, что не все разделы этой книги будут безоговорочно приняты ведущими ТРИЗ-специалистами. но ТРИЗ — молодая, развивающаяся наука и, на мой взгляд, автор вносит свой полезный вклад в распространив идей ТРИЗ, в увеличение доли талантливых людей в каждом поколении, говоря словами основателя ТРИЗ Генриха Альтшулмра. Он расширяет пространство и возможности творчества, отвоеванные первоначально ТРИЗ у примитивной (негативной) практики поиска решений бессистемно, наугад, у все еще доминирующего невежества в истолковании и преподавании так называемых «теорий творчества» из до-тризовской эпохи. Лая сохранения невежественных представлений о природе и методах творчества не надо никаких усилий и не надо тать ТРИЗ. Действительно, невежество — одна из самых могучих «вредных машин». Я применяю эту метафору — «вредная машина» — как обобщенный образ любых негативных сил, мешающих созидательной деятельности человека. К сожалению, она — самая «идеальная машина» по терминологии ТРИЗ, поскольку «вредная машина» как бы не существует физически, но функционально и энергетически явно противодействует усилиям человека в его защите себя от стихийных воздействий, в усилении себя машинами и энергией, в познании мира и самого себя, в создании им гармонии и эффективности. И все же должна побеждать и побеждает другая, поистине идеальная «машина» — человеческий разум, доброта, стремление к красоте и гармонии. Это нелегко. Прочитайте об этом книгу Генриха Мыпщуллера «Как стать гением». А сейчас я рекомендую ТРИЗ-книгу Михаила Орлова — независимого ТРИ3исследователи и разработчика, интересного и глубокого преподавателя и практика, всем тем. кто стремится стать инновативным. изобретательным. Полагаю, что многие идеи, представленные в этой работе, помогут читателю вносить в наш мир больше красоты и благополучия, радости новых творческих открытий. Василий Леняшин ТРИЗ специалист и консультант, Samsung Advanced Institute of T?chnology, Suwon. Korea Предисловие автора к первому и второму изданиям на русском языке Там где новое выводится из старого чисто логическим путем, нет изобретения. Изобретение, от мала до велика, есть неминуемо скачок через логическую пропасть. И если этот скачок совершается в здравом уме и твердой памяти, то это есть, столько же изобретение, сколько и откровение. Петр Энгельмейер
1 Когда в 1963 году я познакомился с первой ТРИЗ-книгой |11 Генриха Сауло-вича Альтшуллера, трудно было предположить, что ТРИЗ станет делом моей жизни. Но это произошло. И хотя сегодня моя ТРИЗ-библиотека насчитывает не одну сотню публикаций разных авторов и, разумеется, почти все, что было опубликовано на русском языке за 40 лет, с той книжечкой я не расстаюсь и по сей день. Мое восхождение к ТРИЗ было не простым, как и всякое восхождение к высокой горной вершине. Иногда казалось, что вершина уже достигнута, но это был всего лишь промежуточный пик. Иногда бездорожье уводило в сторону, где была надежда пройти более легким путем, не вникая в строгие требования ТРИЗ. И тогда не один год проходил без открытия новых перспектив в движении к ТРИЗ. И все же со временем стало ясно, что восхождение к ТРИЗ стоит и усилий, и времени. Постижение ТРИЗ открывает мир невероятных возможностей, неизбежно выводит в миры эстетики и философии техники, наконец, расширяет ТРИЗ до беспредельных перспектив применения практически во всех сферах творческой активности — будь то научное исследование, техническое прогнозирование, управление развитием коллективов и технических систем, решение проблем обеспечения безопасности или воспитание детей детсадовского возраста. П. К. Энгельмейер (I855—1941 ) — выдающийся российский философ техники и инженер-механик. Цит. по книге "Теория творчества», 1910. 1 В середине 1980-х, работая над докторской диссертацией, я нашел достаточно простые математические категории для представления моделей ТРИЗ. И одновременно стало еще более ясно, что ТРИЗ не есть арифметическая или алгебраическая система. Решения по ТРИЗ не вычисляются по формулам. Всегда присутствует мощная интеллектуальная работа для выявления аналогий, создания метафорических и даже фантастических образов, придумывания новых структур и конструкций, не имеющих прямых логических аналогов. Для развития этих аспектов творчества были опробованы десятки альтернативных методов стимуляции воображения и генерации нетривиальных идей. В итоге сложилось ясное представление о возможностях и ограничениях ТРИЗ. Возможности ТРИЗ основаны на следующем: 1) ясное формулирование структуры проблемы, редуцирование ее к предельно упрощенной форме в виде бинарного противоречия (или нескольких противоречий) — этим актом ТРИЗ обеспечивает правильную диагностику проблемы, выявление ее действительной сути; 2) определение экторов (взаимодействующих элементов) проблемной ситуации и ресурсов, необходимых и достаточных для решения проблемы, для устранения противоречий во взаимодействиях экторов — это ТРИЗ-иссле-дование позволяет, так сказать, оценить реальные силы «противников» и «союзников»; 3) выдвижение идеальных целей, мысленное идеальное моделирование нужных функций, требующихся от будущего решения — этим ТРИЗ стимулирует уход от стереотипного воздействия привычных решений, существующих в окружающих объектах; 4) использование опыта создания сотен тысяч эффективных изобретений для нахождения решения актуальной проблемы — ТРИЗ дает примеры таких решений в виде моделей перехода от состояния «было» к состоянию «стало» (приемов) и иллюстрирующих их примеров;
5) применение ТРИЗ-законов развития систем для стратегического выбора направления поиска идеи решения; 6) применение строгой дисциплинирующей методики пошагового анализа проблемы и синтеза идеи решения в виде так называемых алгоритмов решения изобретательских задач (АРИЗ). Этим аспектам поддержки логической составляющей синтеза решения и посвящены основные страницы книги. Эти аспекты и составляют объективную основу классической ТРИЗ. И все же часть книги посвящена также нашим работам в направлении поддержки интуитивной составляющей творчества. Мы ведем интенсивную разработку и тестирование софтвера для интеграции обеих составляющих реального творческого процесса. Практическая направленность книги определила как стиль изложения теории — без академических или дидактических формализмов, — так и подбор примеров. Последнему автор уделил наибольшее внимание. Во-первых, примеры призваны убедительно показать надежность опытно-экспериментальной основы теоретических моделей — навигаторов мышления для решении новых задач. Во-вторых, примеры должны объективно отражать возможность и естественную неразрывность алгоритмической навигации мышления и эвристического творчества. В целом многолетний опыт применения ТРИЗ позволяет сказать следующее. Процесс создания новых систем и технологий основан на поиске инновационных идей. Создание крупных идей требуется как результат исследования и развития перспективных направлений. Ежедневно требуются большие и малые решения в проектной деятельности. Поиск идей является самым сложным и драматическим актом инновационных процессов. До настоящего времени нет учебных заведений, которые систематически и направленно учили бы ТРИЗ-методам создания новых идей. И ключевой проблемой для организации такого обучения является создание теоретических основ ТРИЗ-образо-вания. Любая деятельность вырастает из принципов ее организации. Поэтому в этой книге заложено несколько современных теоретических концепций ТРИЗ, принципиально важных для их эффективного практического применения, для самостоятельного изучения и для организации учебных ТРИЗ-курсов в тех или иных образовательных учреждениях. Наши непрекращающиеся поиски новых выразительных представлений моделей ТРИЗ как бы поощряются известным высказыванием основателя ТРИЗ о том, что решение изобретательских задач требует не столько новых знаний, сколько хорошей организации уже имеющихся знаний.
Место и роль процесса обучения основам современной ТРИЗ (Modern TRIZ) и последующего применения ТРИЗ на практике показаны на схеме, представляющей философию развития ТРИЗ-приложений в виде «3Е-модели»: Концептуальные основы обучения и применения ТРИЗ кратко могут быть выражены триадой: реинвентинг, стандартизация и креативная навигация. Действительно, весь опыт ТРИЗ экстрагируется из практики (experience), из анализа реальных изобретений и высокоэффективных инновационных решений. Именно реинвентинг является процессом исследования и экстрагирования ключевых идей таких решений. ТРИЗ-реинвентинг выполняется так, словно каждое анализируемое изобретение было сделано на основе ТРИЗ. Это помогает понять объективную логику и объективные креативные находки автора изобретения, представить их в форме, несравненно более понятной и доступной всем, кто хотел бы увидеть, как именно было сделано то или иное изобретение. Реинвентинг опирается на 4 фундаментальных этапа, составляющих вместе разработанный автором Мета-Алгоритм Изобретения (Мета-АРИЗ). Результаты реинвентинга целесообразно представлять в определенной стандартизованной форме, в которой сохранены все принципиально важные аспекты создания изобретения или инновации, а именно: суть проблемной ситуации, модели противоречий, модели ресурсов, модели трансформаций, с помощью которых удалось решить «неразрешимую проблему» и некоторые другие важные детали. И вновь такой стандартизованной формой оказывается Мета-АРИЗ. Именно в формате Мета-АРИЗ удается создать банки для аккумулирования ТРИЗ-знаний в виде, который делает эти знания доступными как для высококвалифицированного специалиста, так и для студента или даже школьника (education). Каждый проектировщик и исследователь, изобретатель и инноватор нуждается в простых и эффективных схемах для «навигации мышления». Именно на основе Мета-АРИЗ строятся эффективные «маршруты» мысленной обработки знаний о проблемной ситуации и о цели поиска, по которым можно уверенно двигаться к достижению эффективного решения (evolution). Мета-АРИЗ, каждый этап которого наполнен конкретными навигаторами, становится инструментом для конструирования эффективной идеи. Как было отмечено в рефе-ренсе TRIZ Journal2: « ... замечателен также мета-алгоритм, который помогает не только тем, кто не знаком с ТРИЗ, но и знающим предмет, понимать трансформации от исходной ситуации до верификации при получении решения и устранения противоречий. Автор признает, что переходы от одного блока к другому нелегки, но учит, как думать, с использованием множества простых примеров, иллюстрированных четкими рисунками ... » Поэтому вся программа систематического ТРИЗ-образования — от обучения начинающих до достижения мастерства — может, по нашему опыту, строиться на основе реинвентинга, стандартизации и креативной навигации с помощью алгоритмов изобретения на основе Мета-АРИЗ. ТРИЗ кардинально улучшает мышление при создании идеи решения проблем, содержащих противоречия, содержащих конфликт элементов проблемы — целей, свойств, ресурсов, структурных компонентов. TRIZ-Journal 1 1' 2003. ТРИЗ безусловно усиливает природные способности, так как высвобождает сознание для генерации высокоэффективных идей, направляя мышление в эпицентр проблемы и пресекая попытки ненаправленного угадывания хоть каких-нибудь решений, которые, как правило, оказываются слабыми.
Однако достичь ТРИЗ-мастерства решения проблем можно только разумным сочетанием и развитием обеих составляющих творческого мышления — логической и интуитивной. Поэтому изучение и применение алгоритмических методов и моделей ТРИЗ полезно соединять с постоянным поиском гармонии и красоты, целесообразности и экологичности, фантазии и юмора, короче говоря, с чувством времени и реальной жизни. И не забывайте спрашивать себя: как, в каком направлении изменится Мир, станет ли он безопаснее и гармоничнее, когда Ваша новая идея будет реализована ? 2 Не прошло и года, как разошелся весь тираж первого издания книги на русском языке. Я благодарен тем читательницам и читателям (далее я применяю традиционное обобщенное обращение — читатель), кто прислал мне электронные письма с желанием пройти дистанционное обучение по программам Модерн ТРИЗ Академии, кто высказал интересные мысли и вопросы, связанные с историей и современным развитием ТРИЗ, кто высказал пожелания по улучшению текста книги, и кто проявил деловой интерес для практической поддержки и развития идей Академии в России. Особенно важным, хотя и не связанным напрямую с содержанием моей книги, оказался такой вопрос: есть мнение, что ТРИЗ — сложившаяся наука, и что в ней «уже все выбрано», ведь ничего существенного не сделано в ТРИЗ за 20 лет после выхода АРИЗ-1985 и последней ТРИЗ-книги Г. С. Альтшулле-ра «Найти идею»! Так ли это? И если так, то где учебники по ТРИЗ? Где школы ТРИЗ? Это за целых 20 лет!? Я думаю, что частично ответ уже содержится в самом вопросе. Действительно, как можно говорить о сложившемся направлении, когда нет даже современного учебника ТРИЗ? Такого учебника не успел написать основатель ТРИЗ. Не написали его ни первые энтузиасты ТРИЗ, ни общества и ассоциации ТРИЗ в России и за рубежом. Известные немногочисленные российские и зарубежные предложения учебной литературы построены по схемам, вынесенным еще из советского периода выживания идей ТРИЗ. Так что, в том виде, в каком это требуется для современного учебника, его нет и поныне. Кроме того, для развитой теории будут разные учебники, отражающие эстетические, социальные и философские предпочтения авторов. Но раз уж нет одного учебника, то нет и двух или более. То же самое приходится констатировать и относительно учебных заведений для ТРИЗ (скорее, всего частных, так как до государственных дело еще не скоро дойдет). Вот поэтому мы и взяли на себя ответственность и инициативу создать учебные материалы и учебное заведение для ТРИЗ в ее современном содержании и структурировании. Над тем и работаем. И предлагаем наши опыты и разработки для проверки практикой. Это — часть ответа, причем только на последнюю часть вопроса. Я отвечаю на подобный вопрос на моих семинарах еще и следующим образом: 20 лет понадобились для того, чтобы проверить ТРИЗ на выживаемость в глобальном масштабе. И ТРИЗ не только выстояла, но и успешно применяется многими крупнейшими концернами. Преимущественно вместе с технологиями управления качеством, например, такими как 6 Сигма (см. TRIZ Journal). И вот теперь после накопления глобального опыта можно надеяться, что появятся и учебники, и школы ТРИЗ. Наконец, о развитии ТРИЗ. Раз уж мы говорим о выживании, то на известной S-кривой это фаза «раннего возраста» системы. И ТРИЗ как система явно находится если уже не на стадии «выживания», то не далее как в начале стадии «взросления». Это означает, что еще немало
копий будет сломано в «борьбе» за теоретические основания будущей ТРИЗ — за аксиоматику, за формально-теоретические модели, за язык, за примеры, за АРИЗы, за методики преподавания, за ... философию, мировоззрение, психологию, педагогику ТРИЗ, за ... Короче, за все то, что и составляет основание любой науки как науки. А в «развитых науках» еще могут быть течения и школы, которые иногда очень даже непримиримы в «борьбе» за «идейную чистоту» и за право на обладание «истинным знанием» в первой и, само собой, в последней инстанции. Вспомните хотя бы — и не в последнюю очередь — «Как стать гением». Одно можно прогнозировать определенно: знание основ ТРИЗ должно стать обязательным критерием оценки уровня культуры выпускника школы и тем более выпускника высшего учебного заведения. Ни один выпускник современной школы не может считаться в полной мере образованным без знания основ ТРИЗ. Думаю, что первыми в мире это осознали в Южной Корее. С 2006 года на всех вступительных экзаменах в вузы страны в числе 100 вопросов для опенки уровня интеллектуального развития поступающих в вуз (наподобие IQ-score) введены 4 вопроса по ТРИЗ — с 37-го по 40-й. Автор удовлетворен по крайней мере тем, что вместе с рядом корейских и российских специалистов ТРИЗ принимал и принимает участие в разработке предложений и реализации проектов для программы развития школьного и высшего образования в Южной Корее. И еще один вопрос о пользе этой книги для «не-технических» специалистов. Дело в том, что для понимания основных идей и примеров этой книги не требуется специфического высшего образования, а вполне достаточно универсальных школьных знаний. Практические примеры книги, почерпнутые из самых разных источников и представленные на основе ТРИЗ-реинвентинга в «стандартном» формате, полезны специалистам практически любой сферы деятельности. В заключение я благодарю моего сына Николая за его вклад в корректуру второго русского издания параллельно с корректурой третьего немецкого издания, за его тонкое понимание ТРИЗ и за веру в будущее ТРИЗ. И еще я хочу пожелать успеха всем, кто не боится эксперимента, кто будет пытаться внести свой вклад в продвижение ТРИЗ в практику, кто будет предлагать «свои» теоретические конструкции для ТРИЗ, авторские или коллективные учебники и учебные курсы. Практика отберет то, что будет эффективно. Михаил Орлов. Берлин, Германия. Январь 2005 — июнь 2006 г. ТРИЗ в начале XXI века Предисловие автора Никогда не рано думать о завтрашнем дне. Федерико Майор Да, цивилизация восходила по лестнице изобретений 4. Гениальные изобретения быстро поднимали человечество на головокружительные высоты. Миллионы других изобретений укрепляли лестницу и все здание цивилизации. Цивилизация поднималась все быстрее и быстрее. Но сам процесс создания изобретений тысячи лет оставался неизменным. Мучительные раздумья над проблемой, поиски в случайных направлениях, неисчислимое количество неудачных проб, блуждание по лабиринту, хождение в тумане по замкнутому
кругу, и лишь иногда, как вспышка света в полной темноте, как разгадка удивительного сна или исцеление от неизлечимой болезни, — неожиданное появление идеи! Таким представлялось большинству из нас изобретательское творчество. На поиски идеи иногда уходила вся жизнь изобретателя. Множество энтузиастов пыталось открыть тайну рождения изобретения. Гениальные ученые пытались создать теории творчества. Выдающиеся прагматики собирали и применяли немало полезных советов для стимуляции появления идей. Но все это попрежнему оставалось малопрактичным. Научиться изобретать оставалось невозможным! Потому что оставалось невозможным объяснить и передать индивидуальный и исторический опыт создания изобретений. Известные описания изобретательского творчества были представлены лишь метафорами, эмоциями и отдельными полезными рекомендациями. Все это не было наукой с определенными законами и методами. Это не было и искусством, так как искусству тоже во многом можно научить и научиться. Несмотря на это, цивилизация продолжала восхождение. И восхищение прогрессом в виде автомобиля, телевидения, авиалайнера, космической ракеты, интернета и мобильного телефона стало настолько безмерным, что только немногие в XX веке оказались способны разглядеть смертельные опасности, с разных сторон устремившиеся к человечеству. Шокирующая правда о надвигающихся глобальных катастрофах, вызванных техногенным разрушением Природы, не стала еще отрезвляющим аргументом для человечества. Безответственность и эгоизм многих технократических структур, отсутствие широкого образования по вопросам глобальной выживаемости и прогресса, отсутствие глобальных координирующих сил, не говоря уже о проблемах консолидации усилий промышленно развитых стран, — все это требует немедленных и кардинальных изменений. Безопасность будущего должна стать целью и мотивацией любой прогрессивной деятельности, любой политики. Инженеры, педагоги и ученые тоже могут взять на себя долю персональной ответственности, индивидуально и через профессиональные ассоциации стремясь найти организационные и технические возможности исключить наступление глобальных техногенных (впрочем, и социогенных) катастроф. 3 4 Федерико Майор — генеральный секретарь UNESCO (2002). По книге: Викентьев И. Л.. Кайков И. К. Лестница идей (1992). В условиях крайне ограниченного времени на изобретение и реализацию кардинальных решений совершенно недостаточно полагаться только на тот способ поиска идей, который и создал нашу сколь удивительную, столь и несовершенную цивилизацию. И, может быть, наша цивилизация потому и несовершенна, что был несовершенен способ ее создания. Действительно, кто управляет развитием цивилизации? Можно ли уверенно прогнозирован) наше путешествие в будущее? Как избежать социогенных, геогенных и космических катастроф? Как обеспечить прогресс и процветание во имя последующих поколений? Сегодня нужно строить эффективные решения по этим проблемам, применяя ТРИЗ. ТРИЗ учит создавать изобретения! ТРИЗ учит конструировать будущее! ТРИЗ изменяет ваше мышление, а значит, и всю цивилизацию! Среди всевозможных наук и учений, принимаемых человечеством в наследство из II тысячелетия н. э., ТРИЗ Генриха Сауловича Альтшуллера представляется поистине бесценной частью. Действительно, что может быть ценнее науки о том, как научиться эффективно мыслить! Стать изобретателем! Или даже стать гением! Главные концепты ТРИЗ заключаются в следующем:
1. Все системы (не только технические) создаются для реализации определенной функции, называемой главной полезной функцией системы, и развиваются по определенным законам, которые познаваемы и могут применяться для управления развитием систем; 2. Все системы на интервале жизненного цикла стремятся повысить свою эффективность, понимаемую как отношение оценок позитивных факторов от реализации главной полезной функции к оценкам негативных факторов, связанных с затратами на создание, эксплуатацию и утилизацию системы и с компенсацией ущерба окружающей среде; 3. Все системы (по сравнению с окружающими системами) и компоненты систем развиваются неравномерно, что служит основной причиной медленного роста эффективности новых систем и вызывает появление технических проблем; 4. В основе любой технической проблемы лежит некоторое конфликтное противоречие между несовместимыми свойствами и требованиями, необходимыми для реализации главных полезных функций компонентов и всей системы в целом; 5. Разрешение конфликтного противоречия (техническими средствами) и есть создание изобретения; 6. Количество различных типов конфликтных противоречий ограничено, что открывает возможность их четкого распознавания в реальных проблемах и возможность применения Относительно небольшого множества адекватных методов для разрешения технических проблем; 7. Адекватные методы разрешения противоречий могут быть получены при изучении достаточно большого набора (репрезентативной выборки) реальных изобретений по патентным описаниям и технической литературе; 8. Методы разрешения противоречий могут применяться вместе с приемами развития и стимуляции памяти, внимания, ассоциативного мышления, воображения и любых других полезных качеств интеллекта и психики: 9. Методы разрешения противоречий могут применяться вместе с другими методами управления развитием сложных систем — экономическими, системотехническими, культурно-образовательными и даже политическими. Многолетний опыт преподавания ТРИЗ и консалтинга на основе ТРИ3 позволяет мне рекомендовать этот учебник не только инженерам, но и менеджерам, и студентам, и вообще всем, кто заинтересован в создании высокоэффективных идей для решения творческих проблем. ТРИЗ-мышление конструктивно и эффективно в любой отрасли техники и науки. В сочетании, разумеется, с Вашими творческими способностями и профессиональными знаниями. На начало XXI века ТРИЗ является единственной конструктивной теорий изобретения и, по сути, теорией инженерного творчества. Конечно, ТРИЗ — не предел. ТРИЗ нуждается в дальнейшем развитии, структурировании и аксиоматизации. На ее основе могут быть созданы специализированные или комбинированные теории и методологии, например, интегрированная теория CROST™ (Constructive Result & Resource-Oriented Strategy of Thinking & Transforming), развиваемая автором настоящей книги. По образцам ТРИЗ должно быть продолжено изучение патентных фондов и научно-технической литературы. Но главные принципы ТРИЗ уже останутся неизменными (инвариантными), как это и свойственно любой настоящей теории, и могут быть признаны классическими. Хотя для изучения основ ТРИЗ требуются определенное время и практика. это оправдает себя во всей Вашей последующей деятельности и в любой профессии. Методы ТРИЗ позволяют с меньшими затратами и быстрее находить решения самого высокого качества. ТРИЗ незаменима при решении экстремально сложных проблем. За свою почти
40-летнюю ТРИЗ-практику, никогда не прекращавшуюся после прочтения в 1963 году первой маленькой книжечки Г. Альтшуллера, я не знаю кого-либо, кто отказался от ТРИЗ после изучения ее методов и моделей. Вместе с тем здесь уместно привести высказывание автора ТРИЗ о том, что ТРИЗ служит мышлению, а не заменяет мышление. Я глубоко признателен многим специалистам, кто поддержал мою работу над этой книгой по основам классической ТРИЗ. Большую помощь мне оказали беседы с проф. H.-J. Linde (Fachhochschule Coburg) и докторами R. Thiel, D. Zobel, M. Herrlich. Встречи в 1995— 1996 годах с профессорами W. Beitz и G. Seliger (Technische Universitat Berlin) определили мое понимание творческих компонентов в высшем образовании Германии. Идеи проф. G. Ropohl (J. W. Goethe-Universitat, Frankfurt am Main) по проблемам развития технических систем и роли инженеров в создании цивилизации, неотделимой от Природы и гуманистической этики, и его дружеское письмо укрепили мои намерения. Своевременная и энергичная поддержка проф. М. Mobile (Universitat Bremen) позволила мне продолжить мою деятельность в Германии и подготовить эту книгу. И конечно, я желаю успехов всем тем, кто не боится поиска новых идей при создании и развитии технических систем, и помнит о том, что каждое наше решение изменяет всю цивилизацию. Михаил А. Орлов. Берлин, Германия. Сентябрь, 2004 г. ВВЕДЕНИЕ 1. Изобретение цивилизации NATURA NIHIL ESTCALLIDIUS Этот учебник — для инженерного творчества. И прежде всего, для вершины инженерного творчества — создания изобретения. Человечество восходило по лестнице изобретений. А сегодня открытия и изобретения, как ступени грандиозного эскалатора, возносят цивилизацию все выше и все быстрее. Если принять, что в наши дни наиболее продуктивный возраст человека в одном поколении достигается к 40 годам, и измерять этим возрастом количество поколений, живших на каком-то интервале времени, то мы можем оценить темпы развития цивилизации. На интервале последних 40 000 лет из 1000 поколений:  более 800 поколений существовали без создания искусственных жилищ (в лесах и пещерах);  лишь 120 поколений знают и используют колесо;  около 55 поколений знают и используют закон Архимеда:  около 40 поколений используют водяные и ветряные мельницы;  около 20 поколений знают и используют часовые механизмы;  около 10 поколений знакомы с печатным словом;  5 поколений перемешаются на пароходе и по железной дороге;  4 поколения используют электрический свет;  3 поколения перемешаются на автомобиле, используют телефон и электропылесос;  2 поколения перемешаются на самолете, используют радио и электрохолодильник;  только современное поколение впервые вышло в Космос, использует атомную энергию, пользуется настольным и носимым компьютером, принимает и передаст аудио-, видео- и специальную информацию по всему земному шару через искусственные спутники.
В XX веке создано 90 % всех знаний и всех материальных ценностей, накопленных за историю человечества! Нет ничего более изобретательного, чем природа. Марк Туллий Цицерон (106—43 гг. до н.э..) — древнеримский оратор, философ, государственный деятель. 1 Удивительным фактом является то, что за последние несколько десятков и даже сотен тысяч лет (!) мозг человека не изменился как биологический объект. Устройство мозга и, повидимому, принципы его работы сохранились такими же, какими были, скажем, 50 000 лет назад. Можно предположить, что мозг, как и многие биологические объекты Природы, оказался созданным с огромной «функциональной избыточностью». Природа чрезмерно щедро использует этот принцип для продления жизни всего живого, например, через распространение семени живого, через поддержание численности биопопуляций. Однако биологическая избыточность мозга сама по себе не создает качество мышления. Вероятно поэтому, в частности, количество действительно ценных изобретений составляет доли процента от общего числа патентуемых предложений! Качество мышления может изменяться в широком диапазоне и зависит от качества обучения, от его содержания. Современные технологии обучения индивидуумов и содержание обучения не свободны от принципиальных недостатков. По этой причине и, конечно, под влиянием социальной среды, общество все еще развивается больше по «биологическим» стохастическим законам. Сегодня это недопустимо расточительно, так как увеличивает вероятность воспроизводства духовной посредственности и уменьшает вероятность появления гениев. Мы видим также, что информационная емкость, масштаб и ответственность решаемых проблем кардинально меняются! Способен ли мозг человека и далее справляться со стремительно возрастающим объемом знаний? Способен ли он распознавать возможные (в том числе скрытые и медленно развивающиеся) катастрофы и надежно предотвращать их или противостоять им? Способен ли человек уверенно строить свое будущее в направлении гармонии и прогресса? Способно ли человечество изобрести (или переоткрыть?) сами критерии гармонии и прогресса? Нужно ли говорить, что только выработав идеалы прогресса и гармонии, человечество перейдет от современной фазы Homo Sapiens Technologiсus к фазе Homo Sapiens Progressus (лат.: Человек Разумный Эволюционирующий, Развивающийся). Итак, как находит человек идею изобретения? Как люди находят творческие решения в нетехнических проблемах? Причем, как писал Карл Поппер6, правильнее ставить эти вопросы по-другому: Как возникают хорошие идеи?! В XX веке нашелся человек, который посмел сказать всему цивилизованному человечеству, что оно не умеет мыслить. Что человечество впустую растрачивает свой интеллектуальный потенциал из-за плохой организации нашего мышления! И что оно не учится мыслить! И даже не подозревает, что не умеет эффективно мыслить! Этот человек сказал по сути следующее: в наши дни, как и тысячи лет назад, в основе мышления лежит метод проб и ошибок, метод случайного угадывания хоть какого-нибудь решения. И каждый учится (если учится, конечно) на своих ошибках! По сравнению с успехами — ошибок чрезвычайно много. Этот человек сказал: а не логичнее ли учиться на успехах!. Да еще так, чтобы обобщить опыт самых лучших решений в виде конкретных правил, методик, готовых моделей и даже в виде теории?! Карл Поппер (1902—1994) — английский философ.
Имя этого человека — Генрих Саулович Альтшуллер (1926—1998). В середине XX века он предложил в России основы теории изобретения, названной им ТРИЗ — Теория Решения Изобретательских Задач (англ.: Theory of Inventive Problem Solving; нем.: Theorie des erfinderschen Problemlosens). ТРИЗ открыла принципиально новые возможности для обучения изобретательскому творчеству и для практического применения. Пусть изучение ТРИЗ откроет Вам путь к новым возможностям и успеху! Для эффективного решения изобретательских задач высших уровней нужна эвристическая программа, позволяющая заменить перебор вариантов целенаправленным продвижением в район решения. Генрих Альтшуллер. Алгоритм изобретения. Москва. 1973 2. Реинвентинг — ключевая концепция обучения и самообучения для ТРИЗ Экспресс-обучение и самообучение используют следующий методический прием: прежде, чем изучаются псе необходимые понятия и модели теории. практическое действие теории показывается на небольших упрощенных примерах таким образом, как будто основы теории уже известны студентам. Примеры подбираются и демонстрируются так, чтобы показать движение мысли от простого к сложному, от внешнего — к содержанию, от конкретно-го—к абстрактному, к модели и теории. Иными словами, при экспресс-обучении сразу же как бы проводится эксперимент с объектами теории, и из этого эксперимента заинтересованные студенты сами выводят ключевые теоретические идеи. Объектами классической ТРИЗ являются изобретения, технические системы и их компоненты. Суть начальных учебных экспериментов заключается в следующем: 1) выявление ключевой проблемы, которая была преодолена в конкретном изобретении; 2) определение основного способа, которым была решена проблема в лом изобретении. Несколько позже применяются следующие методические приемы: 1) обобщение и классификация моделей ключевых проблем и основных способов решения проблем при создании изобретений; 2) выявление закономерностей возникновения проблем, прогнозирование и управляемое систематическое разрешение проблем. Процесс изобретения — это есть движение мысли «от существующего — к возникающему7 ». Это есть построение мысленного моста между тем, что есть, и тем, что должно быть. Всякий «мост» строится на основе определенной теории. Понятно, что и «надежность» моста также существенно зависит от теории. Например, на основе классического брейнсторминга («мозгового штурма»): мало правил, практически неограниченное пространство поиска, много энтузиазма и шума. На осЯ интерпретирую — но и применяю в прямом контексте! — известное выражение и название одной из книг Лауреата Нобелевской премии, бельгийского биофизика Ильи Пригожинп (1917-2003).
В основе классической ТРИЗ: систематическое исследование задачи, управляемое применение адекватных процедур для ее разрешения, направленный выход в область существования сильных решений. В основе учебных экспериментов для обучения ТРИЗ лежит методический прием, который я назвал «реинвентинг». Реинвентинг — демонстрация процесса создания изобретения таким образом, как будто студентам уже известны принципы и приемы разрешения проблем, преодоленных в этих изобретениях. Позднее, когда основы теории уже действительно изучены, реинвентинг служит как прием закрепления навыка исследования и решения проблем. Наконец, быстрый реинвентинг становится важнейшим навыком при работе с аналогами, предлагаемыми нашим программным обеспечением для решения проблем (см. раздел 21.2). Этот методический прием стимулирует ассоциативное мышление студентов, обеспечивает надежную эмоциональную акцептацию и последующее восприятие теории. Интуиция студентов сама связывает их уже имеющиеся знания и опыт с ключевыми концептами теории. ТРИЗ — это не математическая, количественная теория, а качественная теория. Формальные понятия, концепты теории, имеют характер категорий, образов, метафор. Многошаговые процедуры, применяемые для решения задач, называются алгоритмами. Это тоже метафора, хотя можно показать, что это вполне корректное определение для современной конструктивной математики. Если кто-то из моих коллег на основе вышесказанного откажет ТРИЗ в статусе теории, то можно предложить определение ТРИЗ как теории концептуальной, феноменологической, психологической, наконец. В любом случае концепты теории отражают ее аксиоматические и структурные основы (даже если они специально не описаны, скажем, в научной статье или монографии, как это имеет место для ТРИЗ) только в более понятном, неформальном представлении. В этом все дело. И еще: дело в содержании качественных моделей (метафор). В отличие от всех других подходов, модели ТРИЗ конструктивны, воспроизводимы пользователями и передаваемы в обучении. Итак, мы будем избегать применения в этом учебнике формализованных конструкций. Хотя для разработки нашего софтвера мы создаем такие конструкции и опираемся на них. Наша цель — не построение формальных основ теории, а качественное моделирование мышления и практическое применение моделей теории к реальным задачам. Тем не менее, термины теории, конечно, остаются. Но к ним нужно относиться не более критично и подозрительно, чем, скажем, к словам задача, исходные данные, решение, результат — в огромном большинстве практических ситуаций нам так же не требуется строго определять, какие аксиомы теории и формальные связи стоят за этими словами. Для нас интуитивно вполне понятна качественная, содержательная суть этих слов (а значит, — метафор, образов) применительно к каким-то конкретным задачам. А теперь о фундаментальных концептах теории. Реинвентинг (рис. 2.1) по определению должен показывать следующий процесс Есть (Существующее) Должно быть (Возникающее) Рис. 2.1. Движение мышления «от существующего — к возникающему» Стрелка здесь представляет мыслительные операции — «поток мышления», «генерацию идей» — в соответствии с рекомендациями теории. Реинвентинг в стиле
брейнсторминга отражает, разумеется, брейнсторминг-процесс решения задач. ТРИЗреинвентинг отражает ТРИЗ-процесс решения задач Насколько надежными кажутся вам следующие рекомендации одной из версий «теории брейнсторминга», которые показаны, например, на рис. 2.2? Не кажется ли вам, что эти рекомендации немногим отличаются от того, как если бы вся теория в военных школах исчерпывалась следующим сверхлаконичным «методом» Цезаря8: VENI, VIDI, VICI Пришел, увидел, победил Считаете ли вы, что этот «метод» учит решать творческие проблемы? Какие мысли приходят к вам, если вы прочитаете далее, чем заполняет «поток мышления» ТРИЗ-реинвентинг (рис. 2.3)? * Гай Юлий Цезарь (102 или 100—44 гг. до н. э.) — древнеримский государственный деятель, полководец и писатель. Не возникает ли (?) у вас ассоциативного связывания этих концептов в такую цепочку: На основе имеющихся или преобразованных ресурсов и с использованием приемованалогов устранить противоречие, мешающее достичь идеального результата. И не выглядит ли эта цепочка более надежным мостом для перехода «от существующего — к возникающему»?! Я обычно показываю принцип реинвентинга на простом примере, что называется, «на кончике пера». Впрочем, действительно, на примерах развития рабочего органа жидкостных ручек. Несомненная важность этого примера объясняется моим выдающимся открытием, которое я формулирую обычно в виде следующего афоризма: скорость развития цивилизации определяется скоростью развития ручки! Действительно, гусиное перо с чернильницей (рис. 2.4,а) было наиболее распространенным средством для сохранения и передачи знания в течение 2,5—3 тысяч лет (!) примерно до конца XVIII века, пока слуга господина Ян-сена, тогдашего бургомистра города Аахена в Германии, не изготовил металлический наконечник для гусиного пера
своего хозяина. Впоследствии наконечники, которые и стали называться перьями, прошли длинную конструкционную эволюцию. Но суть способа письма пером оставалась неизменной: нужно было обмакивать наконечник в чернила и потом писать пером на бумаге, пока чернила на наконечнике не кончатся или не засохнут. И только 100 лет назад (!) в начале XX века началось быстрое развитие устройств, которые привели к формированию перьевой авторучки (рис. 2.4,b). Еще почти через 50 лет началось быстрое распространение шариковой ручки (рис. 2.4,с), а затем через 25 лет — примерно вдвое быстрее, а это и означает ускорение! — началось массовое распространение капиллярных ручек (рис. 2.4,d). Рис. 2.4. Эволюция жидкостных ручек: а — гусиное перо с чернильницей; Ь — авторучка; с — шарикоиая ручка; (J каин/мирная ручка Теперь продемонстрируем ТРИЗ-реинвентинг на примере эволюции жидкостной ручки. Пример 1. За 3000 лет от гусиного пера — к авторучке (переход 1). Гусиное перо, даже снабженное металлическим наконечником, обладало главным недостатком, состоящим в том, что чернила неравномерно переходили на бумагу, высыхали прямо на наконечнике или, напротив, срывались в виде кляксы. Чернила быстро кончались на кончике пера, и приходилось отвлекаться, аккуратно обмакивать перо в чернильницу и осторожно подносить к бумаге, чтобы не сорвалась ни одна капля. Главная полезная функция пера как рабочего органа всей ручки — оставлять чернильный след на бумаге. Назовем перо инструментом (подходит также — эктор или индуктор, то есть тот, кто инициирует действие). Тогда след — это изделие пера (подходит также — реэктор или рецептор, то есть тот, кто воспринимает действие или является продуктом индуктора). Идеальный след — ровный, нужной ширины. А что мы имеем в пере: если чернил мало, то след быстро становится тонким, и надо часто обмакивать перо; если чернил на пере много, то след может стать слишком жирным или может образоваться клякса. Явное противоречие между «мало» и «много». Сформулируем функциональную идеальную модель: на острие пера чернил должно быть сколь угодно много, чтобы можно было создать след любой длины, и — на острие пера чернил не должно быть совсем (нуль!), чтобы они не высыхали и не падали в виде клякс! Требования, предъявленные в такой формулировке, — совершенно несовместимы! Но так ли это на самом деле? Чернил должно быть сколько угодно много только во время создания следа! Поскольку в это время перо выполняет свою главную операцию, то и назовем это время оперативным. Во все предыдущие моменты времени нам не нужно иметь чернила на
кончике пера! Не кажется ли вам, что противоречие как бы само собой куда-то исчезло?! Мы как бы разрешили противоречие во времени. Теперь логично сформулировать самую сильную версию функциональной идеальной модели: чернила сами поступают на кончик пера только тогда, когда перо должно создавать след. Но на острие пера нет места для размещения большого количества чернил и какого-то механизма для регулирования подачи чернил, иными словами, нет достаточного пространственного ресурса. Тогда, может быть, есть свободное пространство рядом с кончиком пера? Да, есть. Например, в пустой полости самого гусиного пера, или в специальной колбе, которую можно прикрепить к ручке. И остается только эту колбу наполнить чернилами и соединить с кончиком пера какой-то трубочкой с «маленьким краником»! Можно также сказать, что мы разрешили противоречие в пространстве: на острие может не быть чернил, а рядом может быть много чернил! Идею решения можно представить и как разрешение противоречия в структуре: во всей ручке как в целостной технической системе есть много чернил, а в маленькой части ручки нет чернил (вне оперативного времени)! Но как быть с требованием, чтобы чернила сами поступали на кончик пера только тогда, когда нужно создать след? Ну, что же, сформулируем уточненную версию функциональной идеальной модели: перо само регулирует количество поступающих на острие чернил! Так сказать, нам нужно «перо-краник»!!! А ведь так и произошло на практике: острие пера сделали состоящим из двух частей благодаря тонкому разрезу (каналу) вдоль пера до того места, где перо соединяется с одной или многими тонкими «трубочками», связанными с колбой для хранения чернил (рис. 2.5). Когда перо не находится в работе, канал закрыт для прохода по нему чернил, так как обе половинки острия плотно соприкасаются друг с другом. Когда перо прижимается к бумаге, половинки острия расходятся, и чернила вытекают в образовавшийся канал. Вот и все, если коротко. Мы получили идеальное решение, идеальный конечный результат в виде «острия-краника», а энергия для его работы поступает от руки, нажимающей на ручку. Когда мы начинаем писать, на острие передается давление от руки — «краник» открывается, а когда перестаем писать, то давление прекращается и «краник» закрывается! Здесь мы видим также разрешение противоречия в веществе: для обеспечения пребывания разреза острия в двух состояниях (закрытом и открытом) использованы ресурсы конструкции и внутренней энергии материала пера (пружинящие свойства) и энергия от внешнего источника (ресурс руки). При первом прочтении это объяснение кажется ужасно длинным и неоднозначным. Вы правы и в том, и в другом. В первом — потому, что введено сразу много новых понятий. Во втором — потому, что для авторучек существует много технических решений и каждое решение может быть представлено разными версиями реинвентинга, отличающимися по глубине анализа. Но пройдет немного времени, и Вы будете легко, автоматически строить подобные рассуждения не только для учебных, но и для реальных задач.
Пример 2. За 50 лет от авторучки — к шариковой ручке (переход 2). Нетрудно видеть, что при малейшей неточности изготовления или при старении пера чернила могут самопроизвольно вытекать и образовывать кляксы. Также чернила легко вытекают при изменении давления воздуха, а именно, при его уменьшении. Полностью вытеснить воздух из колбы при наборе чернил не удается, и поэтому остаток воздуха в колбе находится под определенным давлением. Если внешнее давление становится меньше давления остатка воздуха, воздух в колбе расширяется и выдавливает чернила из ручки. Это часто происходило в самолетах. Понятны последствия протекания ручки для одежды или документов пассажиров. Вспомним последнюю функциональную идеальную модель, сформулированную ранее для авторучки: чернила сами поступают на кончик пера только тогда, когда перо должно создавать след. Обратимся к анализу ресурсов. Чернила жидкие, как вода, и поэтому легко вытекают из колбы через перо. Если бы чернила были более густыми, то они не вытекали бы. Но тогда возникает новое противоречие: чернила должны быть густыми, чтобы не вытекать, и чернила не должны быть густыми, чтобы свободно проходить через рабочий орган. Это острое противоречие сначала будем исследовать в первом стратегическом направлении: применение «густых чернил», так как до этого в течение почти 50 лет не видно было перспективы разрешить это противоречие с обычными чернилами. Применение «густых чернил» приводит, в частности, к идее каких-то поршней для их выталкивания — но тогда уж никак нельзя сказать, что чернила сами поступают на кончик рабочего органа. Тогда логично поставить вопрос об изменении самого рабочего органа. Нам нужен энергетический ресурс, такой, который позволил бы переносить «густые чернила», или пасту, на бумагу. Применение поршня явно означает прерывистость операции и порционность подачи пасты. А нам нужна непрерывная и равномерная подача пасты. Нужны какие-то «маленькие человечки», которые брали бы пасту из колбы и непрерывно наносили бы ее маленькими долями на бумагу. Такие «маленькие человечки» могли бы, например, своими «черпачками» брать пасту со стороны колбы и передавать друг другу на сторону бумаги, а потом но той же цепочке возвращать пустые черпачки к колбе. Получается что-то вроде кругового движения наполненных черпачков от колбы к бумаге и пустых черпачков — от бумаги к колбе. Это похоже на то, как работают типографские машины, на валы которых достаточно густая типографская краска попадает с одной стороны вала и переносится на бумагу с другой стороны! Кстати, можно именно сделать ручку в виде такой миниатюрной типографской машины! В принципе, это вполне конструктивная идея! Мы не знаем, так ли именно думал в 1938 году изобретатель шариковой ручки венгерский журналист Laszlo Biro, но в качестве первых «густых чернил» он использовал именно типографскую краску! А вместо маленького ролика (какминиатюрного аналога типографского вала) он поставил шарик! Действительно, ролик был бы слишком широким, а мы хотим получать тонкие линии. Тогда вместо ролика можно взять шарик, «маленькие человечки» на поверхности которого делали бы свою работу по переносу краски! Вращающийся шарик обеспечивает принцип непрерывного переноса краски от колбы на бумагу (рис. 2.6). А сам шарик будет вращаться от трения о бумагу!
То есть опять-таки источником энергии будет рука, прижимающая кончик ручки, снабженный шариком, к бумаге. Таким образом, ключевая идея была получена изменением состояния доминирующего ресурса — вещества чернил! То есть, основное противоречие было разрешено в веществе. После чего осталось лишь разработать подходящую конструкцию (новую структуру) для переноса пасты на бумагу! Итак, противоречие было блестящим образом разрешено в веществе и структуре!. И первыми оценили новые ручки военные летчики в Англии, но понадобилось еще около десяти лет для продвижения шариковой ручки к массовому покупателю. Пример 3. За 25 лет от шариковой ручки — к капиллярной ручке (переход 3). Но не все хорошо и в шариковой ручке. Паста быстро засыхала. Иногда также выдавливалась при изменении давления. Обнаружились свои кляксы и у этой ручки. Пальцы быстро уставали, так как требовалось намного большее усилие, чем при письме чернильной авторучкой. И вот здесь мы обратимся к исследованию второго стратегического направления, сформулированного для реинвентинга шариковой ручки: чернила не должны быть густыми, чтобы свободно проходить через рабочий орган. Обострим противоречие: чернила должны быть очень «быстротекущими» и всегда присутствовать на острие рабочего органа, но не вытекать и не создавать клякс! Первое, что становится при этом яснее, это то, что колба, содержащая чернила, должна быть открыта с обеих сторон для выравнивания воздействия атмосферного давления. Кстати, именно так и сделано в шариковой ручке! Мы немного продвигаемся вперед! Второе, нужно как-то затруднить продвижение чернил из этой колбы до самого острия рабочего органа, например, того же пера. Аналоги! Были ли какие-то похожие аналоги в истории ручки или каких-то похожих приспособлений для письма или рисования?! Оказывается, были! Исследования показывают, что еще 3300 лет назад в древнем Египте использовались чернильные ручки с медным корпусом, охватывавшим свинцовую заостренную трубочку, содержавшую внутри себя волокнистую тростниковую палочку, наполненную чернилами (рис. 2.7). Чернила медленно просачивались по многочисленным тончайшим капиллярам тростника и появлялись на заостренном конце свинцовой трубочки. При письме на папирусе чернила уходили с острия, и тем самым в ближайших волокнах создавалась пустота для поступления новых микродоз чернил из волокон-капилляров! Конечно, сегодня мы можем сказать, что для создания капиллярных ручек изобретатели в Японии использовали в 1963 году особый физический эффект движения жидкости в тончайших каналах — капиллярный эффект! И все же справедливо и то, что прообразом современной капиллярной ручки вполне достойно может служить тростниковая ручка из древнего Египта! Капиллярная ручка — еще одно блестящее разрешение острого противоречия, сформулированного нами ранее, но на другом стратегическом направлении!. И решение вновь получено на основе ресурсов вещества и структуры и с использованием особого физико-технического эффекта.
Внимательные и заинтересованные читатели могут далее постоянно упражняться в реинвентинге практически любых окружающих их предметов. Выбирайте те из объектов, которые прошли достаточно длинный эволюционный путь. Наконец мы обратимся к еще одному эффекту, наблюдаемому в эволюции любых технических систем. Когда исчерпывается ресурс развития системы определенного вида, например, ручки, то появляются изобретения систем аналогичного назначения, но либо с совершенно иным принципом действия, либо систем, интегрирующих в себе дополнительные функции, перенесенные из двух или более совершенно иных систем. Дополнительный пример. Эра электронных ручек. Вполне обоснованно мы могли бы начать этот раздел с предварительного рассмотрения нескольких параллельных направлений, связанных, например, с развитием типографских машин для создания книг и газет; машин для нанесения рисунка на ткани; «пишущих» машин, начиная с ручных механических и электромеханических систем и завершая струйными электростатическими и лазерными системами; копировальных систем, начиная от копировальной бумаги и фотоаппаратов и завершая порошковыми электростатическими ксероксами и лазерными системами. Но мы рассмотрим только одно направление развития средств регистрации рукописной символьной или графической информации, связанное с появлением компьютеров. Речь идет о вводе в компьютер или о передаче на линию связи текста и рисунков, создаваемых, например, на листе бумаги, непосредственно в процессе рисования, или как говорят специалисты, в реальном времени. Задача состоит в следующем: во время создания изображения на листе бумаги нужно обеспечить считывание линий этого изображения, преобразование линий в цифровой формат, запоминание и передачу цифрового представления изображения в линию связи с компьютером или с другим приемником информации. И все же даже это направление содержит множество различных важных принципов считывания: на основе планшетов с электромагнитным, резистивным, емкостным, акустическим, инфракрасным, оптическим, лазерно-лучевым и комбинированными принципами регистрации локальных и глобальных координат положения пишущего органа ручки относительно листа бумаги. На рис. 2.8 показаны несколько принципов считывания информации, создаваемой специальными электронными ручками. Электромагнитный принцип (рис. 2.8,а) основан на определении прямоугольных X-Yкоординат с помощью системы проводников, уложенных в планшете и улавливающих электромагнитный импульс, излучаемый ручкой, находящейся на пересечении соответствующих проводников. Импульсы излучаются с определенной частотой, например, 100 раз в секунду, что позволяет представить любую линию набором точек (координат). Такой частоты считывания достаточно для весьма точного представления линий даже при относительно быстром письме. Плюс: простота и надежность, возможность смены листов, накладываемых на планшет. Минус: применение специальных ручек, необходимость планшета, нельзя сдвигать лист. Другой вариант использования электромагнитных импульсов показан на рис. 2.8,b. Излучение от ручки принимается антеннами, размешенными, например, на потолке по углам комнаты и образующими глобальную прямоугольную систему координат. Плюс: возможность работы в любом месте комнаты. Минус: относительно высокая сложность системы, применение специальных ручек, влияние крупных металлических предметов, нельзя сдвигать лист. Ультразвуковые волны и/или инфракрасные лучи (рис. 2.8, с) используются для измерения косоугольных X-Y-координат как расстояний от рабочего органа ручки до двух или более приемников ульразвукового и/или инфракрасного излучений. Плюс: простота и
надежность, возможность смены листов, накладываемых на планшет. Минус: применение специальных ручек, необходимость фиксации считывающих устройств на листе, так как нельзя сдвигать лист. Совершенно иной принцип применен в ручке, показанной на рис. 2.8,d. Компактная видеокамера, встроенная в ручку и работающая в ультрафиолетовом диапазоне, считывает специальную комбинацию заранее нанесенных на бумагу точек, однозначно задающую координаты положения рабочею органа ручки на бумаге в данный момент времени. Плюс: почти все компоненты интегрированы внутри ручки. Минус: применение специальной бумаги. Принципы считывания координат на основе резистивных, емкостных, ультразвуковых или электромагнитных планшетов получили новое развитие в системах рисования непосредственно на экранах телевизоров, компьютерных мониторов, на электронных досках в аудиториях (рис. 2.8,е). Плюс: простота и надежность. Минус: эти устройства не предназначены для регистрации информации на бумаге, хотя в этом случае можно поступить в соответствии с изобретательским приемом «Наоборот» (см. Приложение 4 Каталог специализированных А-Навигаторов), вывести информацию на бумажный носитель по окончании рисования, например, с помощью принтера. На основе принципа виртуальной клавиатуры (рис. 2.8,f) можно вводить буквы по одной и таким образом составлять фразы, например, для коротких сообщений по мобильному телефону (SMS). Плюс: простота. Минус: это не ввод рукописного текста или рисунка. Мы видим, что «старая» ручка, прошедшая тысячи лет развития, приобрела новое качество: функцию передачи создаваемого изображения в компьютер. Мы научились вводить в компьютер рукописную информацию, создаваемую на листе бумаги, на школьной доске, на экране телевизора, на экране компьютерного монитора, на кредитных карточках и на экранах мобильных телефонов, на специальных планшетах, добавляемых к клавиатуре или избавляющих нас как от клавиатуры, так и от мыши. При этом за последние 50 лет были
изобретены десятки принципов работы электронных ручек! И все же всем им был присущ еще один принципиальный недостаток: применение специальных ручек! Да, я забыл доказать определяющую роль ручки в прогрессе цивилизации. Здесь все совершенно очевидно! На примерах мы уже видели, что именно в XX веке человечество оказалось вовлеченным в научно-техническую революцию и ускоряющийся технологический прогресс! А почему? Да потому, что новые ручки позволяли писать быстрее, не утомляясь и не отвлекаясь на операцию попадания ручкой в чернильницу. Следовательно, изобретатели получили возможность быстро записывать много мыслей и идей! Это и есть бесспорное доказательство! При этом с электронными ручками появляется и вовсе невиданная ранее возможность немедленно сохранить ваши изобретения для цивилизации и думать только о том, что нужно записать, а не о том, как это можно сделать! Впрочем, если некоторые читатели со мной не согласятся, то я не буду настаивать на том, что с юмором у меня все в порядке. В заключение данного раздела выскажем некоторые ключевые рекомендации для дальнейшего изучения материала. Авторская схема преподавания ТРИЗ сложилась на основе многолетнего опыта. В целом эта схема отражена в оглавлении учебника. Но нужно подчеркнуть, что следующие три крупные части составляют основу для практического освоения ТРИЗ: 1. Обобщенная модель решения творческих проблем, сформулированная автором и называемая Мета-Алгоритм Изобретения или, кратко, Ме-та-АРИЗ (см. также раздел 7). В зависимости от конкретного наполнения шагов Мета-АРИЗ появляется определяющая схема для решения проблем в соответствии с определенной «теорией». 2. Ключевые структурные модели для приведения исходного описания проблемы к виду, наиболее подготовленному для применения моделей трансформации (разделы 6, 8 и 9). 3. Модели трансформации проблемы в направлении создания решения (разделы 1013). Научиться правильно понимать и применять стратегию и тактику ТРИЗ можно только после предварительного освоения ключевых структурных моделей и основных моделей трансформации. Поэтому разделы 14—17 рекомендуется изучать только после освоения указанных разделов 6—13. МЕТОДЫ ИЗОБРЕТЕНИЯ 3. Изобретение 3.1. Открытие и изобретение Следует изучать открытия других таким образом, чтобы мы могли открыть источник изобретения. Лейбниц4 Одним из наиболее потрясающих изобретений в истории цивилизации было создание радио (лат. radio — излучать). В 1888 году Генрих Герц10 установил возможность воспринимать и излучать электромагнитное поле с помощью кусочков проводящих материалов различной формы (как теперь мы сказали бы — антенн). Для генерирования поля на антенну подавался электрический ток определенной частоты и силы, а для восприятия электромагнитного поля нужно было усилить ток, наведенный в антенне воздействующим на нее полем. Однако еще немало лет отделяло эти опыты от появления
технических идей и устройств, которые показали бы какие-то практические перспективы для открытых физических явлений. К этому времени уже прошли значительный путь развития такие электротехнические системы как телеграф и телефон. Еще в 1832 году Сэмьюэль Морзе (11) изобрел способ и устройство для передачи и приема сигналов по проводам (электрический телеграф). В 1851 году первый телеграфный кабель был проложен между Англией и Францией, в 1858 году — Трансатлантический кабель между Англией и Америкой, а через 10 лет Вернер фон Сименс12 завершил прокладку Индоевропейской телеграфной линии Лондон—Калькутта. От первого аппарата Иоханна Раиса13, опробованного им в 1861 году, телефон прошел путь к патентам 1876 года Александра Белла14. Однако провода нельзя было проложить к морским судам или к автомобилю. Поскольку электромагнитные волны распространялись в первых опытах Г. Герца так же, как свет от точечного источника, то есть со сферическим фронтом, то Г. Герц предполагал, что для приема-передачи радиоволн придется строить антенны наподобие оптических линз и зеркал, что казалось очень сложным и неперспективным. ' Готтфрил Вильгельм Лейбниц (1646—1716) — выдающийся немецкий математик и мыслитель, основатель Академии Наук в Берлине в 1700 году. 12 Вернер фон Сименс (1816—1892) — немецкий изобретатель и предприниматель 13 Иоханн Райе (1834—1874) — немецкий школьный учитель. ш Генрих Герц (1857—1894) - немецкий физик, доказавший существование электромагнитных волн. " Сэмьюэль Морзе (1791 — 1872) — американский художник и инженер. 14 Александр Белл (1847—1922) — выдающийся американский изобретатель и предприниматель.В 1894 году Александр Попов15 заметил влияние длины проволочной антенны на качество приема-передачи и сконструировал первый радиоприемник, а в 1895—1897 годах демонстрировал радиотелеграфную беспроводную связь между кораблями. Не позднее 1883 года Никола Тесла (16) демонстрировал эксперименты с передачей и приемом радиосигналов. Аналогичную схему запатентовал и опубликовал в 1896—1897 годах Гвильермо Маркони17. Уже в 1899 году он усовершенствовал свою конструкцию настолько, что смог установить связь между Англией и Францией, а в 1901 году первые радиосигналы были переданы через Атлантический океан. А. Попов первым обнаружил, что на радиосвязь влияли корабли, проходившие между приемником и передатчиком, и он выдвинул идею о возможности использовать электромагнитные волны для обнаружения морских судов (предвидение радаров). В начале XX века Г. Маркони успешно продолжил свои разработки радиоустройств, и в 1909 году он и Карл Браун18 создавший важнейшие компоненты будущих радаров, стали лауреатами Нобелевской премии по физике. Так 100 лет назад начиналась радиотехника, на основе которой развились системы региональной, глобальной и космической связи, радиотелемеханика, радиометрия и радионавигация, радиолокация и радиотелескопия (применяющие, кстати, антенны и таких форм, которые предвидел Г. Герц). Телевидение, интернет и мобильный телефон используют радиосистемы. Даже СВЧ-печь имеет своим главным элементом излучатель, изобретенный первоначально для радиосистем. Приведенный исторический экскурс позволяет наглядно показать различие между содержанием процессов открытия и изобретения (рис. 3.1). Изобретения, сделанные на основе открытия, как правило, приводили к кардинальному изменению цивилизации. Так происходило, например, с открытием явлений термодинамики и электротермодинамики — создание электроэнергетики и
электродвигателей; электромагнетизма — вплоть до изобретения лазера и магнитооптики; ядерной физики — создание ядерных электростанций; физики твердого тела и полупроводников — включая создание современных вычислительных систем и систем отображения информации. Сотни и тысячи изобретений создаются для превращения открытия в высокоэффективные технические системы. Александр Попов (1859—1905) — российский физик и изобретатель, морском офипср. Никола Тесла (1856—1943) — выдающийся американский (сербский) исследователь и 15 16 изобретатель. 17 ,к Гвильермо Маркони (1874—1937) — итальянский изобретатель и предприниматель. Карл Браун (1850—1918) — немецкий изобретатель и исследователь, лауреат Нобелевской премии. Еше одно принципиальное отличие изобретения по сравнению с открытием состоит в следующем: изобретение имеет цель создания, определяющую его назначение, возможности применения. Эту цель определяет главная позитивная (полезная) функция системы MPF (Main Positive Function). Например, MPF для радиосистемы можно сформулировать в следующем виде: передавать и принимать электромагнитные сигналы с управляемыми параметрами в радиочастотном волновом диапазоне. А теперь рассмотрим явление, сближающее открытие и изобретение. Это — фантазия, изобретательность ученого и инженера. Открытие не имеет цели и содержит лишь объективное знание. Нужна нередко гениальная фантазия изобретателя, чтобы придумать, увидеть цель и идею технические решения (гипотезу) для практического применения нового знания, содержащегося в открытии. Но деятельность ученого требует не менее гениальной фантазии. Почти всегда открытию сопутствует предположение, гипотеза о сущности и взаимодействии наблюдаемых и даже искомых явлений. Гипотеза и есть научное и инженерное изобретение. Гипотеза, идея, предположение есть изобретения ума, есть творческая фантазия Творческая идея есть объект неочевидный, не содержащийся непосредственно в известном знании и создаваемый только мышлением человека. Именно акт рождения идеи, акт озарения остается одной из важнейших тайн человеческого мышления. Изобретение идеи есть видимая вершина, пик процесса изобретения. Цель любой теории изобретения должна состоять в том, чтобы предложить практичные пути восхождения на эту вершину, достижения творческого пика, создания эффективных идей. 3.2. Уровни изобретений Ступеньки лестницы цивилизации — миллионы изобретений — имеют разную высоту. В таблице на рис. 3.2 приведена классификация изобретений по уровням с учетом различных признаков, из которых обобщающим является уровень новизны. Новизна здесь связывается с проявлением в изобретении неочевидного позитивного свойства, называемого новым позитивным системным эффектом. Системный эффект — результат, который не был известен до создания изобретения и который непосредственно связан с разрешением в изобретении исходного системного противоречия Аспекты проблемы 2 Уровни изобретений 3 4 5
Исходные условия 1 Рационализация Четкая однопарамстрическан постановка Ресурсы проблемы н решателя Ресурс очевиден и легко доступен; обычная профессиональная подготовка ( ШЛИ! 1С 11. проблемы Правила трансформации Задачи без про-i и поречий Инженерное оптимизационное решение Уровень новизны Небольшие параметрические изменения элементов Модернизация Принцип Мпогопарамстрнческан постановка; есть прямые струкгурные аналоги Плохоструктуриро ванный «клубок» задач; есть только функциональные .ИМИ'. И Синтез Ней шее i ноет ь многих факторов, нет близких функционал ьносгру ктурных аналогов Ресурс Ресурс часто Ресурсы H I неочевиден, но привлекается из раприсутствует в других систем и ных отраслей системе; уровней; рати roe знания: традиционная комбинаторное сильное профессиональная мышление ассоциативное подготовка мышление, широкая эрудиция; способность преодолевать cie-рсотипы Стандартные Нестандартные Экстремальны проблемы проблемы е проблемы Инженерное Изобретательское И зобрстательрешение на решение на основе ское решение основе типовых комбинирования на основе (стандартных) методов интеграции аналогов научнотехнических »'зф(|)СКтовОригинальные •Сил ьные» Выдающиеся функционально- изобретения с изобретения с структурные системным системным зфрешения без эффектом замены фскюм изменения принципа существенною принципа функционирования изменения функииониро-ван окружающих ия систем Открытие 11еи шесгнекть главных нелепых факторов; аналогов пег Неизвесшы Н ресурс и/или его применение: исключительная И ИН1рак\ILIUM мо1И1МЦИЯ. свобода 01 стерео типов Уникальные проблемы Ниучно-кхмпческос открытие Крупнейшие изобретения с системным эффектом кардинального тиснения цивилизации Крупнейшее изобретение с системным эффектом кардинального изменения цивилизации приравнено здесь по своему значению к открытию. Это деление весьма условно. Так, изобретение телеграфа, телефона и радио соответствует уровню 5. Создание радиотелефонной связи, сначала для военных самолетов и кораблей, развившейся через 50 лет в систему персональной связи в виде хэнди, по технической сущности можно отнести к уровню 4 или даже 3, а по влиянию на развитие цивилизации — к уровню 5. 4. Изобретательское творчество 4.1. Изобретение теорий изобретения Сокращенное изложение этой очень большой и недостаточно исследованной темы имеет все же крупную цель — подвести читателя к самостоятельному ответу на важный вопрос: можно ли так изучать опыт развития цивилизации, чтобы извлечь или изобрести сами методы изобретения, создать теорию изобретения?
Как ориентиры для нашего поиска и размышлений можно принять следующие мысли Цицерона: NOSTRORUM MAJORUM INVENTA NOSCE DEBEMUS Мы должны знать изобретения наших предков SECUNDUM NATURAM VIVERE OPORTET Следует жить в соответствии с Природой Мы можем выделить две исторические фазы в развитии человечества: примерно до начала 1-го тысячелетия до н. э. и от этого рубежа до наших дней. В первой фазе мы видим Homo Faber Technologicus — человека, искусного в прикладных технических орудиях, но еще не овладевшего научной методологией. Во второй фазе, длящейся уже более 3000 лет, мы наблюдаем развитие Homo Sapiens Technologicus — человека, создающего и применяющего научную методологию и искусного в технических орудиях и системах. Каким было начало «техноцивилизации»? Увы, ответ недоступно скрыт в глубине прошлого. Об этом прекрасно сказано в одной ТРИЗ-работ: лишь как свет немногих ярких факелов пробились к нам сквозь тьму веков такие имена как, например, Пифагор и Архимед, Сократ или Витрувий. Как было организовано их мышление? И могла ли древнегреческая или древнекитайская цивилизация изобрести, например, телевидение, компьютер, аудио- или видеорекордер? Могли ли алхимики средневековья овладеть технологией создания композитных материалов? Или создать искусственного человека — Homunculus? Мы знаем, что первые свои изобретения человек совершил многие сотни тысяч лет назад! Понятно, что эмпирический опыт первобытного творчества, если можно так выразиться, формировался, утрачивался и закреплялся в эти тысячи лет, поэтому определять сегодня находки древнего человека как методы можно только условно. И все же, интерпретируя и обобщая сведения по истории первобытного общества, можно утверждать, что основными методами изобретательства были: • аналогия как прямое подражание: игла, скребок, нож, крючки, гарпуны, острая палка — все это аналоги зубов, клювов и когтей животных; • аналогия как копирование абстрактного образа (!): рисование, скульптура, игрушки, театральные фигуры и действия; • соединение в целое: копье с наконечником, составной топор или молоток, сеть, витая нить из волос; • разделение на части: разбивание камней для получения режущих или колющих кусков; • изменение формы (например, рукояток орудий) и параметров: заострение, упрочнение, удлинение и т. п.; • подбор и комбинирование различных материалов: дерево, кость, камень. шкура, кора (в том числе длинная, позволявшая плести сети и связывать части орудий), растительные волокна, глина, песок и т. п.; • освоение различных источников энергии: огня — для приготовления пиши и для выжигания лодки из ствола дерева, силы животных, упругих свойств материалов, например, сухожилий животных, согнутой ветки, витой натянутой нити из волос или растительных волокон. Эти эмпирические методы сохранились и до наших дней, прежде всего в объектах, связанных с физическими действиями человека: при производстве домашней посуды и украшений — плетеные вазы и кресла, глиняные кувшины и чашки; во множестве инструментов — ножи, пилы, топоры, вилы, молотки и молоты; работа на поле или в саду
— лошадь или мул в качестве источника энергии для повозки; в установках для использования энергии воды и ветра (других, конечно, по принципу действия); спорт и отдых — метание копья и прыжки с шестом, рыбная ловля, прогулка на лодке; художественное творчество. Выдающимися изобретениями человечества были: • лук и стрелы, а от них — лира, кифара, арфа (и вообще музыка!); • колесо (считается изобретенным примерно за 3500 лет до н.э. в Шумерском государстве); • рычажные механизмы (подъемные и метательные); • освоение высоких температур и получение изделий из металлов и сплавов путем плавки и ковки, особенно, из золота, бронзы и железа; • освоение вращательного движения в мельничном жернове, в гончарном круге, при сверлении, а с середины V века до н.э. и в токарном станке, для подачи воды с помощью колесных черпалок; • изобретение ткани как особого соединения нитей из каких-либо материалов в искусственную «шкуру» (теперь мы сказали бы: методом объединения однородных объектов в сетевую, или ретикулярную, структуру!); • изготовление обуви и одежды, строительство искусственных конструкции для жилья из камня и песка, из дерева и костей, из коры и шкур животных; • создание сложных узлов наподобие зубчатых колес, механизмов с гибкими связями на рычаги и/или колеса; • создание первых автоматических устройств, приводимых в действие с помощью грузиков, прикрепленных к барабанам различного диаметра, например, вращавших или перемещавших театральные куклы с помощью гибких тяг! Перечни эти не полны, и мы не стремимся ни к их расширению, ни к структурированию. Мы хотим понять, был ли и каким образом передавался опыт создания новых искусственных объектов, опыт поиска сильных решений как в обычной жизни людей, так и в экстремальных ситуациях (конфликты, войны, катастрофы, болезни). К сожалению, до наших дней дошло не так уж много примеров обучения именно изобретательскому творчеству. Но эти примеры все же были! Они найдены, в основном, в греческих источниках, чудом сохранившихся и вернувшихся в Европу в начале 2-го тысячелетия н.э. с арабского Востока, причем дополненных как более ранними, так и более поздними египетскими, ближневосточными, среднеазиатскими и китайскими познаниями. Пифагор19 и его школа создали учение, оказавшее большое влияние на становление философско-гуманитарного и научно-математического мышления об устройстве и развитии мира. Пифагорейцами постулировался взгляд на природу вещей, как на гармонию противоположностей. Гармония возможна лишь как «единство разнообразного» и «согласие разногласного». Она определяется (открывается или постулируется) только при наличии конкретной конфигурации противоположных качеств (в каком-то соотношении), например: предел — беспредельное, нечетное — четное, единое — множество, хорошее — дурное, правое — левое, мужское — женское, покоящееся — движущееся, свет — тьма. Одним из первых учителей творчеству считается Сократ 20, использовавший свой метод обучения и решения проблем под названием «мэйотика», что в дословном переводе означает акушерское искусство (помошь в деторождении) и метко характеризует его учение. Любимым изречением Сократа было изречение, написанное на фронтоне храма Аполлона в Дельфах (здесь приводится на латыни): NOSCE ТЕ IPSUM Познай самого себя
Пифашр («коло 5X0—500 г. до н. э.) — древнегреческий математик, религиозный и политический деятели. Сократ (470—399 г. до н. э.) — древнегреческий философ, идеолог антропоцентризма, один из родоначальников диалектики как метода отыскания истины (самопознания). 14 С помощью иронических вопросов Сократ заставлял участников дискуссии сомневаться в общепринятых суждениях, искать противоречия в определениях, синтезировать идеи, основываясь на строгом определении предмета и следуя цели достижения добра и добродетели, а через них — счастья для самого HSP и для других. Сократ связывал гармонию с принципом полезности. Он учил, что HSP способен только собственными усилиями приобрести знание, оно не может быть получено извне в готовом виде. Архимед21 в своих сочинениях «Учение о методах механики» и других указывал метод получения идей на основе построения механических моделей и экспериментирования с ними, что должно было способствовать выдвижению гипотез и предположений, которые после этого должны подвергаться обязательной математической проверке и обоснованию. Архимед разработал для учеников развивающую игрушку (как мы сказали бы сегодня: «набор для конструирования» либо «puzzle»), включавшую 14 пластинок из слоновой кости, с помощью комбинирования которых можно было составлять различные фигуры, изображавшие, например, корабль, меч, шлем, храм и так далее. Архимед, а также его ученик Ктесибий Александрийский 22 и, предположительно, ученик последнего Герон Александрийский23 были основателями школ искусства изобретательства (ars inveniendi). В своем сочинении «Театр автоматов» Герон Александрийский описывает познания по конструированию механических храмовых и театральных автоматов. Математик Папп Александрий-ский24 описал поздние свидетельства последователей Герона о том, что изучившие хорошо теорию и овладевшие ремеслом становились впоследствии лучшими изобретателями и конструкторами. Сочинение Витрувия25 «Десять книг об архитектуре» служило руководством более полутора тысяч лет. В десятой книге дано, по-видимому, первое в истории техники определение машины: машина есть сочетание соединенных вместе... частей, обладающее огромными силами для передвижения тяжестей. *1 Архимед (287—212 до н. э.) — математик, инженер, изобретатель многих механических устройств, создатель учения о плавании тел и других. 21 Ктесибий Александрийский (II век до н. ч.) — изобретатель пневматики, пожарного насоса (вообще кинематической пары цилиндр — поршень), водяных часов и органа. 23 Герои Александрийский (II — I век до н. э.) — инженер-механик и оптик. 24 Папп Александрийский (коней III — начало IV века п. э.) — математик и механик, автор сочинения «Эвристика», творивший в храме Муз (Музее) в Александрии Египетской. 25 Марк Внтрувий Поллион (I век до н/з.) — римский архитектор и инженер О пользе преподававшихся технических и «свободных» искусств можно судить хотя бы по выдающейся схеме (рис. 4.1) Квинтиллиана26 для уточнения любой задачи с помощью 7 вопросов: Кто? - Quis? Что? - Quid? Где? - Ubi? Когда? - Quando? Чем? — Quitnm auxiliis? 6 Как? — Quomodo? 1 2 .1 4 5 Субъект Объект Место Время Средство 1-2 2-3 3-4 4-5 5-6 Способ 6-7 1-3 2-4 3-5 4-6 5-7 1-4 2-5 3-6 4-7 1-5 2-6 3-7 1-6 2-7 1-7
7 Почему? — Cur? Причина либо Цель Рис. 4.1. Семь inиipiКвинтиллиана При решении изобретательских задач полезны также парные комбинации вопросов, например: 1—5 (Кто — Чем) — кто и какие средства использует для решения; 2—3 (Объект — Место) — какой объект и где должен быть создан; 4—6 (Время — Метод) — каким методом и когда, или за какое время, предполагается решать задачу и так далее. Эти вопросы успешно применяются в методиках изобретения и в наши дни. К сожалению, великие исследователи и инженеры прошлого, такие, как например, Леонардо да Винчи27 или Галилей28, Гюйгенс29 или Ньютон30, Агрико-ла31 или Рамелли32 и многие-многие другие вплоть до наших дней, не оставили в своих сочинениях своего опыта создания изобретений. Начало научному изучению методологии творчества положили философы Фрэнсис Бэкон и Рене Декарт. Квинтиллиан (I век и. э.) — римский теоретик ораторского искусства. -'Леонардо да Винчи (1452—1519) — великий итальянский художник, механик, изобретатель. г * Галилео Галилеи (1564—1642) — ныдаюшийсн итальянский механик, астроном, физик. -'' Христиан Гюйгенс (1629—1695) — выдающийся нидерландский астроном, физик, математик, ученик Галилея. зи Исаак Ньютон (1643—1727) — выдающийся английский физик и математик, открывший Закон Всемирного тяготения. Агрикола (Георг Бауэр, 1494—1555) — известный немецкий врач, минералог и металлург. и Агостино Рамелли (1530—1590) — преемник Леонардо да Винчи, изобретатель. u Фрэнсис Бэкон (1561 — 1626) — английский философ, родоначальник философского эмпиризма. В 1620 году в сочинении «Новый органон» Ф. Бэкон33 выступил как критик старого и создатель нового эмпирического метода в науке, сформулировал цель создания систематической техники изобретения. Он писал: «Те, кто занимались науками, были или эмпириками, или догматиками. Эмпирики, подобно муравью, только собирают и пользуются собранным. Догматики, подобно пауку, из самих себя создают ткань. Пчела же избирает средний способ, она извлекает материал из цветов сада и поля, но располагает его собственным умением... Следует возложить добрую надежду на более тесный и нерушимый союз этих способностей, то есть опыта и рассудка... Наш метод состоит в следующем: мы извлекаем не практику из практики и опыт из опытов (как эмпирики), а причины и аксиомы — из практики и опытов, и из причин и аксиом — снова практику и опыты». Этот союз осуществляется, по мнению Ф. Бэкона, в индуктивном методе, в переходе от частных фактов к частным законам (малым аксиомам), а от них — к более общим (средним аксиомам), и наконец — к самым общим. Декарту34 принадлежит идея создания единого научного подхода, который носит у него название «универсальной математики». В сочинении «Рассуждение о методе», вышедшем в 1637 году, через 17 лет после «Нового органона», Декарт развивал дедуктивный, рациональный метод, который должен был, по его мнению, превратить познание в организованную деятельность, освободить познание от случайности, от таких субъективных факторов, как наблюдательность или острый ум, удача или счастливое стечение обстоятельств. На основе познания общих, неизменных законов с помощью дедуктивного метода стало бы возможным выводить частные суждения по любой конкретной проблеме. И сегодня удивительно актуальны «четыре правила мышления» Декарта: Первое: не принимать за истинное что бы то ни было, прежде чем не признал это несомненно истинным, то есть стараться избегать поспешности и предубеждения и
включать в свои суждения только то, что представляется моему уму так ясно и отчетливо, что никоим образом не сможет дать повод к сомнению. Второе: делить каждую из рассматриваемых мною трудностей на столько частей, на сколько потребуется, чтобы лучше их разрешить. Третье: руководить ходом своих мыслей, начиная с предметов простейших и легко познаваемых, и восходить мало-помалу, как по ступеням, до познания наиболее сложных, допуская существование порядка даже среди тех, которые в естественном порядке вещей не предшествуют друг другу. И последнее: делать всюду настолько полные перечни и также общие обзоры, чтобы быть уверенным, что ничего не пропущено. Г. Штайнбарт35 считал, что каждое изобретение создается на базе известного, существующего путем сопоставления известных данных, предметов, идей методами их разделения, объединения и комбинирования. В качестве основных источников изобретений он указывал выявление скрытых свойств предметов, определение причин функционирования и изменений вещей, нахождение аналогий, определение полезности предметов и явлений. Рене Декарт (1596—1650) — выдающийся французский философ и математик. По работе «Gcmeinnut2ige Anleilung dcs Vcrstandes ziim regelmiissigen Sclbsideiiken*. I7S7 известного немецкого исследователя Gollhilf Samuel Steinbart < 173K—IH09). 55 Фундаментальный 5-томный труд И. Бекманна36 «История изобретений» является, повидимому, первым научным исследованием способов создания изобретений. И. Бекманн писал: «Я имею модель искусства изобретения, такую, чтобы из теории видеть практический эффект в прямой пропорции с моим интересом (целью)». Одним из фундаментальных трудов является книга Б. Больцано 37 «Науковедение», четвертая часть которой называется «Искусство изобретательства». Первым правилом Больцано считает определение цели и отсечение непродуктивных направлений поисков. Далее выясняется основной вопрос задачи, анализируется известное знание и определяются выводы из этого знания. Затем выдвигаются гипотезы и делаются попытки решить задачу разными методами. Предусматривается критическая проверка собственных и чужих суждений, производится отбор наиболее ценных суждений. В качестве специальных правил изобретательства Больцано рассматривал нахождение дополнительных задач, поиск аналогов, выявление и оценку реальности представлений, появившихся в подсознании, а также логические приемы мышления. Ждут также достойных исследователей и последователей грандиозные замыслы еще двух творцов цивилизации: Готфрида Лейбница и Иоганна фон Гете38. Еще в молодости Лейбниц разработал собственную методику изобретательства (Ars inveniendi), преимущественно как методику комбинирования (Ars combinatoria), и поставил цель создать универсальный язык (Characteristica Universalis) как логическую систему для решения творческих, в том числе изобретательских, задач. Он указывал на особую роль понимания противоречия в структуре проблемы: первая среди истин разума — принцип противоречия (Principium contradictionis). Христиан Вольф39, последователь Лейбница, рассматривал основы методики изобретательства (Erfinderkunst) как непрерывно развивающееся знание, соединение изобретательской методики с опорными знаниями. Он придавал большое значение нахождению скрытых аналогий, сходства между объектами, развивая тезис Лейбница: Полезно изучать открытия других таким способом, который и нам самим бы открыл источник изобретений
Христиан Вольф (1679—1754) — известный механик и изобретатель Иоганн Бекманн (1739—1811) — выдающийся немецкий исследователь истории изобретений и искусства изобретения, основатель технологии как науки. J7 По работе • Erfindungkunsi* (in: Wissenschaftlehre, 1837) известного чешского исследователя Bcrnhard Bolzano (1781-1848). •18 Иоганн Вольфганг фон Гете (1749—1832) — выдающийся немецкий мыслитель, поэт, философ и естествоиспытатель 34 Гете принадлежит конкретизация принципа и метода выявления сходства объектов (морфологии) и определения типа, что является основой любой научной классификации и систематизации знаний: «...морфология делает своим главным предметом то, что в других науках трактуется при случае и мимоходом, собирая то, что там рассеяно, и устанавливая новую точку зрения, позволяющую легко и удобно рассматривать объекты Природы». Гете писал, что «общий, основанный на трансформациях, тип», хорошо можно наблюдать как «соединение множества единиц, которые можно считать одинаковыми но идее и похожими в явлении» (курсив мой — М.О.). Эти идеи, как и идеи Лейбница, применительно к систематизации знаний о методах изобретательского творчества остаются не реализованными в полной мере и до наших дней. С XVIII века в период первых промышленных революций творчество начало все больше ориентироваться на прагматические цели, а прагматический подход потребовал и более практичных, более инструментальных методов. И хотя появилось больше исследователей, изучавших изобретательское творчество, все же в XVIII—XIX веках такие методы не были созданы. Предваряя последующие примеры и используя определение Гете, можно сказать, что практически все исследования относились к наблюдению явлений, сопровождающих процесс изобретения, а не к анализу идей и сути изобретений как изменений «от существующего — к возникающему». Герман Гельмгольц40 многократно отмечал, что догадки относительно решения творческой проблемы приходят в результате всестороннего рассмотрения ее, что позволяет мысленно обозревать все ее глубины и узлы. Без продолжительной предварительной работы это большей частью невозможно. Т. Рибо41 называл основным источником изобретений воображение. Он принципиально отрицал возможность создания методики изобретательства, но в то же время указывал на огромное значение таких приемов изобретательства, как объединениеразъединение и аналогии. Последним он придавал особенно большое значение, подчеркивая, что человек изобретает только потому, что способен составлять новые сочетания из известных идей. По Рибо важнейшими методами изобретательства на основе воображения являются: олицетворение, одушевление технического объекта; мистическое, символическое воображение; метаморфоза, перенос частных свойств на другой объект. Анри Пуанкаре42 высказал немало интересных оценок и догадок. По его определению, творчество заключается в создании новых полезных комбинаций, при этом он настаивал на мнении, что мышление изобретателя имеет явно избирательный, направленный характер, так как «бесплодные комбинации даже не приходят в голову изобретателю». В этом отношении он сравнивал изобретателя с экзаменатором второй ступени, который спрашивает только кандидатов, допущенных к экзаменам после первого испытания. Интересно отметить высказывания Пуанкаре о том, что творческий процесс состоит из чередования сознательных и бессознательных усилий нашего мозга, а также о роли эстетичсских критериев в творчестве. Он утверждал, что гармония удовлетворяет нашим эстетическим потребностям и служит одновременно подспорьем для ума; с другой стороны, всякая «некрасивость» теории или гипотезы настораживает. Герман Гельмгольи (1821 —IN94) — известный немецкий физик, ирач по образованию, олин из первооткрывателей закона сохранения энергии 40
Theodule Ribot (1838—1916) — известный французский психолог и исследователь июрчесгва Анри Пуанкаре (1854—1912) — известный французский хкмематик и аиромом. внесший заметный вклал о методологию творчества. 41 42 Начало XX века было отмечено ростом усилий по созданию методик изобретения. Вильгельму Оствальду43 принадлежит утверждение, что методике изобретательства можно научиться. Он выражал надежду, что искусство изобретения будет становиться общим достоянием и в конце концов сделается столь необходимой и обыденной принадлежностью физической и духовной жизни, как, например, пиша, чтение и письмо. Изобретать можно, следуя определенным принципам, а в качестве примера он приводил творчество Эдисона44. Действительно, Эдисона можно считать создателем первого в мире научноисследовательского института, в котором экспериментальная поисковая работа разделялась между большим числом параллельно работающих исследователей. Исследовательская лаборатория была организована им в Менло-Парке в 1872 году. За шесть с половиной первых лет работы лаборатории было получено более 300 патентов, то есть по 2 патента в неделю. Поточную систему производства патентов создал А. Белл: с 1879 по 1900 год лаборатории его компании получали в среднем 1 патент в каждые 2,5 дня, а всего за это время более 3000 патентов. Оствальд отмечал, что в конце XIX и в начале XX века произошли большие изменения в характере творчества. Если раньше за изобретательскими находками отправлялись, как охотник за добычей в лес или поле, который не знает, что он найдет и найдет ли вообще чтонибудь, то теперь охоту можно заменить продуманной облавой (по Эдисону), и нужно быть неумелым охотником, чтобы упустить дичь. Здесь виден как бы ответ на образное описание творчества по Джозефу При-стли45, сравнивавшему изобретательские поиски с тем, как охотник ищет добычу в лесу, в чем большая роль принадлежит случайности. Пристли рекомендовал осуществлять мысленно неожиданные алогичные эксперименты, считая, что самыми смелыми и самыми оригинальными изобретателями являются те, кто предоставляет свободу своему воображению и допускает сочетание самых далеких друг от друга идей. И хотя многие из этих идей впоследствии окажутся фантастическими, некоторые из них могут привести к величайшим открытиям. 41 44 Вильгельм Фридрих Оствальд (1853—1932) — известный немецкий химик. Томас Ална Эдисон (1847—1931) — выдающийся американский изобретатель и предприни- матель. 45 Джозеф Пристли (1733—1804) — известный английский философ-естествоиспытатель. В начале XX века поиски новых теорий изобретения как бы сужаются, а сами теоретические методы становятся конкретнее. Их уже можно отобразить в виде схем, показывающих определенные фазы творческого процесса. Схема Уильяма Джеймса46, предложенная им в 1905 году, имеет следующий вид: 1. Определение конкретного факта S. 2. Выяснение, является ли это S некоторым Р или каким образом из S можно получить Р. 3. Поиск в бесконечном множестве аспектов S особого свойства М, которое приводит к желаемому Р. Схема «тотального синтеза» Петера Беренса47 (1907 год): 1. Формирование общей концепции объекта. 2. Определение основных компонентов объекта.
3. Поиск основных способов выполнения каждого компонента. 4. Синтез всевозможных сочетаний. П. Энгельмейер48 в 1910 году в своей книге «Теория творчества» писал: «Взглянув на созидаемое изобретение как на развивающийся организм, мы себя спросим: нет ли в этом эмбриологическом процессе таких стадий, которые повторялись бы во всех изобретениях, независимо от внешних обстоятельств и форм самого процесса?» Свою схему Энгельмейер называл «трехактной»: Первый акт: интуиции и желания. Происхождение замысла. Появление идеи, гипотезы, принципа изобретения, цели того, над чем следует работать. Второй акт: знания и рассуждения. Выработка плана работы. Ставятся мысленные опыты, проводятся эксперименты и логический анализ, определяется новизна. Третий акт: умения. Конструкционное выполнение изобретения. Решение задач применения, эксплуатации. Схема Д. Дьюи49 (1910 год): 1. Столкновение с трудностью, попытки вскрыть элементы и связи, приводящие к противоречию. 2. Ограничение зоны поиска (локализация проблемы). 3. Возникновение возможного решения: движение мысли от того, что дано, к тому, что отсутствует; образование идеи, гипотезы. 4. Рациональная обработка одной идеи, логическое развитие основного положения. Схема Г. Уолласа50 (1926 год): * Уильям Джеймс (1842—1910) — выдающийся американский психолог, создатель теории "Пи-тока сознания» и направлении •функционализма» в психологин, а также направления -прагматизма» в философии. 47 Peter Behrens (1868—1940) — немецкий профессор архитектуры, и 1907—'.' i — консультант AEG. 4 " Петр Энгельмейер (1855—1942) — выдающийся русский исследователь теории творчества и философии техники. 44 John Dewey (1859—1952) — американский философ. 1. Подготовка. 2. Созревание (инкубация). 3. Вдохновение (озарение). 4. Проверка. Случайны ли были эти51 и другие подобные схемы? По мнению многих исследователей эти схемы не случайны и отражают часто наблюдаемые в творческой практике похожие последовательности действий. И все же внимательное рассмотрение этих схем обнаруживает их существенную неодинаковость. Освобождаясь от подробностей, известные методы и теории можно разделить на три группы. Первая группа описывает творчество как исключительно интуитивный процесс, схватывает внешние проявления этого процесса (Энгельмейер, Уоллес, Рибо, а ранее — Пристли, Гельмгольц, Пуанкаре и многие другие, в целом — большинство авторов). Вторая группа существенно опирается на логический подход, включающий построение обобщенного образа объекта и систематическое выявление всех возможных вариантов его построения (Беренс, а ранее Штайнбарт и многие приверженцы комбинаторики во главе с великим Лейбницем).
В третьей группе основное — разобраться в сути проблемы, выявить элементы и свойства, приводящие к противоречию, поиск способов снять это противоречие (Дьюи, Джеймс, а ранее — Больцано, Гете, Лейбниц, Декарт и другие весьма авторитетные исследователи). Именно третье направление оставалось неразвитым дольше других. 4.2. Традиционные методы изобретения В середине XX века появилось сразу несколько методов, которые не потеряли своей популярности вплоть до наших дней. Graham Wallas (1858 — 1932) — английский исследователь психологических факторов в политике; автор книги The Art of Thought, Harcourt Brace, New York, 1926. 51 Цитируется, включая разделение на группы, с небольшими изменениями по работе А. Кудрявцева «Методы интуитивного поиска технических решений», 1992. 52 Friedrich Kuntze (1881 — 1929) — известный немецкий психолог. 53 Whiting Ch. S. Creative Thinking. Reinhold, New York, 1958. 50
iи ■- 141 Метод фокального объекта (MFO) уходит корнями к древнегреческим искусствам мышления, но в современном виде был сформулирован в 20-х годах XX века Ф. Кунце52, а в 50-х годах был усовершенствован Ч. Вайтингом53. Суть MFO состоит в том, что усовершенствуемый объект как бы устанавливается в «фокусе», в котором концентрируется внимание, после чего этот объект сопоставляется с любыми другими, случайно выбираемыми из реального мира. В качестве способа выбора сопоставляемых объектов может быть использована книга, открытая на случайной странице, на которой выбирается случайное слово; могут быть выбраны какие-либо предметы на витрине магазина или объекты природы и тому подобное. Соединение свойств двух объектов — фокального и случайно выбранного — может приводить к оригинальным идеям для изменения фокального объекта. Основные свойства подхода указаны на рис. 4.2.
я Алекс ОеборН (IKNX—1Wi(i) — автор метола "брзннсторминг». консультант и предпринимают!., см. Шипи Л.F Applied imagination. Scribener's Sons. 1963. Брейнсторминг (BS), предложенный в 40-х годах бывшим морским офицером Алексом Осборном54, получил чрезвычайно большое распространение. Следующие особенности отличают этот метод от MFO: предварительный анализ ситуации с помощью списка контрольных вопросов; наличие двух фаз работы — генерация идей и критика идей. Известно много разновидностей BS. Основные свойства подхода указаны на рис. 4.3.
55 Gordon W .J.J. Synectics: the development of"creative capacity. Harper & Row. New York. 1461. Синектика (SYN) была разработана У. Гордоном (55) и имеет не менее глубокие корни, чем MFO, и вполне очевидно связана с идеями Рибо. SYN, как и BS, ориентирована на командную реализацию и мало приспособлена для индивидуального применения (рис. 4.4).
56 Fritz Zwicky (1898—1974) — известный американский астроном и инженер, эмигрировавший из Швейцарии. Метод морфологического анализа (ММА) Ф. Цвикки 56, аналогичный по замыслу методу «тотального синтеза» Беренса и методологически восходящий к комбинаторике Лейбница (рис. 4.5). Этот метод остается весьма полезным и популярным для поиска границ системных решений и для систематического анализа возможных (перспективных) направлений решения проблем. Важно заметить, что «центр тяжести» методов все больше смешается в сторону усиления логической составляющей, в сторону увеличения направленности поиска решений. Усиление логической составляющей и соединение интуитивных моделей с практикой инженерного проектирования хорошо видны в работах многих исследователей в 70-х и 80-х годах XX века57. И все же в этом объединении опять-таки почти ничего не меняется по отношению к объекту и к составу операций преобразования, а лишь вносится организационная и системная упорядоченность уровней и этапов решения сложных
инженерных задач. В итоге намеченная направленность подхода размывается, а системотехническая терминология лишь слабо прикрывает все ту же «голую интуицию». Латеральное мышление (LT) психолога и педагога Эдварда де Боно представляет собой подробно разработанную стратегию всестороннего развития творческих способностей личности. Методы поиска идей в LT стимулируют стратегическую интуицию, умение увидеть решение в целом, предусматривают рациональный тактический анализ вариантов, многоаспектное рассмотрение возможностей при решении проблем. Работы де Боно намного расширяют понимание возможностей интуитивного поиска идей по сравнению, например, с BS. Однако, для LT остаются справедливыми ограничения, отмеченные для BS (рис. 4.3). Нейролингвистическое программирование (NLP) можно рассматривать как наиболее глубокую психо-физиологическую стимуляцию творческих способностей личности. При тренинге с профессиональным психологом-педагогом возможно освоение техник вхождения в состояния повышенной концентрации памяти и внимания (в частности, помогает обучиться скорочтению и освоению иностранных языков), более свободного ассоциативного мышления и визуализации (метод Mind Mapping), актуализации собственного опыта успешного решения проблем, артистического вхождения в образ других личностей, например, художников или изобретателей. NLP не свободно от ограничений, свойственных SYN (рис. 4.4). 5. Классическая ТРИЗ 5.1. Идеи ТРИЗ Краткий итог нижеизложенному о теориях творчества можно подвести следующим выводом, принадлежащим Генриху Альтшуллеру: «150 пет назад резко увеличились темпы развития науки, началась научная революция, показавшая, что мир неограниченно познаваем. Одновременно разворачивалась и революция техническая, утвердившая мысль, что мир неограниченно изменяем. Рабочий инструмент этих титанических революций — творческое мышление. Но, как См.. например, работы немецкого инженера, профессора J. Miiller. «Methoden пшВ man ап-wenden*, 1980 и английского специалиста J. С. Jones, "Design methods*. 1982. ни парадоксально, само творческое мышление, его технология, не претерпели качественных изменений.» Г. Альтшуллер. Найти идею. Введение в теорию решения изобретательских зодач. Новосибирск, 1986 57 После окончания военного училища Г. Альтшуллер работал в патентном бюро и еще в 1945 году обратил внимание на большое число неэффективных и слабых предложений. Вскоре он понял, что слабые решения игнорируют ключевые свойства проблем и породивших их систем. И даже самые гениальные изобретения также были, в основном, продуктом случая или длительной изнурительной «осады». Изучение известных методов изобретения и психологии инженерного творчества укрепило Г. Альтшуллера в сделанном выводе. Все подходы опирались на метод «проб и ошибок», на интуицию и воображение. Ни один подход не исходил из исследования закономерностей развития систем и из физико-технического противоречия, содержащегося в проблеме.
В то же время в истории философии и в инженерных работах было достаточно примеров более эффективного анализа проблем. Наиболее убедительные примеры Г. Альтшуллер обнаружил в работах К. Маркса58 и Ф. Энгельса59. Им принадлежит выдающаяся роль в определении признаков и фаз исторических изменений, происходивших Карл Маркс ISN.1) - кидающийся немецкий ЭКОНОМИСТ и философ-материалист. Фридрич Энгельс (1x20—1К95) — пылакшийся немецкий философ-материалист. в истории человечества, и связанных с изобретением и развитием новых технологий и машин, изменяющих характер труда человека, усиливающих его отдельные функции либо полностью вытесняющих человека из производственных операций. Две фундаментальные идеи пронизывают приводимые ими примеры: 1) изобретения появляются как преодоление противоречия; 2) противоречия появляются как следствие неравномерного развития отдельных частей технических систем. 3) Так, в работе «История винтовки» («Geschichte des gezogenen Gewehrs» / F. Engels, 1860) Энгельс приводит многочисленные примеры технических противоречий, определяющих всю эволюцию винтовки и возникающих как из-за изменения требований к применению, так и из-за выявления внутренних недостатков. В частности, длительное время главное противоречие состояло в том, что для удобства заряжения и увеличения скорострельности требовалось укорачивать ствол (заряжение производилось насыпанием пороха и закладыванием пули через ствол), а для увеличения точности стрельбы и достижения противника с большей дистанции в штыковом бою требовалось удлинять ствол. Эти противоречивые требования были соединены (!) в винтовке, заряжающейся со стороны казенной части. Но эти примеры остались неоцененными методологами и практиками творчества, и рассматривались лишь как иллюстрации к диалектическому материализму. В 1956 году Г. Альтшуллер публикует свою первую статью60, в которой ставит проблему создания теории изобретательского творчества и предлагает основные идеи для ее развития: 1. Ключ к решению проблем — выявление и устранение системного противоречия! 2. Тактика и методы решения проблем (приемы) могут быть выявлены на основе анализа сильных изобретений. 3. Стратегия решения проблем должна опираться на закономерности развития технических систем. В современной редакции первую версию технологии создания изобретательских идей можно представить схемой, приведенной на рис. 5.1. Г. Альтшуллер. Р. Шапиро. О психологии изобрстппп'.илкога творчества. Журнал «Вопросы психологии». Москва. 6*1956. 60
К 1961 году Г. Альтшуллер исследовал уже около 10 000 изобретений из 43 патентных классов! Идея о возможности выявления изобретательских приемов полностью подтвердилась в виде следующего открытия: 1. Изобретательских задач — бесчисленное множество, а типов системных противоречий сравнительно немного. 2. Существуют типичные системные противоречия и существуют типовые приемы их устранения. Автор будущей ТРИЗ писал: «...конечно, каждая техническая задача по-своему индивидуальна. В каждой задаче есть что-то свое неповторимое. С помощью анализа появляется возможность пробиться к главному — к системному противоречию и его причинам. И положение сразу меняется. Появляется возможность вести творческий поиск по определенной рациональной схеме. Магической формулы нет, но есть приемы, достаточные для большинства случаев.» 5.2. Становление классической ТРИЗ Генрих Альтшуллер часто подчеркивал, что, в сущности, ТРИЗ организует мышление человека так, как будто в его распоряжении имеется опыт всех, или очень многих, талантливых изобретателей. Обычный, даже очень опытный изобретатель использует свой опыт, основанный на внешних аналогиях: вот эта новая задача похожа на такую-то старую задачу, значит, и решения должны быть похожи. Изобретатель, знающий ТРИЗ, видит намного глубже: вот в этой новой задаче имеется такое-то противоречие, значит, можно использо вать идею решения из старой задачи, которая внешне совсем не похожа на новую, но содержит аналогичное противоречие! С появлением первой версии АРИЗ (рис. 5.1) началось становление Теории решения изобретательских задач (ТРИЗ). Автор ТРИЗ показывает различия между понятиями прием, метод и теория следующим образом. Прием — одинарная, элементарная операция. Прием может относиться к действиям человека, решающего задачу, например, «используй аналогию». Прием может относиться и к рассматриваемой в задаче технической системе, например, «дробление системы», «объединение нескольких систем в одну». Приемы как бы не направлены: неизвестно, когда тот или иной прием хорош, а когда не сработает. В одном случае аналогия может навести на
решение задачи, а в другом — увести от него. Приемы не развиваются, хотя набор приемов можно пополнять и развивать. Метод — система операций, обычно включающих приемы, предусматривающая определенный порядок их применения. Методы обычно основаны на каком-то одном принципе, постулате. Так, в основе брэйнсторминга лежит предположение, что решение задачи можно получить, дав «выход из подсознания неуправляемому потоку идей». В основе АРИЗ лежит принцип подобия в моделях развития, в моделях противоречий и в моделях разрешения противоречий. Методы развиваются весьма ограниченно, оставаясь в рамках исходных принципов. Теория — система многих методов и приемов, предусматривающая целенаправленное управление процессом решения задач на основе знания закономерностей (моделей) развития сложных технических и природных объектов. Можно сказать также, что прием, метод и теория образуют иерархию типа «кирпич — дом — город» или «клетка — орган — организм». К 1985 году, году вершины своего становления, классическая ТРИЗ развивалась уже почти 40 лет. Сам автор ТРИЗ так описывает развитие своей теории. Этап 1. Работа над АРИЗ была начата в 1946 году. Впрочем, самого понятия «АРИЗ» тогда еще не было. Проблема ставилась иначе: Надо изучить опыт изобретательского творчество и выявить характерные черты хороших решений, отличающие их от плохих. Выводы могут быть использованы при решении изобретательских задач. Почти сразу удалось обнаружить, что решение изобретательской задачи оказывается хорошим (сильным!), если оно преодолевает техническое противоречие (ТП), содержащееся в поставленной задаче, и наоборот, плохим, если ТП не выявлено или не преодолено. Далее выяснилось нечто совершенно неожиданное: оказалось, что даже самые опытные изобретатели не понимают, не видят, что правильная тактика решения изобретательских задач должна состоять в том, чтобы шаг за шагом выяв лять ТП, исследовать его причины и устранять их, тем самым устраняя и ТП. Столкнувшись с открытым, кричащим о себе ТП, и увидев, что задачу удалось решить благодаря его устранению, изобретатели не делали никаких выводов на будущее, не меняли тактику и, взявшись за следующую задачу, могли потратить годы на перебор вариантов, даже не пытаясь сформулировать содержащееся в задаче противоречие. Рухнули надежды извлечь из опыта больших (великих, крупных, опытных, талантливых) изобретателей нечто полезное для начинающих: большие изобретатели работали тем же примитивным методом проб и ошибок. Этап 2. На втором этапе проблема была поставлена так: Надо составить программу планомерного решения изобретательских задач, годную для всех изобретателей. Эта прогромма должна быть основана но пошаговом анолизе задачи, чтобы выявлять, изучать и преодолевать технические противоречия. Программа не заменит знаний и способностей, но она предохранит от многих ошибок и даст хорошую тактику решения изобретательских задач. Первые программы (АРИЗ-1956 или АРИЗ-1961) были весьма далеки от АРИЗ-1985, но с каждой новой модификацией они становились четче и надежнее, постепенно приобретая характер программ алгоритмического типа. Были составлены таблицы приемов
устранения ТП (см. приложения 3. А-Матрица выбора специализированных навигаторов и 4. Каталог специализированных А-Навигаторов — в современной редакции автора настоящей книги). Главным материалом для исследований стала патентная информация, описания изобретений. Начали проводиться первые семинары, накапливался опыт обучения АРИЗ. И снова обнаружилось неожиданное. Оказалось, что при решении задач высших уровней нужны знания, обязательно выходящие за пределы специальности, которую имеет изобретатель. Производственный опыт навязывает бесплодные пробы в привычном направлении, а применение АРИЗ и его информационного обеспечения (приемы и т. п.) лишь улучшило ход решения задачи. Обнаружилось, что человек не умеет эффективно решать изобретательские задачи высших уровней. Поэтому ошибочны все методики, основанные только на стремлении активизировать «творческое мышление», поскольку это попытки хорошо организовать плохое мышление (здесь курсив Г. Альтшуллера). Таким образом, второй этап, начавшийся с мысли о том, что изобретателям надо дать вспомогательный инструмент, завершился выводом о необходимости перестройки изобретательского творчества, изменения самой технологии создания изобретения. Программа теперь стала рассматриваться как самостоятельная, не зависимая от человека система решения изобретательских задач. Мышление должно следовать этой системе, управляться ею — и тогда оно будет талантливым. Возникло понимание, что операции, производимые в АРИЗ, должны быть сопоставлены с объективными закономерностями развития технических систем. Этап 3. Формула третьего этапа была такой: Изобретения низших уровней — вообще не творчество. Изобретения высших уровней, делаемые методом проб и ошибок, — это плохое творчество Нужна новая технология решения изобретательских задач, позволяющая планомерно решать задачи высших уровней. Эта технология должна основываться на знании объективных законов развития технических систем. Как и на втором этапе, основным материалом для работы была патентная информация. Но ее изучение велось теперь не столько для выявления новых приемов и сведения их в таблицу устранения технических противоречий, сколько для исследования общих закономерностей развития технических систем. Главное открылось в том, что изобретение — это развитие технической системы. Изобретательская задача — только одна из форм, в которой потребности развития технической системы обнаруживаются человеком. ТРИЗ изучает изобретательское творчество с целью создать эффективные методы решения изобретательских задач. В этом определении присутствует мысль, которая может показаться «еретической»: что же, все существующие методы плохи и нуждаются в замене? Но ведь пользуясь этими «методами», люди сделали величайшие открытия! На этих «методах» основана современная индустрия изобретении, лающая ежегодно многие десятки тысяч новых технических идей. Чем же плохи современные «методы»? Существуют привычные, но неверные суждения об изобретательском творчестве, например: 1) «Все зависит от случайности», — говорят одни. 2) «Все зависит от знаний и упорства, надо настойчиво пробовать разные варианты», — утверждают другие. 3) «Все зависит от прирожденных способностей», — заявляют третьи. В этих суждениях есть доля правды, но правды внешней, поверхностной.
Неэффективен сам «метод проб и ошибок». Современная «индустрия изобретений» организована по «методу Эдисона»: чем труднее задача и чем больше проб надо проделать, тем большее количество людей направляется на поиски решения. Эту критику Генрих Альтшуллер подкреплял следующим образом: ясно, что тысяча землекопов могут рыть иные по размерам ямы. чем один землекоп, но сам способ рытья остается прежним. С помощью же хорошего метода «одиночка»-изобретатель, словно экскаваторщик, работает намного продуктивнее «коллектива землекопов»! При решении задачи без ТРИЗ изобретатель сначала долго перебирает привычные, традиционные варианты, близкие ему по специальности. Иногда ему вообще не удается уйти от таких вариантов. Идеи направлены в сторону «вектора психологической инерции» (PIV — Psychological inertia vector). PIV обусловлен самыми разными факторами: тут и боязнь выйти за рамки профессии и вторгнуться в «чужую» область, и опасение выдвинуть идею, которая может показаться смешной, и, разумеется, незнание приемов генерирования «диких» идей. Автор ТРИЗ иллюстрировал «метод проб и ошибок» следующей схемой (рис. 5.2). От точки «Задача» изобретатель должен попасть в точку «Решение». Где именно находится эта точка, заранее неизвестно. Изобретатель создает определенную поисковую концепцию (ПК) и начинаются «броски» в выбранном направлении (они обозначены тонкими стрелками). А потом становится ясно, что неправильна вся ПК, и что поиски идут совсем не в том направлении. Изобретатель возвращается к исходной постановке задачи, выдвигает новую ПК и начинает новую серию «бросков» типа «А что, если сделать так?». На схеме стрелки расположены гуще в направлении, не совпадающем и даже противоположном от направления «Решения». Дело в том, что пробы совсем не так хаотичны, как кажется на первый взгляд. Они очень даже организованы... в направлении предыдущего опыта! То есть, в направлении PIV! Задачи разных уровней существенно отличаются числом проб, необходимых для отыскания решения. Но почему одна задача требует 10 проб, другая — 100, а третья — 10 000?! В чем качественная разница между ними? И Генрих Альшуллер приходит к следующим выводам (см. также раздел 3.2 Уровни изобретений и рис. 3.2). 1. Задачи могут отличаться по содержанию требуемых знаний. На первом уровне задача и средства ее решения лежат в пределах одной профессии (одного раздела отрасли).
На втором уровне — в пределах одной отрасли (например, машиностроительная задача решается способом, уже известным в машиностроении, но в другой его отрасли). На третьем уровне — в пределах одной науки (например, механическая задача решается на основе законов механики). На четвертом уровне — за пределами науки-«задачеда-тельницы» (например, механическая задача решается химически). На высших подуровнях пятого уровня — вообще за пределами современной науки (поэтому сначала нужно получить новые научные знания или сделать открытие, а потом применить их к решению изобретательской задачи). 2. Задачи могут отличаться по структуре взаимодействующих факторов. Это можно показать на различии «структур», например, задач первого и четвертого уровней. Для задач первого уровня характерно: 1) Небольшое число взаимодействующих элементов. 2) Неизвестных факторов нет или они несущественны. 3) Легкость анализа: • элементы, которые могут быть изменены, легко отделяются от элементов, не поддающихся изменениям в условиях задачи; • взаимное влияние элементов и возможных изменений легко прослеживается. 4) Некоторое осложнение состоит в том, что часто решение требуется получить в короткое время. Для задач четвертого уровня характерно: 1) Большое число учитываемых элементов. 2) Значительное число неизвестных факторов. 3) Сложность анализа: • трудно отделить элементы, которые могут быть изменены в условиях задачи; • трудно построить достаточно полную модель взаимного влияния элементов и возможных изменений. 4) Некоторое упрощение состоит в том, что на поиск решения отводится относительно большое время. 3. Задачи могут отличаться по степени изменения объекта. В задачах первого уровня объект (устройство или способ) практически не изменяется, например, устанавливается новое значение одного параметра. На втором уровне объект незначительно изменяется, например, в деталях. На третьем уровне объект существенно изменяется (например, в важнейших частях), на четвертом — полностью меняется, а на пятом изменяется также и техническая система, в которую входит измененный объект. Поэтому нужен способ «перевода» изобретательских задач с высших уровней на низшие и превращения тем самым «трудной» задачи в «легкую», например, с помощью быстрого сокращения поискового поля. 4. Природа не выработала эвристических приемов высших порядков! На протяжении всей эволюции мозг человека приспособился лишь к решению задач, соответствующих примерно первому уровню. Возможно, что, сделав в течение жизни одно-два изобретения высших уровней, человек просто не успевал накопить и передать «высший эвристический опыт». Естественным отбором закреплялись только эвристические приемы низших уровней: увеличить—уменьшить, соединить—разъединить, использовать аналогию, копировать и некоторые другие (см. раздел 4 Изобретательское творчество). Позднее к ним добавились
уже вполне сознательно: «Поставь себя на место рассматриваемого объекта» (эмпатия), «Помни о психологической инерции» и другие (см также раздел Искусство изобретения). «Эвристики» такого уровня можно сколько угодно показывать молодым инженерам, однако научить применять их нельзя. Дело в том, что никакие призывы «помнить о психологической инерции» не срабатывают, если человек не знает, как именно бороться с психологической инерцией. Тщетными остаются рекомендации использовать аналогии, когда неизвестно заранее, какая из них подходящая, и особенно, если возможных аналогий слишком много. Так же и эмпатия запутывает дело или прямо вредна, если объект достаточно сложен. Так что, в процессе эволюции наш мозг научился находить достаточно точные и приемлемые решения только для простых задач. При этом эвристические механизмы высших уровней, скорее всего, не могут быть открыты — их нет. Но они могут и должны быть созданы! Третий этап и середина 1970-х годов — это середина истории классической ТРИЗ во времени. Но это и начало кардинального усовершенствования ТРИЗ — открытие физического противоречия (ФП) и фундаментальных принципов разрешения ФП, формулирование законов развития технических систем, составление первого каталога физических принципов создания сильных изобретений («эффектов») и первых «стандартов» (комплексных приемов). 5.3. Структура классической ТРИЗ При рассмотрении истории развития ТРИЗ можно выделить следующие этапы: 1) до 1985 года — развитие классической ТРИЗ, основные идеи которой имеют концептуальный характер (плюс, конечно, и инструментальный!) и публикуются Генрихом Альтшуллером и специалистами ТРИЗ-ассоциации; 2) после 1985 года — развитие пост-классической ТРИЗ, основные идеи которой имеют характер «развертывания» теории (т. е. детализации, частичной формализации, уточнения и особенно накопления фонда примеров) и соединения с другими методами, особенно с методами функционально-стоимостного анализа, аналогичными Quality Function Deployment (QFD) и Fault Modes and Effects Analysis (FMEA). Структурно классическую ТРИЗ можно представить схемой, показанной на рис. 5.3. ТРИЗ — это пример реализации идеи концентрированного представления знаний.
Главное открытие ТРИЗ состоит в том, что миллионы уже зарегистрированных изобретений сделаны на основе относительно небольшого числа правил трансформации исходной постановки задачи. При этом в ТРИЗ четко указаны ключевые компоненты организации любой проблемы и синтеза решения: противоречие, ресурсы, идеальный результат, приемы изобретения, или лучше сказать, модели трансформации. Более того, в ТРИЗ разработаны не только несколько систем приемов, но и метод решения проблем с помощью пошагового уточнения и трансформации исходной постановки проблемы. Этот метод называется Алгоритмом решения изобретательских задач (АРИЗ). АРИЗ и вся ТРИЗ, по образному определению самого Г. Альтшуллера (Крылья для Икара. Как решать изобретательские задачи. Петрозаводск, 1980.), стоит «на трех китах»: 1) по четкой программе, шаг за шагом, ведется обработка задачи, выявляются и исследуются физико-технические противоречия, делающие задачу проблемой;
2) для преодоления противоречий используется сконцентрированная информация, вобравшая опыт нескольких поколений изобретателей (таблицы типовых моделей решения задач — приемы и стандарты, таблицы применения физических эффектов и т. д.); 3) на протяжении всего хода решения идет управление психологическими факторами: АРИЗ направляет мысль изобретателя, гасит психологическую инерцию, настраивает на восприятие необычных, смелых идей. В виде ТРИЗ впервые в истории созидающего человечества появились теория, методы и модели для систематического исследования и разрешения сложных техникотехнологических проблем, содержащих острое физико-техническое противоречие и принципиально не решаемых традиционными методами конструирования. Вместе с тем, необходимо отметить, что известные книги и статьи о ТРИЗ вплоть до настоящего времени (2000 год), во многом повторяя друг друга, традиционно показывали только достоинства ТРИЗ как системы решения технических задач. Это не способствовало правильному пониманию возможностей и границ ТРИЗ. Прежде всего известные публикации умалчивают о наличии многих нерешенных вопросов «функционирования» творческого мышления, например, о принципиальной необходимости и достаточно большом объеме разнообразных актов интуитивного мышления. Не говорится о том, что решение нельзя «вычислить», несмотря на то, что авторы делают особое ударение на терминах «алгоритм изобретения» и «оператор преобразования», как бы придавая им статус математических конструкций. Поэтому, во-первых, разные люди, используя рекомендуемые методики, далеко не обязательно получат одинаковые результаты. А во-вторых, поиск решения на основе АРИЗ имеет хотя и существенно уменьшенную, но все же неопределенную продолжительность, что опять-таки связано с присутствием принципиально не алгоритмизируемых актов мышления. Наконец, если при решении какой-либо проблемы не хватает объективных знаний и необходимо проведение научных исследований, то здесь также проходит граница возможностей ТРИЗ. Однако следует добавить, что ТРИЗ полезна и как инструмент проведения исследования. Этот учебник отражает более широкий и реалистичный подход авто-I ра к теории изобретения, не противопоставляющий, а объединяющий высокоэффективные модели ТРИЗ с хорошо зарекомендовавшими I себя методами интуитивного поиска. В заключение этого раздела приведем схему, отражающую основные этапы развития ТРИЗ (рис. 5.4).
Будучи студентом Минского политехникума и интересуясь изобретательством, я познакомился с ТРИЗ (которая еще не имела этого названия!) в 1963 году по первой книжечке Генриха Альтшуллера «Как научиться изобретать», изданной в Тамбове в 1961 году, которую бережно храню как одну из самых до3 заи 139 рогих моих реликвий. В 1965 году, находясь на преддипломной практике в одной из «самых секретных» организаций в Минске, вместе со старшими товарищами я пробовал применять ТРИЗ для изобретения элементов первых автоматов для сборки первых отечественных интегральных схем. Это было счастливое время творчества и энтузиазма! Это было время, вдохновляемое недавним полетом Юрия Гагарина и следующими полетами первых людей в космос! С тех пор у меня было достаточно времени убедиться в том, что ТРИЗ помогает резко сократить время на диагностику проблемы, создает кардинально лучшие возможности для понимания проблемы и возможностей ее решения, чем и подготавливает сознание к решающему шагу — нахождению идей решений. И всё же нужно помнить, что ТРИЗ не заменяет творческого мышления, а только является его инструментом. А хороший инструмент еще лучше работает в умелых и талантливых руках. Практикум к разделам 3—5" 1. Портрет звука В некоторых пещерах с рисунками определенных животных, сделанных еще 100 000 лет назад, можно и сегодня не только видеть эти рисунки, но и одновременно услышать звук бега этих животных или целого стада! Как прачело-век «записал» для потомков звуковой «портрет»? Кстати, похожим способом в других пещерах он мог «поговорить» с изображениями своих предков или мифических существ. 2. Александрийский маяк
Второе после Египетских пирамид чудо света — Александрийский маяк. По легенде, император повелел на выстроенном маяке увековечить его имя, а не имя строителя. Если главный строитель не сделает этого, его казнят. Строитель остался жив, но и потомки узнали его имя. Как строитель разрешил противоречивое требование? 3. Загадки пирамид При строительстве Египетских пирамид: a) Как древние строители могли получать ровное строго горизонтальное основание пирамиды, особенно если учесть, что площадь некоторых оснований исчислялась гектарами? b) Как могли измерять высоту строящейся пирамиды? c) Как обеспечить строгую симметрию пирамиды? d) Как обеспечивать одинаковые углы наклона ребер пирамид в 42° и, соответственно, наклон катетов сторон пирамид в 51' 52"? 4. Посол Исмений Греческий посол Исмений прибыл ко двору персидского царя Артаксиса I. Не хотел гордый посол кланяться, но и не поклониться нельзя, так как тогда переговоры не состоятся. Что сделал Исмений, приближаясь к креслу царя? 5. Коронация императоров В 800 году н. э. происходила коронация Карла Великого. По ритуалу возложить корону на Карла Великого должен был папа римский, что было необходимо для политического укрепления власти. Но император не хотел признавать себя ниже папы, так как по сути ритуала получалось, что папа мог возложить корону, но мог и отнять. И вот папа торжественно поднимает корону к 1,1 Некоторые задачи подобраны из популярных публикаций по 1'1'И t голове императора... Как разрешил Карл Великий противоречивую ситуацию? Через 1000 лет (!), когда в декабре 1804 года в соборе Нотр-Дам де Пари папа Пий VII приступил к коронации Наполеона Бонапарта, все произошло как при коронации Карла Великого. 6. Пизанская башня На конкурс проектов по спасению Пизанской башни за последние 60 лет было представлено около 9000 предложений со всего земного шара! Через 200 лет после начала ее строительства в 1173 году было обнаружено, что башня начала наклоняться. К 1370 году для создания противовеса был надстроен 8-й этаж. Высота башни достигла почти 60 м, а вес — 14 453 тонн. За следующие 600 лет основание башни ушло в землю почти на 3 метра, а отклонение 7-го этажа от вертикали достигло 4,47 м (рис. 3.4). В 1990 году башня была закрыта для посетителей.
Рие. 5.5. Наклонение знаменитой Пизансютй башни В 1993 году было выполнено моделирование и прогнозирование дальнейшего наклонения Пизанской башни. Экспертиза показала, что башня не простоит далее, чем до 2050 года, продолжая наклоняться со скоростью около 1 мм в год. В 1999 году бургомистр Паоло Фонтанелли открыл последнюю выставку проектов «Vva la torre!» (Да здравствует башня!). В 2000 году отклонение башни было уменьшено до 4,07 м, то есть на 40 см. Этого достаточно, чтобы башня не достигла критического отклонения еще в течение 300 лет. Возможно, скоро новые посетители пройдут вверх по 293 ступеням ее винтовой лестницы. Три вопроса: 1) Что Вы могли бы предложить для устранения опасности разрушения башни, не снижая ее исторической и эстетической ценности? 2) Как было устранено критическое наклонение башни? 3) Почему бы не выровнять башню полностью? А-Студия: алгоритмическая навигация мышления 6. От практики к теории 6.1. А-Навигация мышления Для эффективного решения изобретательских >а-лач высших уровней нужна эвристическая программа, позволяющая заменить перебор вариантов целенаправленным продвижением в район решении Генрих Лимит:иер Итак, мы начинаем знакомство с основами классической ТРИЗ. Классическая ТРИЗ стоит на мощном практическом фундаменте. Этим фундаментом являются патенты, миллионы патентов, аккумулировавших реальные решения и способы решения поставленных проблем, аккумулировавших опыт миллионов изобретателей. И это было фундаментальным открытием Генриха Альтшуллера — обратиться непосредственно к исследованию объективной информации, содержащейся в созданных изобретениях. Вторым открытием было определение содержания и целей необходимых исследований, на которых должна была строиться работоспособная теория: 1. В каждой технической системе, усовершенствованной в патенте, нужно выявить ключевую решенную проблему, выявить причины и структуру этой проблемы, определить инвариантные элементы (устойчивые признаки) реальных проблем. 2. Из каждого патента, особенно из патентов, обладающих большой ценностью, нужно извлечь ключевое преобразование, которое и определяет переход в этом патенте от постановки задачи к идее решения. Нужно классифицировать и систематизировать эти преобразования, оценить, как часто они встречаются и насколько они эффективны. 3. Нужно выявить также, каким образом можно в новых ситуациях находить подходящее преобразование для того, чтобы использовать его как образец, модель для поиска решения конкретно для каждой новой задачи. Исследование к настоящему времени более 2,5 миллионов патентов убедительно показало правильность стратегии, избранной основателем ТРИЗ. В результате в фундамент классической ТРИЗ были положены следующие три практических открытия:
1. Все реальные проблемы могут быть редуцированы всего лишь к трем различным видам и представлены только тремя соответствующими структурными моделями: Административная проблема — проблемная ситуация задана в виде указания недостатков, которые нужно устранить, или целей, которые нужно достичь, при этом причины возникновения недостатков, а также способы их устранения и достижения указанных целей не указаны: Техническая проблема — проблемная ситуация задана в виде указания несовместимых функций или функциональных свойств системы, из которых одна функция (или свойство) способствует достижению главной полезной функции всей системы (назначению системы), а вторая — противодействует; Физическая проблема — проблемная ситуация задана в виде указания одного физического свойства элемента или всей системы в целом, из которых одно значение этого свойства необходимо для достижения одной определенной функции системы, а другое значение — для другой, но при этом оба значения являются несовместимыми и обладают взаимоисключающими противоположно направленными тенденциями к их улучшению. Для каждой проблемы автором ТРИЗ была найдена точная структурнофункциональная модель в виде рассматриваемых в последующих разделах административного, технического и физического противоречий. Из этих моделей технические и физические противоречия обладают наибольшей конструктивностью, так как непосредственно поддержаны ТРИЗ-инструментами для их разрешения. Административные модели либо решаются методами, не имеющими прямого отношения к ТРИЗ, например, экономическими или проведением дополнительных научных исследований, либо требуют перевода к двум другим, конструктивным моделям. 2. Все известные решения получены на основе применения трансформаций, относящихся всего лишь к четырем классам: • прямые модели для разрешения физических противоречий (я называю их фундаментальными трансформациями, в ТРИЗ — «принципы»); • прямые модели для разрешения технических противоречий (специализированные трансформации, или «приемы»); • рекомендации для изменения физико-технических моделей в виде взаимодействий «поле-вещество» (комплексные трансформации, или «стандарты»); • рекомендации по реализации нужной функции на основе примеров стандартного или оригинального применения как известных, так и и новейших физико-технических явлений (базовые трансформации, или эффекты). Каждая модель дает пример решения изобретательской проблемы в общем виде в определенном классе моделей и для определенной ситуации. 3. На основе реинвентинга сотен тысяч изобретений в ТРИЗ была установлена последоватсльность шагов для рационального исследования исходной проблемной ситуации, для построения модели проблемы и выбора подходящей модели трансформации, для проверки правильности предлагаемых решений. Эти многошаговые схемы прошли длинный путь совершенствования и практическою применения, и в 1985 году были интегрированы Генрихом Альтшуллером в схему под названием «Алгоритм решения изобретательских задач — 1985», или, сокращенно, АРИЗ1985. АРИЗ-1985 является как бы сжатым конспектом всей ТРИЗ. Он сложен в изучении изза избыточности попутных пояснений, примечаний, отступлений. Именно это побудило автора настоящего учебника разработать в 1987 году более компактную схему, получившую название «Мета-Алгоритм изобретения» из-за ее большой общности.
Само понятие «алгоритм изобретения» до сих пор иногда вызывает критические замечания. Критика аргументируется тем, что в наиболее известном определении алгоритма, ориентированном на программирование компьютеров первых поколений, нет места неопределенности. Но это слишком узкое определение даже для современной компьютерной математики, оперирующей понятиями размытых, вероятностных, итерационных, рекуррентных или еще более сложных алгоритмов. А с точки зрения современной конструктивной математики, а также математической лингвистики, оперирующих моделями категорий и функторов, афинными и более сложными отображениями, такое применение термина «алгоритм» является уже совершенно корректным. Опираясь на приведенную аргументацию, мы можем сделать следующий логический шаг: определить основную цель классической ТРИЗ как обеспечение «алгоритмической навигации мышления». За этим понятием целесообразно закрепить название «А-Навигация», отражая в символе «А» алгоритмический характер поддержки процесса решения сложных проблем и отдавая одновременно должное автору классической ТРИЗ — Генриху Альтшуллсру. АНавигация и производные от этого понятия другие названия сохранят память об основателе ТРИЗ. Что касается понятия «мышление», включенного в определение, то чтобы не вызывать недоразумений и споров, его можно понимать суженно, как изобретательское мышление, или мышление при решении изобретательских проблем. А изобретательскую проблему здесь же можно упрощенно определить как задачу, содержащую несовместимые требования, «неразрешимое» противоречие. А вот понятие «навигация» представляется нам точным и чрезвычайно важным. Человек мыслит образами, метафорами, и использует определенную модель трансформации как пример, шаблон, аналог для создания решения по ассоциации, по аналогии. При этом человек наполняет модель конкретным содержанием из новой задачи, и модель направляет его мышление к цели. Обобщенные модели трансформации и иллюстрирующие их примеры играют роль навигаторов мышления или навигаторов изобретения, или в нашем обозначении, А-Навигаторов. Действительно, «навигация» означает как измерение местоположения движущегося объекта и, возможно, движущейся цели, так и прокладку пути к цели. Именно для этого и предназначены АРИЗ (А-Алгоритм) и А-Навигаторы! А-Алгоритм играет роль самой настоящей навигационной системы, предусматривающей анализ задачи и применение АНавигаторов (навигационных инструментов — «карт», «инструкций», «линеек», «шаблонов», «компасов», «циркулей» и т. п.) для построения пути к цели — созданию эффективного решения! Успешность же применения А-Алгоритма и А-Навигаторов зависит еще и от «капитана», «штурмана» или «лоцмана», управляющих движением, то есть от конкретных людей, решающих творческую проблему. Весь теоретический и практический инструментарий классической ТРИЗ можно расположить на трех иерархических уровнях (рис. 6.1). Отметим, что. строго говоря, этим уровням соответствуют и три вида проблем: административная, техническая и физическая. Однако, далее мы будем условно рассматривать все А-Навигаторы как инструменты оперативного уровня. Это оправдано тем, что часто эти инструменты используются даже тогда, когда не все еще решено на тактическом и стратегическом уровне. Причем эти попытки пробного оперирования с задачами позволяют лучше понять их свойства для тактического и стратегического управления.
Рекомендуемый по рис. 6.1 порядок изучения инструментария классической ТРИЗ обусловлен следующими преимуществами: 1. Методы оперативного уровня в наибольшей степени опираются на практику, и поэтому их первоочередное освоение позволяет быстрее начать применение инструментов ТРИЗ для решения практических задач (сначала несложных, конечно). 2. Знание оперативного уровня служит основой для понимания идей и методов высших уровней, так как изучение идет в направлении от более простого и практичного к более сложному и абстрактному. 3. При последующем изучении тактического и стратегического уровней на практических примерах еще больше закрепляется навык применения оперативного инструментария. 4. Наконец, оперативный уровень наиболее полно и убедительно разработан, что ускоряет формирование уверенности в конструктивности и эффективности ТРИЗ в целом. А-Навигаторы позволяют успешно решать не менее 80 % всех встречающихся на практике задач. Собственно, и сами эти модели были получены экстракцией из так называемых «стандартных» задач, которые как раз и составляют примерно 80 % мирового патентного фонда. Следует отметить, что «стандартный» характер задачи совсем не означает, что эта задача имеет очевидное и легко получаемое решение. Дело здесь только в том, что при исследовании (реинвентинге) установлено, что для решения таких задач достаточно было бы применения одного-двух «классических» приемов ТРИЗ. Конечно, эти задачи были решены без знания ТРИЗ, и скорее всего, на поиск решений было затрачено немало усилий и времени. Это только при учебном или исследовательском реинвентинге «легко» видеть, каким именно методом могла бы решаться та или иная «стандартная» задача. «Реконструкция» процесса решения при рассмотрении «стандартных» задач облегчается прежде всего потому, что из патентного описания известно конкретное решение и достаточно ясны признаки фактически реализованных трансформаций! В новой конкретной ситуации не просто распознать, можно ли решить возникшую задачу относительно простыми «стандартными» приемами. В то же время это не так важно, поскольку в любой ситуации вполне логично сначала пробовать применить более простые «стандартные» трансформации! Мы еще вернемся к определению сложности задач в разделах, связанных с тактическими и стратегическими моделями ТРИЗ. 6.2. А-Навигаторы изобретения
В этом разделе Вы сможете повторить за 30 минут весь путь, пройденный ТРИЗ за 45 лет. Мы вместе построим несколько А-Навигаторов! Мы выполним реинвентинг 9 примеров технических решений и увидим, каким образом были определены А-Навигаторы. Важно отметить, что сами избранные нами примеры могут быть заменены и другими, однако при достаточно большом их количестве результат реинветинга был бы тем же, который и получен в ТРИЗ. Внимание: пока Вы не познакомитесь со всеми нижеследующими примерами, не следует смотреть раздел Классические навигаторы изобретения А-Студии. И еще немного задержитесь здесь, чтобы самостоятельно подумать нал следующими вопросами: Что может быть общего в изобретениях, сделанных для самолета с вертикальным взлетом-посадкой, для сохранения дома у реки в случае наводнения и для ухода за виноградной лозой? Или в таких изобретениях, как автомобильный подъемный кран, конфета-игрушка «Kinder-Сюрприз» и трубопровод для удаления строительного мусора с верхних этажей ремонтируемого здания? Как связаны между собой способ защиты ценных декоративных пальм от жары, способ транспортировки природного газа в баллонах и способ производства шоколадных бутылочек с ликерным наполнением? Может ли в каждой из этих групп изобретений присутствовать некая общая идея, принципиально одинаковая модель, которую можно выявить, обобщить и применять впоследствии как один из творческих приемов? Реинвентинг по ТРИЗ положительно отвечает на эти вопросы. 6.2.1. Реинвентинг для построения специализированного А-Навигатора № 7 Рис. 6.2. Управление » первых образцах самолетов с вертикальным тлегом-ткалкоп (Приложение 4) Пример 4 (Задача). Самолет с вертикальным взлетом—посадкой. Эти самолеты выгодны тем, что для них не требуется взлетно-посадочная полоса. Однако в первых образцах взлет и посадка осуществлялись при вертикальном положении корпуса самолета (рис. 6.2). Пилот при этом лежал в кресле на спине и мог смотреть только вверх. При взлете это было еще допустимо, но посадка «на хвост» была слишком опасной из-за трудности визуального контроля и управления. Таким образом, в этой ситуации имеются функции или свойства, которые конфликтуют между собой при попытке реализовать главную полезную функ-
цию системы. А именно: вертикальное расположение корпуса самолета соответствует направлению старта/посадки, но неудобно для управления. Можно записать модель ситуации в виде следующего противоречия: функция: вертикальный взлет/посадка; требует (Плюс-фактор): вертикальное расположение корпуса самолета; при этом ухудшается (Минус-фактор): визуальный контроль и управление. Пример 5 (Задача). Дом у реки. Как сохранить дом, расположенный на берегу реки, в случае наводнения? На рис. 6.3,b показана ситуация, когда вода может нанести дому значительный ущерб. В этом примере присутствуют острокон-фликтующие между собой требования: дом должен быть близко к воде (по желанию владельца) при нормальных условиях, и дом должен быть далеко от воды (?!) при наводнениях. Второе условие выглядит как бы фантастическим, сказочным, но никак уж не инженерным, однако оно вполне правильно выражает физическое содержание условия для безопасности дома при наводнении. Можно записать модель этой ситуации в виде следующего противоречия: Объект: дом должен быть: рядом с рекой (при нормальных условиях); не должен быть: рядом с рекой (при наводнении). Кажется, что эти требования взаимно исключают друг друга. Пример 6 (Задача). Виноградная лоза. Зимой для уменьшения поражения виноградной лозы морозом, лозу снимают с поддерживающей проволоки и пригибают к земле, удерживая у земли колышками (рис. 6.4). Можно поставить такой вопрос: как уменьшить трудоемкость этой работы? В этом вопросе не содержится противоречия в явном виде. Это как раз и означает, что имеется явное административное противоречие: есть намерение улучшить систему, но не указано, что мешает достичь поставленную цель. Сформулируем модель задачи в виде следующего варианта противоречия: функция: укладка лозы на землю;
имеет Плюс-фактор: уменьшаются потери лозы (из-за поражения коры при морозе); имеет Минус-фактор: растут потери времени и затраты труда на эту операцию. Можно для той же задачи сформулировать инверсную модель: функция: оставление лозы на шпалерах; имеет Плюс-фактор: нет потерь времени и затрат труда на эту операцию; имеет Минус-фактор: растут потери лозы (поражение коры при морозе). Можно видеть, что модели в виде противоречия позволяют более точно определить, в каком направлении нужно искать решение, и что может ограничивать поиск решения. А теперь рассмотрим известные запатентованные идеи решений. Пример 4 (Решение). Самолет с вертикальным взлетом—посадкой. В патентном фонде имеется немало идей для решения поставленной проблемы. Все они достигали главной цели: сохранить нормальное положение пилота при старте и посадке и обеспечить тем самым требуемый уровень безопасности. И было нечто общее во всех этих идеях: введение в систему подвижной части — поворачивающихся крыльев, поворачивающихся двигателей и т. п. Например, при старте/посадке двигатели могли быть в вертикальном положении, как указано на рис. 6.5,а. При полете двигатели поворачивались в горизонтальное положение (рис. 6.5,b). При этом корпус самолета остается как бы неподвижным, ориентированным горизонтально при старте и посадке, а пилот имеет нормальные условия для наблюдения и управления. Пример 5 (Решение). Дом у реки. Ключевая идея запатентованного в 1994 году фирмой Winston International, штат Колорадо, США решения (рис. 6.6): дом сделан подвижным, перемещающимся! Это решение строго реализует обе части сформулированного противоречия! Во время наводнения дом всплывает, так как его подземная часть выполнена в виде герметичного понтона, заполненного к тому же плавучим веществом, например, пенопластом. При этом, обратите внимание (!), вода сама удаляет от себя дом, поднимая его над опасным уровнем. Дом удерживается также раздвижными телескопическими сваями. Для долговременного функционирования дом может иметь запасы продуктов и воды и источник энергии в виде дизельного двигатель-генератора электроэнергии.
Пример 6 (Решение). Виноградная лоза. Я полагаю, что уважаемые читатели уже догадались применить найденный общий подход из предыдущих двух решений! Перед зимой виноградную лозу вовсе не снимают с поддерживающей проволоки, а пригибают к земле всю шпалеру, которая снабжена шарнирами у основания стоек (рис. 6.7). То есть и здесь ключом к решению проблемы послужило придание всей конструкции динамизма, подвижности. Таким образом, из совершенно разных проблем и их решений извлечена одна и та же ключевая идея, один и тот же способ решения, который можно определить как особый изобретательский прием. В ТРИЗ этот прием называется «Динамизация» и имеет № 07 в АКаталоге специализированных приемов. На основании реинвентинга многих тысяч изобретений сформулировано обобщенное краткое описание этого приема в виде набора следующих рекомендаций: a) характеристики объекта (или внешней среды) должны меняться так, чтобы быть оптимальными на каждом шаге работы; b) объект разделить на части, способные перемещаться относительно друг друга; c) если объект неподвижен, сделать его подвижным, перемещающимся. 6.2.2. Реинвентинг для построения специализированного А-Навигатора № 34 а) Ь) Рис. 6.8. Автомобильный подъемный кран при транспортировке ( л 1 и в работе (hi (Приложение 4) Пример 7. Подъемный кран на автомобильной платформе. Мы все видели эти подъемные краны. Но все ли мы, или хотя бы все ли инженеры задумывались о том, какой именно изобретательский прием применен в качестве основного принципа его конструкции? Основное противоречие, которое нужно было решить при создании такого крана, может быть сформулировано следующим образом: стрела крана должна быть длинной в рабочем состоянии и должна быть не намного длиннее всего несущего автомобиля для транспортировки. Принципиальное решение состоит в том, что конструкция стрелы сделана подвижной (применена Динамизация), а главное — состоящей из множества фрагментов, вложенных один в другой (рис. 6.8).
Пример 8. Строительный мусоропровод. В изобретении используются пустотелые конусы, которые полностью вкладываются друг в друга при транспортировке и затем выдвигаются почти на всю свою высоту, оставаясь частично вложенными, для создания «трубы» нужной длины! По этой трубе строительный мусор попадает с верхних этажей прямо в контейнер для вывоза мусора (рис. 6.9). Пример 9. Шоколадная конфета «Kinder-Сюрприз». Признаюсь, что я не отказываю себе в удовольствии приносить иногда домой эти конфеты удивления и радости. Действительно, никогда не знаешь, что там обнаружится внутри! Это может быть модель автомобиля или самолетика, медвежонок или домик и так далее, — фантазия у создателей этого продукта просто бесконечна! Но главный сюрприз, как правило, состоит в том, что в собранном виде любая из этих игрушек не могла бы разместиться внутри конфеты! И поэтому спрятанные там игрушки состоят из нескольких частей, складываемых так, чтобы пустота внутри одной части заполнялась другой частью. Это и есть главный принцип этой конфеты, примененный в ней многократно: посмотрите также с этой точки зрения на саму съедобную часть и даже на обертку (рис. 6.10). Суммируя результаты реинвентинга, можно прийти к заключению, что Вы имеете дело с принципом многократного вложения одного объекта в другой, в соответствии с которым рационально используется пустота. Благодаря этому экономится пространство и совмещаются совершенно «несовместимые» функциональные свойства.
а) Ь) Рис. 6.10. Конфета «Kinder-Сюрприз» (а) и игрушка из пес (Ь) В классической ТРИЗ этот прием получил образное название «Матрешка» по названию русской народной игрушки (рис. 6.11), в которой несколько дере- вянных пустотелых и разъемных кукол вложены последовательно одна в другую (см. прием № 34 в А-Каталоге). На основе реинвентинга тысяч подобных изобретений было составлено следующее лаконичное описание этого приема: a) один объект размещен внутри другого объекта, который в свою очередь находится внутри третьего и т. д.; b) один объект проходит сквозь полость в другом объекте. 6.2.3. Выявление физико-технического эффекта, определение всех (!) четырех фундаментальных навигаторов, комплексного навигатора № S2-4 (Стандарт 5.3.1 — Приложение 2) и специализированных навигаторов № 10 и № 11 (Приложение 4) Пример 10. Как спасают пальмы на центральном бульваре от жары. Мой младший сын рассказал мне об одном «ТРИЗ-решении», которое он заметил в Валенсии, в Испании, когда проходил там практику по испанскому языку. Для спасения пальм на центральном бульваре от жары на землю вокруг основания пальм кладут крупные куски льда. Лед медленно тает и непрерывно снабжает ценные деревья водой, бывает, что в течение нескольких дней, если его присыпают сверху корой и листвой. Поскольку мы обмениваемся в семье такими замеченными нами примерами, то позднее старший сын рассказал нам, что увидел этот же способ, будучи на конференции в Сан-Диего в Калифорнии. Оба моих сына избрали себе профессии, весьма далекие от физики или химии, но их школьных знаний вполне хватило, чтобы точно назвать явление, которое было здесь использовано. Это — фазовый переход, в данном случае, переход воды из твердого состояния (лед) в жидкое. Именно это физическое явление было использовано в технологическом способе «непрерывного полива» деревьев, то есть получило пример технического применения. Совместное представление физического явления с указанием его возможного технического применения и дает описание определенного базового АНавигатора, или физико-технического эффекта (по терминологии классической ТРИЗ).
Кстати, а какую структуру имеет проблема, разрешенная этим изобретательным способом? Сформулируем противоречие в следующем виде: 1) вода должна быть под пальмой, чтобы дерево могло перенести жару; 2) вода не должна быть под пальмой, так как она быстро уходит в землю или испаряется от жары. Такое острое противоречие, обусловленное физическими процессами, протекающими в физических объектах, как правило, наиболее эффективно решается с помощью фундаментального А-Навигатора № 4: разделение противоречивых свойств в веществе. В данном случае такое разделение произошло на основе использования возможности перехода вещества в другое фазовое состояние. Действительно, вода может долго находиться под пальмой, но в состоянии льда. Точнее, на некотором интервале времени (пока лсд полностью не растает) в одной области пространства (на земле вокруг пальмы) вола находится в двух состояниях: одна часть — в виде льда, а другая — в виде жидкости. Эта рекомендация в конкретном и практичном виде содержится также в комплексном А-Навигаторе № S2-4 (Стандарт 5.3.1): Использовать дробление вещества (поля), применить капиллярно-пористые структуры, ввести динамизацию полей и компонентов, использовать фазовые переходы вещества, применить согласование/рассогласование ритмики и частот. А-Навигаторы были получены на основании реинвентинга десятков тысяч изобретений, которые показали, что именно такими трансформациями были получены выдающиеся технические идеи. В то же время в учебнике не обязательно и даже не желательно объяснять модели трансформаций на сложных технических примерах, понятных сравнительно узкому кругу специалистов. Напротив, следует подбирать примеры, понятные как можно более широкому кругу читателей. Этому принципу мы будем следовать и далее. Для закрепления только что проведенного реинвентинга рассмотрим еще две учебные задачи из классической ТРИЗ. Пример 11. Как обеспечить подачу газа в шахту. Для ряда операций в шахтах иногда целесообразно использовать горение некоторого рабочего вещества, например, природного газа. Возникает следующая проблема: газ должен быть непрерывно в зоне проведения технологических операций, и избытка газа не должно быть для обеспечения пожарной безопасности. Кроме того, система шлангов и труб длиной в несколько километров является сложной и дорогой. Для обеспечения безопасности всей системы не строят систему шлангов или труб, а поставляют газ отдельными порциями в баллонах. При этом газ не сжимают, а переводят в жидкое состояние, в котором он занимает малый объем. Сменные баллоны хранятся в шахте на достаточно большом расстоянии от места горения газа. В этом «простом» технологическом изобретении реализовано сразу несколько АНавигаторов! Во-первых, применены уже знакомые нам фундаментальный А-Навигатор № 4 и комплексный навигатор № S2-4. Во-вторых, применен фундаментальный А-Навигатор № 2: разделение противоречивых свойств во времени. Действительно, рабочее вещество находится во время горения в газообразном состоянии, а для хранения и транспортировки — в жидком. Причем для конкретного баллона эти интервалы времени частично пересекаются, то есть имеют общую часть, длящуюся от начала использования конкретного баллона до тех пор, пока в нем не закончится газ (обратите внимание на аналогию с тающим льдом под пальмами).
В-третьих, применен фундаментальный А-Навигатор № 3: разделение противоречивых свойств в структуре. Осуществлен переход от непрерывной системы транспортировки газа к дискретной, порционной, однако, вся система в целом по-прежнему обеспечивает непрерывную подачу газа в рабочую зону. То есть, части системы имеют одно функциональное состояние, а вся система в целом — противоположное! Пример 12. Как делают шоколадные бутылочки с ликером. Такие бутылочки можно получать, например, таким способом: отливать из горячего жидкого шоколада пустотелые бутылочки, после остывания наполнять их ликером и закрывать бутылочку, снова разогревая верх горлышка до жидкого состояния и сжимая горлышко до образования сплошной головки вверху бутылочки. При этом каждая бутылочка создается из двух сплавляемых половинок, для чего вдоль линии соединения этих половинок шоколад снова нужно разогревать до жидкого состояния. Этот способ был сложен, дорог и низкопроизводителен. Это объясняется тем, что сложны и дорогостоящи формы для заливки шоколада. Низкая производительность объясняется медленным процессом наполнения и освобождения форм, медленным процессом соединения половинок бутылочки, медленным процессом заливки ликера, необходимостью закрытия горлышка бутылочки. Здесь активно используется фундаментальный А-Навигатор № 4 и физикотехнический эффект фазового перехода веществ. Однако, вся технология недостаточно эффективна. Административная проблема: как можно улучшить процесс в целом? «Идеальный» технологический процесс должен исключить дорогие формы для заливки шоколада, должен исключить получение бутылочки из двух половинок, должен исключить операцию закрытия горлышка бутылочки! То есть, мы требуем совершенно невозможного! Но, может быть, «невозможного» только в рамках старой технологии? А почему бы не изобрести новую технологию, именно ту, которая нам нужна, более «идеальную»?! Что нам мешает? Прежде всего, нам мешает устойчивое стереотипное представление о «неизменяемой» последовательности операций в известном технологическом процессе. Нам мешает стереотипное представление о «неизменяемых» состояниях веществ в технологических операциях. Тогда давайте представим себе мысленно «идеальный» технологический процесс, не задумываясь вначале о том, как он может быть реализован. То есть представим его только как идеальную функциональную модель. Пусть расплавленный шоколад заливается в некую «невидимую» форму так, что сразу приобретает форму бутылочки, как будто внутрь металлической формы вложена тоже «невидимая» форма в виде бутылочки. Посмотрите этот процесс мысленно еще и еще раз! Обратите внимание, как обтекает шоколад прозрачные формы. Кстати, не кажется ли вам, что верхняя форма вовсе не нужна, так как шоколад вполне точно обтекает линии внутренней формы?! Давайте откажемся от верхней формы! Уже неплохо! Но что делать с внутренней формой? Как ее извлечь из застывшей на ней шоколадной бутылочки? Снова наблюдаем, как расплавленный шоколад обтекает нечто невидимое, прозрачное, как стекло или лед. Кстати, «идеальный» технологический процесс тот, в котором результат есть, а самого процесса как бы и нет! То же можно сказать и о некоторой «идеальной» системе: функция есть, а системы нет, и она не потребляет энергии и не занимает пространство. Применим эту «идеальную» функциональную модель к нашей задаче. Пусть внутреннюю форму вообще не нужно извлекать! Это может означать, например, что она станет полезной частью готового изделия!? Вы еще не догадались? Тогда попробуйте не читать дальше и снова мысленно наблюдайте, как шоколад обтекает некую «внутреннюю форму». Подумайте, как из чего-то «полезного» можно сделать «неизвлекаемую» форму?
Думаю, что Вы уже нашли решение: в качестве «внутренней» формы можно использовать предварительно замороженный ликер. Я не привожу поясняющего рисунка, чтобы не лишать Вас удовольствия нарисовать этот процесс самостоятельно. Попробуйте! Это полезно и интересно. А наша цель состоит в том, чтобы раскрыть теперь теоретическую, абстрактную сторону этого решения. Во-первых, мы применили фундаментальный А-Навигатор № 4 не только к шоколаду, что имело место в традиционной технологии, но и к ликерному наполнителю. Во-вторых, мы дважды применили комплексный А-Навигатор S2-4 в части, касающейся физико-технического эффекта фазового перехода: замораживание ликера с его последующим таянием внутри готовой бутылочки и расплавление шоколада с последующим его остыванием на ледяной вначале ликерной форме! В-третьих, здесь работает фундаментальный А-Навигатор № 1: разделение противоречивых свойств в пространстве. Вместо поиска действительно невозможного способа извлечения внутренней формы из готовой шоколадной бутылочки (если бы форма действительно была металлической) нужно исследовать ресурсы самого внутреннего пространства! При этом все противоречия снимаются путем использования пустого пространства внутри бутылочки для заполнения полезным веществом! Наконец, мы использовали еще два специализированных А-Навигатора! Ледяная ликерная форма есть не что иное, как несколько уменьшенная копия всей шоколадной бутылочки (готового продукта). А это есть реализация части специализированного А-Навигатора № 10 «Копирование»: вместо недоступного, дорогостоящего, неудобного или хрупкого объекта использовать его упрощенные и дешевые копии. В новой технологии не ликер «заливается» в бутылочку, а бутылочка «наливается» на замороженный ликер! А это есть реализация специализированного А-Навигатора № 11 «Наоборот»: a) вместо действия, диктуемого условиями задачи, осуществить обратное действие (например, не охлаждать объект, а нагревать); b) сделать движущуюся часть объекта (или внешней среды) неподвижной, а неподвижную — подвижной; c) перевернуть объект «вверх ногами», вывернуть его наизнанку. Мы рассмотрели еще не все модели трансформаций, которые скрыты даже в этих несложных примерах. Но наша цель была в том, чтобы увидеть их реальное существование в окружающих нас реальных объектах. Уже теперь Вы можете подойти к анализу интересующих Вас задач более внимательно, с более глубоким пониманием скрытых системных связей. Ваши аналитические и творческие возможности неизмеримо увеличатся, когда Вы тщательно изучите «навигаторы мышления» и А-Алгоритмы, предлагаемые в этом учебнике. И все же иногда Вы установите, что задача не решается на основе доступных Вам методов и знаний. Вы можете прийти к выводу, что нужно заменить всю систему в целом, может быть даже заменить сам принцип, на котором система основана, и провести дополнительные научные исследования. Но и в таких случаях Ваше решение не будет отступлением или поражением, а будет обоснованным стратегическим решением. 7. Дисциплина творчества 7.1. Вдохновение и дисциплина
В 1996 году я представлял пионерский софтвер «Invention Machine» и его новейшую версию «TechOptimizer» фирмы Invention Machine Corp., USA на крупнейшей всемирной индустриальной выставке Industriernеsse в Ганновере, Германия. Оставляя иногда свой стенд на ассистента, я посещал другие стенды и предлагал специалистам R&D 62 наши методы и софтвер. Софтвер и методы имели большой успех. Напротив был павильон крупной компании из-под Штутгарта, производящей электромоторы в огромном диапазоне размеров — от миниатюрных для приборостроения до многометровых для океанских судов. На длинной магнитной доске робот-манипулятор непрерывно переставлял магнитные кружочки, сохраняя в целом следующий рекламный слоган: КАЧЕСТВО МЫШЛЕНИЯ = КАЧЕСТВО ПРОДУКЦИИ Я записал этот ударный слоган для применения на семинарах и вскоре встретился с профессором, руководителем R&D-отделения этой компании. Его первая реакция на мое предложение познакомиться с ТРИЗ и софтвером была очень лаконичной, отразившей позицию многих руководителей компаний и даже отделений R&D. Он ответил холодно и вызывающе: у нас нет проблемы изобрести, а вот может ли ваша «Invention Machine» помочь нам продавать?! Завершение нашей дискуссии я привожу далее в разделах Стратегия изобретения и Тактика изобретения. А вот для обдумывания записанного слогана появилось гораздо больше оснований. Хотя в целом желание достичь более высокой конкурентоспособности без инноваций можно было сразу же определить как «бунт на коленях» по образному выражению самого Генриха Альшуллера в подобных ситуациях. После этого в течение 3 лет состоялось еще около 130 встреч с представителями промышленности и исследовательских организаций. В итоге представление о качестве мышления приняло следующий вид (рис. 7.1). Функциональная полнота означает способность и готовность создавать идеи с учетом комплексных требований к качеству системы (продукта). Решение, ориентированное только на один показатель, часто оказывается непригодным и R&D — research and development (англ.): исследование и рашптие. из-за острого конфликта с другими показателями качества системы или из-за конфликта с другими системами, например, с Природой. Конструктивность означает способность и готовность целенаправленно и обоснованно совершенствовать систему, не отступая от цели, но и не поддаваясь амбициозным или, наоборот, пораженческим настроениям. Конструктивность означает также способность и готовность к прорыву, к лидерству.
Скорость означает способность отвечать на вызов без запаздывания. Скорость означает способность уходить в отрыв и предложить вызов. Устойчивость — мышление должно успешно выдерживать воздействие мешающих факторов. Что снижает качество мышления? Ответ на этот вопрос также сформировался на основе еще более продолжительного времени и опыта (рис. 7.2). Уэкая специализация Негативные стереотипы мышления Слабая мотивация Негативные эмоции • Угадывание решения вместо Отсутствие структурирования проблемной ситуации Нечувствительность к противоречиям Однотипность подхода - Страх перед проблемой - Страх перед ошибкой • Стресс «Здесь.—и— Неудовлетворите льное самочувствие Рис. 7.2. Негативные факторы, снижающие качество мышления Сейчас» Детренированность. усталость, болезнь Полная компенсация всех указанных на рис. 7.2 негативных факторов была бы возможна при реализации следующих позитивных факторов (рис. 7.3). Однако пока не приходится рассчитывать на немедленное изменение системы высшего образования, равно как и на повсеместное преподавание ТРИЗ. В то же время есть возможность самостоятельного изучения ТРИЗ и прохождения тренингов по этой технологии. Все больше и больше фирм предлагают услуги в этом направлении. Далее, в чем конкретно лежат затруднения, с которыми каждый специалист сталкивается в своей работе почти непрерывно? Чем различаются такие, казалось бы, одинаковые понятия, как «задача» и «проблема»? Ответы на эти вопросы могут немало прояснить также, в чем разница между творческим и рутинным, стандартным решением.
Рекомендации большинства методологов творчества относятся в основном к этапу генерации решения, к моменту, в котором предшествующий труд и упорное размышление над проблемой соединяются с вдохновением и приводят к озарению, инсайту и возникновению идеи. При этом немало полезного разработано для развития таких компонентов творчества, как ассоциативное мышление, концентрация внимания, улучшение памяти, преодоление негативных стереотипов. Наши усилия по созданию эффективных технологий для решения творческих проблем мы также концентрируем именно здесь. Хотя, как будет видно из дальнейшего, ТРИЗ охватывает все этапы решения проблем. И кроме этого, целью ТРИЗ является сокращение трудоемкости подготовки проблемы к решению и создание принципиально более благоприятных условий для проявления личных способностей специалиста, для укрепления его уверенности в правильности и эффективности наших методов. Именно надежность и эффективность методов ТРИЗ создают реальную мотивацию, ведущую к настоящему вдохновению. Нередко даже задачи одного типа могут быть решены только различными методами. Обычно это связано с уровнем сложности задачи. Причем, если задача становится сложной из-за ее размерности, то можно говорить о сложности как о большой трудоемкости. Задачу часто называют проблемой именно из-за большой трудоемкости решения. Предположим, что для поиска оптимального сочетания параметров какого-либо объекта Вам надо рассмотреть 10 факторов при 10 значениях каждого из них. Если даже Вы будете тратить на анализ одного сочетания 1 секунду, то решение всей задачи потребует более 300 лет! Здесь не обойтись без математической модели и хорошего компьютера. Более того, многие комбинаторные задачи не под силу и современным компьютерам. И все же главным признаком для определения задачи как проблемы является недостаточность или недостоверность информации о задаче или о методе ее решения (рис. 7.4). К особому признаку относится ограничение по каким-либо ресурсам, особенно часто — по ресурсу времени для решения задачи. Иногда даже простые задачи превращаются в серьезные проблемы при недостатке времени для их решения. Рассмотрим несколько примеров. Пример . Перемножение в уме двух однозначных чисел, например. 5 х 6 = 30, является простой задачей. Более того, это стандартная табличная задача, для которой известен и автоматически воспроизводится ответ (решение).
Пример . Перемножение в уме двух трехзначных чисел, например. 479 х 528 = ?, да еще при ограничении времени на решение, допустим. 20 секундами, мало кому доступно из людей всей планеты. Это — трудно разрешимая без специальной тренировки проблема. Хотя существует метод перемножения с записью «в столбик», который вполне за минуту позволяет решить эту задачу. Пример гг'. Всего лишь 2 века назад решение квадратичного уравнения вида выполняли только графически или последовательным подбором подходящих решений (корней). Сейчас метод решения представлен в известной аналитической формуле: Проблема была переведена в ранг задачи. Пример . Злой герой из известной легенды, желая завладеть юной красавицей, ставит условие, по которому он освободит от долга ее отца и отпустит ее, если она при свидетелях на площади достанет из мешочка белый камешек, а не черный. При этом он тайно кладет в мешочек два черных камешка. Что Вы посоветуете девушке для спасения? (Дополнительная информация: девушка достоверно узнала о коварном замысле.) Пример . Известно, что дорожные пробки на автобанах и на улицах городов возникают потому, что пропускная способность (основной функциональный ресурс) этих транспортных путей исчерпана, по крайней мере, в часы «пик» либо при малейшем появившемся препятствии в виде неисправного или разгружающегося автомобиля, ремонта ближайшего к дороге здания или дороги. В Германии, например, исчерпаны ресурсы земли для строительства параллельных путей. Можете ли Вы предложить перспективные технические идеи для модернизации существующих автобанов и улиц? Можете ли Вы предложить новые транспортные системы для городов и междугородных коммуникаций? Можете ли Вы основательно защитить свои идеи? Вполне очевидно, что решение проблем, приведенных в примерах и , требует изобретательного подхода и незаурядных творческих способностей. Так, для решения проблем, представленных в примере , сегодня (начало III тысячелетия!) работают целые исследовательские институты. Но эффективные решения еще не известны человечеству! Решение примера , найденного бедной девушкой, казалось бы, в безнадежной ситуации, объясняет нам психолог и педагог Edward de Bono. Девушка достает один из камешков и выбрасывает его, не показывая никому, после чего просит всех посмотреть на оставшийся камешек. Если он черный, то выброшенный камешек был белый, и, следовательно, они с отцом свободны! Злой герой проиграл, так как он не может раскрыть свой замысел, отказываясь достать оставшийся камешек и требуя найти выброшенный. Полезность этого примера и его объяснения не только в том, что мы не должны сдаваться вообще ни в каких ситуациях, но и в том, что мы должны как минимум рассмотреть ситуацию с разных точек зрения, учесть возможности изменить ее, найти ресурсы для этого, часто спрятанные совсем рядом. Действительная проблема нередко заключается в том, что мы либо вообще не пытаемся найти не очевидные на первый взгляд ресурсы, либо, надо признать, не умеем это делать. Ориентировочная оценка количества задач разного уровня сложности, встречающихся в патентном фонде, полученная еще Г. Альтшуллером, близка к известной пропорции «80 : 20» (рис. 7.5).
В основе решения любой задачи лежат профессиональные знания. Это условие необходимое, но не достаточное. Для того, чтобы перевести проблему в ранг задачи (рис. 7.4), нужно, как минимум, удовлетворить условиям достаточности, а именно, иметь полную и достоверную информацию о проблемной ситуации, располагать достаточными ресурсами и знать методы, с помощью которых можно всю совокупность очевидных и скрытых ресурсов трансформировать в идею решения. Еще раз вспомним, что рекомендуют такие традиционные подходы, как. например, метод фокальных объектов, брейнсторминг, синектика и морфологический анализ (рис. 2.2—2.5): • ищите случайные ассоциации; • фантазируйте; • почувствуйте себя в роли объекта; • перебирайте все возможные комбинации. Эти методы в целом небесполезны и нередко могут привести к решениям некоторых стандартных проблем. Но с ростом сложности проблем эти методы быстро теряют свою эффективность. Строго говоря, они не способны стимулировать вдохновение. Следствием являются длительные и беспомощные поиски, большие материальные и интеллектуальные затраты, слабые и непригодные идеи, ошибочный отказ от достижения действительно перспективных целей. Нужны высокоэффективные методы направленного мышления при решении конструкторско-технологических проблем с острыми физико-техническими противоречиями. Нужны конкретные конструктивные навигаторы для конкретных проблемных ситуаций. Именно ТРИЗ предоставляет мыслительные навигационные инструменты и навигационные системы для решения как стандартных, так и нестандартных технических проблем. ТРИЗ является системой, дисциплинирующей мышление. Специалист, владеющий ТРИЗ, психологически защищен и вооружен, так как глубоко сознает, что он владеет лучшим инструментарием для изобретательного мышления, который до настоящего времени выработало человечество. Это дает уверенность в своих силах и, как ничто другое, способствует вдохновенному и смелому решению проблем. 7.2. Мета-Алгоритм Изобретения ТРИЗ является качественной теорией. Модели такой теории представляют собой рекомендации, правила, инструкции, рецепты, образцы. Все эти модели служат инструментами для мышления, являются навигаторами мышления. ТРИЗ — не единственная качественная теория. Достаточно указать на такие «настоящие» теории, как качественная физика, качественная теория информации,
психология или медицина, многие разделы химии. Качественные модели лежат в основе теорий живописи и кинематографа, музыки и литературы, спорта, маркетинга, обучения, теории военной стратегии, тактики и оперативного искусства и так далее, практически для любой области знаний и деятельности людей. ТРИЗ является конструктивной теорией. Такими же конструктивными являются и другие указанные выше теории. Конструктивизм имеет здесь двойное основание. Первым, неформальным, основанием является сугубо прагматическая интерпретация моделей и назначения каждой теории: ориентация на прикладные проблемы, на получение практических результатов на основе систематизированного и обобщенного опыта, на основе экспериментального подтверждения осуществимости и эффективности применяемых моделей теории. Например, психологи часто оправдывают свои модели и теории следующим конструктивным тезисом: мы не знаем точно, как работает мозг, но во многих случаях мы точно знаем, как помочь индивидууму принимать правильные решения. Вторым, формальным, основанием может служить строгое соответствие моделей качественных теорий концепциям конструктивной математики. Очень упрощенно, но сохраняя корректность, можно сказать, что конструктивная математика имеет дело с качественными моделями, определяемыми следующим конструктивным способом: 1) фиксируются исходные конструктивные объекты, определяемые, в частности, в виде примеров или образцов; 2) фиксируются правила (не обязательно аксиоматические), по которым строятся новые объекты из уже имеющихся; 3) фиксируются условия, налагаемые на исходные и построенные объекты и определяющие их конструктивность (например, осуществимость, полезность и эффективность). Совокупность правил, определяющих построение новых конструктивных объектов, называется алгоритмом. Обобщенные алгоритмы, на основе которых могут быть построены специализированные (ориентированные на определенное приложение, на определенный класс моделей) или детализированные (более точные) алгоритмы, называются метаалгоритмами. Рассмотрим некоторые вспомогательные примеры. Пример n6. Вы готовитесь организовать вечеринку. Вы определяете предварительно, сколько ожидается гостей, какие типы коктейлей Вы хотите предложить, сколько приготовить готовых коктейлей, какие коктейли можно будет готовить непосредственно во время вечеринки по вкусу гостей, стоимость вечеринки, наличие запаса нужных для коктейлей компонентов. Затем, не слишком полагаясь на свою память, Вы обращаетесь к справочной книге с рецептами коктейлей и выбираете нужные разделы по типам коктейлей, например, алкогольные и безалкогольные, с определенным видом напитка, со льдом или без льда. Затем Вы выбираете известные или новые названия, изучаете каждый рецепт, уточняете и, возможно, несколько меняете компоненты и пропорции, аранжируя букет коктейля в соответствии с Вашим оригинальным вкусом. Наконец, Вы проверяете, все ли коктейли Вы «спроектировали», и есть ли у Вас все необходимое, чтобы коктейлей хватило на все время вечеринки. Это описание можно рассматривать как «мета-алгоритм» подготовки коктейлей для вечеринки. Заметьте, не конкретного коктейля, а любого одною иди нескольких коктейлей! При этом рецепт для приготовления конкретного коктейля можно рассматривать как алгоритм для навигации Вашего мышлении с целью приготовления этого конкретного коктейля. Выделим в этом «мета-алгоритме» вполне очевидные этапы, на которых решаются разные по содержанию задачи. Если организацию вечеринки принять за проблему, то на первом этапе Вы занимались изучением проблемной ситуации: определяли количество гостей, вспоминали их вкусы, придумывали типы коктейлей и т. д. На втором этапе Вы
обратились к справочнику, чтобы проверить правильность того, что Вы помнили о некоторых коктейлях, или узнать о новых рецептах. На третьем этапе Вы работали с моделями — рецептами коктейлей, чтобы воспроизвести их или аранжировать новые. Наконец. Вы проверили свою готовность к проведению вечеринки. Весь мета-алгоритм уложился в четыре крупных этапа, которые вполне понятны и которые на самом деле имеют намного больше деталей для описания всех практических действий. Можно дать названия этим этапам, например, в следующем виде: диагностика (проблемной ситуации), редуцирование (приведение к известным моделям), трансформация (получение идей на основе направляющих правил трансформации) и верификация (проверка потенциальной достижимости целей). В заключение этого примера отметим лишь, что редкий справочник содержит больше, чем несколько десятков рецептов-«моделей». Так и в ТРИЗ: из нескольких десятков основных ТРИЗ-моделей можно построить нужный набор для решения конкретной задачи. То есть направленное комбинирование А-Навигаторов позволяет решать десятки и сотни тысяч самых разных задач. Пример n7. Для решения практических задач производства, планирования. проектирования, управления, исследований разработаны и разрабатываются тысячи математических моделей и вычислительных алгоритмов. Для каждого класса задач существует определенная обобщенная схема решения любой за дачи, принадлежащей этому классу. Эта обобщенная схема и есть «мета-алгоритм». Рассмотрим, например, упрощенный «мета-алгоритм» решения систем линейных алгебраических уравнений (рис. 7.6) для некоторой практической задачи. Модели линейной алгебры имеют большое практическое значение для задач обработки экспериментальных данных по методу наименьших квадратов, для приближенного решения линейных интегральных и дифференциальных уравнений методом конечных разностей (например, при компьютерном ЗD-моделировании) и т. п. Выбор практического способа решения систем линейных алгебраических решений зависит от структуры исходных данных, объема системы (количества неизвестных
переменных) и даже от вычислительной мощности компьютера. Например, выбор метода решения хорошо обусловленных систем при достаточно большом объеме данных становится нетривиальной проблемой (существует большое количество итерационных методов, методов скорейшего спуска, минимальных неувязок и других, обладающих различной эффективностью); Более того, для некоторых структур данных задача может не иметь «классического» точного решения {некорректно поставленные и плохо обустовленные задачи). Для данного класса задач «мета-алгоритм» обладает свойством инвариантности, так как не зависит от содержания конкретных процедур его этапов. Важно отметить, что этапы Диагностика и Верификация относятся к области существования задачи, то есть к определенной области практического применения линейных уравнений. Этапы Редукция и Трансформация относятся к математической теории линейной алгебры. Поэтому переходы 1 и 3 требуют знания и теории моделей, и прикладной области их применения. Переход 2 требует умения строить и решать модели теории. Даже для применения относительно «простых» упомянутых здесь моделей не все выпускники высших заведений успевают получить за время учебы достаточные практические навыки. Аналогично нужно быть готовым к тому, что ТРИЗ-методы также нужно будет как можно больше совершенствовать на практике и на тренингах. Пример . Приведем численное решение для Примера . Пусть в двух цехах завода работает разное количество станков двух типов. Для точного определения средней мощности, потребляемой станком определенного типа, было решено воспользоваться имеющимися измерениями расхода электроэнергии по каждому цеху за сутки. На этапе диагностики проблемы было установлено количество станков каждого типа и данные по потреблению электроэнергии. На этапе редукции была построена система из двух линейных уравнений с двумя неизвестными. На этапе трансформации из двух простейших подходящих методов (метод исключения переменных и метод замены и подстановки переменных) выбрали последний. На этапе верификации путем прямой подстановки полученных значений искомых переменных в исходные уравнения убедились в правильности решения задачи. Этот пример (рис. 7.7) служит предельно простой практической иллюстрацией абстрактной схемы, приведенной на рис. 7.6 и представляется важным для наработки навыка работы с моделью типа «мета-алгоритм» перед переходом к освоению схемы «Метаалгоритм изобретения».
Теперь у нас есть все необходимое, чтобы рассмотреть классические ТРИЗ-примеры, в которых сжато отражается вся классическая ТРИЗ. Но для упорядочивания процесса реинвентинга мы можем теперь применить движение по основным этапам только что построенного нами мета-алгоритма для решения системы линейных уравнений или для приготовления коктейлей! Пример 13. Стрельба по летающим «тарелочкам». На стрельбище (рис. 7.8), где тренируются спортсмены в стрельбе по летящим мишеням («тарелочкам»), накапливается много мусора в виде осколков от пораженных «тарелочек». Брэйнсторминг обычно дает следующие идеи: делать «тарелочки» неразби-вающимися; применить магнитный материал, чтобы легко было собирать все осколки с помощью машины; делать «тарелочку» из связанных частей, чтобы они не разлетались далеко; привязать к «тарелочке» нить и после поражения подтягивать мишень за нить к метательной машине; покрыть стрельбище убирающимся ковром; делать «тарелочки» из глины или песка, чтобы потом достаточно было разровнять землю и не убирать осколки. И так далее.
Нетрудно видеть здесь очень разные — как неплохие, так и не очень удачные — идеи (проанализируйте их и добавьте свои!). Но можете ли вы четко сформулировать главное: • в чем все же истоки проблемы? • что именно не удается разрешить здесь ? • что именно мы хотим получить? (Здесь также полезно записать свои «модели», чтобы потом сверить их с контрольными.) Попробуем ответить на эти вопросы так, как учит ТРИЗ (внимание: изложение носит ознакомительный характер и поэтому предельно сжато и упрощено!). Диагностика. Уточним негативное свойство проблемы, которое нужно устранить: осколки отрицательно воздействуют на землю (стрельбище). Представим структуру проблемы (конфликта) в виде следующей логической модели: если осколки убирать, то это очень трудоемко и к тому же мелкие части мишеней все равно постепенно сильно засоряют почву стрельбища; если осколки не убирать, то быстро накапливается недопустимо много мусора. Редукция. Попробуем представить структуру проблемы в еще более упрощенном, зато наглядном, виде, например, в виде следующих противоречий. ^^jp Очищает землю (стрельбище) й у ка Противоречие 1 °°Р <ГГ _, осколков Трудоемка Hev6oDKa Загрязняет землю (стрельбище) Противоречие 2 ' осколков Легка Теперь, по крайней мере, видно, что есть четкая модель конфликта и могут быть сформулированы как минимум две стратегии поиска решения. А именно, если попытаться устранить негативное свойство в первой модели, то цель будет — снизить трудоемкость уборки осколков. А если пытаться устранить негативное свойство во второй модели, то целью становится — устранить загрязнение земли. Вторая стратегия глубже: ее цель совпадает с главным позитивным результатом, который нас может интересовать, а именно, чтобы земля вообще не загрязнялась! Поэтому выбираем вторую стратегию. (Отметим, что уже здесь могут и должны быть применены приемы ТРИЗ из раздела 13, но для краткости изложения мы опускаем эти операции в данном примере.) Теперь определим (да будет нам позволено так выразиться!) физическую причину конфликта между осколками и землей, то есть физическое противоречие. Не правда ли, что в этой формулировке проблема выглядит еще более неразрешимой?! Рассмотрим развитие физического противоречия во времени: Сформулируем некий фантастический идеальный результат, осколки сами себя убирают, или еще короче — сами исчезают. Или: земля сама убирает осколки. Или: осколки
не вредны земле. Или: какой-то волшебник X начисто удаляет куда-то все осколки. Или... Вы можете дать полную свободу своей фантазии! Что, с этими фантазиями тоже легче не стало? Верно. И все же не кажется ли Вам, что что-то неуловимо изменилось? Словно появилась какая-то робкая надежда! Попробуем эту надежду привести к физической реальности. Трансформация. Посмотрим первую версию: могут ли осколки куда-нибудь скатываться или слетаться, то есть собираться вместе? А еще лучше, просто исчезать, как в сказке? По второй версии: земля пропускает осколки куда-то в глубину и делает их тем самым безвредными. Третья версия наводит на размышления о материале мишени: какой материал безвреден для земли? (Правда, что эти фантазии напоминают нам синектические операции?) И все же, какая из этих версий выглядит менее фантастической? Похоже, что третья. Хотя и в предыдущих тоже что-то есть. Итак, материал мишени. Любой материал можно рассматривать состоящим из какогото числа частичек, соединенных в одно целое. По-видимому, чтобы материал не был вреден земле, каждая из его частичек не должна быть вредной. Какой это материал? Песок? Нет — будет накапливаться. Что еще? А что если соединить все эти фантазии: частички этого материала безвредны для земли, свободно проходят сквозь землю «... сами исчезают? Что же это в конце концов? Вода? Но вода «летает» только в виде дождя! А впрочем, и в виде... снега или града. СТОП! Град — это лед! Вот и идея решения: делать мишени из льда! Верификация. Согласны ли Вы, что именно обострение конфликта заставило нас выдвигать... правдоподобные фантазии? Благодаря этому мы поняли, причем полно и точно, все элементы конфликта, его протекание во времени и в пространстве. Мы точно поняли, что мы хотим получить в результате, разве что выразили это весьма образно, как бы «нетехническим» языком! Наконец, мы просто не смогли пройти мимо изучения материала мишени! При этом перебор подходящих материалов сократился почти сразу до единственного решения! Это и есть ТРИЗ. Но в упрощенном виде. Мы провели экспресстренинг, сфокусировав всю ТРИЗ в одном примере! Пример 14. Свая. Иногда при постройке дома или моста в грунт для создания будущего фундамента во многих местах предварительно забивают многометровые бетонные столбы (сваи). Проблема заключается в том, что верхняя часть почти всех свай, по которой ударяет молот, часто разрушается (рис. 7.9).
wo Из-за этого многие сваи не удается забить на нужную глубину. Тогда эти сваи отпиливают, а рядом забивают дополнительные, что снижает производительность работ и повышает их стоимость. Можете ли Вы предложить новую «неразрушающую» технологию забивания свай? Рассмотрим эту проблему более подробно. Диагностика. При выполнении полезной функции (забивание сваи) молот как «инструмент» или, в более общем виде, «индуктор», одновременно оказывает на сваю как «изделие» или, в более общем виде, «рецептор», вредное воздействие (разрушает сваю), то есть воспроизводит нежелательную негативную функцию. Можно указать главную полезную функцию: быстрое забивание неповрежденной сваи на нужную глубину. Приведем несколько стратегий, определяющих направление поиска решений, например: 1) делать всю сваю более прочной и удароустойчивой; 2) воздействовать предварительно на грунт, облегчая продвижение сваи на нужную глубину; 3) создать технологию забивания поврежденных свай; 4) изменить устройство молота, чтобы он меньше повреждал сваю; Л-Студии: алгоритмическая навигация мышления Анализ стратегий определяется многими факторами и в полном объеме выходит за рамки классической ТРИЗ. Упрощая изложение, примем, что три первые стратегии ведут к чрезмерному повышению стоимости изделий и технологий. Две последние стратегии выглядят получше, так как можно надеяться, что будут достаточными минимальные изменения, а поэтому на них и сосредоточимся. При лом можно даже объединить эти стратегии в более обшей формулировке: обеспечить неразрушение верхней части сваи при забивании. Редукция. Мы уже вполне представляем себе, как формулируется «идеальный конечный результат». В ТРИЗ отработаны несколько подходов к этому действию, которое во многом определяет стратегию решения задач и влияет на скорость нахождения решения и на его качество. Однако мы рассмотрим этот вопрос позже в основном курсе. А сейчас поступим так же упрощенно, как и в предыдущих примерах. В частности, потребуем, чтобы
свая или молот не стали дороже, чтобы были использованы, если нужно, только «ничего не стоящие» материалы (ресурсы). Далее определим то место в свае (рецепторе), которое испытывает на себе самое большое по силе негативное воздействие молота (индуктора): голова сваи, то есть верхний торец сваи, и особенно, поверхность, ограничивающая сваю сверху, по которой и ударяет молот. Таким образом, «оперативную зону», где сосредоточен конфликт, то есть одновременно существуют позитивная и негативная функции, определим в первом приближении как совокупность индуктора и рецептора и их элементов — соударяющихся поверхностей. Рассмотрим главные силы и параметры, действующие и определяемые в оперативной зоне. Например, чем больше вес и сила удара молота, тем быстрее забивается свая, но тем больше проявление внутренних вредных факторов, ведущих к ее повреждению, ниже ее надежность. Если сваю забивать медленно, то можно уменьшить требующиеся для этого вес и силу удара молота и увеличить надежность сваи. На основе подобных физических соображений уже можно построить несколько моделей противоречий (обязательно попробуйте сделать это сами, причем не останавливайтесь на одном варианте, создайте их, например, 3 или даже больше). Мы приведем только два «симметричных» варианта, направленных на реализацию главной полезной функции: Трансформация. Обращение к А-Матрице (Приложение) по первому варианту дает следующий набор приемов, рекомендуемых для применения в первую очередь: Что улучшается? — Строка 22: Скорость. Что ухудшается? — Столбец 14: Вредные факторы самого объекта. Рекомендуются для применения приемы (приводим сокращенные описания): 05. Вынесение — отделить от объекта мешающую часть или выделить только нужное свойство; 18. Посредник — использовать промежуточный объект, передающий или переносящий действие, на время присоединить к объекту другой (легкоудаляе-мый) объект; 01. Изменение агрегатного состояния — использовать переходы состояний вещества, или изменение гибкости, концентрации и т. п.; 33. Проскок — вести процесс на большой скорости. Обращение к А-Матрице по второму варианту дает несколько иной набор приемов: Что улучшается? — Строка 30: Сила. Что ухудшается? — Столбец 14: Вредные факторы самого объекта. Рекомендуются для применения приемы (приводим сокращенные описания): 11. Наоборот — отделить от объекта мешающую часть или выделить только нужное свойство; 12. Местное качество — разные части объекта должны иметь разные функции, или — каждая часть объекта должна находиться в условиях, наиболее соответствующих ее работе; 26. Фазовый переход — использовать явления, возникающие при фазовых переходах вещества, например, выделение или поглощение тепла; 18. Посредник — использовать промежуточный объект, передающий или переносящий действие, на время присоединить к объекту другой (легкоудаляе-мый) объект.
Нетрудно видеть, что приемы 05. Вынесение и 18. Посредник из первого набора вместе с приемами 11. Наоборот, 12. Местное качество и 18. Посредник (повторно!) из второго набора явно указывают на необходимость создания в оперативной зоне дополнительного объекта в виде посредника между молотом и сваей! Действительно, при небольшом числе свай иногда на голову забиваемой сваи устанавливают деревянную колодку, по которой и бьет молот до разрушения колодки. (Другие возможности не будем анализировать из экономии времени и места.) Верификация. Колодка разрушается быстро, причем свая повреждается еще до разрушения колодки из-за неравномерного смятия вещества колодки (дерева). Увы, проблема не нашла полного решения! Но, может быть, теперь оно должно быть взято за основу? И нужно рассматривать новую техническую систему, включающую теперь и посредника? Да, так и нужно действовать. И при этом мы переходим на повторение цикла МетаАРИЗ! Причем, посредник можно рассматривать как часть сваи, как ее голову, например. Но правильно рассматривать его как часть инструмента! Посмотрите, ведь свая совершенно не меняется! Значит, посредник нужно отнести к дополнительной части молота! Позднее мы увидим, что чаше всего изменяют именно индуктор, что это одно из правил ТРИЗ. Анализируя ход своих решений, Вы наверняка заметили, что во многих случаях интерпретировать А-Приемы удается далеко не так просто, как это было продемонстрировано мной на специально подготовленных конструкциях. Вы правы: для этого нужны и опыт, и хорошее знание физических явлений (технических эффектов), и глубокие профессиональные знания. Наконец, даже хорошее (а иногда и плохое!) настроение тоже важно. А еще... Пожалуй, хватит! Тем более, что нам нужно идти дальше! А недостающее «еще» Вы обязательно приобретете со временем и с опытом применения ТРИЗ. Диагностика+. Обратим внимание на то, что посредник теперь тоже является индуктором, близким к молоту по воздействию на сваю. Чтобы не повторять предьщущих расуждений из первого цикла, требуется изменить стратегию дальнейшего поиска в направлении более глубокого анализа физики процесса! Можно понять, например, что если материал посредника такой же, как и материал молота, то свая мало выигрывает от этого. Если материал посредника близок к материалу сваи (бетон), то он сам разрушается так же, как свая, и даже быстрее из-за меньшей массы.
Далее: скорость разрушения посредника зависит от способа его установки на голове сваи — малейший перекос ускоря Дисциплина творчества 10. 1 ет разрушение посредника! Это происходит потому, что удар молота и силовое взаимодействие основания посредника с поверхностью головы сваи происходят не по сплошной поверхности, а по отдельным точкам и линиям, на которых и концентрируется энергия удара, приводящая к многочисленным разломам. А как удержать посредника после удара, чтобы он плотно стоял на голове сваи? Это сложная задача. Да и сама поверхность головы сваи далеко не похожа на ровную и полированную крышку рояля. Редукция+. Строить противоречия наподобие приведенных на этапе 2 вариантов выглядит малоперспективным, так как похожие модели ведут к простому повторению предыдущего цикла и ориентируют на тот же результат. Что это нам даст?! (Мы пропустим здесь тонкую возможность представить себе, что мы уже повторили этот цикл многие миллионы раз! — каков видится Вам итог?) Сформулируем версии идеального конечного результата: 1) Посредник равномерно распределяет энергию удара по всей поверхности головы сваи (улучшение режима!). 2) Посредник разрушается и... сам мгновенно восстанавливается после каждого удара! Идеал! 3) Посредник... (добавьте, пожалуйста!) Теперь противоречие приобретает предельно острую форму: Запишем формулировку идеального результата в строгом соответствии с ТРИЗрекомендациями: оперативная зона сама восстанавливает посредника! Трансформация+. Ну что ж, давайте думать вместе, и вот каким образом. Представим себе, что посредник состоит (а так оно во многом и есть!) из огромного числа маленьких частиц... похожих на маленьких человечков, настолько маленьких, что мы видим только подобие фигурок. Но они, эти маленькие фигурки, вместе умеют делать все, что нам нужно! Они могут реализовать любой идеальный результат! При этом они ничего не стоят. Их количество можно легко уменьшать или увеличивать. Они могут моделировать любые энергетические поля, принимать вместе любые формы, быть твердыми или жидкими, иметь или не иметь вес, быть невидимками, издавать звуки и так далее без ограничений! И при этом они остаются всего лишь фигурками, нарисованными нашим воображением. Поэтому эти фигурки не жалко стереть или подвергнуть страшному испытанию, например, такому, как удар по ним свайным молотом! Так вот, пусть во время удара эти фигурки заполняют все неровности в поверхности головы сваи (впрочем, как и в рабочей поверхности молота), и поэтому энергия удара распределяется по большей площади! Затем, после встряхнувшего их удара, все фигурки снова соединяются в сплошной слой, плотно покрывающий всю голову сваи и... спокойно ждут следующего удара! Вы представили уже реальный материальный объект, обладающий описанными свойствами?
Песок (всего лишь одно или два недра) насыпается в стакан, надетый на голову сваи. Стакан длинный, и в нем движется молот. Песок практически ничего не стоит, часто его полно в грунте, в котором вырыт котлован для будущего фундамента. В конце концов, его не так уж много и надо, поэтому недорого и привезти столько, сколько нужно. Верификация+. Решение эффективно, так как надежно работает и не требует больших пират на реализацию. Принцип решения — дробление объекта до уровня частиц с определенными свойствами — обладает мощным методическим «сверхэффектом»: его можно развивать и переносить на другие объекты с близкими и не слишком похожими противоречиями! Наконец, это решение можно развивать! Ведь мы можем расширить оперативную зону до размеров, например, всего тела сваи. Мы можем сформулировать такой идеальный результат, при котором свая принципиально не может разрушиться, потому что ее... нет! Пусть она... вырастает! Как дерево, например! И поэтому ее... никто не забивает. Но об этом позже. Теперь мы можем собрать основные концепты вместе и представить обобщенную версию «Мета-алгоритма изобретения» или, сокращенно, Мета-АРИЗ (рис. 7.12). Этот вариант схемы содержит также операции стратегическою уровня, включенные в этап диагностики, и операции тактического уровня, включенные в этап редукции, и отражает часто встречающееся на практике совмещение операций разных уровней в едином процессе создания решения. Нетрудно видеть, что этапы Диагностика и Редукции содержат преимущественно процедуры анализа проблемы, а этапы Трансформация и Верификация — синтеза идеи решения.
Все этапы опираются на базы знаний (показаны условно в центре рисунка), основу которых составляют А-Навигаторы, модели стратегического и тактического управления процессом решения проблем, методы психологической поддержки и другие рекомендации, которые и рассматриваются в последующих разделах учебника. Интересно обратить внимание на определенное сходство Мета-АРИЗ с четырехэтапными «схемами творчества», предложенными М. Беренсом и Г. Уолласом (см. раздел 4.1). Но особенно Мета-АРИЗ близок к четырехэтапной «схеме творчества» по Д. Дьюи. Действительно, действия на этапе Диагностика могут быть интерпретированы как «столкновение с трудностью, попытки вскрыть элементы и связи, приводящие к противоречию». Действия на этапе Редукция имеют одной из основных целей «ограничение зоны поиска (локализацию проблемы)». Действия на этапе Трансформация практически точно соответствуют тому, что по Д. Дьюи описывается, как «возникновение возможного решения: движение мысли от того, что дано, к тому, что отсутствует; образование идеи, гипотезы».
Наконец, этап Верификация включает «рациональную обработку одной идеи и логическое развитие основного положения». Конечно, конструктивизм Мета-АРИЗ радикально отличается от указанных «схем творчества», в том числе и от схемы Д.Дьюи. И все же интеллектуальный и духовный «генезис» несомненно присутствуют здесь. Этим и интересна связь времен! Мета-АРИЗ был получен автором как обобщение и упрощение (прояснение, освобождение от избыточности) описаний всех «поколений» АРИЗ. И все же знатоки ТРИЗ заметят, что Мета-АРИЗ наиболее близок по структуре к самым первым и «ясным» АРИЗ Г. Альтшуллера 1956 и 1961 года (см. рис. 5.1). Можно сказать, что Мета-АРИЗ — это те первые АРИЗ, но представленные почти через полвека в новой редакции и с учетом нового уровня системотехнических знаний! И, разумеется, практическое наполнение этапов Мета-АРИЗ кардинально отличается от наполнения указанных «схем творчества» и базируется на инструментарии ТРИЗ. Именно АРИЗ-происхождение и унаследованный ТРИЗ.-кон-структивизм делают Мета-АРИЗ наиболее удобной структурой как для изучения методологии ТРИЗ, так и для решения практических задач. Мета-алгоритм изобретения является основной навигационной системой при решении любой изобретательской проблемы. Все процедуры схемы Мета-алгоритма (рис. 7.12) постепенно нужно запомнить и при решении новых проблем применять автоматически в указанной на схеме последовательности. 8. Оперативная зона 8.1. Эпицентр проблемы Перед изучением этого раздела полезно перечитать все 14 предыдущих примеров реинвентинга. Но, предположим, что Вы хорошо помните содержание этих примеров. Тогда приступим к изучению одного из центральных понятий классической ТРИЗ — оперативной зоны. Оперативная зона (OZ) — совокупность компонентов системы и системного окружения, непосредственно связанных с противоречием. Образно говоря, оперативная зона является эпицентром проблемы. Влияние же проблемы может сказываться, как и при всяком конфликте и потрясении, не только на конкретных элементах, но и на всей системе, а также и на окружении системы. Равно, как и средства для решения проблемы в конце концов привлекаются либо из самой системы, либо из системного окружения. Указанные связи полезно представить схемой (рис. 8.1). РИС 8.1. Структура связей OZ с системой и системным окружением Системное окружение предъявляет к системе требования, определяющие направление ее развития. Эти требования могут вступать в конфликт с возможностями системы, либо вызывать конфликт между частями и элементами системы. Конфликтующие свойства имеют определенных носителей, то есть это конкретные элементы системы или даже вся
система в целом. Иногда участниками конфликта могут быть элементы системы и ее окружения. Экторы — основные элементы OZ, являющиеся носителями конкретных противоречивых свойств. Индуктор — эктор, создающий воздействие на другой эктор (рецептор) в виде передачи энергии, информации или вещества и инициирующий изменение или действие рецептора. Рецептор — эктор, воспринимающий воздействие индуктора и изменяющийся или приходящий в действие под этим воздействием. Внутри OZ может не быть в явном виде либо индуктора, либо рецептора, либо может быть более двух индукторов или двух рецепторов. Встречаются структуры, где индуктор и рецептор могут меняться ролями в зависимости от целей анализа проблемы либо от целей синтеза решения. Описание OZ стремятся редуцировать к структуре с минимальным количеством элементов, то есть к модели из одного индуктора и одного рецептора. Классическим примером является взаимодействие инструмента с изделием (деталью). Более того, ранее в классической ТРИЗ основные элементы OZ условно назывались инструментом и изделием, хотя их функциональные роли могли не соответствовать этим названиям. Вводимые здесь названия индуктор и рецептор являются более общими и нейтральными к содержанию физических действий элементов OZ. Рассмотрим элементы OZ в ранее приведенных примерах. Из Примера 1. В соответствии с задачей создания пера как элемента, регулирующего выход чернил из ручки, в состав OZ вошло бы перо как индуктор, воздействующий на чернильную струйку (рецептор), протекающую по прорези пера. В состав OZ могла бы войти окружающая атмосфера (системное окружение), если бы мы должны были учесть влияние атмосферного давления на протекание чернил по прорези пера. Мы могли бы учесть скорость попадания чернил из корпуса ручки в прорезь пера, и тогда в состав OZ вошла бы остальная часть ручки (система). Требуемый результат: истечение чернил из кончика пера, регулируемое по скорости силой нажатия на перо. Противоречие: чернила должны быть «быстротекущими», чтобы легко проходить по прорези пера, и чернила не должны быть «быстротекущими», чтобы не вытекать из ручки самопроизвольно. Ведущие ресурсы для решения проблемы: форма прорези и пружинящие свойства материала пера для функционирования прорези как регулирующего «клапана» или «крана»; атмосферное давление, температура и влажность; гигроскопические свойства бумаги (или другого материала, на котором пишут ручкой); сила нажатия на перо. Ведущие трансформации: динамизация (прорезь с переменными размерами); многофазовое состояние вещества (пружинящие свойства); создание энергетического пути от руки через корпус ручки и перо к бумаге, чтобы силой нажатия воздействовать на раскрытие прорези пера (этот путь имеет продолжение до замкнутого контура через стол, пол, стул и корпус пишущего человека до руки). Учебный вариант 1: для более точного анализа могло понадобиться сужение OZ и объявление индуктором самой прорези пера. Такая интерпретация была бы полезной для исследования, например, профиля и параметров прорези. Ведь при этом уже не играли бы никакой особой роли такие, например, части пера, как место крепления к корпусу ручки, общая форма пера и другие компоненты. Зато для этой задачи мы могли бы учесть свойства бумаги и включить бумагу как компонент OZ (скорее всего как второй рецептор, на котором перо оставляет чернильный след). Здесь всё перо является системой для прорези, а любые другие объекты являются системным окружением для пера.
Учебный вариант 2: может быть рассмотрена задача взаимодействия только чернил с бумагой, и тогда представляется вполне возможно представление в OZ только чернил как индуктора, а бумаги — как рецептора, с описанием их свойств и противоречивого взаимодействия. Из Примера 4. В соответствии с задачей создания самолета с вертикальным взлетом/посадкой в состав OZ могли входить сам самолет (система — рецептор), двигатель самолета (первый индуктор — часть системы) и воздух (второй индуктор — системное окружение). При старте двигатель должен работать в форсированном режиме и толкать самолет строго вверх. При пом самолет стартовал и садился как ракета, которая не может опираться на воздух плоскостями крыльев. Поэтому и возникали проблемы с устойчивостью ориентации корпуса самолета в воздухе, приводившие к авариям при старте, и особенно, при посадке, когда пилоту очень сложно наблюдать место посадки, так как он опускается вниз, а вынужден смотреть верх, так как фактически лежит на спине (см. рис. 6.2). Требуемый результат: новая функция — вертикальный взлет/посадка. Противоречие: вертикальная ориентация корпуса самолета согласована с направлением старта/посадки, но трудна для управления. Ведущий ресурс для решения проблемы: внутрисистемный, изменение конструкции. Ведущая трансформация: динамизация (поворачивающиеся двигатели или крылья). Из Примера 10. В соответствии с начальной постановкой задачи в состав OZ достаточно включить воду (первый индуктор — часть системы полива), почву у основания пальмы (рецептор — часть системы полива) и воздух (системное окружение — второй индуктор). Заметьте, не солнце, а именно воздух, температура и другие свойства которого непосредственно влияют на состояние почвы у основания пальмы. Также не нужно рассматривать в качестве системы и участника OZ всю пальму, так как непосредственное участие в конфликте она просто не принимает! Да, на ней сказываются результаты плохой организации полива, и именно всю пальму призвано защитить новое решение, но она не является активным эктором в этой ситуации! Внимательно разберите этот пример. Идеальный результат: OZ сама обеспечивает длительный полив пальмы! Противоречие: вода должна быть (под пальмой для полива), и вода не должна быть (там, так как она быстро уходит и испаряется — в обычных условиях). Ведущий ресурс для решения проблемы: внутрисистемный и внутри OZ — двухфазовое состояние воды при разных начальной и конечной температурах. Ведущая трансформация: переход на микроуровень вещества и использование физикотехнического эффекта — переход воды из твердого в жидкое состояние. Из Примера 12. В соответствии с общей постановкой задачи в состав OZ достаточно включить ликер и бутылочку и рассмотреть только их взаимодействие между собой для достижения идеального конечного результата! Это вообще довольно редкий случай, когда можно изменять само изделие. Впрочем, не само изделие, а процесс его изготовления. Но путем трансформации его компонентов. В начальной постановке твердая шоколадная бутылочка-индуктор воздействует на жидкий ликер-рецептор, принимая его внутрь через горлышко. По новой идее, наоборот, замороженная ликерная бутылочка-индуктор служит формой, на которую натекает жидкий шоколад-рецептор. Идеальный результат: OZ сама обеспечивает образование бутылочки вместе с ее содержимым! Противоречие: ликер должен быть (внутри шоколадной бутылочки), и ликер не должен быть (там, так как весь процесс сложен). Ведущие ресурсы для решения проблемы: внутри OZ — двухфазовое состояние ликера и шоколада при разных начальной и конечной температурах; системный — изменение порядка операций и замена прежних формующих элементов на «форму-копию» в
виде замороженной ликерной массы в виде «бутылочки»; внесистемные — дополнительная энергия и формы для заморозки ликера, дополнительные формы для получения горлышка шоколадной бутылочки. Ведущие трансформации: переход на микроуровень вещества и использование физико-технического эффекта (применение двухфазового состояния вещества); принцип копирования (см. процесс реинвентинга в примере 12). Из Примера 14. Правильная ТРИЗ-диагностика первоначальной постановки задачи требует включить в состав OZ не всю голову сваи, а только верхнюю поверхность головы сваи (рецептор) и молот (индуктор). Заметим, что в традиционном ТРИЗ-описании было трудно назвать эту часть сваи изделием, так как под изделием мы могли понимать только всю сваю. Но на самом деле не нужно рассматривать всю сваю! Для понимания физики процесса нужно вести диагностику только в области верхней поверхности головы сваи. Там находится та OZ, на которой мы сразу сосредоточились (другие возможности будут рассмотрены далее). Рецептор быстро разрушается под воздействием индуктора из-за неравномерного распределения энергии удара по верхней поверхности головы сваи. Конечно, и из-за неустойчивого к ударной нагрузке материала сваи, но материал сваи (изделие!) нельзя менять по условию задачи. В первой фазе в решении участвовали следующие аспекты. Идеальный результат: сохранить голову сваи целой и использовать ресурсы вне сваи! Противоречие: удары молота нужны для забивания сваи, но они разрушают сваю сверху. Ведущий ресурс: системный и OZ — изменение инструмента. Ведущие трансформации: принцип посредника (прием № 18) — введение прокладки между молотом и головой сваи; прием № 13 «Дешевая недолговечность взамен дорогой долговечности» — прокладка-посредник сделана из дерева (сокращая описание примера 14, мы не включили этот прием в рассмотрение, а использовали его здесь в качестве важного дополнительного пояснения). Это решение также со временем было признано недостаточно эффективным (недостаточно дешевым). На второй фазе в решении участвовали следующие аспекты. Усиленный идеальный результат: посредник должен быть «вечным» и «ничего не стоящим»! Противоречие: посредника не должно быть (так как он разрушается) и посредник должен быть (по требованию главной полезной функции технологического процесса). Ведущий ресурс: внутри OZ — изменение материала инструмента (посредник тоже стал инструментом, непосредственно воздействующим на изделие — сваю!); системный — изменение инструмента; внесистемный — использование дешевого материала (песка) на строительной площадке. Ведущие трансформации: усиление применения приема № 13 «Дешевая недолговечность взамен дорогой долговечности» — поиск еще более дешевого материала для прокладки-посредника; моделирование процесса методом маленьких фигурок и выход, фактически, на прием № 3 «Дробление», пункт с) увеличить степень дробления (измельчения) объекта — в итоге, применение слоя песка в качестве посредника. Проведенное исследование пяти решений дает нам достаточные основания для важнейших обобщений. Процесс решения в классической ТРИЗ направлен на трансформацию OZ и опирается на следующие ключевые концепты (рис. 8.2): • функциональная идеальная модель (ФИМ) — представление о том, как должна функционировать система при идеальном решении проблемы;
• противоречие — модель системного конфликта, отражающая несовместимые требования к системе; • трансформация — модель изменений в системе, необходимых для устранения противоречия и достижения ФИМ; • ресурсы — многоаспектная модель свойств системы, отражающая, например, ее назначение, функции, состав элементов и структуру связей между элементами, информационные и энергетические потоки, мате- риалы, форму и пространственное расположение, временные параметры функционирования, эффективность и другие частные показатели качества функционирования. Эти аспекты аккумулировали объем знаний, которые в классической ТРИЗ являются фундаментальными и которые составляют важнейшее ядро для творчества, целую познавательную и инструментальную систему, названную автором А-Студия (в соответствии с введенными ранее названиями, например, А-Навигаторами, и с авторской систематизацией, рассмотренной в разделе 20.3 CROST: пять ядер творчества). Именно эти аспекты классической А-Студии и будут находиться далее в центре нашего внимания. 8.2. Ресурсы В центре рис. 8.2 находятся «ресурсы». Традиционное ТРИЗ-понимание ресурсов относилось, по-существу, только к технической системе и системному окружению. При этом подразумевалось, что проблема всегда возникает тогда, когда для достижения требуемого функиионалыюго свойства остро не хватает определенного ресурса. В целом так оно и есть. Но сегодня мы должны смотреть на процесс создания изобретения гораздо шире и объективнее, отказываясь от преимущественно техно-центрической ориентации ТРИЗ в пользу человеко-центрической, более естественнонаучной и интегрированной. Именно в таком направлении ориентирована CROST (см. часть Развитие ТРИЗ). В классической ТРИЗ на первых порах её становления упорно проводилась в практику мысль о том, что по ТРИЗмоделям и по АРИЗ, а также с учетом закономерностей развития систем, можно будет создавать изобретения примерно так же, как мы решаем математические задачи. Но с годами становилось все более и более ясным, что в центре «модели» создания изобретения остается человек — с его индивидуальной органи зацисй мышления, мотивацией, эмоциями, свойствами характера и личности в целом. Поэтому изложение идей классической ТРИЗ также должно происходить в современной
редакции, с учетом возможности и необходимости предложения более общих теорий, в которых ТРИЗ может стать фундаментальной частью. Схема по рис. 8.3 отличается от приведенной на рис. 8.1 тем, что здесь явно присутствует «решатель проблемы» — человек. Можно уверенно сказать, что успех решения проблемы определяется двумя видами ресурсов: ресурсами проблемы (системы и ее окружения) и ресурсами решателя проблемы. Разумеется, что трудно и не нужно отделять одно от другого, так как все рекомендации служат единственной цели — повысить эффективность и сократить время решения проблемы человеком. ТРИЗ предложила конструктивные модели для решения проблемы «со стороны технической системы». И именно ТРИЗ открыла также способы реальной помощи решателю проблем с учетом позитивных и негативных стереотипов мышления. И все же теория решения проблем с конструктивными моделями «со стороны решателя проблемы» еще ожидает своего создания. Позиция автора учебника как раз и состоит в том, чтобы не ограничиваться односторонними концепциями. При этом автор мечтает о будущем времени, когда основы ТРИЗ будут изучаться вместе с основами математики, правописания и компьютерной грамотности и будут признаны не менее полезными и важными для каждого человека. А пока посмотрим на ресурсные модели с точки зрения ТРИЗ. Прежде всего, ТРИЗ рекомендует при решении задач помнить о том, что в любой системе все части прямо или косвенно связаны между собой в единое целое, и что каждая система, подсистема или даже каждый элемент могут быть представлены как абстрактная машина (рис. 8.4). Любая техническая система имеет обобщенную структуру, включающую источник энергии (ИЭ). трансмиссию (ТР), рабочий орган (РО). систему управления (СУ) и конфигуратор (КФ) в виде конструкции, объединяющей все компоненты. В ТРИЗ постулируются следующие свойства развивающейся системы: 1) техническая система является минимально полной, если в ее реализации присутствуют все компоненты абстрактной машины;
2) техническая система является минимально работоспособной, если все компоненты ее абстрактной машины минимально-работоспособны по отдельности и вместе; 3) развитие всякой технической системы начинается от минимально работоспособного ядра; 4) проблемы развития технической системы связаны с неравномерным развитием ее компонентов и могут быть устранены временно и локально усовершенствованием компонентов и связей между ними, либо постоянно и тотально заменой всей системы на другую с такими же функциями. В ТРИЗ постулируются следующие принципы создания минимально работоспособного ядра: 1) все компоненты должны быть связаны между собой в единое целое, обладающее хотя бы одним системным свойством, которого нет у отдельных составляющих систему компонентов; 2) все пути прохода энергии, вещества и информации по связанным компонентам системы должен быть непрерывными и замкнутыми в контуры либо внутри системы, либо вне системы через системное окружение. Так, первый автомобиль родился, когда на телегу (конфигуратор) был установлен бензиновый двигатель (источник энергии) с устройством передачи вращательного момента (трансмиссия) на колеса (движители — рабочие органы) и устройством для поворота колес (система управления направлением движения). Карандаш является технической системой условно, так как для его применения нужен внешний источник энергии (например, рука) и система управления (например, человек). Но он содержит рабочий орган — стержень, заключенный в корпус, который одновременно является конфигуратором для карандаша и трансмиссией для передачи энергии на рабочий орган от руки пишущего человека. Значительное число ошибок при создании изобретений связано с нарушением изобретателями указанных выше системных постулатов либо с отсутствием возможности их реализации. Например, первые самолеты не могли подняться в воздух, так как мощности их источника энергии не хватало, чтобы создать достаточную подъемную силу через опору крыльев на воздух, то есть не было замыкания энергетического контура через самолет и воздух, чтобы компенсировать вес самолета. Затем самолеты прошли сложный путь развития системы управления полетом, включая создание элеронов, стабилизаторов и рулей поворота и выбор количества крыльев и их формы. Причем процесс этот может циклически повторяться (см. раздел 15. Классические ТРИЗ-модели инновационного развития). Неоднократно возникали проблемы усовершенствования всех компонентов, например, создание утолщенной передней кромки крыла и выпуклости крыла вверх для обеспечения разности скоростей обтекания крыла потоком воздуха над и под крылом. И так далее. В основе развития систем лежит поиск и применение ресурсов, необходимых и достаточных для решения каждой конкретной проблемы. Соединение имеющихся и новых (или преобразованных) ресурсов, создающее новый положительный технический эффект, и является изобретением. И наоборот, отсутствие (нередко, кажущееся!) необходимых и достаточных ресурсов для реализации требуемого свойства системы и создает проблему. Рассмотрим несколько вспомогательных примеров. Пример 15. Автомобильная навигационная система. Главная полезная функция этой системы: предоставление необходимой информации для построения оптимального маршрута в городе или в других местах. Обеспечение этой функции стало возможным после интеграции большого числа других систем в единую систему навигации. В итоге функция оценки пропускной способности и состояния дорог вынесена в локальную надсистему (региональные системы наблюдения и контроля). Функция определения координат транспортного средства на местности обеспечивается глобальной системой специальных
навигационных спутников, находящихся на орбитах над Землей. Передача данных обеспечивается системами радиосвязи. Отображение ситуации обеспечивается бортовым компьютером (подсистемой), а оценка ситуации и выбор маршрута остаются за человеком (система). Что здесь главное с точки зрения изобретения? Можно сказать, конечно, что это информация. Да, действительно, это так, но все же информация является здесь только главным обрабатываемым «продуктом». Но кто обрабатывает этот «продукт»? Ответ: принципиально новая организация всей совокупности взаимодействующих систем, создающая новое функциональное свойство, не имеющееся у каждой из системкомпонентов в отдельности. Или иначе, новое функциональное свойство возникло из интеграции ресурсов различных систем благодаря изобретению способа и схемы их взаимодействия. А для каждого отдельного компонента это означает использование его системного ресурса, то есть того, что именно этот компонент вносит в объединенную систему. Пример 16. Изобретение... интереса. На многочисленных упаковках давно стали размешать лотерейные номера, анекдоты, смешные рисунки, целые сериа лы комиксов, календари, короткие занимательные истории, биографии знаменитостей, игры, рецепты особенных блюд из данного продукта, не говоря уже об инструкциях и примерах применения изделия. Какой ресурс эксплуатируется здесь? С технической точки зрения можно сказать, что ресурс свободного места на упаковке, даже ресурс краски и так далее. Но главное здесь в чисто творческом плане— это информационный pecypc! Пример 17. На пути к DVD. Первые магнитные накопители были применены для построения устройств долговременной памяти в компьютерах после того, как они прошли довольно длительный путь развития как устройства для звукозаписи. То есть магнитная запись была приспособлена для хранения цифровой информации. Но через некоторое время произошел обратный, причем, революционный переход, когда развивающиеся накопители цифровой информации на лазерных (оптических) компактных дисках (CD) достигли такой плотности записи, что на них стало возможным записывать 600—700 мегабайт данных или 40—60 минут высококачественного звучания музыкальных произведений. Наконец, к концу XX столетия появились диски DVD с объемом информации до 20 гигабайт и с возможностью воспроизведения видеофильмов в течение нескольких часов! То есть плотность цифровой записи/чтения информации являлась тем постоянно развиваемым ресурсом для CD, который и привел к революционным изменениям в создании компьтерной техники, а также аудио- и видеотехники. Это приме.ры создания различных изобретений с применением различных физических явлений, но на основе развития и использования одного и того же функционального ресурса. Вместе с тем следует отметить выдающуюся роль информационного ресурса в виде новейших систем сжатия данных (сегодня это — Motion Pictures ExperTC Group MPEG-2 для передачи видеоизображений и ряд форматов для аудиосопровождения, например, Dolby Digital Format, Digital Cinema Sound и другие). Пример 18. Многопроцессорные системы. Немало патентов получено на специализированные вычислительные системы. Такие системы, как правило, многопроцессорные, могут обладать максимальной теоретической производительностью для определенного класса задач или даже для одной задачи. Также есть немало патентов на конкретные структуры универсальных многопроцессорных систем. Высокая производительность таких систем обусловлена тем, что в зависимости от решаемой задачи или лаже нескольких одновременно решаемых задач происходит динамическое распределение свободных процессоров для обработки данных разных задач или даже одной задачи. Это означает, что структура потоков данных постоянно меняется при неизменной постоянной физической коммутации процессоров. В любом случае в процессе создания изобретения доминирует структурный ресурс. Следует указать также на серьезное значение
временного ресурса, так как процессоры обслуживают задачи в режиме разделения времени (синхронного или асинхронного, динамического). Пример 19. Что общего между кино, электролампочкой и дисплеем? После создания возможности фиксации на фотопластину видеоизображений кино родилось не скоро. Это произошло только тогда, когда было установлено, что за счет инерционности нашего зрения последовательность снимков непрерывно го движения с частотой не менее 16 кадров в секунду (16 герц) при их последующем вопроизведении с той же частотой и воспринимается зрением именно как непрерывное движение. Так появилось кино. Кстати, электролампочки в наших домах вспыхивают и гаснут с частотой около 50 герц, так что мы лого просто не замечаем (этому способствует и то, что нить накала не успевает остыть при смене напряжения). В компьютерных мониторах частота смены кадров сегодня достигла 100 герц, что обеспечивает высокое качество изображения и меньшую утомляемость операторов, работающих за мониторами. Здесь в явном виде эксплуатируется временной ресурс. Пример 20. Коридор для самолета и спутника. В районах крупных аэропортов диспетчеры стандартно или ситуативно устанавливают в воздушном пространстве так называемые «коридоры» для нескольких самолетов, готовящихся к посадке, а также взлетающих. «Коридор» задается высотой нал местностью, высотой и шириной самого «коридора», и курсом, то есть ориентацией «коридора» и направлением полета по нему. Несколько более сложно задаются «коридоры» взлета и посадки. Похожие действия осуществляются при запуске новых спутников или при переводе спутников на орбиты с новыми параметрами. Эти операции проводятся для того, чтобы создать в пространстве непересекающиеся траектории и избежать столкновения летательных аппаратов. Понятно, что здесь доминирует пространственный ресурс. Пример 21. Солнцезащитные очки. Недавно были запатентованы солнцезащитные очки со светопропусканием, управляемым пользователем. Для каждого глаза имеется по два стекла, одно из которых можно вращать. Сами стекла являются так называемыми поляризационными фильтрами. При определенном взаимном положении стекол их векторы поляризации совпадают, и очки пропускают максимальный свет. Но при повороте одного из стекол векторы поляризации смешаются, и светопропускание уменьшается. Еще раньше были запатентованы солнцезащитные очки с хроматическими стеклами, «автоматически» меняющими свою прозрачность в зависимости от яркости света. Здесь очевидно используется вещественный ресурс. Пример 22. Электростанция в каминной трубе. Действительно, в 20-х годах ушедшего столетия французский инженер Бернард Дюбо предложил идею электростанции, турбина которой работает в высокой трубе от потока восходящего теплого воздуха. Через 50 лет известный германский инженер Йорк Шляйх из Штутгарта, разработчик ряда оригинальных мостов, градирен и крыши Олимпийского стадиона в Мюнхене, развил и экспериментально подтвердил эту идею 10-летней работой первой такой электростанции в Испании. В основу электростанции положены два хорошо знакомых всем эффекта: парниковый и каминный (рис. 8.5). Огромный «парник» со стеклянной крышей, например, площадью около квадратного километра, нагревается солнцем. Горячий воздух из "парника" устремляется в трубу высотой в несколько сотен метров, установленную в центре «парника», и вращает турбину генератора тока, встроенную в эту "каминную» трубу. Чтобы станция работала и ночью, в «парнике» размещена
замкнутая теплонакопительная система из труб, заполненных водой. Теплый воздух от этих труб и будет вращать турбину генератора ночью. В этой идее, как и во всяком большом инженерном замысле, работают, конечно, все виды ресурсов. Но первым среди равных является энергетический ресурс системы. Действительно, суть идеи составляет использование энергии солнечных лучей, падающих на Землю, затем энергии восходящего нагретого воздуха и. наконец, преобразование механической энергии вращения турбины в электрическую. Все упомянутые в примерах ресурсы можно разделить на две группы (рис. 8.6). Система-технические ресурсы являются как бы абстрактными, подразумеваемыми, как модель. Физико-технические ресурсы присутствуют в системе более наглядно в виде временных параметров ее работы, геометрических форм, конкретных материалов и применяемых видов энергии. Что бы ни изобреталось с доминированием того или иного системо-технического ресурса, практическая реализация идеи всегда осуществляется на основе изменения физико-технических ресурсов. Идея становится реальностью только в материале. Группы ресурсов Системно-технические Физико-технические Рис. 8.6. Вилы ресурсом Несмотря на условность введенного разделения ресурсов на виды и группы, это весьма полезная дифференциация, которая помогает выделить доминирующие аспекты проблемы и решения. Так, при исследовании проблемы нужно стремиться понять, какой именно ресурс является причиной конфликта, или какого ресурса, возможно, не хватает в системе и почему. Возможно, что ресурс исчерпан, а может быть, плохо и неэффективно используется. Рас смотренные выше виды ресурсов представлены в классификационной таблице на рис. 8.7. СИСТЕМО-ТЕХНИЧЕСКИЕ РЕСУРСЫ СИСТЕМНЫЕ ИНФОРМАЦИОН ФУНКЦИОНАЛ СТРУКТУРНЫ
НЫЕ ЬНЫЕ Относящиеся к Относящиеся к Относящиеся к общесистемным передаче сигналов, созданию функций несущих сообщения свойствам Эффективность, Достоверность, Назначение производительность, помехоустойчивость, (главная полезная надежность, точность, полнота, функция), безопасность, живучесть, методы и эффективность вспомогательные долговечность и другие кодирования, способы и функции, негативные параметры сжатия данных функции, описание и т. п. принципа действия (функциональная модель) ФИЗИКО-ТЕХНИЧЕСКИЕ РЕСУРСЫ ВРЕМЕННЫЕ ПРОСТРАНСТВЕ ВЕЩЕСТВЕНН ННЫЕ ЫЕ Относящиеся к Относящиеся к Огносяшнеся к оценкам времени геометрическим свойствам свойствам материалов Е Относящиеся составу обтлкта к Перечень компонентов и связей между компонентами, виды структур (линейные, разветвляющиеся, параллельные замкнутые И Т. п.) ЭНЕРГЕТИЧЕ СКИЕ Относящиеся к свойствам энергии и ее проявлений Ценность: бесплатный -» недорогой -> дорогой Качество: Свойства ресурса вредный нейтральный -» полезный Количество: неограниченный -» достаточный -» недостаточный Готовность к применению: готовый -* изменяемый -> создаваемый Рис. 8.8. Рекомендации п*0 выОор> ресурсов Частота событий, длительность интервалов времени, упорядочение событий во времени, величина запаздывания/опережения Форма объекта, размеры — длина, ширина, высота, диаметр и т. д.. особенности формы — наличие пустот, наличие выступов и т. л. Рис. 8.7. Классификация ресурсов Химические состав, физические свойства, специальные инженерно-технические свойства Виды применяемой и учитываемой энергии, включая механические силы, гравитационные, тепловые, электромагнитные и т. л.
Определенную осторожность и практичность следует проявлять при необходимости введения в решение новых ресурсов. Лучшее решение для действующих систем состоит в минимальных изменениях. Поэтому в ТРИЗ были выработаны некоторые практические рекомендации, представленные в таблице на рис. 8.8. Всегда предпочтительнее выбирать ресурс со свойством, соответствующим первому (крайнему слева) значению. И в заключение этого раздела приведем небольшие учебные задачи на прямое применение ресурсов из архива классической ТРИЗ. Пример 23. Как увидеть сквозняки в здании. В больших строящихся и построенных зданиях (склады, заводские цеха) иногда возникают сильные сквозняки из-за соединения потоков воздуха, проникающих через недостроенные проемы в стенах или через недостаточные уплотнения в вентиляционных системах, трубопроводах и в других местах. Для того, чтобы точнее и быстрее определить источники и пути сквозняков, предложено использовать... мыльные пузыри, генерируемые специальной несложной установкой. Тысячи летящих шариков делают сквознячные потоки видимыми! Использованы: вещественный ресурс — мыльная пленка служит достаточно прочной оболочкой для находящегося в ней воздуха; энергетический ресурс — более теплый воздух в мыльном шарике создает подъемную силу. Пример 24. Кокосовые пальмы. Для того, чтобы забраться на 20-метровую или еще более высокую кокосовую пальму, требуются немалая сноровка и опыт. Возиться с веревками и лестницами неудобно. Вот если бы каждая пальма сама имела ступеньки наподобие лестницы! Во многих регионах, добывающих кокосовый орех, на растущих новых пальмах делают небольшие зарубки, которые пальме не вредят. Когда пальма вырастает, на ней и получается готовая лестница! Предусмотрительные добытчики использовали ресурс времени (лестница сама росла вместе по мере роста пальмы!) и, разумеется, ресурс пространства (форма ступенек на стволе пальмы). Пример 25. Лампочка для Лунохода. Рассказывают, что для прожектора первого самоходного аппарата на Луне, называемого Луноходом, в конструкторском бюро под Москвой никак не могли подобрать прочный материал для защитного стекла. Зная, что на Луне практически идеальный вакуум, из фары прожектора откачивали воздух, но фара не выдерживала атомосферного давления и взрывалась. Если же в фару вводили инертный газ, тогда фара взрывалась в вакууме. Так продолжалось до тех пор, пока кто-то не обратил внимание на то, что нить накала фары не требует защиты на Луне, так как там есть тот самый вакуум, который и требуется для нормального горения нити накала! А стеклянная оболочка нужна только для защиты нити от механических повреждений и для фокусировки света. Изобретательный сотрудник использовал готовый вещественный ресурс космического вакуума на Луне (вещество, которого нет!). Пример 26. Вода в воде. Во многих странах Африки и Аравийского полуострова острой проблемой является добыча и хранение пресной воды, в том числе собираемой во время дождей. Требуемые для этого хранилища могли бы представлять собой огромные строения, требующие к тому же охлаждения. Шведский инженер Карл Дункерс предложил хранить воду... в море! Для этого он предложил создать в море плавающие хранилища в виде гигантских цилиндров без дна и крышки, поддерживаемых на плаву с помощью понтонов. В эти понтоны пресная вода могла бы попадать прямо во время дождя и оставаться там до откачки с помощью береговых насосов. Такие хранилища можно транспортировать на тысячи километров, так как — и это самое главное — пресная вода, обладая меньшей плотностью, сама будет оставаться над морской водой и не смешиваться с ней! В развитие этой идеи можно добавить лишь, что такое хранилище, снабженное крышкой, могло бы путешествовать, например, до Антарктиды и обратно. В Антарктиде само хранилище могло бы захватывать небольшой пресноводный айсберг и
транспортировать его в жаркие широты. Во время транспортировки айсберг служил бы указанной выше крышкой и постепенно таял до полного заполнения хранилища пресной водой. В этих идеях доминирующим ресурсом является вещественный и, в значительной мере, энергетический (использование все того же закона Архимеда, по которому пресная вода сама должна плавать поверх морской воды, не опускаясь вниз и не смешиваясь с соленой водой!). Характерным для создания идей в примерах 15—26 является использование тех или иных доминирующих ресурсов. Поэтому нередко для решения проблемы достаточно правильно выделить конфликтующий или недостаточный ресурс, чтобы усилить именно его и уже только за счет этого получить оригинальное решение. Однако более сложные проблемы требуют и более глубокого исследования и трансформаций, сразу существенно затрагивающих несколько ресурсов. Здесь не обойтись без исследования противоречий, без применения ТРИЗ-моделей трансформации и без знания физико-технических эффектов. 9. От существующего к возникающему 9.1. Противоречия 9.1.1. Понятие противоречия. Великий Гете проницательно заметил: говорят, что истина лежит между крайними мнениями... нет, между крайностями лежит проблема! Многие философы и многие исследователи методов творчества замечали, что противоречие есть суть проблемы, но никто до Г. Альтшуллера не превратил это понятие в универсальный ключ для раскрытия и разрешения самой проблемы! Только в ТРИЗ с 1956 года противоречие начало «работать» как фундаментальная модель, открывающая весь процесс решения проблемы. Только в ТРИЗ в дальнейшем противоречие стало конструктивной моделью, оснащенной инструментами для трансформации этой модели с целью устранения самого противоречия. Изобрести означает устранить противоречие! Существует немало возможностей для определения и представления моделей противоречий. Однако здесь мы представим только те определения, которые в большей мере соответствуют основам классической ТРИЗ. Хотя в других, расширенных курсах, мы рассматриваем и другие как производные, так и оригинальные модели. Противоречие — модель системного конфликта, отражающая несовместимые требования к функциональным свойствам конфликтно-взаимодействующих компонентов. Бинарная модель противоречия (упрощенно, бинарная модель или бинарное противоречие — рис. 9.1) моделирует конфликт несовместимости только между двумя факторами (свойствами). Композиция бинарных моделей — совокупность взаимосвязанных бинарных противоречий, построенная для описания многофакторного конфликта. Любые запутанные многофакторные конфликты можно представить в виде композиции бинарных моделей. А затем находить главное, ключевое бинарное противоречие, решение которого является необходимым условием разрешения многофакторной модели.
Можно выделить два важнейших случая несовместимости: 1) один из факторов соответствует и содействует главной полезной функции системы (позитивный фактор или плюс-фактор), другой фактор не соответствует и противодействует этой функции (негативный фактор или минус-фактор); 2) оба фактора являются позитивными, но мешают реализации друг друга, так как конфликтуют из-за какого-то ресурса, в котором они оба нуждаются, но не могут одновременно или в нужном объеме использовать этот ресурс. Решение противоречия означает устранение имеющейся несовместимости. Именно несовместимость, кажущаяся или реальная (физически обусловленная) и ведущая к снижению эффективности функционирования системы пли вовсе к невозможности реализации главной полезной функции, отражается в противоречии. Если имеющаяся несовместимость не может быть устранена очевидным способом, это делает ситуацию проблемной, сложной для разрешения (см. рис. 7.4 и 7.5). Решение проблемы требует в таких ситуациях реализации нетривиальных трансформаций, часто поражающих неожиданностью идеи и дающих совершенно ошеломляющий эффект. Действительно, легко ли представить себе дом, всплывающий при наводнении? Или замороженную ликерную бутылочку, обтекаемую горячим шоколадом? Или даже лед, уложенный вокруг основания пальмы?! Самолеты с вертикальным взлетом прошли через сотни аварий, прежде чем стала ясна неприемлемость (более того — ненужность!) вертикальной ориентации корпуса самолета. Впустую растрачены финансовые, материальные и интеллектуальные ресурсы. А как оценить гибель людей? Исходное административно-стратегическое представление об обязательной вертикальной ориентации корпуса самолета оказалось примитивной ошибкой! Технически было проще и эффективнее реализовать самолет с нормальной горизонтальной ориентацией корпуса, но с введением в конструкцию динамизации. Динамизация устраняла исходное противоречие! Это нужно было закладывать в концепцию самолета до проектирования! На стратегическом уровне создания поной технической функции! Это означает, что и административно-стратегическое решение нужно было принимать на основе перевода проблемы на тактиче-ско-технический и оперативно-физический уровни. Насчитывается на так уж много видов противоречий, например, техникоэкономические (техническое свойство — стоимость), технико-технологические (техническая свойство — сложность производства), технические (несовместимость функций), физические (несовместимость состояний одного свойства) и некоторые другие или комбинации из указанных. Первые два вида, как правило, имеют характер административных противоречий. Для их решения нужно переводить противоречия на уровень технических или физических, на которые и ориентирован инструментарий классической ТРИЗ.
Полезно учитывать некоторые особенности образования противоречий (рис. 9.1). Так, для каждого противоречия могут быть построены инверсная модель или альтернативные варианты, более или менее близкие по значению факторов к исходному (прямому) противоречию. Конструктивные альтернативные варианты возникают, когда конфликтуют несколько свойств объекта. Это явление можно использовать для комбинирования приемов, ориентированных для решения отдельных альтернативных противоречий (см. например, раздел 9.4. Интеграции альтернативных противоречий — метод CICO). Альтернативные варианты возникают часто из-за различного описания одних и тех же конфликтующих свойств разными специалистами. Это иногда оказывается причиной непонимания и дискуссий в команде, решающей одну и ту же проблему. Последующее применение АМатрицы или таблицы фундаментальных трансформаций помогает сократить вариабельность моделей. Модели противоречий могут включать свойства разных системных уровней. Например, оба свойства могут быть одного уровня, или одно свойство может быть физикотехническим, а другое — системо-техническим. Для ориентации можно использовать таблицу видов ресурсов (рис. 8.7). Мы переходим к более подробному рассмотрению моделей противоречий с учетом следующих двух замечаний: 1) точная формулировка противоречия является непростой операцией и требует немалого опыта и, разумеется, необходимых профессиональных знаний. От того, как именно сформулировано противоречие, что оно отражает, зависит весь дальнейший ход решения проблемы; 2) противоречия разных видов могут быть представлены иерархически в виде «матрешки противоречий»: в любом административном противоречии содержится техническое противоречие, а в техническом — физическое. 9.1.2. Техническое противоречие. Явно сформулированные модели технических противоречий Вы уже встречали при реинвентинге в примерах 4, 6, 13 и 14. Полезно посмотреть их сейчас снова, чтобы более уверенно и с полным пониманием акцептировать следующее определение: Техническое противоречие — бинарная модель, отражающая несовместимые требования к различным функциональным свойствам компонента или нескольких конфликтно-взаимодействующих компонентов. Пример 4 (дополнение). Действительно, здесь имело место следующее исходное противоречие (рис. 9.3):
При создании решения сначала действовала сильнейшая негативная психологическая инерция, не позволившая ввести динамизацию в конструкцию самолета. Считалось, что самолет нельзя изменять, а вот его ориентацию при старте и посадке — можно. И что реактивный самолет с вертикальным стартом и посадкой и должен взлетать носом вверх, а садиться на хвост! Только спустя много лет были признаны доминирующая значимость хорошего контроля и управления самолетом и возможность обеспечения горизонтальной ориентации корпуса самолета! Продолжая учебный реинвентинг, устанавливаем, что целевым плюс-фактором должно стать удобное управление самолетом (систе-мотехнический ресурс), а ориентация корпуса самолета (физико-технический ресурс) становится проблемным минус-фактором. То есть мы переходим к инверсному противоречию (рис. 9.4): Редукция инверсной исходной модели на основании А-Матрицы дает следующую модель противоречия (рис. 9.5):
А-Матрица рекомендует рассмотреть следующие приемы: 04 Замена механической среды; 07 Динамизация; 14 Использование пневмо- и гидроконструкций и 15 Отброс и регенерация частей. Как Вы уже видели, именно прием 07 Динамизация и привел в конце концов к решению проблемы. Следует отметить, что были попытки применения и приема 15 Отброс и регенерация частей — установка сбрасываемых ускоряющих двигателей для старта. Пример 27. Тренажер-стойка в фитнес-центре (начало). Диагностика показывает, что в фитнес-центре находится немало специализированных тренажеров. Каждый из них занимает отдельное место. Особенно, тренажеры для упражнений лежа. Тренажеры для упражнений стоя требуют меньше места. В целом площадь желательно экономить, чтобы больше посетителей могло тренироваться. Отдельный тренажер можно рассматривать как главный элемент оперативной зоны, а потом, по возможности, идею решения перенести на другие тренажеры. Можно сформулировать исходное техническое противоречие: конструкция тренажера должна обеспечивать тренировку нескольких посетителей (плюс-фактор), но при этом значительно увеличивается занимаемая площадь (минус-фактор). Пример 28. Виброударное забивание сваи (начало). Диагностика показывает, что ударное забивание свай (пример 14 с продолжениями) все же дает большой процент брака и не позволяет достичь более высокой производительности. Предлагается расширить объем оперативной зоны до объема всей сваи и рассмотреть другие возможные способы создания рабочего движения сваи. Здесь явно присутствует конфликт между системными и физическими свойствами, который можно представить в виде технического противоречия: движение сваи нужно ускорить, но при этом увеличивается влияние разрушающих вредных факторов и уменьшается надежность операции. Пример 29. Вывод группы спутников на точные орбиты (начало). На этапе Диагностика было установлено, что вывод группы спутников на точные орбиты или их расстановку на одной орбите на определенных расстояних один за другим трудно обеспечить при ракетной транспортировке. Это отражается в следующем техническом противоречии: вывод группы спутников ракетой с за данной точностью требует создания чрезвычайно сложных систем запуска и управления. Пример 30. Лекционная доска (начало). Диагностика процесса чтения лекции с применением традиционной доски с мелом показывает, что этот процесс обеспечивает возможность создания произвольных изображений и прост в реализации, но имеет невысокую производительность, особенно, при необходимости показать готовые сложные иллюстрации из каких-либо книг или из баз данных CAD. Кроме того, такой подход неудобен для перенесения информации с лекционной доски в компьютер, например, для проведения интернет-лекций. Приходится использовать телевизионную считывающую камеру и передавать изображение с доски, после чего учащиеся перерисовывают картинки с экранов телевизоров или компьютерных мониторов. Изображение снимается и передается в аналоговой форме, то есть попросту идет аналоговая покадровая съемка всей доски. Учитывая многофакторный характер задачи, можно сформулировать несколько альтернативных технических противоречий, взаимнодополняющих друг друга. Итак, рисование на доске имеет следующие позитивные свойства: простота конструкции и возможность изображения любых рисунков. Недостатки: низкая производительность рисования, особенно при вводе сложных рисунков. отсутствие автоматизации рисования, избыточность передачи и сложность перерисовывания видеоинформации, переданной на основе телевизионной технологии, неудобство эксплуатации (использование мела или фломастеров, пачкающих руки, сложность исправления и невозможность перемещения рисунков — только вместе со всей доской или флип-чартами).
Не кажется ли Вам, что после такой диагностики приступать к решению проблемы усовершенствования лекционной доски еще рано?! Во-первых, слишком много противоречий и они никак не упорядочены, во-вторых, нет цели в виде главной полезной функции и ожидаемой идеальной функциональной модели, и в-третьих, не ясны доступные или допустимые ресурсы. Но все же сами противоречия присутствуют, а значит, есть работа для творческого ума. Пример 31. Купол Рейхстага (начало). А теперь Вы сможете побывать в роли главного архитектора сэра Нормана Фостера, предложившею великолепные идеи для реставрации в Берлине здания парламента Германии (рис. 9.6). Идея «Номер Один» — и по архитектурно-технической гармонии, и по символичности, — это стеклянный купол как элемент системы естественною освещения главного внутреннего зала заседаний и как самое достопримечательное место в Берлине наподобие Эйфелевой башни в Париже, Биг Бена и Вестминстерского аббатства в Лондоне или Статуи Свободы в Нью-Йорке. Впрочем, о более значительной и глубокой символичности купола я пишу в конце книги. Итак, первая задача о куполе. По внутренней стороне полусферы купола устроен пандус для подъема посетителей на верхнюю смотровую площадку. Как устроить пандус таким образом, чтобы потоки посетителей, идущих вверх и вниз, не встречались?! 128 А-Студия: а.иоритмическая навигация мыш.1ения Действительно, если бы пандус был устроен так, как показано на рис. 9.7, то потоки посетителей шли бы друг другу навстречу. В таком «проекте» неизбежно появилось бы острое техническое противоречие: пандус имеет такую форму, при которой возникают встречные потоки посетителей при подъеме и спуске, что приводит к потерям времени и неудобствам. Нужно найти более оптимальную форму пандуса. На этом мы завершаем примеры построения исходных, ориентировочных технических противоречий в том виде, как это обычно происходит на практике на этапе Диагностика. Настоящее направленное решение задач начинается с уточнения моделей противоречий на этапе Редукция, продолжается устранением противоречий на этапе Трансформация и завершается на этапе Верификация. Попробуйте получить решения самостоятельно и сравнить с контрольными ответами, приведенными ниже в разделе 9.3. Трансформация. 9.1.3. Физическое противоречие. Явно сформулированные модели физических противоречий Вы уже встречали при реинвентинге в примерах 1, 2, 3, 5, 7, 10, 11, 13 и 14. Приведем следующее определение:
Физическое противоречие — бинарная модель, отражающая несовместимые требования к одному и тому же функциональному свойству. Сложность разрешения этого противоречия часто определяется тем. что оба конфликтующих состояния могут быть необходимы для реализации главной полезной функции системы. Феномен непревзойденной полезности бинарного физического противоречия состоит в следующем: 1) поскольку все решения осуществляются в конечном итоге посредством реальных физических трансформаций реальных физических объектов, то есть изменением их материала, формы, процессов и так далее, постольку физическое противоречие выполняет практическую навигационную функцию — ориентирует на реализацию в объекте таких трансформаций, при которых в центре внимания остаются полезные целевые факторы: 2) поскольку сегодня хорошо известны фундаментальные способы разрешения физических противоречий (см. раздел 10. Модели решения физических противоречий), постольку физическое противоречие эффективно выполняет ограничивающую функцию при формировании идеи решения, исключая нерациональный поиск вне фундаментальных трансформаций. Рассмотрим еще раз формулировку и разрешение физического противоречия при реинвентинге пера автоматической чернильной ручки по примеру 1. В наиболее острой форме физическое противоречие для гусиного пера выглядит так: на кончике пера чернил должно быть много и не должно быть совсем! Понятно, что без дополнительного анализа и «анатомирования» противоречия задачу быстро не решить! Но исследование должно идти строго по четырем физическим аспектам: пространство, время, структура и вещество. В конце концов так оно и происходило в истории пера. Но этот опыт до ТРИЗ не был исследован, не был аккумулирован и обобщен. Разрешение физического противоречия произошло по всем аспектам (рис. 9.8). Фундаментальные аспекты 11растранетво Время Разделение несовместимых свойств Стало Был» Объем чернил дли письма находился на перс, поэтому сначала чо|ли образовываться кляксы, а вскоре чернила высыхали, и нужно было снова Обмакивать перо в чернильницу. Запас чернил вынесен за пределы ручки Время хранения чернил на пере определяет (ограничивает) время письма несколькими минутами, и зги интервалы времени совпадают Обьем чернил для письма практически неизменный и находится в пере. Запас чернил находится в ручке в специальной полости, из которой чернила поступают н перо по мере надобности Время храпении чернил в ручке в сотни раз больше времени хранения чернил на гусином пере. Это время может многократно превышать суммарное время письма, а при непрерывном письме запаса чернил в ручке хватает на несколько часов. Чернила
Структура Вещество Количество чернил -в ручке» равно количеству чернил на перс Острие пера цельное, жесткое. Чернила свободно стекают но поверхности пера поступают в перо только во время письмо и нс поступают, когда на перо нет нажат и н Количество чернил в части системы (в перс) небольшое, а в системе в целом — большое Острие пера разделено на две части с образованием шедн. но которой проходят чернила. Щель динами шровапа и раскрывается больше или меньше и зависимости от силы нажатия на перо Рис. 9.8. Разрешение физического противоречия Пример 32. Разделительный барьер (начало). На рис. 9.9,а показан разделительный барьер для задания направления и ширины прохода для временной очереди, например, для посетителей выставки. Конструкция этого барьера неустойчива, и барьер может падать, когда посетители опираются на него. Поэтому основание барьера делают более широким, а сам барьер укрепляют на- клонным раскосом (рис. 9.9,b). Но и эта конструкция имеет существенный недостаток — она легко сдвигается в сторону, особенно на каменном или асфальтовом покрытии. Физическое противоречие: барьер должен быть широким в основании, чтобы его трудно было сдвинуть, и должен быть узким (для удобства транспортировки, монтажа и демонтажа). Пример 33. Реакция водителя автомобиля (начало). Известно, что алкоголь снижает скорость реакции автомобилиста на изменение дорожной ситуации. Однако, немало водителей считают, что это не относится к ним. И к сожалению, повторяют чужие ошибки, нередко трагические и непоправимые. Как убелить водителя в реальной и большой опасности, ожидающей его при попытке управления автомобилем после принятия алкоголя? Мы имеем дело с острым физическим (и кстати, этическим тоже) противоречием: водитель должен быть пьян, чтобы в управлении автомобилем произошли изменения, и водитель не должен быть пьян, чтобы не создавалось реальной опасности для него и окружающих. Как преодолеть это противоречие? Пример 34. Свая (начало последнего примера, связанного со сваями). Забивание сваи все же имеет неустранимый недостаток, являющийся прямым следствием применяемого принципа ударного воздействия на сваю для перемещения в грунт. Следует отметить также, что процесс забивания свай потребляет много энергии. Причем значительная часть этой энергии расходуется на... разрушение самой сваи. Процессу присуще острое физическое противоречие: сваю нужно забивать, чтобы она вошла в грунт, и сваю нельзя забивать, чтобы она не разрушалась. Можете ли Вы предложить новую «неразрушающую» технологию забивания свай?
Пример 35. Ремонт трубопровода (начало). Лопнула труба водопровода! Нужно произвести срочный ремонт, но вода, поступающая под большим напором, не лает закрепить накладку или произвести сварку трещины или разрыва. Перекрывать воду во всей системе водоснабжения по ряду причин также нецелесообразно. Острая аварийная ситуация: воду нужно остановить, чтобы произвести ремонт трубы, и воду нельзя останавливать по внешним причинам. Пример 36. Лекционная доска (обострение проблемной ситуации по примеру 30). Технические противоречия, сформулированные выше в примере 30, можно обобщить в виде физического противоречия: доска должна быть, чтобы на ней было изображение иллюстраций к лекции, и доски не должно быть, чтобы на ней вообще не надо было рисовать. Интересно, Вы увидели решение или, наоборот, окончательно потеряли предчувствие возможности решения? Не спешите, вдумайтесь в «несовместимые» альтернативы этой модели! Пример 37. Купол Рейхстага (обострение проблемной ситуации по примеру 31). Физическое противоречие, присутствующее в конструкции, показанной на рис. 9.7, может звучать, например, следующим образом: посетители должны спускаться вниз, покидая смотровую площадку, и не должны спускаться, чтобы не мешать поднимающимся посетителям. В такой формулировке присутствует, конечно, доля шутки, хотя задача проектирования конструкции для подъема и спуска посетителей купола вполне реальная. Кроме того, я хотел показать, что на практике могут возникать втом числе и такие «несерьезные» формулировки. Этого не следует ни избегать, ни бояться. Это иногда даже помогает решить задачу проще, именно без «звериной серьезности», как говорил Нильс Бор (63). Что мы и увидим, я надеюсь, ниже в разделе 9.3. Редукция и трансформации. Итак, если Вы не были знакомы с ТРИЗ ранее, то будем считать, что Вы приобрели первый опыт концентрации на моделировании проблемы в виде противоречий — технического и физического. Я надеюсь, что приведенных примеров достаточно также, чтобы Вы заметили и существенную разницу между техническими и физическими противоречиями при моделировании одной и той же проблемной ситуации. Для самопроверки Вам будет полезно самостоятельно решить все задачи из Практикума 6—9 после раздела 9.3 Редукция и трансформации. 9.2. Функциональное идеальное моделирование Психологи и нейрофизиологи, действуя на разных уровнях, вместе открыли немало тайн в устройстве и работе мозга. Но никто пока не открыл истоки гениальности в мышлении! Истоки устремленности к созиданию! Доминанты и императивы веры, любви, надежды и добра! Хотя, к счастью, они существуют в нас сами по себе в соответствии с еще более могущественными принципами устройства Вселенной.
ь * Ннльс Бор (1S85—1962) — выдающийся штгский фнтик. сочлатг-и. кванюнон гсорнп атома и атомного ядра, лауреат Нобелевской премии 1922 года Поэтому и мы приводим лишь весьма упрошенную схему, поверхностно отображающую не сам процесс изобретения новой идеи, а лишь компоненты, содействующие процессу мышления по ТРИЗ (рис. 9.10). Эта схема отличается от приведенной ранее на рис. R3 тем, что в ней учтены совершенно необходимые индивидуальные аспекты мышления. Необходимыми условиями для успешного решения проблем являются: • сильная позитивная мотивация, решительность, настойчивость (воля) при стремлении к цели; • определенные способности к ассоциативному мышлению, память, воображение, наблюдательность, объективность, гибкость (способность преодолевать инерционность мышления); • профессиональные знания и владение ТРИЗ/СROSТ-технологией. В этом Мире все стремятся к идеальному! В том виде, как каждый себе это представляет. Но путь к этой цели часто не очевиден и почти всегда не прост! Более того, сами поиски и выбор цели, которая достойна того, чтобы неустанно стремиться к ней, тоже не простая проблема почти для каждого из нас. Зная это, мы начнем обсуждение темы «идеального моделирования», может быть, самой сложной темы в ТРИЗ, именно с простых и почти очевидных примеров. Сначала рассмотрим три первые задачи. Пример 38. Ваза в музее. Часто в музеях ценные предметы устанавливаются в шкафах и нишах вдоль стен. При этом невозможно рассмотреть эти предметы сзади или снизу, что снижает познавательную и эстетическую ценность экспозиции. Что именно нас интересует здесь? Возможность видеть вазу со всех сторон и даже снизу, но не обходя вазу вокруг и не наклоняясь, чтобы заглянуть под полку! Тем более, что обойти вазу нельзя, так как она стоит у стены, а полка не прозрачная! Но тогда давайте потребуем нереального (пока!): пусть стена и полка сами покажут нам вазу со всех сторон! Именно таким постановкам ТРИЗ и рекомендует научиться! Это и есть создание целеориентирующей метафоры в виде «функциональной идеальной модели» — ФИМ. Да, это метафора, образ чего-то, что мы хотим получить. Но образ функциональный, содержащий конкретный ожидаемый результат. В классической ТРИЗ этот образ называется еще «идеальный конечный результат» — ИКР. Я почти уверен, что если не ранее, то сейчас, Вы уже нашли контрольное (известное) решение для достижения ФИМ или ИКР в этой задаче: нужно установить зеркала за вазой и под вазой! (Если Вам эта задача кажется слишком простой, а решение — слишком очевидным, то прошу Вас не быть слишком строгими к этому примеру. Он ведь учебный. Кстати, маленькое техническое осложнение Вы обнаружите при размещении зеркала под вазой. Устраните его самостоятельно. При этом можно поупражняться в применении Мета-АРИЗ. А если Вы не обнаружили это осложнение умозрительно, то поставьте какую-нибудь вазу в вашем доме на зеркало и попробуйте увидеть ее нижнюю часть. Вы непременно столкнетесь с этим осложнением.)
Пример 39. Киль яхты. Яхта устойчиво идет под парусами благодаря тому, что под ее днищем имеется киль — стабилизатор курса. При заходе яхты в мелководную гавань киль мешает подходить к причалу, так как задевает за дно. Что именно нас интересует здесь? Возможность свободно заходить на мелководье, не задевая килем-стабилизатором за дно. Сформулируем «административную» ФИМ: яхта свободно заходит на мелководье, глубина которого чуть больше ее осадки, то есть расстояния от уровня воды до самой нижней точки днища яхты. Сформулируем «техническую» ФИМ: на мелководье киля у яхты нет. Действительно, не можем же мы потребовать, чтобы неглубокое место стало вдруг глубоким. (Хотя в иных случаях и такие метафоры не исключаются!) Но киль есть там, где глубоко и можно идти с большой скоростью. Явное физическое противоречие! Мы уже видели способы его разрешения. И мы видим также явную несовместимость в пространстве (малая глубина — большая глубина) и в структуре (киль есть — киля нет). Следовательно, эти ресурсы являются критическими в задаче и будут доминирующими в решении. Вы, скорее всего, уже определили основную идею: киль яхты нужно динамизировать — он должен быть сделан поднимающимся и опускающимся. Вместе с тем, технически осуществить это не так просто. В центре яхте приходится создавать специальный вертикальный проем, иногда открытый (рис. 9.8), что в целом не способствует сохранению прочности всего корпуса, так как килевая нижняя балка служит настоящим «позвоночником» для яхты, а здесь приходится создавать в нем большой продольный разрез. В другом варианте два подъемных киля-стабилизатора устанавливают по бортам яхты, что усложняет управление ими и может сказаться на быстроходности. И хотя яхты прошли большой многовековой путь развития, здесь кроется еще не одна изобретательская тема! Пример 40. Токосъемник трамвая. Токосъемник трамвая часто имеет форму дуги, верхняя часть которой ориентирована поперек провода, по которому к трамваю подается электроэнергия. Дуга подпружинена и постоянно прижимается к проводу. Дуга имеет форму, которая позволяет сохранять надежный контакт с проводом на поворотах, однако на прямых участках провод постепенно прорезает в дуге углубления. Это может приводить к зацеплению и обрыву провода. Как уменьшить или даже устранить эту проблему? Что именно нас интересует здесь? Поскольку мы не можем исключить непосредственный контакт провода с дугой токосъемника, то хотя бы потребуем реализации ИКР: провод не режет дугу в одном и том же месте. Мы еще не знаем, как мы добъёмся этого ИКР, но так должно быть! Вполне логично переформулировать исходную метафору следующим образом: пусть провод касается дуги не в одном месте, а во многих местах вдоль дуги, примерно так, как это происходит на повороте! Отсюда уже один небольшой шаг к контрольному решению: над прямыми участками трамвайного пути контактный провод должен идти зигзагом, размах которого равен длине контактной части дуги (рис. 9.9). Конечно, это удорожает конструкцию подвески провода, но увеличивает срок службы дуги и исключает возможность обрыва провода дефектной дугой по старому варианту. Во всех рассмотренных случаях решение было получено практически только на основе точной формулировки функциональной идеальной модели либо идеального конечного результата. Действительно, иногда достаточно правильно сформулировать цель решения задачи, как сама эта цель подсказывает идею решения. В рассмотренных примерах оказалось достаточным поставить ФИМ или ИКР в центр внимания, как необходимые ресурсы открылись практически сами. В отличие от этих примеров, реальные проблемы совсем на так просты. Но при решении всех без исключения проблем формирование пра-
вильной функциональной идеальной модели играет исключительно важную роль. ФИМ и ИКР мотивируют творческое мышление и направляют его в область существования эффективных решений. Более глубокие системо-технические принципы формирования ФИМ и ИКР будут рассмотрены в главе 14. Управление развитием систем. Здесь же мы будем опираться в основном на интуитивное формирование «идеального» функционирования объекта при решении проблем. Приведем основные определения в современной редакции. Идеальный конечный результат ИКР — требуемое или желаемое состояние объекта. Функциональная идеальная модель ФИМ — образ, гипотеза, метафора, содержащие представление о том, как должен функционировать объект, чтобы достичь ИКР. Можно отметить, что чаще формулируют ФИМ, так как она дает больше информации о том, как должен функционировать объект после изменений. При этом ИКР оказывается как бы спрятанным в ФИМ, заданным неявно. В зависимости от того, на что направлен ИКР, различают два типа ФИМ: ФИМ-минус: описание (цель, требование, условие, процесс) желаемого функционирования минус негативные явления, вызывавшие противоречие; ФИМ-плюс: описание (цель, требование, условие, процесс) желаемого функционирования плюс действия или ресурсы, ведущие к «самоустранению» противоречия. Модель ФИМ-минус строят чаще при первых обсуждениях проблемы. Модель ФИМплюс более конструктивна и включает в себя ФИМ-минус в неявном виде. Для построения ФИМ-плюс применяются классические формулировки. Но все они исходят из того, что решение может быть получено только на основе изменения имеющихся и/или введения дополнительных ресурсов. Чем ближе описание ФИМ к реальности, тем лучше. Но дело как раз в том, что мы не можем точно описать, как достичь ФИМ или ИКР, и избегаем формулировать их со свойствами, свободными от психологических ограниче ний. Для ослабления психологической инерции при формулировании ФИМ в ТРИЗ выработаны и проверены практикой в течение нескольких десятилетий следующие два правила: 1) не думать сначала о том, как именно и за счет чего будет получено решение; 2) неизвестный ресурс или действие, необходимые для получения результата, можно заместить временно метафорическим символом, например, Х-ресурс. Здесь ТРИЗ явно использует ТРИЗ-прием разрешения очевидного и острого «физического» противоречия, возникающего в нашем сознании: ресурс должен быть, чтобы решить проблему, и ресурса не должно быть, так как он просто не известен. ТРИЗ предлагает: заместите временно (разрешение несовместимости во времени) неизвестный
ресурс его образом, то есть копией, пусть даже пока неясной (разрешение несовместимости в пространстве—веществе—энергии)! Здесь также присутствует разрешение противоречия в структуре. Невозможное спряталось в «X»! А в целом ФИМ уже выглядит возможной! Часть ФИМ содержит неизвестное, а вся ФИМ — известна! Наше сознание сделает невозможное возможным, и этому будет способствовать то, что вербально уже не выглядит невозможным! Итак, рассмотрим практические модели, точнее готовые формы для записи моделей ФИМ-плюс: 1. Макро-ФИМ: Х-ресурс, не вызывая недопустимых негативных эффектов, обеспечивает имеете с другими имеющимися ресурсами получение [ требуемое функционирование ]. 2. Микро-ФИМ: Х-ресурс в виде частиц вещества или энергии находится в оперативной зоне и обеспечивает вместе с другими имеющимися ресурсами получение [требуемое функционирование]. 3. Макси-ФИМ: Оперативная зона сама обеспечивает получение [требуемое функционирование]. Здесь уместно привести два высказывания автора ТРИЗ Генриха Альтшуллера о роли функционального идеального моделирования в решении проблем. Из книги (5): «Идеальный конечный результат можно уподобить веревке, держась за которую альпинист совершает подъем по крутому склону. Веревка не тянет верх, но она дает опору и не позволяет скатиться вниз. Достаточно выпустить веревку из рук — падение неизбежно.» Из книги «Алгоритм изобретения» издания 1973 года: «Представьте себе, что некто зашел в тупик. И вот Вам предлагается пройти дальше по этому тупику (чтобы найти выход — О.М.). Что и говорить — занятие малоцелесообразное! Надо поступить иначе: сначала отойти к исходной точке, а затем пойти в правильном направлении. К сожалению, задачи чаще всего формулируются так, что они настоятельно (хотя и незаметно) толкают в тупик.» ИКР и ФИМ не дают решателю оставаться в тупике, куда заводит его психологическая инерция, и дают верный ориентир для выхода на сильное решение, каким бы невозможным оно ни казалось сначала! Переходим к примерам. Пример 41. Вездеход-неваляшка. Вездеходы, перевозящие крупногабаритные конструкции на больших уклонах и по бездорожью, должны иметь высокие колеса и большой клиренс (расстояние от нижней точки колеса до самой нижней точки днища). Но тогда центр тяжести вездехода поднимается, и увеличивается опасность того, что вездеход перевернется на неровной местности. Чтобы препятствовать этому, вездеход должен иметь центр тяжести как можно ниже. Сильное физическое противоречие! Сформулируем МакроФИМ: Х-ресурс, не вызывая недопустимых негативных эффектов, обеспечивает вместе с другими имеющимися ресурсами максимально низкое расположение центра тяжести вездехода. Максимальная устойчивость обеспечивается при расположении центра тяжести... на земле! Как сделать так, чтобы центр тяжести вездехода стал максимально ближе к земле? Это должно быть какое-то Х-изменение в системе, при котором как можно больше веса частей системы находилось бы в самом низу. Но вездеход — плохо изменяемая конструкция. Самая легкая его часть — кабина — и так находится наверху, а такие части как двигатель и трансмиссия не могут опуститься ниже клиренса! Ниже клиренса находится
только самая нижняя часть колес. Сами колеса очень большие и широкие, но они никак не влияют на клиренс. Как быть? Если у Вас пока не возникло идеи, давайте определим оперативную зону. В качестве оперативной зоны целесообразно принять «площадку» касания земли колесами. Действительно, переворачивание начинается тогда, когда колеса с одной стороны вездехода отрываются от земли. Максимальное снижение центра тяжести как бы «прижимает» площадку к земле. Было бы замечательно, если бы передняя часть площадки в оперативной зоне была как бы «прижата» к земле, а давление на заднюю часть площадки уже «ослаблялось», чтобы эта часть начала подниматься вверх по катящемуся колесу. И все это должно происходить непрерывно по ходу колеса! Сформулируем Микро-ФИМ: Х-ресурс в виде частиц вещества или энергии находится в оперативной зоне и обеспечивает вместе с другими имеющимися ресурсами максимальное прижатие передней части опорной площадки колеса к земле. Как сделать это снаружи колеса — непонятно. Но мы обязаны рассмотреть ресурс оперативной зоны (площадки прижатия) и с внутренней стороны колеса! Пусть внутри колеса Х-частицы давят на переднюю часть площадки и не давят на заднюю часть этой площадки! Такая идея и была запатентована в США: японский изобретатель предложил насыпать в колеса множество стальных шариков! При движении шарики все время перекатываются по внутренней поверхности колес и поддерживают существенно более низкое расположение центра тяжести вездехода (рис. 9.13). Это чем-то напоминает известную куклу-неваляшку (рис. 9.14), в шаровидном основании которой приклеен кусочек металла, который полностью уравновешивает вес всей куклы. Поэтому она всегда встает на ровной поверхности в вертикальное положение! Проведите верификацию полученного решения и проверьте, насколько идеально реализована ФИМ. Может быть, в реальности пришлось все же несколько отступить от «идеального» (совершенно бесплатного и не имеющего побочных негативных эффектов) решения и чем-то заплатить за достижение требуемого эффекта? Пример 42. Зимние ботинки. Каким бы ни был рисунок подошвы или каблука в ботинках, в гололед это мало помогает. Если же подошвы снабдить шипами, то ходить в такой обуви в помещении будет нельзя. Можно, конечно, надевать на подошвы накладки с шипами, что и делают в северных местностях, но это делает обувь не очень красивой и в больших городах не принято (и напрасно!). Как быть? Сначала определим, чего мы хотим в оперативной зоне (подошва плюс каблук!) и попробуем сформулировать ФИМ для этой ситуации. Мы уже научились быстро формулировать физические противоречия, что обычно сложнее, чем формулировать технические. Включим физическое противоречие в следующую Макси-ФИМ: оперативная зона сама обеспечивает появление шипов в гололед и отсутствие шипов при более высокой температуре. Что может быть идеальнее, чем такое использование вещественного ресурса, как в следующем решении: в подошве и в каблуке встроить вертикальные стержни из металла с эффектом памяти формы?! При температуре ниже нуля стержень немного выдвигается и служит шипом против скольжения, а при температуре выше нуля стержень сжимается, и шип исчезает.
Пример 43. Столик для работы или приема пищи в постели. Обычный поднос или другой плоский лист (столик), например, из пластмассы, неудобно использовать для приема пищи или непродолжительной работы в постели. Столик наклоняется и скользит при малейшем неосторожном движении. В клиниках для этого чаще применяют специальные выдвижные плоскости или подкатываемые столики, находящиеся на удобной высоте над постелью. В домашних условиях для этого нужно что-то более простое. Техническая причина проблемы состоит в том, что плоская нижняя поверхность столика плохо согласована со сложной поверхностью нижней части тела человека, сидящего или полулежащею в постели. Запишем Микро-ФИМ: Х-ресурс в виде частиц вещества в оперативной зоне обеспечивает максимальное согласование формы нижней части столика с формой тела человека. Отсюда следует, чтонижняя часть столика, по крайней мере, должна быть выполнена в виде динамизированной поверхности, легко приспосабливающейся к неровностям. Известное решение: снизу по всей поверхности столика прикреплена матерчатая оболочка, почти заполненная легкими пластмассовыми шариками. Достаточно установить такой столик на ноги больного, как оболочка плотно и надежно фиксируется. Пример 44. Лестница мемориала. Архитектурное решение любого мемориала имеет целью эмоциональное воздействие на посетителей. Многие мемориалы имеют вид скульптурных композиций, установленных на естественных возвышенностях или искусственных холмах. Как сделать, чтобы поведение посетителей, особенно, юных и не всегда хорошо воспитанных, на пути к вершине холма было, по крайней мерс, сдержанным? Вы уже заметили здесь явное административное противоречие, не так ли? Требуется ввести новую функцию, а именно, нужно, чтобы мемориал сам создавал «сдержанное» поведение посетителей, но как этого достичь, на первый взгляд не ясно. В виде технического противоречия это может звучать, например, так: поток посетителей должен быть не быстрым и равномерно движущимся, но он имеет помехи в виде быстро движущихся посетителей. Оперативная зона: лестница. Макси-ФИМ: лестница сама ограничивает движение посетителей. Эта ФИМ нацеливает на решение только за счет внутренних ресурсов оперативной зоны, за счет конструкции самой лестницы. Нужна необычная лестница! Лестница, которая замедляет движение посетителей! Контрольное решение: лестница имеет ступени разной высоты. Посетители вынуждены часто посматривать себе под ноги, и общее движение становится небыстрым, сдержанным. Пример 45. Бутылочка с опасным веществом. Как сделать сильнодействующее лекарство недоступным для детей и легкодоступным для взрослых, даже если глоток лекарства нужно принять срочно и не зажигая света? В первом приближении определим оперативную зону как всю бутылку. Тогда Макси-ФИМ можно представить в виде следующего физического противоречия: бутылка сама обеспечивает защиту себя от детей и узнаваемость для взрослых! Заметим, что в исходное требование входила различимость бутылки в темноте. Следовательно, речь может идти только об узнаваемости на ощупь, тактильном восприятии. Итак, в соответствии с Макси-ФИМ речь идет о форме бутылке. Форма одновременно должна нести позитивную информацию для взрослых и негативную информацию для детей. Контрольное решение: на конкурсе в Англии выиграла идея «колючей» бутылки. По всей поверхности бутылки имеются достаточно острые шипы, которые не могут поранить, но делают бутылку неприятной для детей, привыкших играть с округлыми и/или мягкими игрушками. И в заключение раздела о ФИМ мы можем сказать, что изобретательские задачи — это «многоходовки»! Поэтому и решать их надо соответствующими методами, с помощью
разных ресурсов, то есть разных «фигур» в этой сложнейшей игре. При этом ФИМ ориентирует на бескомпромиссное достижение желаемого результата. 9.3. Редукция и трансформации Устранение имеющейся несовместимости возможно пятью основными способами: 1) устранение негативного фактора или нейтрализация последствий его действия; 2) построение инверсного противоречия (превращение негативного фактора в позитивный, целевой) и переход к первому способу; 3) интеграция инверсных противоречий с исключением негативных свойств; 4) разделение равноценных, но конфликтующих позитивных действий во времени, пространстве или по другим ресурсам, являющимся причиной конфликта; 5) замена задачи с устранением всего конфликта в целом. В любом случае процесс трансформации по ТРИЗ осуществляется по схеме. которую я называю Мини-алгоритм трансформации или Мини-АРИЗ (рис. 9.15). Два основных шага Мини-АРИЗ под номерами 1 и 3 относятся только к этапам Редукция и Трансформация и связаны непосредственно с разрешением конкретного противоречия и с генерацией идеи решения. Шаг 2 отображает переход между этапами Редукция и Трансформация. Стрелка 4 показывает возможный возврат к Редукции, например, для дополнительного уточнения моделей или поиска новых ресурсов. Вы могли уже заметить, что ранее во многих рассмотренных примерах приводилось сокращенное описание процесса решения, содержащее только икни Мини-АРИЗ. Этот подход мы применим и в этом разделе, по крайней мере для первых примеров. Редукция является промежуточным, связывающим этаном между Диагностикой и Трансформацией. На этом этапе мы концентрируемся на одной конкретной задаче, сосредоточенной в одной оперативной зоне. Редукция проблемы включает подбор приемов и стандартных ТРИЗ-моделей, для которых известны решения в общем виде, формирование функциональной идеальной модели и идеального конечного результата, изыскание потенциально полезных оперативных ресурсов. Трансформация является во всех смыслах решающим этапом в Мета-АРИЗ. Именно на этапе Трансформации встречаются дисциплина мышления и вдохновение, логика и интуиция, опыт и мотивация, устремленность к новой идее. Именно на этом этапе должна принести свой замечательный эффект вся подготовительная работа по ТРИЗ — диагностика проблемной ситуации, завершающаяся построением оперативной зоны и определением
исходных моделей противоречий, и редукция исходных описаний к стандартным. Именно здесь Вы оказываетесь лицом к лицу с последним отчаянным сопротивлением проблемы, перед неизвестным будущим, перед Вашим изобретением или серией изобретений. Вперед! Модели ТРИЗ/CROST на этапе Трансформация являются инструментами для мышления и представляют собой приемы-аналоги. Примеры, рассматриваемые ниже в этом разделе, предназначены для того, чтобы понять, как именно можно применять ТРИЗинструменты, до какого момента в процессе решения можно уверенно двигаться на основе аналога, а с какого момента нужно собственное творческое усилие. Коротко говоря, в ТРИЗ нет готовых ответов на все проблемы! Но в ТРИЗ есть модели и рекомендации, как искать правильные ответы за кратчайшее время. Снижает ли это полезность ТРИЗ? Или, может быть, сводит к нулю Ваши усилия по применению ТРИЗ при решении конкретной проблемы? На эти вопросы, естественные для каждого думающего человека, мы должны вместе найти правильные и однозначные ответы. Ну, что ж, следуя навыку. полученному при реинвентинге, а именно, навыку накопления и обобщения примеров, давайте зададим себе еще несколько похожих вопросов: • знаете ли Вы выдающегося шахматиста, который никогда не изучал шахматной теории, сотен и тысяч шахматных этюдов и партий, сыгранных другими талантливыми предшественниками и современниками? • знаете ли Вы гениального пианиста, который никогда не изучал музыкальной теории, не играл тысячи раз гаммы и этюды, пьесы и трудные фрагменты новых произведений? • знаете ли Вы знаменитого математика, который не изучал арифметику, геометрию, алгебру и не упражнялся в решении тысяч математических задач? • знаете ли Вы серьезного художника, не изучавшего элементы живописи, композиции и рисунка, не прошедшего школу студийных этюдов и не изучавшего произведения предшественников и современников? • знаете ли Вы, наконец, популярного чемпиона по боксу или карате, который стал победителем, прочитав несколько учебных пособий и не имея многолетней тренировочной практики, не разучивая сложных движений через простейшие элементы, не работая над своей психологической устойчивостью и способностью к концентрации? Думаю, что вывод давно сложился сам собой, как это и должно происходить в соответствии с ТРИЗ-концепцией функционального идеального моделирования. ТРИЗ также имеет теоретические принципы и модели, этюды разной степени сложности, стратегию, тактику и даже представление о красоте решений! Но об этом позже, а сейчас — к этюдам! К этюдам А-Студии! Пример 27. Тренажер-стойка в фитнес-центре (окончание). Редукция показывает, что ресурсы площади крайне ограничены. Нужно искать решение в направлении следующего идеального результата: новые тренажеры не занимают дополнительной площади! Подбор подходящих факторов из А-Матрицы приводит к следующей уточненной модели технического противоречия: Трансформация. А-Матрица предлагает следующие приемы из А-Каталога:
01 Изменение агрегатного состояния, 02 Предварительное действие, 19 Переход в другое измерение и 34 Матрешка. Совместная интерпретация приемов 19 и 34 представляется вполне конструктивной. Действительно, в соответствии с приемом 19 можно использовать ресурс высоты помещения и либо поднять тренажеры на дополнительный уровень, либо стремиться использовать вертикальные компоновки. Прием 34 прямо ориентирует на применение либо выдвигаемых/раздвигаемых конструкций, либо на реализацию в одной конструкции нескольких тренажеров. Пример одного из известных решений показан на рис. 9.16: тренажер-стойка позволяет со всех четырех сторон выполнять различные упражнения, так как подвижные нагрузочные элементы смонтированы на каждой из сторон стойки, а тяги выведены через кронштейны с роликами, установленные на разных уровнях в соответствии с типом упражнения. 1*ис. 9.16. |рсиа*ср L тонка с 4 функциональными сторонами Пример 28. Виброударное забивание сваи (окончание). Анализ показывает, что придется обратиться все же к ресурсу материала сваи. Сформулируем Мик-ро-ФИМ: Хресурс в виде частиц вещества в оперативной зоне обеспечивает перемещение неповреждаемой сваи! Редуцированная модель в виде двух альтернативных технических противоречий: Трансформация. Из двух ячеек А-Матрицы получаем следующие приемы: 01 Изменение агрегатного состояния (дважды), № Дробление, 04 Замена механической среды (дважды), 13 Дешевая недолговечность взамен дорогой долговечности, 28 Заранее подложенная подушка, 36 Обратная связь. В принципе все приемы имеют интересные интерпретации! Рассмотрите их самостоятельно (сравните также с решением для примера 7.8). В учебных целях мы сосредоточимся на одном известном решении (рис. 9.52) по приему 04, который, в частности, рекомендует: b) использовать электрические, магнитные и электромагнитные поля для взаимодействия с объектом; d) использовать поля в сочетании с ферромагнитными частицами. В материал сваи добавляется ферромагнитный порошок. Кроме того, в свае находится стальная арматура. Свая опускается в тяжелый цилиндр, включаю-
Рис. 9.17. Свая с электродинамическим способом перемещения ший кольцевой электромагнитный индуктор, генерирующий импульсы тока. Возникающее магнитное поле взаимодействует с ферромагнитными и металлическими компонентами в свае и создаст механическое усилие, переметающее сваю вниз. Выбор формы импульсов и силы тока позволяет создавать разные режимы движения сваи, воспроизводить как ударные, так и вибрационные воздействия. Рассматривая ряд трансформаций сваи от самой первой постановки до полученного решения, следует отметить, что непрерывно изменялся характер действий в оперативной зоне: воздействие в точке (исходный ударный способ забивания) — воздействие по поверхности (через посредники) — воздействие по объему (через посредничество ферромагнитных добавок). Это есть проявление принципа динамизации оперативной зоны. Причем изменение в зависимости от контекста задачи может происходить и в обратном направлении. Пример 29. Вывод группы спутников на точные орбиты (окончание). На лапе Редукция можно предложить следующую модель технического противоречия: Рекомендуемые приемы: 05 Вынесение, 06 Использование механических колебаний, 10 Копирование. Одно из известных решений на основе Приема вынесения в части «выделить единственную нужную часть (нужное свойство): группа спутников выводится в космос кораблем типа «Шаттл», а затем робот-манипулятор (рис. 9.18) выносит спутники из грузового отсека и расставляет их на орбитах с требуемыми параметрами.
Пример 30. Лекционная доска (окончание). Редуцирование исходных противоречий в этой ситуации само по себе оказывается непростой задачей. Рассмотрим этот процесс в его развитии. Сначала исходные противоречия могут быть редуцированы к следующему виду: Здесь количество негативных факторов превышает количество позитивных. Поэтому представляется полезным перейти к инверсным моделям, добавив к ним фактор 02 Универсальность: Ранжирование приемов приводит к следующей последовательности: 04 (2 — встречается дважды), 07 (2), 18 (2), 19 (2), 37 (2), 02, 09, 14, 27, 29. Выпишем подряд ключевые рекомендации из первых четырех приемов: заменить механическую систему оптической, акустической пли «запаховой»; характеристики объекта или внешней среды должны меняться так, чтобы быть оптимальными на каждом шаге работы; использовать промежуточный объект, переносящий или передающий действие; • возможно улучшение при переходе от движения по плоскости к пространственному; использовать оптические потоки, падающие на соседнюю площадь. В Германии предложено решение, показанное на рис. 9.19. На доске 1 обычного размера, например, длиной 3 м и высотой 1,5 м. лектор перемешает штифт 2 так, как будто создает рисунок или пишет текст. В лоску встроена координатная сетка 3, считывающая положение острия штифта. Координаты Хи Y острия штифта через преобразователь 4 поступают в компьютер 5, а оттуда — в проектор 6, изображающий на доске все, что было нарисовано ранее (7), и проецирующий окончание
вновь вводимой линии непосредственно в то место, где находится штифт. «Доска» (белого цвета) на самом деле играет роль экрана со встроенной системой считывания положения штифта. Таким образом, сохраняется универсальность рисования на «доске» и увеличивается степень автоматизации, благодаря возможности сохранения изображений на любом компьютере, соединенном с передающим компьютером 5 через Интернет. Увеличиваются производительность, удобство эксплуатации и вновь степень автоматизации, так как теперь можно демонстрировать на доске любые заранее приготовленные сложные рисунки. Примеры 31 и 37. Купол Рейхстага (окончание). Итак, Вы готовы воспроизвести ход мыслей архитектора сэра Нормана Фостера? Если «да», то давайте попробуем сделан, это. Если «нет», то нужно проработать книгу еще раз с самого начала! Мы совместим здесь решения на основе технического и физического противоречий, тем более, что после этого примера мы как раз переходим к рассмотрению трансформаций на основе физических противоречий: Идеальный результат: потоки посетителей не могут пересекаться! Техническое противоречие: плюс-фактор 21 Форма и минус-фактор 25 Потери времени. Физическое противоречие: встречные потоки посетителей должны быть, так как посетители должны подниматься на смотровую площадку и спускаться с нее, и встречные потоки должны отсутствовать, чтобы посетители не мешали друг другу в движении. Ведущий ресурс: пространственный. Рекомендации по А-Матрице: приемы 02 Предварительное действие, 15 Отброс и регенерация частей, 19 Переход в другое измерение и 22 Сфероидальность. Рекомендации из каталога «Фундаментальные трансформации и А-Приемы»: вполне перспективные приемы 05 Вынесение, 10 Копирование, 19 Переход в другое измерение. 22 Сфероидальность, 34 Матрешка. Суммарные рекомендации и их интерпретации: • Прием 05: отделить мешающую часть (например, поток спускающихся посетителей), выделить нужную часть (аналогично); • Прием 10: использовать копии (сделать еще один пандус!); • Прием 19: использовать многоэтажную компоновку (как-то разместить пандусы один под другим!);
• Прием 22: использовать спирали (уже применяются!); • Прием 34: разместить объект последовательно один в другом, пропустить объект через полости (пустоты) в другом (итак, пандусы надо как-то вложить один в другой!?). Простое и великолепное решение (рис. 9.20): второй пандус сдвинут по окружности (например, при виде сверху, иначе говоря, в плане) на 180° и свободно входит своими витками между витками первого пандуса. Оба пандуса одинаковы, то есть являются взаимными копиями. Рис. 9.20. Пандусы к смотроной площадке купола Рейхстага Пример 32. Разделительный барьер (окончание). Сформулируем Макси-ФИМ: оперативная зона сама держит барьер! (Посмотрите, кстати, пример 30!) Попробуем сформулировать другой вариант физического противоречия: барьер должен быть тяжелым, чтобы его трудно было сдвинуть, и должен быть легким (для удобства транспортировки, монтажа и демонтажа). Прежде всего, просматривается возможность разрешения противоречия во времени, так как тяжелым (широким) барьер должен быть на одном интервале времени, а легким (узким) — на другом. И эти интервалы не пересекаются! Конечно, вполне понятно, что и в конструкции должны быть сделаны какие-то изменения. Здесь нужно рассмотреть все доступные ресурсы! Например, что сдвигает барьер? Давление и собственный вес посетителей, опирающихся на барьер. А ведь это вполне реальный ресурс массы, появляющейся именно на конфликтном интервале. Вред нужно превратить в пользу! Одно из эффективных решений задачи: со стороны очереди опора барьера выполняется в виде решетчатой платформы, достаточно широкой, чтобы посетители, опираясь на барьер, обязательно сами стояли на этой платформе. Так оперативная зона (с помощью веса посетителей) сама удерживает барьер от перемещения! Пример 33. Реакция водителя автомобиля (окончание). Мне известны несколько водительских школ в Германии, где это противоречие решили-таки в сугубо натуральном варианте. В школе устраивается вечеринка с небольшой дозой шампанского, а потом на специально оборудованных автомобилях и вместе с инструктором веселые водители выполняют на тренировочной площадке вполне обычные задания. Все это снимается на видеокамеры, фиксируется время выполнения заданий, а на следующем занятии показывается участникам тренинга. Изумлению обучаемых нет предела! Эффект потрясающий! Второе решение более соответствует ТРИЗ! Негативное действие нужно передать в окружающую среду, нужно использовать какой-то ресурс внешней среды. И «пьяным» стал
компьютерный тренажер! Противоречие разрешено в структуре и во времени: вся система функционирует нормально, а часть системы — ненормально, а именно: тренажер выполняет действия обучаемого с определенным запаздыванием. Такое решение применяется в США. Пример 34. Свая (окончание примера, связанного со сваями). Если даже Вы знаете контрольное решение, или у Вас появились собственные идеи, изучите этот пример внимательно. Он только кажется простым. На самом деле здесь есть очень важные тонкости Редукции, открытые именно в ТРИЗ. Построим структурно-функциональную модель конфликта в оперативной зоне (рис. 9.22. Заметили ли Вы, что это упрощенный вариант! Если «да», то это очень хорошо! Если «нет», то рассмотрите все изложенное ниже более внимательно. Рис. 4.22. Упрошенная структурно-функшюипльнач модель конфликта при шбинаиии спаи Прежде всего отмстим, что последующий анализ следовало бы делать еще на этапе Диагностика. Но, допустим, что мы увлеклись и решили, что в этой ситуации только одна оперативная зона и, соответственно, одна «очевидная» конфликтующая пара — молот А и свая В. Как только мы определили исходную модель таким образом, так и все наши поиски ограничились только этой оперативной зоной! Примерно так все и происходит при решении задач теми, кто не знает ТРИЗ! ТРИЗ-специалист еще на этапе Диагностика проведет более полный анализ. Но, продолжим с того места, на котором мы оказались. Построим более полную структурно-функциональную модель конфликта в оперативной зоне (рис. 9.23). Все, кто не знакомы с тонкостями ТРИЗ-моделирования, опишут эту модель примерно так: молот А воздействует на сваю В, передавая ей энергию для перемещения в грунт С, но при этом повреждает сваю В; свая В совершает рабочее воздействие на грунт С, который также оказывает на сваю негативное воздействие. Вот здесь-то ТРИЗ требует определить и зоны, и экторы более точно и детально, хотя и нетрадиционно.
Во-первых, явно видны две оперативные зоны. Первая — очевидная, включающая молот А и сваю В. Этой оперативной зоной мы и занимались, впрочем, как и сотни или тысячи специалистов по свайным конструкциям, не обращавших внимания на другие зоны и ресурсы системы. Вторая оперативная зона включает сваю В и грунт С. Эту зону мы даже не принимали во внимание, считая что весь системный конфликт исчерпывается конфликтом между А и В. Эта ошибка исключила саму возможность систематического исследования всей системы, а следовательно, и возможность направленного поиска альтернативных решений. А теперь укажем на иную, более тонкую и незаметную ошибку, сделанную уже при описании полной модели. В отличие от неподготовленного решателя проблем, ТРИЗ-специалисты сказали бы, что на сваю оказывает воздействие не грунт, а... отверстие в грунте. Они сказали бы, что свая не просто «воздействует на грунт», а формирует именно это самое отверстие для себя! Действительно, если бы отверстие имело заранее форму сваи, то сваю не надо было бы забивать! Сделаем в этом месте отступление: не кажется ли Вам, что одна альтернативная идея появляется уже только на основе этих несложных рассуждении'?! Действительно, можно пробить в грунте предварительное отверстие пол сваю, а потом забивать сваю с намного меньшим усилием. А если отверстие достаточно большое, то можно просто опустить сваю в это отверстие. Вот теперь пришло время указать еще на одну часто встречающуюся ошибку диагностики задачи. Эту ошибку я специально оставил в заключительной фразе общей постановки задачи в примере 14 (начало): «Можете ли Вы предложить новую «неразрушающую» технологию забивания свай?» Через слово-термин «забивание» в постановку сразу вводится как неизменяемое понятие способ получения свайной опоры. А почему бы не изменить сам способ получения сваи в грунте? Так вот, на практике такие ошибки встречаются чрезвычайно часто. Причем именно профессионалы в своей области сами оказываются жертвами своих профсссиональных стереотипов мышления, закрепленных в терминах и в способах описания проблем. По ТРИЗ в целях снятия психологической инерции нужно заменять термины другими словами, прибегая к метафоре и шутке. Например, можно сказать: засунуть или посадить сваю в грунт, вырастить сваю, свая сама залезет в землю. И даже не свая, а например, столб, нога, цилиндр (тоже термин, но другой, схватывающий только общую форму), статуя, болванка и так далее. Главное, уйти от стереотипа. Теперь продолжим. В предыдущем разделе Вы уже видели, что формирование функциональной идеальной модели может играть не только важную роль в подготовке генерации идеи, но и непосредственно подсказывать саму решающую идею. Идеальный конечный результат: свая должна занять свое место в грунте целой и невредимой. И снова необходимо дать точное определение, что означает быть «целой и невредимой», например, форма сваи в грунте должна быть такой, какой она получается на заводе при ее изготовлении. ISO Также можно искать все более точное определение оперативной зоны! Вполне корректно определить в качестве оперативной зоны стенки отверстия и поверхность сваи в местах контакта с отверстием. Проверим правильность модели с помощью некоторых вопросов и ответов, способ формирования которых покажется Вам вполне понятным. Как именно грунт взаимодействует со сваей? — Только через стенки отверстия! А свая как взаимодействует со стенками отверстия? — Только своей поверхностью!
Усилим функциональную идеальную модель до предела: оперативная зона сама обеспечивают получение целой сваи! Формально это может пересказать только одним способом: стенки отверстия сами обеспечивают... получение целой сваи!? Можно ли конструктивно интерпретировать этот образ? Если «да», то запишите свою идею, чтобы вскоре сопоставить ее с контрольным учебным решением! Впрочем, и при ответе «да» нужно рассмотреть все изложенное ниже. Для подготовки еще одного направленного выхода на решение рассмотрим оперативное время, отступая последовательно от конечного результата. Итак, свая каким-то образом оказывается в грунте (и это есть конфликтное время). Перед этим свая привозится на стройплощадку. Свая изготавливается на заводе. Для этого песок и цемент смешиваются с водой и подготавливается металлическая арматура. Арматура закладывается в форму. Затем в форму заливается приготовленная бетонная смесь. После застывания смеси в форме из нес извлекается готовая свая. Увидели ли Вы возможность интерпретировать функциональную идеальную модель? Проверьте свою догадку по контрольному ответу в конце книги. Пример 35. Ремонт трубопровода (окончание). Итак, в результате Редукции мы имеем дело с острым физическим противоречием: воду нужно остановить и воду нельзя останавливать! И все же начинать надо с уточнения всех ТРИЗ-аспектов проблемной ситуации. Первое: оперативная зона. Она включает дырку в трубе, часть трубы в области дырки и воду. Идеальный результат: вода остановлена, воды нет в области дырки! Ресурсы: видимые ресурсы отсутствуют. Обратимся к каталогу Фундаментальные трансформации и А-Компакт-Стандарты. Общая интерпретация системного перехода 1-с (позиция 5): во всей системе движение воды есть, а в оперативной зоне — нет (?). Интерпретация позиции 7: применить фазовый переход 1 — заменить фазовое состояние части системы! Контрольный ответ: осуществить местное замораживание воды выше (по направлению течения воды) дырки! Либо и выше и ниже. Такое оборудование выпускает, например, немецкая фирма Rothenberger. Пример 46. Лекционная доска («окончательное окончание» примера 30). Давайте подумаем вместе над особенностями решения, приведенного в примере 30 (окончание). Очень интересное решение! Оно важно еще и тем, что показывает устранение одного из самых устойчивых стереотипов, мешающих создавать инновации в такой отрасли, как обучение: представление о том, что на лоске можно рисовать только мелом или фломастером! Но давайте зададим еще один вопрос: а зачем лектор вообще должен что-либо рисовать именно на доске, в масштабе доски?! Не кажется ли Вам, что это тоже сидящий в нас негативный стереотип?! Попробуем провести экспресс-диагностику ситуации. Изображение на «большой доске» нужно в большой аудитории, в которой находится много студентов. Но оно вовсе не обязательно для передачи материалов лекции, то есть, того, что находится на доске, например, через Интернет! Достаточно передавать собственно рисунки, текст, формулы. Можно сказать также, что не нужно «передавать самого лектора»! Но и в большой традиционной аудитории нужно ли, чтобы лектор непременно стоял у доски и имитировал процесс рисования (именно это и происходит по решению, показанному в окончании примера 30), сопровождая это рисование речевыми пояснениями? Итак, сформулируем ориентировочные требования: лектор должен Гнить, но он не должен быть у доски; изображение должно быть на доске, но его не надо рисовать на доске! Противоречия явно связаны с ресурсом пространства, и решение, скорее всего, будет опираться на принцип трансформации в пространстве! Я полагаю, что Вы уже посмотрели
на схему, показанную на рис. 9.19, и доработали ее до следующего контрольного решения (рис. 9.24). Лектор создает рисунок или пишет текст с помощью штифта 2, перемещаемого по настольному устройству 3 (дигитайзер или таблетт), имеющему встроенную точную координатную сетку, считывающую положение острия штифта. Штифт создает также видимый след, например, чернильный, на бумаге, закрепленной на устройстве 3. Теперь изображение может проецироваться на экран 1 любого размера и, разумеется, сохраняться в памяти компьютера 5 или передаваться в Интернет. Таким образом, удобство эксплуатации увеличивается еще больше. В заключение этого раздела рассмотрим несколько примеров более полно. Пример 47. Судно на подводньгх крыльях. Экспресс-Диагностика показывает следующее. Корабль как техническая система ТС имеет главную полезную функцию MPF «перемещать груз по воде» и главную негативную функцию MNF «отталкивать воду во время движения». Корпус корабля как компонент ТС имеет позитивную функцию PF «удерживать груз на воде», являющуюся частью MPF, и негативную функцию NF, совпадающую с MNF корабля. Оперативное время определяется временем движения корабля. Конфликтным это время является потому, что корабль во время движения вынужден расходовать энергию на преодоление сопротивления воды. Проблема состоит в том, что рост скорости корабля за счет повышения мощности двигателя быстро прекращается из-за многократно более быстрого роста сопротивления воды. Как повысить скорость движения при относительно небольшом росте дополнительной мощности двигателей? Переходим к Редукции и рассмотрим, прежде всего, оперативную зону и противоречия. Оперативная зона OZ включает все то, что тормозит движение корабля. Это, прежде всего, вода, и основной элемент OZ — подводная часть корабля, точнее поперечное сечение части корпуса, находящейся ниже ватерлинии. Здесь корпус корабля является индуктором, воздействующим на воду-рецептор для обеспечения своего движения. При этом рецептор, наряду с позитивным действием (создание выталкивающей силы по закону Архимеда для удержания корабля на воде) оказывает мощное негативное воздействие на индуктора — тормозит его движение.
Административное противоречие АС: требуется ускорить движение судов при допустимом росте дополнительной мощности двигателей (явно указана только цель, а средство предстоит определить). Техническое противоречие ТП: при увеличении мощности двигателей скорость движения корабля растет, однако сопротивление воды растет быстрее, и вскоре делает невозможным дальнейшее увеличение мощности двигателей. Физическое противоречие ФП: корпус корабля должен быть широким для обеспечения устойчивости и должен быть узким для уменьшения сопротивления воды при движении (см. ниже на рис. 9.25,а). Представьте эти противоречия в графической форме. Сформулируем функциональные идеальные модели: 1. Макро-ФИМ: Х-ресурс, не вызывая недопустимых негативных эффектов, обеспечивает с ростом скорости движения отсутствие роста тормозящего действия воды. 2. Микро-ФИМ: Х-ресурс в виде частиц вещества или энергии находится в оперативной зоне и обеспечивает во время движения отсутствие сопротивления частиц воды. 3. Макси-ФИМ: Оперативная зона сама обеспечивает рост скорости движения, причем чем больше скорость движения, тем меньше сопротивление воды. На этапе Трансформации рассмотрим подробнее ФП и заменим специальные термины более простыми словами. Корабль держится на поверхности воды. то есть на плаву, потому, что его подводная часть выталкивает из-под корабля воду, вес которой равен весу корабля в целом (это и есть закон Архимеда). То есть, корабль позитивно взаимодействует с водой, когда не движется. При движении именно подводная часть корабля расталкивает частицы волы, чтобы создать себе пустое пространство для более легкого продвижения. Заметим, пустое пространство! Без воды! Фактически это пространство будет заполнено воздухом, что и происходит на самом деле. Заметим, что ледокол расталкивает лед и создает себе свободное пространство в воде, а быстроходное судно расталкивает воду и создает себе свободное пространство... в воздухе. А теперь можно применить моделирование по координатам «Размерность -Время — Стоимость» из раздела 18.2 Модели «Фантограмма» и «Было — Стало». Сокращая описание, приведем только один результат моделирования: в пределе «узкий корпус» означает «нулевой» или «отсутствующий» корпус! Иными словами, подводная часть
корпуса (именно она испытывает тормозящее действие воды) должна иметь «нулевую высоту» или, что то же самое, не находиться в воде! В таком предельно обостренном виде физическое противоречие приведено на рис. 9.25,b. Теперь можно задать вопрос: как сделать так, чтобы корпус корабля... не находился в воде во время движения?! Сделать корабль-самолет? А почему бы и нет?! Корпус надо вытащить из воды, поднять над водой! Вспомните, какой камешек лучше прыгает по воде, если сильно бросить его почти вдоль поверхности? Плоский! И пока у камешка хватает скорости, он отталкивается от воды и не тонет! То есть, здесь действует что-то другое, чем закон Архимеда. С одной стороны, действует сила отталкивания, возникающая от удара камешка о воду, но с другой стороны, плоский камешек имеет дополнительно и аэродинамическую подъемную силу, как крыло птицы или самолета. Тогда почему бы к корпусу корабля не добавить «крылья»?! Другое дело, где их установить! Если в надводной части, то подъемная сила будет возникать только из-за опоры на воздух, а для этого корабль нужно было бы разогнать до скорости самолета. Но корабль ведь тяжелее самолета, и ему нужна намного большая подъемная сила. А что, если установить «крылья» под водой?! Тогда опора на воду создаст намного большую подъемную силу, гидродинамическую, и вытолкнет немного корпус корабля вверх! Чем выше скорость, тем выше корабль будет подниматься из воды, тем меньше будет часть корпуса, остающаяся пока под водой, и меньше сопротивление воды (!), и тем легче можно будет разгонять корабль еще и еще. И он будет постепенно подниматься над водой все выше и выше, пока весь корпус не выйдет из воды, в которой останутся только «крылья» и движители — винты! Да, именно такова была идея российского изобретателя Ростислава Алексеева, открывшая в начале 1950-х годов направление быстроходных кораблей на подводных крыльях (рис. 9.26). Для этапа Верификация приведем лишь одно важное пояснение. Поскольку подводные «крылья» являются элементом корпуса, то вполне можно сказать, что мы получили идеальное функциональное решение — OZ сама обеспечивает рост скорости корабля при любой его ширине. А теперь для полноты учебного разбора примера вернемся к ТС и к возможности решения задачи с помощью А-Приемов. В соответствии с ТС из А-Матрицы можно выбрать плюс-фактор «Улучшается скорость» (строка 22) и минус-фактор «Ухудшается мощность» (столбец 36). А-Матрица рекомендует следующие А-Приемы: 01 Изменение агрегатного состояния объекта, 05 Вынесение, 08 Периодическое действие, 30 Применение сильных окислителей. Конструктивной интерпретации легче всего поддается А-Прием 05:
Отделить от объекта «мешающую» часть («мешающее» свойство) или, наоборот, выделить единственно нужную часть (нужное свойство). «Мешающий» корпус корабля вынесен из воды благодаря вынесенным из корпуса «нужным» элементам — подводным крыльям. Пример 48. Солнечный дом. Обычно загородный лом строят так, чтобы побольше солнца попадало в окна большой комнаты для отдыха и сбора всех членов семьи или гостей. На другие стороны лома солнце может вовсе не попадать. Попробуйте изобрести решения для того, чтобы солнце могло попадать в любую комнату. Предварительная Диагностика показывает следующее. Дом как техническая система ТС имеет главную полезную функцию MPF «защищать внутреннее пространство от внешних воздействий» и главную негативную функцию MNF (в данном случае) «отсутствие солнечного света в некоторых помещениях». Здесь предполагается, что солнечный свет попадает в дом через окна. Если в доме единственная комната, то солнце обязательно бывает в ней, даже если другие окна выходят на несолнечную сторону. Отсюда уже на папе Диагностики может появиться несколько очевидных идей (рис. 9.27): можно строить дом, в котором все комнаты вытянуты вдоль солнечной стороны (а), комнаты второго ряда имеют окна над крышей первого ряда (b), дом имеет форму кольца из однокомнатных секций с внутренним двориком (с). Вполне очевидны более сложные решения: на несолнечной стороне установить отражатели (d), сделать встроенные зеркальные световоды (е). Выберем один из этих проектов в качестве прототипа для поиска новых идей. Пусть это будет решение «а». Его недостатком является неудобная однорядная планировка дома. Редукция. Определим, прежде всего экторы и OZ этой системы (попробуйте отложить книгу в сторону и определить эти компоненты самостоятельно). Укажем вначале нужную вспомогательную функцию дома «освещать комнаты (солнечным светом)». Тогда становится более ясно, что комнаты здесь являются рецепторами, а лом является системой-индуктором. Солнечный же свет может быть отнесен к системному окружению или к среде. Тогда OZ можно определить как совокупность комнат на несолнечной стороне. Но ТРИЗ установлено, что при наличии одинаковых объектов можно строить решение для одного объекта, а потом распространить это решение на все объекты (если,
15 6 А-Студия: ыгоритчическая навигация мышления конечно, учет свойств всех объектов вместе взятых не создает нового системного качества). Поэтому OZ уточним как комнату на несолнечной стороне. Здесь имеет место острое физическое противоречие: дом (через окна) хорошо освещает комнату (на солнечной стороне) и плохо освещает комнату (на несолнечной стороне)! Заметим, что в этой OZ оперативное (конфликтное) время ОТ начинается сразу после фиксации положения дома на строительном участке. Рассмотрим ОТ точнее. До окончательной привязки плана дома к плану участка «дом», точнее. его проекцию, можно поворачивать так, чтобы выбрать оптимальную ориентацию, обеспечивающую наибольшее присутствие солнца в комнатах. После окончательной привязки дома возникает недостаток, который мы сделали центром внимания. Внимание! Еще раз: до фиксации положения дома проблема отсутствует, а после фиксации — присутствует! Но ведь это — ответ в общем виде! Не должно быть фиксации положения дома! Иными словами, дом нужно динамизировать, сделать поворачивающимся, вроде сказочной избушки на курьих ножках! На этап Трансформации остается, правда, немало острых проблем, из которых первоочередной является создание механизма вращения дома. Может быть, это будет огромный подшипник, или колеса? А может быть, дом будет плавающим, и тогда его и вовсе легко будет «крутить»?! Должен ли он крутиться как волчок в любом направлении, или достаточно обеспечить подвижность на небольшом секторе, например, в диапазоне 60— 90°? Мы не будем развивать решение дальше, тем более, что имеется ряд патентов с этой идеей. Наша учебная цель состояла в том, чтобы показать, что решение может появляться на разных этапах Мета-АРИЗ. Именно поэтому так важно последовательно и внимательно проходить все этапы один за другим! Верификация. Возникают новые многочисленные проблемы, в частности, как должны быть устроены фундамент, системы подачи электричества и воды, система отвода сточных вод, спутниковая антенна, даже связь дома с гаражом. Но я не хочу лишать Вас удовольствия пофантазировать на эту тему. Она того стоит! И, может быть, Вы создадите еще несколько неожиданных идей!
Пример 49. Стена. Одна из фирм на Индустриальной Мессе в Ганновере. Германия, создала весьма удивительную стену вокруг своего стенда. Об этой стене можно было сказать, как о платье одной сказочной героини, у которой оно одновременно как бы было, и его как бы не было! Так и со стеной: она и была, и не была. На эту стену снаружи вполне четко проецировались реклам-но-информацинные фильмы, но входить на стенд лучше было через проход, где этой «стены» не было. Не торопитесь с угадыванием идеи! Используйте Мета-АРИЗ. А если Ваша догадка уже опередила мое предложение, то и в этом случае сделайте реинвентинг, пройдя достаточно подробно все этапы Мета-АРИЗ. Действительно, проблема! Стена есть, и стены нет! Платье есть, и платья нет! Уж точно, что на такую проблему оптимист и пессимист посмотрят диаметрально противоположным образом! Как на бутылку, в которой напитком занято ровно 50 % объема. Оптимист, как известно, может заявить, что бутылка наполовину полна или даже, что она вообще почти полная, а пессимист скажет, что она наполовину пуста или, еще хуже, что она почти пустая! Но ближе к делу: у сказочной героини платье было из рыбацкой сети, а на стенде было иное решение! Стеклянная стена? Нет, так как это все же прочная и вполне традиционная конструкция типа витрины магазина. Давайте не будем гадать, а начнем проектировать стену, которой нет! Диагностика. Сформулируем главную полезную функцию стены для стенда: отделять внутреннее пространство от внешнего. Традиционные вспомогательные функции: стена несущая (потолок или крышу), стена оптически прозрачная (стеклянная) или полупрозрачная, например, из переплетенных веток, из живых или искусственных растений и т. д. Это и есть обычные идеи из брейн-сторминга. Идея, о которой Вы узнаете, также вполне доступна брейнстор-мингу, но мы попробуем прийти к ней через реинвентинг. Заладим вспомогательную функцию в виде переменной стены, то появляющейся, то исчезающей! Пусть через нее можно пройти, как, например, через неплотные изгороди из живых растений, но это сопряжено с немалыми неудобствами, особенно, если Вы находитесь на Индустрие Мессе в костюме для торжественных случаев. Редукция. Построим физическое противоречие, используя несовместимые идеальные функциональные свойства: стена должна быть, чтобы посетители не попадали на стенд вне специального входа, и стены не должно быть, чтобы было видно все, что происходит на стенде, чтобы на стену можно было проецировать рекламные клипы, и чтобы она легко появлялась и исчезала. Трансформация. В разделе 12. Модели для разрешения физических противоречий Вы найдете 4 фундаментальных способа: разделение несовместимых свойств в пространстве, во времени, в структуре и в веществе. В нашей постановке явно присутствуют все 4 аспекта — пространственный (стена есть — стены нет), временной (стена появляется, например, только на рабочее время), структурный (стена обладает какой-то переменной структурой, чтобы не противоречить двум первым аспектам) и вещественный (стена использует какой-то материал, по-видимому, недорогой и несложный в применении). В разделе 8.2. Ресурсы Вы найдете такую рекомендацию: использовать в первую очередь легко доступные и недорогие ресурсы. Это особенно важно для выбора материалов, чтобы они не оказались дорогими и дефицитными. На выставке, как и во многих других местах, легко доступны воздух и вода. Воздух: надувать, что ли, эту стену? Но она будет непрозрачна, да и конструкция не выглядит простой! Вода? Остается только вода. А почему бы и нет?! Можно предложить как минимум две идеи: фонтаны и водопады по контуру стенда! На стенде была превосходно в эстетическом отношении реализована идея водопада: с 4-метровой высоты по контуру стенда, за исключением проходов, стекали тысячи тонких струек воды, попадая в узкую приемную щель в полу без брызг и лишнего шума. Рекламные цветные клипы на этой
непрерывно движущейся стене выглядели не слишком ярко, но очень впечатляюще из-за контраста статики кадров с динамикой «экрана-стены». Верификация. Может возникнуть вопрос о стоимости этой «стены». И об особенностях конкретной инженерной реализации. Ну что ж, и здесь тоже надо проявить изобретательность. И еще: хорошие идеи стоят того, чтобы за них платить! К тому же именно хорошие идеи и экономят немало денег. Об этом как раз следующий пример. Пример 50. Градирня. В лаборатории Института тепло-массообмена Академии Наук Республики Беларусь в Минске проводились исследования различных аспектов эффективности, безопасности и экологичности атомных и тепловых электростанций. Градирня (рис. 9.28) служит для полного охлаждения воды, отработавшей в турбинах электростанции. Тепловой коэффициент полезного действия современных испарительных градирен башенного типа составляет 25-40 %. Повышение эффективности градирен существенно увеличивает коэффициент полезного действия всей электростанции и уменьшает вредное воздействие ее выбросов на окружающую среду. Диагностика. В известных башнях эффективность снижена из-за того, что внутри башни образуются застойные вихревые зоны, являющиеся препятствиями (размером до 30 % поперечного сечения башни) для движения охлаждающего воздуха, поступающего снизу через сплошную воздухозаборную полосу по всему периметру основания башни. Причем, сильный ветер, который, казалось бы должен улучшать работу башни, залетая снизу с большей силой, напротив, создает еше большие пробки в башне! Как улучшить работу градирни? Редукция. ФИМ была сформулирована в следующем виде: охлаждающий воздух в башне градирни сам создаст устойчивый, оптимальный по всему сечению башни, поток — без пробок! Прошу Вас снова обратить внимание на то обстоятельство, что «прицел» для ФИМ устанавливается на инструменте, рабочем органе градирни — на воздушном потоке внутри башни! ТРИЗ требует очень четко определять рабочий орган: не башня градирни охлаждает волу и выполняет MPF, а движущийся в башне снизу вверх воздух—индуктор! Трансформация. На этот раз воспользуемся прямым просмотром А-Каталога, что также не слишком сложно. С поставленными целями так или иначе ассоциируются приемы № № 01, 04, 05, 07,12, 14, 19, 21, 22, 24, 29, 34, 39, 40! Выглядит многовато? Ничего, бывает и больше! Далее проводится интерпретация и ранжирование приемов относительно «близости» к ФИМ — здесь, конечно. требуются определенные навыки. В итоге получилась следующая картина: 1) Анализ цепочки ранжированных приемов начали с приема 21 Обратить вред в пользу: раз внешняя среда (сильный ветер; теплый во пух, плохо охлаждающий воду) негативно влияет на работу башни, то пусть этот вред сам себя устранит'. То есть хорошо
было бы использовать какие-то бесплатные, даровые ресурсы среды, создающие сам поток охлаждающего воздуха; 2) Вторым приемом был выбран 29 Самообслуживание, воздушный поток должен сам преодолевать возникающие пробки, а еще лучше — препятствовать их возникновению! (К сожалению, пока не ясно, как это можно сделать, но от ФИМ — ни шага в сторону!); 3) Следующий подходящий прием — 04 Замена механической среды: перейти от неподвижных полей к движущимся, от фиксированных к меняющимся во времени, от неструктурированных к имеющим определенную структуру — «поле» воздуха нужно сделать сильным, уничтожающим пробки: 4) Прием 19 Переход в другое измерение: перейти от движения по линии к движению по плоскости или по трем координатам — раз поток не может предотвратить пробки при прямолинейном движении снизу вверх, то может быть его как-то закрутить в спираль, как в вентиляторе или в торна до!? Вот она — ключевая идея!!! Действительно, обычный вихрь в природе очень устойчив именно потому, что закручен! Надо создать закрученный поток — торнадо! — внутри башни! Просматривается минус: что это за огромный вентилятор диаметром в десятки метров? Нужно какое-то иное инженерное решение. 5) Прием 07 разделить объект на части, способные перемещаться относительно друг друга — здесь следует искать решение относительно изменения конструкции башни (???), ведь поток надо как-то сделать в виде устойчивого вихря. Анализ других приемов опускаем для краткости, тем более, что для специалистов по тепломассопереносу, в том числе и в газовоздушной среде, уже на этой стадии анализа конструкционное решение оказалось делом несложной профессиональной техники: в воздухозаборной части по нижней окружности башни создаются специально рассчитанные воздухозаборные «окна», имеющие для раскрытия вертикальную ось вращения и раскрываемые на определенный оптимальный угол (рис. 9.29). Верификация. Хорошее решение всегда сопровождается сверхэффектом, усилилось засасывание внешнего воздуха в башню с гораздо большего расстояния от башни и с большей высоты от основания башни, благодаря чему исчезли также небольшие застойные зоны и при входе в башню! Благодаря этой конструкции внутри башни даже в безветренную погоду возникает устойчивый вихрь и отсутствуют пробки! А при сильном ветре эффективность работы башни только повышается! При малых инвестициях в модернизацию даже действующих башен выигрыш в тепловой эффективности в среднем составляет за год 3—7 %, что весьма существенно! Прокомментируем дополнительно решения последних четырех примеров.
В примере 47 после построения обобщенного физического противоречия выйти на идею подводных крыльев как аналогов самолетных крыльев, но использующих не аэродинамическую, а гидродинамическую подъемную силу — совсем не просто; это требует не только опоры на серьезные знания физико-технических эффектов аэродинамики и гидродинамики, но и выдающейся фантазии, свободы от инерции мышления, в которой реальный корабль никак не ассоциируется с самолетом (отметим, что в сказках летающий по воздуху корабль встречается! — и тоже, кстати, в силу психологической инерции мышления, так как эти сказки создавались еще в те времена, когда самолетов не было, а корабли были!). Почти очевидный ответ появляется в примере 48 уже при анализе оперативного времени на этапе Редукции, правда, при очень точном и внимательном анализе, как и рекомендует ТРИЗ, но для окончательного появления идеи нужно преодолеть мощный негативный стереотип представления о доме как о безусловно неподвижном объекте, навечно установленном на неподвижный фундамент; здесь нужно воображение не меньшее, чем для примера 47. При учебном реинвентинге примера 49 многие просто успевают догадаться об идее решения до подробного рассмотрения проблемы по шагам; но это объясняется только тем, что в постановке задачи и в описании требуемых свойств этой стены содержится слишком много метафорической ориентирующей информации; хотя решение с помощью применения легкодоступных ресурсов не становится от этого менее полезным; а теперь посмотрите на эту проблему без ориентирующих информации и попробуйте изобрести новые «стены» — это может оказаться доходным делом! Процесс решения проблемы в примере 50 требует и знаний, и незаурядной изобретательности, которую и проявили авторы этого изобретения; реальный секрет этого решения состоял в том, что авторы много лет занимались, в частности, исследованиями атмосферных явлений типа торнадо, и когда к ним обратились специалисты теплоэнергетической промышленности для исследования атмосферных явлений в башне градирни, то здесь особые знания исследователей были применены ими напрямую — они создали торнадо в башне! И еще несколько слов о примере 50. Это одновременно простое и очень не простое решение! Оно кажется простым потому, что Вам открыли его! Точно так же становится простой любая головоломка после ее разгадки! А если ответ Вам подсказали заранее, то головоломка становится еще и неинтересной. А реальную историю создания непростого изобретения я рассказал не для того, чтобы Вы вздохнули и сделали вывод о том, что только узкие специалисты способны на изобретения. Изобретайте сами! Но с ТРИЗ! И Вы достигнете не меньшего! Комплекс из 4 приемов вполне подводил Вас к идее решения, не так ли?! Просмотрите реинвентинг еще раз, и Вы обязательно увидите это. Да, решатели обладают неодинаковыми способностями и мотивацией, а также различной подготовленностью. Поэтому результативность и эффективность синтеза идей оказывается различной. Однако, многолетний опыт преподаваБ зак 139 ния и применения ТРИЗ-инструментов убедительно доказал их безусловную полезность для каждого, кто правильно понял и освоил ТРИЗ. В отличие от всех других подходов, ТРИЗ действительно позволяет научиться изобретательно мыслить, научиться изобретать. ТРИЗ учит конструктивно использовать опыт других изобретателей, аккумулированный в ТРИЗ-инструментах. А остальное находится во власти Вашей мотивации, способностей и подготовленности! Полезные рекомендации, улучшающие Ваши личные возможности решения проблем, Вы найдете в разделе 19. Интеграция ТРИЗ в профессиональную деятельность.
И все же для полной правды нельзя умолчать еще об одной реальности, всегда присутствующей в создании отличной идеи. Это что-то трудно уловимое и трудно выразимое, что обычно относят к случайности, к стечению обстоятельств, к удаче. Так пусть удача также сопутствует Вам! Тем и интересна игра с неизвестным, открытие чего-то, о чем еще никто в Мире, кроме Вас, не знает! До Вас, до Вашего изобретения, этого в Мире не было! Вы приносите это в Мир! 9.4. Классификация А-Моделей трансформации При развитии ТРИЗ первыми появились специализированные трансформации для разрешения технических противоречий — А-Приемы. Сначала это был небольшой список в 10—12 рекомендаций для алгоритма изобретения АРИЗ-1961, близкий к списку контрольных вопросов из брэйнсторминга. В АРИЗ-1971 список превратился в каталог из 40 приемов, а для выбора приемов была разработана специальная А-Матрица, входами в которую являются 39 факторов, принимающие в модели противоречия позитивные либо негативные значения. В конце 1980-х годов нами внесено принципиально новое структурирование в А-Каталог (все приемы были упорядочены по частоте их применения в А-Матрице) и в А-Матрицу (структурирование входов по системным и физическим признакам), а также был четко сформулирован специальный метод комбинирования приемов — метод CICO (см. раздел 11.4). В середине 1970-х годов в ТРИЗ были сформулированы первые правила для разрешения физических противоречий и первые 18 моделей, в которых экто-рами являются физические и «технические» поля и вещества (физико-технические модели), которые для АРИЗ-1977 выросли в 77 комплексных трансформаций, называемых стандарты или, в нашей редакции, — А-Стандарты. В конце 1980-х в ТРИЗ был разработан Алгоритм выбора АСтандартов. В начале 1980-х в ТРИЗ сформировалась полная таблица фундаментальных трансформаций для разрешения именно физических противоречий (была опубликована в АРИЗ-1985). Фундаментальными мы называем эти трансформации потому, что как минимум одна из них всегда присутствует в любом решении. В течение многих лет в классической ТРИЗ накапливались каталоги базовых трансформаций, более известных под названием технические эффекты. Сами по себе эти модели не предназначены для непосредственного разрешения противоречий, а представляют собой перечень различных физических, геометрических, химических и других явлений (эффектов), применение которых дало интересные и сильные изобретения. Именно характер этих моделей, основанных на физико-технических эффектах, и дает основание отнести их к базовым, дающим принцип технической реализации. Применение моделей трансформации требует немалого навыка и опыта. Необходимые правила и примеры приводятся далее в разделах 10—13. Выбор класса моделей трансформации (рис. 9.24) зависит от вида модели противоречия или выбранного вида ресурса, но в целом не вызывает особых затруднений. Общее правило, которое следует знать и помнить относительно моделей трансформаций, заключается в том, что любая из этих моделей сама по себе как бы совершенно нейтральна по отношению к решаемой Вами проблеме. Выбранная Вами модель трансформации может стать полезной только при реализации сразу нескольких условий: 1) Вы понимаете суть изменений, которые модель трансформации предусматривает; 2) Вы интерпретируете эту модель (находите сходство, аналогии) применительно к Вашей проблеме;
3) и, самое главное, — Вы создаете изменения и устраняете проблему на основе применения к ней рекомендуемой трансформации! И еще одно важнейшее правило заключается в том, что проблема может считаться решенной только при безусловном выполнении следующего требования: противоречие проблемы должно быть устранено! Практикум к разделам 6—9 7. Кубик льда. До сих пор многие типы холодильников имеют формы для приготовления пищевого льда, не отвечающие идеальному конечному результату по извлечению кубиков льда из формы. Рычажные механизмы, которыми снабжается форма, ломают лед, и кубик теряет свою форму. Примените функциональное идеальное моделирование для создания такой формы, из которой лед будет извлекаться сам. 8. Агрессивная жидкость. Для проведения испытаний металлического кубика на его взаимодействие с особо агрессивной жидкостью этот кубик опускают в кювету (настольная ванна), после чего наливают туда эту жидкость. Кювета быстро выходит из строя, иногда за один эксперимент. Сформулируйте идеальный конечный результат и предложите изменение схемы эксперимента. 9. Колпачок для свечи. В некоторых ресторанах длинную цилиндрическую свечу прикрывают колпачком, чтобы свет от свечи не попадал прямо в глаза. Но по мере горения и испарения свечи огонек опускается ниже колпачка. Как сделать, чтобы огонек свечи все время оставался под колпачком? 10. Кремлевские звезды. На высоких башнях Кремля в Москве установлены огромные звезды, диаметр которых достигает 6 метров. Как уменьшить опасность того, что звезды будут повреждены при сильном ветре? 11. Заварник для чая. Когда в заварнике остается не много жидкости, чаинки легко попадают из заварника в чашку. Можно, конечно, опускать чайные листики в пакетиках или в металлической сетке. Но это не всегда удобно, особенно если есть желание приготовить смесь из разных сортов чая. Пусть заварник сам не дает чаинкам уноситься жидкостью, когда ее остается не много. 12. Игрушка. Дети растут. А игрушки остаются маленькими. Вот если бы некоторые игрушки тоже «росли»! Предложите такие конструкции. 13. Переход на пляж. Для того, чтобы песок с пляжа не переносился обувью на прогулочную зону, используется... Продолжите фразу. 14. Тренировка по прыжкам в воду. На тренировке по прыжкам в воду спортсмены раньше получали ушибы и более серьезные травмы при неудачном исполнении прыжка и неправильном входе в воду. Как уменьшить опасность травмы при тренировке прыгунов в воду? 15. Поезд метро. В ночное время, а также в субботу и воскресенье расписание предусматривает меньшее количество поездов. Но это как раз доставляет немало неудобств для пользователей. Какой еще способ экономии применяется
в эти интервалы времени? Можно ли сделать этот способ основным вместо изменения расписания движения? 16. Ги де Мопассан и башня Густава Эйфеля. Известно, что писатель Мопассан был в числе многих противников использования башни после окончания всемирной выставки 1889 года в Париже. Вместе со многими другими знаменитостями он подписал открытое письмо, в котором высказывал мнение о том, что башня навсегда испортит облик Парижа, так как будучи видимой с самых отдаленных окраин города, лишит жителей и туристов удовольствия созерцать традиционные городские пейзажи. Сегодня башня является одним из символов Парижа. Зная о нелюбви писателя к башне, один журналист был немало удивлен, когда встретил писателя в ресторане, устроенном в этой башне. Как объяснил знаменитый писатель удивленному журналисту свое посещение (частое!) этого ресторана? 17. Направление движения жидкости в трубе. Вернитесь к примеру 35 и представьте себе, что пробку из замороженной воды нужно создать с той стороны, откуда вода поступает по трубе. Направление течения воды в трубе неизвестно. Нужно быстро определить его, ведь ситуация аварийная! 18. Полки в обувном магазине. Стеллажи в магазине обуви полностью заставлены коробками с разной обувью. Как устроить полки вдоль стеллажей для демонстрации образцов обуви, если количество типов образцов и количество коробок на стеллажах часто меняется?
Классические навигаторы изобретения А-Студии Чаще всего изобретатель применяет два или три хорошо освоенных приема. У наиболее методичный изобретателей эксплуатируются пять — семь приемов. ТРИЗ увеличивает творческий арсенал, включая в него десятки приемов, составляющих в совокупности рациональную схему решения задач... При этом направленные поиски отнюдь не исключают интуицию. Напротив, упорядочение мышления создает настройку, благоприятную для проявления интуиции. Генрих Альтшуллер 10. Навигаторы стандартных решений 10.1. Таблица комплексных трансформаций В каталоги комплексных трансформаций для настоящего учебника пошли каталог «Функционально-структурные модели» (Приложение 1) и каталог «А-Компакт-Стандарты» (Приложение 2). Содержащиеся в этих каталогах рекомендации представлены в весьма общем виде, допускающем разнообразные интерпретации и реализации. Например, идея решения может затронуть несколько ресурсов или оказаться комбинацией (комплексом) нескольких более специализированных трансформаций, таких, например, как А-Приемы или физико-технические эффекты. Эта особенность и определила название «комплексные трансформации». Каталог «Функционально-структурные модели» предназначен для получения решения в общем виде для 6 случаев системных конфликтов, которые сводятся к структурным моделям, представленным в этом каталоге. Решения в общем виде, предлагаемые для двух групп моделей (по три модели в группе), в основном ориентируют на поиск наиболее экономичного решения в соответствии со стратегией Минимальная задача (см. раздел 14.1 Развитие систем). Эти модели, а также применяемые для них способы решений, встречаются чрезвычайно часто, и поэтому были названы в ТРИЗ «стандартными». Каталог «А-Компакт-Стандарты» содержит более подробные рекомендации по реализации стандартных трансформаций для моделей, представленных в каталоге «Функционально-структурные модели». Эти рекомендации (всего 35) сведены в 5 групп, отражающих основное содержание трансформаций. В целом каталог «А-КомпактСтандарты» представляет собой адаптированный (сжатый) ТРИЗ-Каталог «Стандарты», содержащий 77 стандартных трансформаций. Адаптация произведена с целью исключения избыточности из исходного полного каталога. Компакт-каталог намного проще, по крайней мере, для первого ознакомления со стандартными моделями. Общая схема применения комплексных моделей заключается в следующем: 1) на этапе Диагностика или Редукция строится функционально-структурная модель конфликта в оперативной зоне; 2) если вид функционально-структурной модели соответствует одному из типов, приведенных в Каталоге «Функционально-структурные модели», то можно переходить к этапу Трансформация для поиска конкретной идеи на основе решения в общем виде, выбранного из этого каталога; 3) в соответствии с выбранным направлением поиска решения подобрать более точные рекомендации из каталога «А-Компакт-Стандарты»;
4) если с учетом особенностей конкретной задачи трудно подобрать подходящие точные рекомендации, или они трудно интерпретируются, то перейти к другим моделям, например, на основе противоречий. Рассмотрим учебно-практические примеры, придерживаясь принятого в этом учебнике правила: от простого — к сложному. Наша цель состоит в том, чтобы продемонстрировать необходимые методические шаги при работе с каталогами этих и других моделей. Немало технических особенностей просто невозможно показать в книге такого относительно небольшого объема, как этот учебник. Именно поэтому примеры раскрываются через главные практические операции, а соответствующие разделы с описанием примеров названы «принципами применения» моделей решений. 10.2. Принципы применения стандартных решений Пример 51. Диск штанги. При опускании штанги на пол в тренировочном зале создастся повышенный шум, а пол при этом серьезно повреждается. Построим функционально-структурную модель этой проблемной ситуации (рис. 10.1). Пол позитивно действует на диск, останавливая его движение. Диск же оказывает на пол негативные воздействия, описанные выше. По каталогу «Функционально-структурные модели» выбираем первую модель, где диск соответствует компоненту В, а пол — компоненту А. Рекомендации из правой крайней колонки и их интерпретация: • заменить или изменить вещество одного или обоих компонентов: выполнить диск из более мягкого материала (но тогда он станет слишком большим, чтобы весить столько же, сколько и стальной); сделать пол из более прочного и звукопоглощающего материала (дорого!); • внести добавки внутрь или на поверхность компонентов или в среду: надеть на диск толстое резиновое кольцо (контрольное решение I); положить толстый резиновый ковер на пол (контрольное решение 2); • изменить характер действия: опускать штангу медленно (это мешает тренировке, но можно создать для этого специальные технические решения, не ограничивающие, конечно, свободы движения штангиста). Пример 52. Разъем платы. Золотые контакты разъемов некоторых плат обладают очень хорошим (минимальным) контактным сопротивлением, но быстро истираются, так как золото относительно мягкий металл. В результате контактное сопротивление постепенно растет до недопустимого значения, и тогда разъем или плату в целом нужно менять. Схема, представляющая эту проблему, симметрична относительно контактов штыревой и гнездовой частей разъема (рис. 10.2). Это означает, что обозначения А и В здесь равноправны. Схема соответствует второй модели из таблицы «Функциональноструктурные модели»
Рекомендации из правой крайней колонки аналогичны, но их интерпретация исходит из знания физико-химических процессов в контактных парах и доступна, конечно, специалистам: • заменить или изменить вещество одного или обоих компонентов: этого делать нельзя по условиям эксплуатации плат; • внести добавки внутрь или на поверхность компонентов или в среду, в результате исследований было установлено, что включение микродобавок алмаза в золотое покрытие контактов увеличивает контактное сопротивление на 5—10 %, зато долговечность контакта возрастает в 3—5 раз! • изменить характер действия: не вдвигать контакты, чтобы не было истирания от трения, а прижимать их в гнездовой части — не даст эффекта в аппаратуре, устанавливаемой на подвижных системах, работающих в условиях вибрационных и ударных нагрузок. Пример 53. Медные проводники на микрочипах. Фирма IBM в 1997 году сообщила о возможности замены в микросхемах алюминиевых проводников на медные. Медь лучше проводит ток, и поэтому дорожка шириной в 0,2 микрона заменяет алюминиевую дорожку шириной в 0,35 микрон. Возникающая экономия места на кристалле позволяет в 3 раза увеличить количество электронных компонентов на чипе, повысить быстродействие и снизить потребление энергии. Однако, атомы меди диффундируют в кремний, изменяя его свойства и нарушая работу схемы. В принципе эта модель может быть приведена к модели, рассмотренной в предыдущем примере. Но мы рассмотрим более подробную модель (рис. 10.3). Здесь медный проводник А улучшает функциональные показатели всей системы В, но постепенно изменяет свойства кремниевого основания С, что влечет ухудшение работы всей схемы В. Ближе всего подходит к этой модели структура 5 из таблицы «Функциональноструктурные модели». И вновь интерпре- тация рекомендаций из правой крайней колонки исходит из знания физикохимических процессов в полупроводниковых материалах. Однако механизм решения проблемы универсален и не зависит от отраслевого происхождения задачи! Главным является сходство моделей — реальной и стандартной, взятой из каталога! И это главное, что мы стремимся показать в этих примерах. Итак. предложено изменить состав, например, ввести ресурс-посредник: между кремнием и медным проводником помещают изолирующую прослойку из материала, состав которого является Know how фирмы IBM. Кстати, полезно также рисовать результирующие модели. Модель для данного примера показана на рис. 10.4 (D — посредник, прослойка). Линии без стрелок означают нейтральные взаимодействия.
Пример 54. Гранулы для сбора нефти. Известны пористые плавучие гранулы, хорошо впитывающие нефть. Такие гранулы можно разбрасывать на поверхность нефтяных пятен, образовавшихся при утечке нефти из поврежданных танкеров. Проблема состоит, однако, в том, что гранулы легко разносятся ветром и волнами. Вполне понятно, что мы имеем здесь дело с моделью 5 — неэффективное или отсутствующее действие (рис. 10.5). Представим себе идеальный конечный результат: гранулы А и В сами держатся друг за друга и не разносятся по воде. Речь может идти о совмещении двух стандартов решения этой проблемы: SI (введение добавок) и S2 (повышение управляемости) — создание нужного действия за счет введения полей. Просмотр двух компакт-стандартов вполне ясно позволяет получить контрольное решение: в гранулы вводятся намагниченные частицы, в результате чего гранулы достаточно прочно притягиваются друг к другу. Здесь присутствует сверхэффект: такие гранулы помогают удерживать нефтяное пятно от рассеивания по большей поверхности. Пример 55. «Бронированная» бутылка. Стеклянные бутылки не создают никаких негативных воздействий на хранимые жидкости. Они могут использоваться многократно, несколько десятков раз. Однако, они имеют большой вес и могут разбиваться. Достаточно полная модель свойств стеклянной бутылки А содержит (рис. 10.6) позитивное воздействие на хранимую жидкость В и потенциальные негативные воздействия на условную транспортную систему С (большой вес для перевозки) и окружающую среду D (если бутылка разбивается). Конкурирующие полимерные бутылки могут при длительном хранении оказывать негативное воздействие на содержимое, например, на запах хранимой в них воды. Их преимуществом является малый вес и то, что они не разбиваются. Недостатком является и то, что они не используются повторно. Для этой системы можно построить модель (рис. 10.7), которая по всем параметрам является альтернативной системой по отношению к стеклянной бутылке.
Для стеклянной бутылки речь может идти о се развитии как системы путем приобретения дополнительной функции — повышения прочности, но с одновременным снижением веса, что несет в себе острейшее классическое противоречие. Более прочная бутылка должна иметь более толстые стенки, а значит будет иметь еще больший вес. Однако, к постановке проблемы формально подходит стандарт S4.3 Увеличить функциональную нагрузку на систему и ее части. Для полимерной бутылки подходит как этот же стандарт, так и рекомендация о введении добавок, например, на внутреннюю поверхность полимерной бутылки для устранения непосредственного контакта полимерных материалов с хранимой жидкостью. К обеим системам подходит и стандарт S4.1 Использовать объединение объекта с другой системой в более сложную би- или полисистему. Такое объединение особенно выгодно делать именно для альтернативных систем, с которыми мы и встретились в данном примере (подробности см. в разделе 15.3 Интеграция альтернативных систем). Такая бисистема и была создана в Дюссельдорфе (Германия): новая стеклянная бутылка покрыта «броней» из прозрачной полиуретановой пленки толщиной 0,1 мм. При той же прочности толщина стенок бутылки стала намного меньше (1,4 мм). Упаковка с 6 литровыми бутылками весит на 3,5 кг меньше, чем с прежними стеклянными бутылками! А пивная бутылочка на 0,33 литра вдвое легче своего прототипа. Даже если такая бутылка разбивается, осколки остаются как бы в пластиковом пакете и не разлетаются! Бутылка может использоваться до 70 раз, а потом поступает на переплавку. Пример 56. Бритва Жиллет. Бритвы прошли большой путь развития. Однако остановки в прогрессе не видно. При этом сделать в старых системах что-то новое и престижно, и выгодно. Ну что, казалось бы, можно придумать нового в станке для бритья? Тем более, что структурная модель оказывается не слишком информативной (рис. 10.8). Для чистого срезания волос приходится делать многократные движения, что увеличивает время бритья. Поэтому основную стрелку можно представить прерывистой линией (неэффективное действие). Волос негативно действует на лезвие, постепенно притупляя его, что также снижает эффективность основного действия. Здесь мы имеем комбинацию моделей 1 и 6. А в целом речь может идти о развитии функциональной нагрузки на режущую часть бритвы. В этом случае нужно начинать с интерпретации стандарта S4, например, с рекомендации образования би- или полисистем. Что и было сделано на фирме Жиллет: новый станок имеет три параллельно расположенных лезвия, сдвинутых на оптимальный шаг также и по высоте, что обеспечивает за один проход срез волоса до трех раз на разных уровнях. Сверхэффекты: сокращение числа прохо
дов, а значит, и времени на бритье, увеличение срока службы бритвы. Этот пример полезно переработать самостоятельно с учетом влияния упругости волоса (на разной высоте от его основания) на успешность резания одним лезвием, а затем двумя или тремя. Пример 57. Стадион «Франция». Трибуны легкоатлетического и футбольного стадиона «Франция» в Сен-Дени (северный пригород Парижа) сверху защищены навесом в виде горизонтального диска с отверстием в центре (рис. 10.9). Диск удерживается вантами на 18 стальных мачтах почти на 50-метровой высоте. При проектировании необходимо было принять меры, чтобы шум со стадиона не мешал жителям ближайших кварталов. Модель функционального взаимодействия компонентов имеет следующий вид (рис. 10.10). Действительно, навес А защищает зрителей В от непогоды и солнца, но шум с трибун отражается навесом А и распространяется на соседние кварталы С. Реинвентинг показывает, что модель по рис. 10.10 как бы состоит из моделей 1 и 5, поэтому можно начинать со стандарта S1, например, введение добавок по рекомендациям S1.2 и S1.5. Контрольное решение: для поглощения звуков в отделке внутренней части диска используется минеральная вата. Пример 58. Бетонные конструкции. Здесь мы рассмотрим несколько различных изобретений, в основе которых лежат различные способы введения «добавок». Более того, сами «добавки» не имеют между собой ничего общего. Именно это и показывает универсальный характер моделей ТРИЗ и возможность их широкого применения практически в любой отрасли. ТРИЗ-модели — это модели мышления, именно изобретательного мышления, а не модели специальных профессиональных знаний или процессов каких-то промышленных технологий. Модели ТРИЗ имеют междисциплинарный и межотраслевой характер. Это модели, полученные из изобретений, и для создания новых изобретений. Это полезные модели для постоянного применения в инженерной проектной или управленческой практике. Связь четырех изобретений и их комбинаций будет легче понять из схемы (рис. 10.11). В этих нескольких примерах содержатся те или иные рекомендации из всех пяти компактстандартов.
Рис. 10.11. Схема СВЯЗИ технических решений для учебного примера Бетон с диоксидом углерода. Бетонные шпалы на японских сверхскоростных железнодорожных линиях выдерживают лишь около трех лет, после чего их нужно менять. Понятно, какой значительный экономический эффект способно дать удлинение срока службы бетонных изделий. Прочность бетона в естественных условиях растет со временем из-за реагирования с диоксидом углерода (углекислым газом), содержащимся в воздухе, в результате чего бетон превращается в известняк. Но этот процесс длится тысячелетия! Так что детали под нагрузкой успевают быстро разрушиться. Бетон для шпал имеет очень маленькие поры. Он не набирает быстро своей прочности потому, что образующаяся при реакции с первыми порциями диоксида углерода вода заполняет поры и закрывает доступ новых порций газа в толщу изделия. Для ускорения этого процесса изделия помещали в камеры с повышенным давлением, но это мало помогло. В 1994 году американский инженер Р.Джонс изобрел способ упрочнения бетона с помощью так называемого сверхкритического диоксида углерода, получаемого при давлении выше 73 атмосфер и при температуре свыше 31 °С. В этих условиях диоксид углерода становится жидкостью с высокой проникающей способностью и полностью пропитывает изделие. Тысячелетнее упрочнение бетона стало возможным за несколько минут! Прочность такого бетона возрастает вдвое! В новом способе упрочнения бетона обнаруживаются два сильнейших сверхэффекта. Во-первых, в изделиях, полученных по новому способу, исключается ржавление стальной арматуры внутри изделий, что часто становится причиной недопустимого снижения прочности конструкций. Во-вторых, получен замечательный экологический эффект, настоящее обращение вреда в пользу (см. рис. 8.8 с рекомендациями по выбору ресурсов). Цемент, входящий в состав бетона, делают из карбонатных пород, обжигая их в цементных печах. При этом в атмосферу выбрасывается огромное количество углекислого газа как из обжигаемых горных пород, так и от сжигаемого ископаемого топлива. Новый процесс упрочнения бетона поглощает много диоксида углерода и тем самым значительно компенсирует вред, наносимый природе. Реинвентинг показывает, какие стандартные рекомендации и каким образом фактически присутствуют здесь: S1.4 — дополнительное вещество может быть производным от веществ, уже имеющихся в системе: изменению подвергался уже применявшийся ранее диоксид углерода; SI.8 — вводят обычную добавку, но располагают ее концентрированно: изменение состояло в многократном увеличении концентрации обычной добавки; S1.11 — вещество получают изменением агрегатного состояния части объекта или внешней среды: увеличение концентрации достигнуто изменением агрегатного состояния применявшейся ранее добавки: газ диоксид углерода был переведен в жидкое состояние; 52.1 — превратить часть объекта в управляемую систему: сверхкритический диоксид углерода обладает гораздо более управляемыми свойствами, чем газообразный;
S2.4 — использован фазовый переход вещества; 54.2 — ускорить развитие связей между частями системы: увеличена интенсивность воздействия диоксида углерода на бетон. Цель этого примера состоит в том, чтобы Вы могли проследить формирование идеи решения и понять принцип, с помощью которого и Вы, будучи специалистом в своей отрасли, можете изучать и подбирать эффективные стандартные рекомендации для своих задач. Главное состоит в том, чтобы подбор рекомендаций осуществлялся на основании содержания проблемы, а не путем сплошного просмотра стандартов, хотя и это в крайнем случае возможно. В любом варианте полезен следующий совет: просматривать рекомендации надо так, чтобы было время понять и интерпретировать их применительно к условиям решаемой задачи. Пористый бетон. Широкое распространение в строительстве имеет так называемый пористый бетон с размерами воздушных пор диаметром до 3 мм. Поры могут занимать до 90 % объема материала. Поробетон обладает многими достоинствами: малый вес, отличные теплозащитные свойства с одновременной паро- и воздухопроницаемостью (сравнимыми с бревенчатыми конструкциями), негорючесть и нетоксичность, возможность свободно забивать в него гвозди, пилить и сверлить. Но производство такого бетона требует дорогостоящего оборудования (автоклавы, пеногенераторы. помольные агрегаты) и больших энергозатрат. К тому же поры имеют большой разброс размеров и недостаточно равномерно распределяются в объеме изделия. Институт бетона и железобетона в Москве (Россия) разработал технологию на основе специальных химических добавок, которые создают поры определенного размера, равномерно распределенные в объеме изделия без применения указанного сложного и энергоемкого оборудования. В учебных целях здесь достаточно определить, какие стандарты присутствуют в этом изобретении. Прежде всего отметим, что само по себе введение пор в вещество есть реализация стандарта S1.5. Далее, ключевую роль здесь сыграл стандарт S1.10 — вещество вводят в химическом соединении, из которого оно выделяется в нужное время. Но не менее важно обратить внимание на стандарт 55.3 — использовать возможность реализации функций системы на микроуровне (на уровне вещества или/и полей): здесь мы имеем пример мощного свертывания системы — исключено дорогостоящее, энергоемкое и неэффективное оборудование! Гибкий бетон. Тот же институт в Москве разработал технологию производства железобетонных... гибких плит! Они пригодны для формирования криволинейных поверхностей, в том числе для наружных стен, при лом между гибкой плитой и основной стеной может закладываться тепло- и гидроизолирующая прослойка. Обычная железобетонная плита негибкая из-за жесткой арматуры, для которой используются стальные стержни. Фактически, в такой задаче целью является повышение функциональных возможностей объекта (развертывание по стандарту S4.3), использование возможности распределения несовместимых свойств между всей системой, наделяемой свойством гибкости, и частью этой системы (поверхностью изделия), наделяемой антисвойством — твердостью (свертывание по стандарту S5.2) и превращение части объекта (вещества) в управляемую систему — введение особой арматуры и способа ее получения (повышение управляемости по стандарту S2.1). Гибкость плит достигается тем, что в качестве арматуры используются предварительно натянутые высокопрочные стальные канаты, а процесс получения готовой пластины включает дополнительное уплотнение смеси и специальную многочасовую
термовлажностную обработку. В итоге по новой технологии получают легкие и прочные плиты толщиной 3—6 см при ширине до 3 м и длине в 12, 18 и 24 метра (рис. 10.12)! Бетон с датчиками напряжения. Для испытания строительных конструкций создают специальные образцы железобетонных изделий. Для измерения внутренних напряжений в конструкции применяется сеть тензометрических датчиков, закладываемых вместе с арматурой в бетонную массу при изготовлении опытных образцов. Здесь прямо использован стандарт S3.4 — использовать возможность введения добавок в уже имеющиеся вещества (включая внешюю среду) и/или на поверхность объекта для получения легко обнаруживаемого (измеряемого) поля, по которому молено судить о состоянии наблюдаемого объекта. Такое же решение может быть применено в реальных строениях (стены и фундаменты высокоточных производств, строения в сейсмически опасных регионах, мосты, высотные здания и телерадиокоммуникационные башни) для постоянного наблюдения за их деформациями Комбинирование идей. Хорошее решение влечет за собой обычно целую серию новых идей (см. также раздел 17.2 Развитие решения). Так. например, для раз вития идеи обработки бетона сверхтекучим диоксидом углерода были предложены следующие продолжения. Краска плохо проникает в поры плотного бетона и плохо защищает конструкцию от проникновения влаги. Если же при производстве строительных конструкций окрашенное изделие обрабатывается сверхтекучим диоксидом углерода, то краска плотно заполняет мельчайшие наружные поры и даже проникает достаточно глубоко под поверхность изделия. Последний результат образует сверхэффект: возрастает долговечность самой краски. Здесь присутствуют стандарты Sl.l, S1.2, S1.8, S2.1, S4.1, S5.3. Рассмотрите их совместно применительно к этому примеру. Эти же стандарты работают в следующей комбинированной идее: вносить в бетон с помощью сверхтекучего диоксида углерода хорошо растворимые в нем вещества, например, полимеры. В результате бетон приобретает свойство упругости, что может быть полезным для создания дорожных покрытий. Жидкий диоксид углерода достаточно устойчив, что позволяет применять его для обработки поверхностей уже существующих строений. С его помощью можно обеспечить высококачественную окраску гибких бетонных пластин большого размера. Это сделает строения более устойчивыми к воздействию кислотных дождей и естественных атмосферных явлений. В заключение можно сделать некоторые дополнительные выводы. Несмотря на кажущуюся простоту, а иногда и тривиальность рекомендаций, заключенных в формулировках стандартов, надо иметь в виду, что они все же являются моделями достаточно сильных изобретений, и что их выбор для конкретного применения может дать искомый эффект без построения более сложных моделей. Еще более сильные результаты могут быть получены при совместном применении стандартов с законами и линиями системного развития. И последнее: модели не заменяют профессиональных знаний, а помогают структурировать проблемную ситуацию и наметить направление решения.
11. Навигаторы решения технических противоречий 11.1. Интеграция инверсных технических противоречий На практике встречается немало случаев, когда сама формулировка противоречия почти прямо подсказывает идею решения. Поскольку инженеры, не знакомые с ТРИЗ, не используют модели противоречий в том виде, в котором это предлагает ТРИЗ, постольку они заранее лишены возможности быстро находить простые и эффективные решения во многих таких стандартных ситуациях. Напротив, систематическое применение ТРИЗмоделей обеспечивает высокую направленность и дисциплину решения проблем, умение видеть реальные возможности или ограничения на генерирование решений. Особенно наглядно это можно показать именно на простых примерах, решение которых без ТРИЗ-моделирования также потребовало когда-то немалого времени или было приятной случайной находкой. К числу таких примеров относятся ситуации, в которых совместное рассмотрение инверсных противоречий почти прямо подсказывает идею решения. Это особенно свойственно моделям, инверсным по способу выполнения основной операции, непосредственно ведущей к реализации главной полезной функции объекта. На основе подобных примеров в 1987 году автором настоящего учебника был сформулирован Метод интеграции инверсных технических противоречий. Суть его сводится к следующему: • построить прямое и инверсное технические противоречия; • построить интегрированную модель, в которой соединены вместе альтернативные описания функциональных действий экторов и из взаимно-инверсных моделей взяты только позитивные свойства (плюс-факторы). Посмотрите еще раз определения противоречий в разделе 9.1 Противоречия, в частности по рис. 11.1 Обобщенная графическая форма представления бинарных противоречии. Пример 59. Виноградная лоза (решение с помощью интеграции инверсных технических противоречий). В этом примере имеется одна интереснейшая возможность решить задачу уже при построении моделей противоречий на этапе Редукция. Рассмотрим эту возможность, начиная с записи инверсных противоречий (рис. 11.1). Чтобы выйти на решающую модель-подсказку, достаточно соединить вместе (конъюнктивно) инверсные функции-действия и плюс-факторы из моделей 11.1,а и 11.1,b: «укладка лозы на землю» и «оставление лозы на шпалерах» дает «потери лозы (малы)» и «потери времени и затраты труда (отсутствуют)» — низкую трудоемкость укладки.
Так как укладка лозы на землю является обязательной функцией, то целью могло быть лишь снижение трудоемкости этой операции. Поэтому и введена динамизация в конструкцию шпалеры. Обратите внимание, что при пом удовлетворено и основное действие по инверсной модели — оставлять лозу на шпалерах, но на лежащих шпалерах! Пример 60. Нагрев кремниевой пластины. В одной из операций кремниевую пластину нагревали термоизлучателем, протянутым над пластиной в виде узкой прямой планки. В этой планке находился нагревательный элемент в виде плотно навитой спирали. Проблема заключалась в том, что в центральной части под нагревающей планкой температура устанавливалась выше, чем по краям. Это приводило к тепловой деформации пластин. Что и как было и изменено позднее в этой системе? Будем считать, что этап Диагностика описан в постановке задачи. Дополним исходную информацию рисунком (рис. 11.2). Приступая к Редукции, построим модели противоречия. Техническое противоречие: нормальное тепловое поле (спирали-индуктора) нагревает пластину (рецептор), но создает перегрев в центре пластины. Ин1'ис. 11.2. Нагрей и деформация платины версное противоречие: слабое тепловое поле (спирали) не перегревает центр пластины, но не нагревает достаточно ее края. Обратим внимание на два момента: первый — по ТРИЗ нужно изменять индуктор, второй — наличие четкого описания альтернативных процессов. Это наводит на мысль применить для решения задачи Метод интеграции технических противоречий. Переходя на этап Трансформация запишем интегрированную модель, заимствовав из обоих противоречий лучшие аспекты: нормальное тепловое поле хорошо нагревает края пластины, а слабое тепловое ноле хорошо нагревает центр пластины. Не кажется ли Вам, что от такой «полсказки» остается только один небольшой творческий шаг к идее технического решения? Сделаем этот шаг: чтобы тепловое поле над центром пластины стало слабее, увеличим в этом месте шаг нагревательной спирали! Нарисуйте четкий эскиз самостоятельно. В качестве контр-примера обратим внимание на то, почему интеграция технических противоречий в примере 13 (и многих подобных) не лает нужного эффекта. Подсказку идеи решения почти невозможно увидеть из-за того, что альтернативные действия не имеют явного функционального описания, не показывают, как именно убираются (или не убираются!) осколки (рис. 11.3) Здесь присутствует простое отрицание основного действия. Н.Э. А-Каталог и А-Матрица специализированных навигаторов
Самыми известными, и, пожалуй, самыми популярными ТРИЗ-инструмента-ми являются «приемы». Расмотренные до этой главы примеры уже дали, несомненно, определенное представление об этих инструментах. Теперь нам предстоит закрепить основные правила и уточнить некоторые особенности применения приемов. Разумеется, далеко не все задачи сдаются на этапе Диагностика или Редукция, как это мы видели в предыдущем разделе 11.1. И тогда начинается поиск способа устранения выявленного системного противоречия, точнее, — устранения условий, вызывающих это противоречие. Здесь уже нет «единственной» цепи логических операций. Здесь приходится искать. Но можно ли в таком случае говорить о научном методе? Да, можно. Во-первых, модели строго направляют поиски: специалист ищет не какую-то «озаряющую» идею, а способ изменения конкретных условий, которые вызвали системное противоречие. Специалист знает, что ему нужно, и ищет только, как это сделать. И моделями искомого решения являются приемы, известные в технике, но не известные применительно к данной задаче (или к данной отрасли техники). Магической формулы нет, но есть приемы, достаточные для большинства случаев. Во-вторых, поиски ведутся по определенной рациональной схеме, прежде всего по Мета-АРИЗ (или Мини-АРИЗ). Каждая техническая задача по-своему индивидуальна. В каждой задаче есть что-то свое неповторимое. Анализ дает возможность пробиться к главному — к системному противоречию и его причинам. И положение сразу меняется. Повторим еще раз формулировку одного из важнейших открытий Генриха Альтшуллера, выделив слова самого автора ТРИЗ: 1. Изобретательских задач — бесчисленное множество, а ТИПОВ системных противоречий сравнительно немного. 2. Существуют типичные системные противоречия типовые приемы их устранения. и существуют Однако впервые это открытие было реализовано в полной мере только с появлением в 1971 году известной матрицы приемов Генриха Альшуллера (приложение 3 А-Матрица выбора приемов). А в Алгоритме изобретения образца 1961 года, например, ещё не было деления противоречий на виды и был лишь небольшой список приемов, напоминающий список контрольных вопросов из брэйнсторминга! Этот список вырос к 1971 году до 40 приемов (приложение 4 Каталог А-Приемы)! В АРИЗ образца 1961 года рекомендовался просмотр всех накопленных к тому времени приемов от «простых», часто употребляемых в реальных изобретениях, к «сложным», сравнительно редко встречающимся на практике. В каталоге приемы упорядочены автором учебника по частоте их применения в А-Матри-це. Так, наиболее часто встречается прием 01, затем 02 и так далее. В определенной степени это является оценкой частоты применения этих приемов на практике. Вместе с подприемами в каталоге содержится более 100 конструктивных рекомендаций! Конечно, для их выбора нужен определенный опыт. Поэтому А-Матрица выбора приемов оказалась исключительно удобным инструментом, особенно для начинающих осваивать ТРИЗ. Типовые приемы — инструменты в творческой мастерской инженера. А в хорошей мастерской инструменты никогда не лежат как попало. А-Матрица служит первым навигатором для перехода от противоречия к приемам на этапе Трансформация. Переход осуществляется следующим образом:
1) построить техническое противоречие, исходя из условий проблемной ситуации; 2) для позитивного свойства противоречия подобрать из А-Матрицы плюс-фактор, в наибольшей мере соответствующий физико-техническому содержанию позитивного свойства; 3) подобрать минус-фактор из А-Матрицы по аналогии с пунктом 2; 4) из ячейки А-Матрицы, находящейся на пересечении строки, определяемой плюсфактором, и столбца, определяемого минус-фактором, выписать номера приемов из АКаталога; 5) рассмотреть возможности интерпретации приемов из А-Каталога применительно к условиям решаемой задачи с целью устранить имеющееся противоречие. Примечание к пункту 1: избегать при начальном определении конфликтующих факторов в модели противоречия использовать названия входов А-Матрицы! Это может привести к неверной модели противоречия из-за искажения ее физического содержания. Примечание к пунктам 2 и 3: при наличии нескольких плюс- и минус-факторов (входов в А-Матрицу), близких к позитивному и негативному факторам в модели технического противоречия, полезно использовать также и эти факторы для выбора из АКаталога дополнительного количества приемов. В этом случае можно также воспользоваться методом интеграции альтернативных технических противоречий «CICO» (раздел 11.4). Для квалифицированных специалистов, основательно работающих с ресурсами, полезно отметить, что входы А-Матрицы реструктурированы автором в две группы: системо-технические факторы с 01-го по 14-й и физико-технические факторы с 15-го по 39й. 11.3. Принципы применении специализированных навигаторов «Чаще всего изобретатель применяет два или три хорошо освоенных приема. У наиболее методичных изобретателей эксплуатируются пять — семь приемов. ТРИЗ увеличивает творческий арсенал, включая в него десятки приемов, составляющих в совокупности рациональную схему решения задач... Необходимо подчеркнуть, что приемы устранения противоречий сформулированы в обшем виде. Они подобны готовому платью: их надо подгонять, учитывая индивидуальные особенности задачи64». Итак, рассмотрим особенности применения А-Приемов — от «простых» к более сложным и к группам приемов. Пример 61. Тушение пожаров на нефтяных и газовых скважинах. Пожар на нефтяной или газовой скважине является огромной экологической катастрофой. Остановить пожар чрезвычайно сложно. Тушение ведут, расстреливая устье скважины из танковых орудий и с помощью бомбометания, надеясь на то, что взорванная земля засыпет скважину. Подвести к скважине другую технику не представляется возможным, так как почва в радиусе многих десятков метров раскалена до температуры в несколько сотен градусов. Известны случаи, когда пожары продолжались несколько месяцев и даже более года. За это время напрасно сгорают сотни тысяч тонн топлива, что наносит огромный вред атмосфере. Почвы и подземные воды вокруг скважины насыщаются нефтепродуктами. Построим исходное техническое противоречие: чтобы перекрыть выход нефти из устья скважины, нужно обеспечить подход к скважине техники, но огонь не дает этого сделать. Редуцированная модель: плюс-фактор 10 Удобство эксплуатации и минус-фактор 13 Внешние вредные факторы. Приемы и их интерпретация: 4 Замена механической среды — по крайней мере ассоциируется с необходимостью поиска нового принципа действия, смены структуры и динамики действующих сил и полей,
то есть нового принципа прекращения, остановки горения (мы убрали термин «тушения пожара»); 5 Вынесение — отделить от зоны горения кислород (воздух), нефть или газ, не дать им поступать в зону горения! 23 Применение инертной среды — по сути дела применение пеногенераторов и есть попытка перекрытия доступа кислорода в зону горения, но эта технология неэффективна; 29 Самообслуживание — идеальная модель: скважина сама прекращает поступление нефти и газа наверх при пожаре! Лучше всего выглядит последнее предложение. Вопрос в том, как его реализовать? Впрочем, вместе с приемом 05 появляется следующая идея: пробурить наклонную вспомогательную скважину, которая встретится на достаточно безопасной глубине со стволом аварийной скважины, а потом через эту вспомогательную скважину можно будет подать к аварийному стволу и взрывчатку, и специальные растворы, чтобы перекрыть аварийную скважину на глубине какой-то «пробкой». Контрольное решение (рис. 11.4): в России разработан метод, по которому с м Ич киши Г Ллышуллера -Аггоритм итооргтения: Москва. 1973 (с небольшим изменением. ВЗЯТЫМ II скобки — О.М.). безопасного расстояния специальный «подземоход» движется под углом для выхода к стволу аварийной скважины на определенной глубине. В месте встречи со стволом аварийной скважины «подземоход» может выполнить работу «подземного бульдозера», постепенно сдавливая и сужая ствол до полного перекрытия перемещаемой к нему породой. Рис. 11.4. Пояземо.чод идет к стволу торящей скважины Следует отметить, что в контрольном решении приему 29 отводится важная роль еще и потому, что «подземоход» использует систему самонаведения на ствол скважины, ориентируясь под землей на сигналы заранее установленных в скважине датчиков. Не напоминает ли Вам это решение фантастическое произведение типа «Путешествие к центру Земли» Жюля Верна? Представленная здесь идея является одной из многих, предлагавшихся в России, начиная с 1920-х годов, в виде разных «подземоходов» для прокладки труб и кабелей, тоннелей и дорог, для разведки полезных ископаемых, добычи золота или алмазов. Пример 62. Джинсы... на удобрение. В городе Эль-Пасо (штат Техас, США) несколько фабрик обрабатывают сшитые джинсы с помощью стирки в горячей воде вместе с перекатывающимися в стиральной машине булыжниками. Эта обработка делается по заказу известных джинсовых фирм, например, Levy Strauss. Джинсы обрабатывают также пескоструйными машинами. В результате такой обработки остается много хлопковых очесов. Только одна из фабрик обрабатывает за неделю около 300 тысяч джинсов, выбрасывая на свалку свыше 50 м3 этих отходов. Техническое противоречие: чем выше производительность, тем больше отходов. Редуцируем исходное противоречие к стандартным названиям входов А-Матрицы: производительность как плюс-фактор и
вредные факторы самого объекта как минус-фактор. На пересечении первой строки и 14-го столбца находим клетку со следующими приемами: 01 Изменение агрегатного состояния, 06 Использование механических колебании, 21 Обратить вред в пользу и 23 Применение инертной среды. Конечно, внимание привлекает прием 21,а: использовать вредные факторы для получения положительного эффекта. Контрольное решение: внесение очесов в почву на полях. Верификация: урожай трав повысился в несколько раз, а всхожесть семян хлопка и пшеницы увеличилась на 60 %. Дело в том, что штат Техас имеет засушливый климат, а очесы в 4 раза повышают водоудерживающую способность почвы. Пример 63. Новое — это хорошо забытое старое! Здесь мы проведем и реин-вентинг, и предложим новые идеи. Одной из серьезных проблем на дорогах является отсутствие информации о дорожной ситуации, сложившейся впереди по направлению движения. Частично, такая информация сообщается по локальному радио полицией, например, о крупных пробках. Но это делается только на больших автобанах и недостаточно для многих других реальных ситуаций. Иногда важно получить более оперативную информацию, которую водитель впереди идущего автомобиля мог бы передать по крайней мере следующему за ним автомобилю. Например, сообщить, что впереди находится временная зона ограниченной скорости (стройка), которой не было на лом участке ранее: замечено неожиданное препятствие — велосипедист; на участке дороги появилось повреждение или гололед, и тому подобное. Особенно такая информация была бы полезна в условиях ограниченной видимости, например, ночью. Полезна была бы также передача информации о технической или медицинской помощи, предупреждение о том, что на борту дети. Причем понятно, что чем выше скорость, тем полезнее заранее сделанное информирование. Последнее заключение можно рассматривать как исходное техническое противоречие и редуцировать его: 22 Скорость как плюс-фактор и 12 Потери информации как минусфактор. Рекомендуемые приемы: 10 и 11. Составим обобщенный «портрет» идеи решения: 10,а: вместо недоступного объекта использовать его копии — например, сообщение о препятствии есть не что иное, как информационная копия объекта, недоступного для непосредственного наблюдения из следующего автомобиля; 10,b: заменить объект или систему объектов их оптическими копиями — например, знаками или словами, передаваемыми назад для следующего сзади автомобиля; 11: сделать неподвижную часть объекта подвижной — в оперативной зоне на корме впереди идущего автомобиля должно быть устройство для информирования следующего за ним автомобиля, например, оптическим способом. Еще в конце 1980-х годов фирма Форд испытала на автомобиле «Аэростар» дисплей, устанавливаемый над задним бампером. Такие дисплеи с бегущей строкой широко применяются в метро, на вокзалах, в рекламных целях. Управление предполагалось с помощью функциональных кнопок, выдававших на дисплей стандартные короткие сообщения. Один из недостатков этого подхода состоит в неудобстве выбора и включения нужной кнопки. Сегодня мы можем вернуться к «старой» идее с новыми возможностями, заимствованными из технологии автомобильного телефона: на выдачу нужного сообщения можно подавать команду голосом. Вы можете пробовать развить это направление и запатентовать более эффективные идеи. Пример 64. Спасение в снежной лавине. Ежегодно в горах из-за снежных лавин гибнут десятки альпинистов и горнолыжников. При неожиданном сходе лавины время на осуществление каких-либо маневров для спасения крайне мало. Этим объясняется низкам надежность различных рекомендаций по спасению при появлении лавины.
Таким образом, время и надежность выступают здесь в качестве конфликтующих факторов. Требуется повысить надежность операции спасения. Непосредственное обращение к А-Матрице дает следующий набор рекомендуемых приемов: 05 Вышесение: 11 Наоборот и 28 Заранее подложенная подушка. Выпишем важные рекомендации из этих приемов: выделить в объекте нужную часть (спасаемый человек); вместо действия, диктуемого условиями задачи (человек тонет под снегом), выполнить обратное действие (человек всплывает из-под снега); компенсировать относительно невысокую надежность объекта заранее подготовленными аварийными средствами. Составим обобщенную модель: у человека в горном снаряжении должно быть заранее подготовленное средство, выносящее его на поверхность снега и не дающее ему утонуть в снегу. Идеальный результат: Х-ресурс, абсолютно не усложняя снаряжение, выносит человека в оперативное время на поверхность снега. Нужен «спасательный круг» в лавине! Но не носить же такой «круг» за спиной! Требования к ресурсам: системный — ресурс не должен быть сложным; пространство — ресурс не должен занимать много места; энергия — ресурс не должен требовать больших затрат энергии для приведения его в действие. Это — немало. но все же не хватает для каких-то конструктивных подсказок. Составим дополнительную пару конфликтующих свойств: сложность устройства как плюс-фактор и затраты энергии подвижным объектом как минус-фактор. То есть один из факторов фиксируем как позитивный и достижимый в гипотетической системе, а другой — как негативный, который нужно улучшать. Здесь присутствует жесткая ориентация на Мини-стратегию: без существенных усложнений получить высокое качество решения. Получаем дополнительные рекомендации: 04 Замена механической среды, 05 Вынесение (повторно); 13 Дешевая недолговечность вместо дорогой долговечности и 14 Использование пневмо- и гидроконструкций. Ключевым приемом, непосредственно ведущим к решению, является прием 14: вместо твердых частей объекта использовать газообразные и жидкие — надувные и гидронаполняемые, воздушную подушку. Контрольное решение (рис. 11.5): германский предприниматель Петер Ашау-эр предложил новое спасательное средство — надувной мешок из ярко-оранжевого нейлона, укрепляемый в небольшом рюкзаке на спине и надуваемый сжатым азотом из небольшого баллона, клапан которого открывается человеком при опасности. Можно видеть, что одновременно выполнены и рекомендации приемов 05, 11, 13 и, безусловно. 28! Зная контрольное решение, проведите учебный реинвентинг с этими приемами самостоятельно. Вы заметили, конечно, что вопреки Примечанию к пункту 1 (см. выше в разделе 11.2), мы использовали здесь, во-первых, неполное построение моделей противоречий, и вовторых, названия входов А-Матрицы для моделирования конфликтующих свойств. Здесь
показана часто встречающаяся на практике ситуация, когда и новички (очень часто!), и опытные знатоки ТРИЗ (для ориентировочного экспресс-анализа!) игнорируют упомянутое примечание. Для новичков это весьма вредно, так как тормозит и искажает освоение и применение принципов ТРИЗ. В таком случае лучше просмотреть приемы всего АКаталога! Зная все же о такой не самой эффективной практике самообразования, мы решили показать здесь, по крайней мере, логичный и адекватный выбор входов А-Матрицы и примерный ход рассуждений при правильном решении задачи. Пример 65. Сортировка металлического лома. При переработке дефектных или изношенных деталей и металлического лома с целью вторичного использования требуется, прежде всего, разделить этот лом по виду металла, например, цветные металлы, черные (различные стали) и так далее. Ручная сортировка дает неплохие результаты, но крайне непроизводительна. Это объясняется необходимостью отделять компоненты из лома по одному, перемещать их к месту измерения, проводить анализ и перемещать к месту накопления односорт-ных компонентов. Применение точных автоматических анализаторов также не достигает цели, так как они ненадежно работают в условиях производства, например, окраска многих деталей искажает результаты измерений. Было бы полезно, по крайней мере, для предварительной сортировки применить какие-то другие способы, более пригодные в качестве промышленной технологии. Техническое противоречие: сортировка требует повышения производительности, но при этом трудно избежать ручной работы из-за негативного действия многих мешающих факторов (большой вес и размеры изделий, окраска, необходимость доставки по отдельности к месту сортировки и другие). Редукция исходного описания дает следующие результаты (рис. 11.6). Выборка приемов из А-Матрицы дает следующие наборы: а) 01, 10, 35, 37; b) 01, 05, 06, 13; с') 01, 11, 18, 21; с") 01, 06, 21, 23. Обращает на себя внимание высокая частота присутствия приема 01 Изменение агрегатного состояния. Выпишем его основные рекомендации: 01, а: переходы к псевдосостояниям (псевдожидкость); 01,b: изменять концентрацию или консистенцию и др.
В качестве примера № 01.1, иллюстрирующего возможное применение приема 01, приводится «Применение магнитореологических или электрореологических жидкостей с управляемой степенью вязкости от жидкого состояния до твердого». Назначение и состав таких жидкостей можно найти в технических словарях и энциклопедиях. Контрольное решение: японская фирма Хитачи применила ванны с магнитореологической жидкостью, в которую загружается сортируемый лом, компоненты которого «сами разделяются» по сорту металла, так как при управляемом изменении плотности магнитной жидкости с помощью мощного электромагнита компоненты поочередно «всплывают» строго в соответствии со своим удельным весом! Остается «собирать» их с поверхности магнито-реологической жидкости и направлять в накопитель металлов соответствующего сорта. А теперь займемся детскими игрушками! Если Вы думаете, что это несерьезно для инженера, то подумайте о том, что это может быть очень важно для вашего ребенка или для других детей, которым Вы сможете подарить удивительное изобретение. Пример 66. Фирма Microsoft патентует... куклу! Универсальным средством интеллектуального и эмоционального развития детей являются игры с объемными предметами, например, с различными наборами для конструирования, с куклами и так далее. Но вот проблема: куклы неразговорчивы, не могут быть собеседником, рассказывать ему сказки, не могут смотреть вместе с ребенком интересную и полезную телевизионную передачу, не могут плакать и смеяться вместе с ребенком, не могут... Вы вполне можете продолжить этот перечень, чтобы заменить в нем вскоре не могут на могут] А пока проведем поучительный реинвентинг удивительного патента на удивительную куклу фирмы Microsoft. При этом мы столкнемся с одной неожиданной проблемой и со стороны АМатрицы! Итак, кукла как универсальное средство развития ребенка. Допустим. Кукла не может активно общаться с ребенком, хотя бы в ограниченных сюжетных ситуациях. Понятно: нет
информационной связи. Редукция: плюс-фактор 02 Универсальность, адаптация против минус-фактора 12 Потери информации. Увы, эта клетка пуста в А-Матрице! Ну что ж, поработаем с А-Каталогом. Прежде всего привлекает внимание уже знакомый нам прием 0 Замена механической среды с рекомендациями: 04, а: заменить механическую систему оптической, акустической или... запахо-вой и так далее; 04, b: использовать электромагнитные поля для взаимодействия с объектом; 04, с: перейти от фиксированных полей к меняющимся во времени. Успешное применение этого приема Вы можете рассмотреть на Примере 46 Лекционная доска. Можно добавить также прием 29 Самообслуживание: объект сам себя должен обслуживать, выполняя вспомогательные операции. Потенциально полезен для реализации «общения» прием 36 Обратная связь, которая пока неэффективна или вовсе отсутствует в общении между игрушкой и ребенком. Контрольное решение: фирма Microsoft запатентовала систему (рис. 11.7), включающую... куклу и телевизор! Скрытое звуковое сопровождение телепередачи передается маломощным радиопередатчиком в приемное устройство в кукле, и кукла начинает «разумно» реагировать на происходящее на экране, «высказывать» свои замечания, «обсуждать» события и демонстрировать эмоции. Все гениальное — просто! Это в очередной раз подтверждает и кукла фирмы Microsoft. Возникает, однако, вопрос: а что же делать в подобных случаях впредь — ведь в матрице около 20 % пустых клеток? Во-первых, есть возможность поработать с противоречием, чтобы подобрать другие плюс- и минус-факторы, все еше ассоциируемые с конфликтующими свойствами. Во-вторых, можно и нужно поработать непосредственно с А-Каталогом, исследуя приемы и подприемы с целью выявления действий и рекомендаций, близких по характеру к требуемым действиям. Это мы вполне продемонстрировали как в этом, так и в других примерах. В-третьих, Вы можете сами заполнить пустую клетку ссылками на приемы, присутствующие в известных Вам изобретениях. Например, софтвер Idea Navigator (см. раздел 21.3) предоставляет пользователю функцию наполнения А-Каталога и А-Матрицы собственными примерами и ссылками.
Пример 67. Защита автомобиля от несанкционированного доступа. Итак, в автомобиль проник злоумышленник и пытается завести двигатель. Как предотвратить угон? Построим исходное техническое противоречие в следующем виде: зашита автомобиля должна быть надежной против проникновения посторонних. Выберем стратегию «самозащиты» автомобиля, не исключая активной защиты, то есть с воздействием на постороннего. Если принять посторонних за «внешний вредный фактор», а самозащиту автомобиля отождествить с понятием «вредные факторы самого объекта», то вновь обнаружим на пересечении строки 14 и столбца 13 А-Матрицы отсутствие каких-либо приемов. Мы уже знаем, что это не так уж страшно. Но теперь мы применим иную стратегию работы с АКаталогом. Проведем экспресс-анализ только первых 10 «самых сильных» приемов. А результативные приемы, примененные для генерации решения, занесем потом в эту клетку на будущее. Процесс решения полезно фиксировать в таблице (рис. 1 1.8).
№ Прием Толкование приема 01 Изменение агрегатного состояния Предварительное действие Изменение свойств материалов в оперативном пространстве Средства должны вступить в действие с наиболее удобного места и без промедления 03 Дробление 04 Замена механической среды Применить компоненты, дробления Применить воздействия 05 Вынесение 02 06 Использование механических 07 колебаний Динамизация 08 Периодическое действие 09 Изменение окраски Id Копирование Примеры идей Увеличить температуру сидении до невыносимого уровня Этот прием можно рассматривать как системное требование, но ДЛЯ некоторых средств должно быть исключено их срабатывание во время движения разделяемые Рашелить источники воздействия, чтобы их увеличить степень трудно было уничтожить немеханические Применить слезоточивый raj иди газ с невыносимых» запахом (здесь есть достаточно широкие возможности с учетом знания биологических эффектов) Воздействовать только на важную Этот прием также можно рассматривать как функцию угоншнка без нанесения системное требование другого вреда Применить механические Применить мошный звук иди ультразвук колебания с переменными часютами Воздействия должны быть Сделать вохзействия переменными с тем. оптимальными на каждом шаге чтобы было трудно обнаружить места их работы установки Применить импульсное Неожиданное I I O U C H C IH I I C . не лаюшее адаптироваться к нему воздействие Изменить изменить среды окраску объекта, Изменить прозрачность стекол, сделать степень прозрачности воздух непрозрачным, применить «несмываемую» окраску, применить невидимые метки для последующею ротыска посягавшею Использовать упрошенные и Применить мощные надувные мешки, дешевые копии компонентов, блокирующие действия часiей тела использовать изменение масштаба злоумышленника (размера) Рис. 1 1 .8. Сокращенный учебный пример зкепресс-решения проблемы Контрольное решение: одна из фирм в Берлине (Германия) успешно реализует средства безопасности на основе различных газовых смесей для защиты квартир и автомобилей. Так, в квартире после нескольких аудиопредупрежде-ний распыляется сильный слезоточивый газ, не вредящий мебели, стенам и бытовой технике. При запуске автомобиля салон заполняется очень плотным белым дымом, не имеющим запаха и безвредным. Достаточно долгое время дым не дает возможности управлять автомобилем и привлекает внимание окружающих, которые могут немедленно вызвать по хэнди полицию. А теперь проверим возможность подбора других подходящих плюс- и минусфакторов. Например, мы хотели бы получить «универсальное средство» защиты от «внешнего вредного фактора». Плюс-фактор 02 Универсальность, степень адаптации и минус-фактор 13 Внешние вредные факторы дают перечень приемов, в котором содержатся уже примененные нами приемы 01 и 09 (есть в контрольном решении!), а также дополнительно ориентирующие приемы 28 Заранее подложенная подушка (примерно эквивалентный в этой ситуации приему 02) и 31 Применение пористых материалов.
По результатам нашего экспресс-решения мы можем заполнить еше одну клетку АМатрицы (или даже две смежные по диагонали клетки 13 и 14) такими приемами, как 01, 04, 06 и 09. Пример 68. Ветровые электростанции. Одним из наиболее экологически чистых источников энергии является... ветер! То есть атмосферные потоки. Привычные многим приводы ветроэлектростанций имеют вид самолетных пропеллеров, установленных на высоте от нескольких десятков до 100 и более метров (рис. 11.9). Однако возможности дальнейшего роста эффективности таких устройств с горизонтальной осью вращения уже почти исчерпаны. Во многих странах начали испытывать и строить ветроустановки с Рис. 11.10. Ветроэнергетическая система с вертикальной осью вращения движителя Рис. 11.9. Ветроэнергетическая система с горизонтальной осью врашения движителя вертикальной осью вращения — роторные (рис. 11.10). Нетрудно заметить, что такая установка некритична к направлению ветра. Она обладает и рядом других преимуществ. Известно также, что с ростом высоты вплоть до 6—8 км можно получить многократный выигрыш в мощности ветроэлектростанций. Однако для этого необходимо решить ряд проблем, особенно связанных с весом станции и кабелей, связывающих ее с землей, а также с долговечностью работы станции, так как трение в движущихся частях усиливаемся низкими температурами на большой высоте. Итак, мы имеем дело с комплексом проблем. Первая проблема - вес. Сформулируем техническое противоречие: подъем станции на большую высоту дает максимальную мощность станции, но требует решения проблемы доставки и удержания станции на большой высоте. Плюс-фактор 36 Мощность находится в конфликте с минус-фактором 32 Вес подвижного объекта. В учебных целях из суммарного набора прокомментируем только один прием 32 Анти-вес: компенсировать вес объекта соединением с другими объектами, обладающими подъемной силой; компенсировать вес объекта аэродинамическим взаимодействием со средой — в контрольном решении российскими специалистами предложено поднимать ветроэлектростанцию с помощью газонаполненного баллона, имеющего форму «воздушного змея» (рис. 11.11). При этом кабель имеет собственную газонаполненную несущую оболочку, компенсирующую его вес и вес тросов, удерживающих всю конструкцию от самопроизвольного перемещения и падения.
Рис. 11,11. Ветроэнергетическая система на «но пушном ivccНа «змее» находятся 3 роторные ветроустановки. Основная проблема — трение в опорных кольцах «вверху» и «внизу» ротора. Сформулируем еще одно техническое противоречие: долговечность и автоматическая работа системы без обслуживания в условиях воздействия вредных внешних факторов. Здесь возможно построение нескольких альтернативных моделей. Рассмотрим некоторые из них. Ближайшими ассоциируемыми плюс-факторами являются: степень автоматизации, надежность, удобство эксплуатации, время действия подвижного объекта, устойчивость состава объекта. Ближайшими минус-факторами являются сложность устройства, внешние вредные факторы, длина подвижного объекта (по направлению движения роторов в опорах), потери вещества (износ), прочность, температура, потери энергии (на преодоление трения). 7" Снова обратим Ваше внимание на то, что мы все же выполняем реинвентинг, зная контрольное решение. А теперь представьте себе объем работы, который Вам предстоит проделать для анализа все попарных конфликтующих свойств. Достаточно сказать, что здесь возникает 35 пар моделей противоречий! Но в этом кроется и упрощение решения за счет того, что постепенно выявляются приемы с высокой повторяемостью. Их и надо пробовать применить в первую очередь. Для работы с такими «системами противоречий» предназначен метод CICO, рассматриваемый в следующем разделе I 1.4. Здесь же мы воспользуемся сокращенным разбором процесса решения на основе одной из физико-технических моделей: плюс-фактор 23 Время действия подвижного объекта против минус-фактора 13 Внешние вредные факторы. Набор приемов и их интерпретация с учетом ресурсных особенностей работы системы: 04 Замена механической среды — возможность применить принцип магнитного подвеса, отдавая для этого незначительную часть вырабатываемой электроэнергии; 07 Динамизация — часть энергии должна тратиться на непрерывное изменение положения каждой лопасти ротора для оптимизации функционирования всей системы, уменьшения тормозящих усилий и нагрузки на опоры; 21 Обратить вред в пользу — высокая скорость потока воздуха на большой высоте в сочетании с минусовой температурой может быть использована для создания пар скольжения на ледяной и воздушной подушке; 38 Однородность — поверхности, которые могут оказаться в контакте скольжения, должны быть сделаны из одного и того же материала. Контрольное решение российских специалистов: линейный шаговый двигатель (для первоначального разгона ротора), обратимый для работы в качестве опоры типа магнитный подвес. Пример 69. Шумящая сеть. В морях ежегодно гибнут многие тысячи дельфинов, запутавшихся в рыболовных сетях. Они стремятся к сетям, пытаясь охотиться на попавшую
в сети рыбу, и сами становятся жертвами сетей. Как можно повысить безопасность сетей для дельфинов? Можно сформулировать две версии функциональной идеальной модели: дельфины сами не подплывают к сети; сеть сама отпугивает дельфинов. Физико-биологический ресурс и противоречие: дельфины обладают акустическим локатором, но сеть остается «невидимой» для их локаторов. Подбор стандартных факторов для этого примера является нетривиальной задачей. Прямых аналогов для описания акустического сигнала или его параметров нет. Нет и подходящего описания негативных явлений, связанных со слабым отражением локационных сигналов от сети. В таких случаях можно все же прибегнуть к весьма метафорическим аналогиям, например, сравнить звук со световым или тепловым полем. Тогда в качестве плюс-фактора можно взять, например, вход 35 Освещенность. Для минус-фактора, имеющего связь с конструкцией сети, выберем вход 10 Удобство эксплуатации. Действительно, в новой ТРИЗ-формулировке функциональной идеальной модели теперь можно более уверенно записать следующее: Х-ресурс, абсолютно не усложняя сеть, обеспечивает хорошую «видимость» сети для акустического локатора дельфина. Посмотрим на приемы из А-Матрицы: 04, а: заменить исходную механическую систему со слабыми отражательными акустическими свойствами новой системой с хорошими отражательными свойствами; 04,b: перейти от неструктурированных полей к структурированным; 10,b: заменить объект его акустическими (заметьте замену термина «оптическими»!) копиями. Прием 08 пока не поддается интерпретации. Но и имеющегося достаточно, чтобы прийти к идее встраивания в сеть специальных ячеек в виде пластмассовых сферических и параболических отражателей. Эти элементы намного лучше отражают локационный сигнал дельфина. Таково контрольное решение немецкого зоолога-изобретателя Свена Кошинского. Экспериментальная проверка показала, что видимость сети повысилась до 50—60 %, что неплохо, но недостаточно. Однако теперь найден ключевой принцип, вцепившись в который, можно совершенствовать систему с помощью ТРИЗ-инструментов. Для сокращения описания новое техническое противоречие представим сразу в редуцированной форме: плюс-фактор 04 Надежность и минус-фактор 07 Сложность устройства дают набор приемов 08, 10, 18 и 31. Из них хорошо интерпретируются следующие (в порядке важности): 10 Копирование: прием встречается повторно, что действительно соответствует этой ситуации, только теперь решено воспроизводить сигнал тревоги дельфинов; 18 Посредник: использовать промежуточный объект, переносящий или передающий действие — на сети дополнительно установлены активные акустические излучатели мощностью 115 децибел, частотой 2,9 килогерца и обертонами до 90 килогерц. Эти звуки выбраны так, чтобы отпугивать дельфинов, но не промысловую рыбу; 08 Периодическое действие: перейти от непрерывного действия к периодическому — «писк», похожий на дельфиний, издается 70 раз в минуту; 40 Непрерывность полезного действия: вести работу непрерывно с полной нагрузкой — число излучателей должно быть достаточным на поверхности сети, длина которой может составлять несколько сотен метров и более. И вновь состоялась практическая верификация идеи, показавшая 90 % эффективности. Но оставались еще 10 % ! Теперь целью могло быть исключение привыкания (адаптации) дельфинов к отпугивающему звуку. Редуцированное
техническое противоречие: плюс-фактор 02 Универсальность, адаптация против минус фактора 07 Сложность устройства. Ключевыми приемами являются 04 Замена механической среды (перейти от фиксированных полей к меняющимся во времени!) и 07 Динамизация (характеристики объекта должны меняться так, чтобы быть оптимальными на каждом шаге работы), совместная интерпретация которых практически однозначно приводит к решению варьировать параметры писка случайным образом. Этот пример показывает развитие исходной идеи на основе ее практической проверки и формулирования новых и новых моделей в зависимости от результатов испытаний. Поскольку мы выполняли все же не генерацию новых идей, а учебный реинвентинг, то можно сказать, что этот пример демонстрирует динамический реинвентинг. Однако на аналогичной последовательности действий основано практическое усовершенствование изделий и продукции с помощью ТРИЗ-инструментов. Заключительный пример этого раздела демонстрирует не динамику, а статику реинвентинга какого-нибудь объекта. Для примера выбран не совсем «промышленный» объект, скажем, не станок и не самолет (хотя все это еще встретится нам впереди!), зато можно рассчитывать на то, что пример будет легко воспринят всеми читающими этот учебник. Пример 70. Раклетт? А почему бы и нет?! Посмотрим с разных сторон, в том числе и с «нетехнических», а чисто пользовательских, на такое изделие для приготовления пищи, как раклетт (рис. 11.12). Нас будет интересовать раскрытие в таком объекте как можно большего количества присутствующих в нем творческих идей (приемов). Наш анализ представлен в таблице на рис. 11.13. Итак. 25 приемов в одном относительно несложном объекте! Цель рассмотренного примера — показать широкие возможности корректной интерпрета-
№ Номер н название приема 1 Дробление Объединение Одна большая сконорола разделена па 6 и ли N МП lein.Kitx скоиоро-лок 2 03 35 3 05 Вынесение Раклетт выносится из кухии (как из системы) a столовую (В фугую систему); сковородки выносится щ р.паспа 1 как in енсюмы) ил СТОЛ 4 12 Местное качество У целого и частей разные функции, и каждая часть п .1 \»лптся в ус-лонинх. 5 20 Универсальность Мношфункпиональность. например, вместе с приготоялситтем сковородках сверху готовится обшии гарнир: наличие грнль-ре- Интерпретации Маленькие сковородки нагреваются в единой конструкции (объединение однородных обьектов в пространстве) и одновременно юбье-динсние однородных операции во времени) наиболее сошнстстичнинич ее рапойблюл на HIC1 K II Сковородки компактно не тан гакт ч в рак ici i 6 7 34 02 X 37 Матрешка Предварительное действие Зквниогенииа.тыккггь 9 II Наоборот 1(1 22 Сфероидальность Удобная для доступа группы пользователей сферическая пли I. T. T IIII- тнческаи форма некоторых рак icrioii. в нобочт с и час расположение сковородочек по окружности (по периметру) как сет «тентов полото II 07 llO I. I MI I I. II U I I I Переносная »псчь»: динамичный асинхронний процесс индивидуального Приготовления блюл на отлельныч сковородках: лицами тл-пия общения з;| столом при участии в нТННМПтсльНОМ обыдипию-тем •технологическом процессе- 12 16 Трудно приготовить сразу на все вкусы, но дечко. когда каждый io-товит свою часть по синему вкусу 13 19 14 09 Частичное или избыточное действие Переход в другое измерение И тченснис окраски 15 08 40 Блюда ГОТОВЯТСЯ в разные шнервап.! Времени по желанию Раклеп предварительна устанавливаете* на столе, предварительно затптокпенные компоненты ОЛЯ блюд гам же находятся Все нахолшеи ближе и не требует больших усилии дли перемещения, так как практически все перемешается нсиысоко нал уровнем стела Н е человек нлег к печи, а печь идет к человеку и рл мешается ПРЯМО на столе: печь стала ПОДВИЖНОЙ! Многоуровневая компоновка раГн<чнч иоверчшч icii. ikoiioMuniaii тепло Прозрачные крышки, различная окраска сковоролочек ДЛЯ индивидуального отличия IX 21 36 Периодическое действие Непрерывность полезного действия Обратить вред в пользу Обратная свить 19 20 21 18 29 10 Посредник Самообслуживание Копирование 22 38 Олнородность Все сковородочки одинаковы и по ||н>рме и по иатсрНПЛУ (по могут различаться маркировкой цветом) 23 15 Расходуемые компонешы блюл поиолникчеи по мере Их использования 24 01 25 17 Отброс и регенерации часнеи Нтменение агрегатного состояния Применение композиционных материалов 16 17 Все части работают с полной нагружоп. оншмальнон .зля кажлои части по (нлелыкк' Ш и дли всей системы в неюм • Запахи- кухии превратить в -ароматы- вкусныч блюл В системе лстко оптичштировать качество и количество. ГПК как каждый потребляет столько, сколько ему нужно, кто-то больше, кю-то меньше Раклеп как центральный 'Цосрс.шик-чтлсрлтр. и общении! Псе обслежпилкп ссби сами' Психологии обшепия - объединяющее иолражаиие в повелении, технический аспект — копия печки на снос по проще, меньше, зкономнес и изящнее Блюда претерпевают нужные тмененин -.иретаниио СОСТОЯНИЯ* компонентов, гибкое изменение режимов приготовления 1 покое изменение составов O. IK I i РИС. 11.13. УЧебНЫЙ пример выявления приемов в нтдодии (раклеп) ции приемов, несмотря на их предельно ограниченные и даже обедненные описания. На этом мы должны ограничить рассмотрение принципов применения А-Приемов. Еще раз приведу слова Генриха Альтшуллера: нет магических формул, но есть приемы, достаточные для большинства случаев! А так как ТРИЗ — не догма, то не останавливайтесь перед импровизацией и игрой воображения!
11.4. Интеграция альтернативных противоречий — метод CICO При использовании А-Матрицы и А-Каталога приемов может возникнуть вопрос: неужели в основе каждого конкретного изобретения лежит только один какой-то прием? Автор ТРИЗ отвечал на этот вопрос следующим образом: в периодической таблице Менделеева содержится чуть больше 100 химических элементов, но реальный мир неизмеримо богаче, так как химические элементы вступают во взаимодействия, образуя сложные вещества и целые классы все более сложных веществ. Изучение искусственно составленных комбинаций приемов представляет собой сложную задачу. Из 40 приемов А-Каталога можно составить 780 различных пар, 9880 различных «троек», более 90 000 «четверок»... Такова сложность комбинаторики «сочетаний»! Такой подход не выглядит слишком привлекательным. Не проще и изучение реальных изобретений, хотя через них легче увидеть реальную пользу от конкретного примененного сочетания приемов. И все же для предварительного «растряхивания» проблемы и для экспресс-анализа опытные специалисты иногда используют А-Каталог без А-Матрицы следующим образом: 1) просматривают весь каталог и выбирают несколько перспективных приемов; 2) подбирают комбинации приемов по два, три или более (это возможно!). Более эффективным подходам является направленное формирование групп приемов на основе составления нескольких системно-связанных технических противоречий или на основе подбора к выбранной ТПМ нескольких подходящих факторов для входа в АМатрицу. Метод CICO (Cluster In Cluster Out) 1) Сформулировать техническое противоречие или несколько альтернативных технических противоречий. 2) Для каждой модели выбрать несколько синонимичных входов (это и есть процедура Cluster In, т. е. составление целой грозди синонимических входов как для плюсфактора, так и для минус-фактора каждого технического противоречия). 3) Выписать все рекомендуемые приемы. 4) Составить ранжированный список, в котором на первом месте будет наиболее часто рекомендуемый прием, на втором — с меньшим рейтингом и т. д. (это и есть процедура Cluster Out, когда мы получаем как бы гроздь приемов на выходе, где «наверху» грозди будет наиболее часто встречающийся прием, «пониже» - менее встречающийся и т. д.). 5) Провести последовательный анализ приемов, начиная с первою. Рассмотрим один пример на «ретро-тему». Пример 71. «Крышка» над дымоходом. Чтобы в печные трубы сверху на попадали дождь и снег, над трубами сооружают различные навесы, козырьки или крышки (назовем их закрывалками). Диагностика. Проблема состоит в том, что закрывалки с часто встречающейся формой, приведенной на рис. 11.14, неудовлетворительно защищают дымоход от снега и от дождя, особенно при достаточно сильном ветре. Более сложные по форме закрывалки часто сужают поперечное сечение на выходе дымохода и затрудняют выход дыма.
Редукция. Как минимум, здесь имеет место двойное физическое противоречие: закрывалка должна быть широкой и находиться близко к выходу трубы (чтобы надежно защищать трубу от дождя и снега при любом направлении ветра), и закрывалка должна быть узкой (чтобы сильный ветер не срывал за-крывалку) и находиться далеко от выхода трубы (чтобы дым свободно вылетал из трубы). Оперативная зона здесь включает выход дымохода (рецептор) и за-крывалку (индуктор). Менять, понятно, будем закрывалку. Очевидной идеи нет. Поэтому можно сформулировать более одной ФИМ. Макро-ФИМ: Х-ресурс, не вызывая недопустимых негативных эффектов, обеспечивает вместе с другими имеющимися ресурсами надежную защиту выхода трубы от осадков при любом направлении ветра и наилучшим образом выпускает дым. Макси-ФИМ: оперативная зона сама обеспечивает защиту выхода трубы и свободный выход дыма. Анализ фундаментальных трансформаций (раздел 12.2) на первый взгляд также не дает очевидной идеи, хотя можно сказать, что здесь явно являются 202 К. I асси чес кие навигаторы июбретенин А-Студии «заинтересованными» пространственный, структурный и энергетический ресурсы. Нужно предполагать изменения в форме закрывалки и в структуре — возможно появление более сложной конструкции с несколькими функционально-специализированными частями. Нельзя исключать, что потребуется источник энергии для приведения закрывалки в действие. Здесь Вы можете задать справедливый вопрос: а как же с требованием «абсолютно не усложняя систему»?! Первая часть ответа: посмотрим в конце решения — например, может оказаться, что по затратам материалов и стоимости новая конструкция будет ненамного превышать имеющуюся закрывалку, которая вообще не соответствует предъявляемым требованиям. Вторую часть ответа дал еще Альберт Эйнштейн 65': должно быть «Просто, но не проще простого!». То есть, если некая конструкция не решает поставленную задачу, то ее простота или низкая стоимость не имеют никакого значения. Попробуем построить технические противоречия, чтобы несколько отойти от жесткой формулы физического противоречия — но не от ФИМ! Наоборот, мы должны и будем цепко держаться за ФИМ! Представим ИКР-1 в самом общем виде как устранение «Вредных факторов, действующих на объект» и используем этот ИКР как плюс-фактор № 13 для соответствующего входа в А-Матрицу. Вдоль 13-й строки выберем подходящие минусфакторы (см. таблицу на рис. 11.15). Приемы из Л-Матрицы 1 2 0>ор\ш предположительно, будет более 21. 03. 12. 1 сложной 01 П оз. Номер минн'-фактора и пояснение
2 I Удобства жвыуаянщни — ухудшится, 05. 24. 04. I) если пило будет •ни in як поп.и 1, выключать, 23 открывать-закрывать и г п. 3 0 Сложности устройстве — увеличится, 21. OS. 14. 7 если надо будет вводить какое-пиб\ ль 17 управление и ставить двигатели Всего разных приемов: 11 Рис. 11.15. Clutter In для 1-го плюс-фактора «Вредные факторы, дейстнуюшие на объектПредставим ИКР-2 как «Степень автоматизации» и используем этот ИКР как плюсфактор № 03 для соответствующего входа в А-Матрицу. Вдоль 03-й строки найдем хотя бы один подходящий минус-фактор (см. таблицу на рис. 11.16). Пусть решением проблемы будет ИКР-3 в виде некой идеальной «Формы». Тогда вдоль 21-й строки А-Матрицы выберем вероятные минус-факторы (см. таблицу на рис. 11.17). Трансформация. При объединении 17 различных приемов из этих таблиц найден один прием (№ 07) с рейтингом 3, пять приемов с рейтингом 2 и 11 приемов с рейтингом 1. В таблице на рис. 11.18 представлены шаги решения проблемы, а на рис. 11.19 — результат проведенного реинвентинга решения, которое я впервые увидел в Германии. Я назвал эту закрывалку «шлем» Альберп Эйнштейн (1879—1955) — выдающийся физик XX столетия, создатель Реи 1 Поз. НомерПрием минус-фактора и пояснение Интерпретация Приемы приема и 1 Л-Матрицы 07 иш Сложность устройства — может увеличиться, что 07. IX. (12 1 1 3 2 2 3 2 4 2 5 2 6 2 7 1 было 07 бы нежелательно! Динами шции Однозначная интерпретация: шкрывилка должна стать подвижной'. з 03 Дробление Закрывалка должна бьпь разделена на какие-то части с самостоятельными функциями, например, нам нужны функциисвойства типа: •зашита-' — от дождя и снега, «движение» — чтобы лучше защищать и т. п. кшнп-Рис. 11.16. Cluster In для 2-го плюс-фактора .•Степень автомат 21 Обратить вред в пользу Действительно, хуже всего, когда сильный ветер! Но ведь СИЛЬНЫЙ ветер — то и есть бесплатный «источник энергии^.' Ключевая идея почти готова - шкры-валку должен приводить в движение ветер.' 04 Замени механической Суть этого приема — применение "более управляемых» полей. среды Здесь: ветер меняет направление — он же должен устанавливать юкрымилку в наилучшее состояние для зашиты от осадков! Но как тогда фиксировать положение закрывалки? Стон! Нужен флюгер! Причем именно флюгер тем устойчивей стоит в определенном направлении, чем сильней истер! А к флюгеру Всего разных приемов: надо приделать закрывалку! Использование пневмо- Куда уж больше! Самая что ни на есть -автоматическая машина и гидроконструкций с пневматическим источником шергии и пневмомеханическим двигате. u:\i23 Применение инертной Комментарий: позднее размышление об лом приеме навело на среды мысль о наличии сверх эффекта в тдкрынлл-ке-флюгере! При обдумывании ПОНЯТИЯ «вакуум» стало ясно, что непосредственно ia злкрыналкой при сильном ветре должна возникать юна разреженного воздуха, что должно улучшать выход дыма и i трубы! В других закрывалках сильный ветер, наоборот, ытрул-няет выход дыма, создавая -пробки- и т- та повышенного давления воздуха в выходной горловине трубы 12. 02. I I . 16. 08. 18. 29. 10. 09. 01. 17 14 Рис. 11.18. Cluster Out: объединение приемов и т таблиц Cluster In обшей и специальной теории относительности.
П о.. Номер минус-фактора и пояснение Приемы и) Л-Матрицы 1 Удобство эксплуатации — может 09. 07. 10 1 0 ухудшиться, если надо будет что-то открывать- такрывать и т. п. 2 0 Сложность устройства — может 16. 14. 03. 7 возрасти! 04 3 0 Сложность контроля и измерения — 07. П. 23 8 ничего не нужно измерять и контролировать! Все должно хорошо работать само! Всего разных приемов: 9 Рис. 11.17. Cluster In для 3-го плюс-фактора ■Форма из-за сходства с рыцарским шлемом по форме, благодаря чему осадки не попадают в трубу и при отсутствии ветра. Позже я встречал его, например, в Финляндии. Верификация. Получено вполне идеальное решение: закрывалка сама наилучшим образом выпускает дым и надежно защищает трубу от осадков при любом направлении ветра! В этом решении, изобретенном неизвестным мастером, можно увидеть сразу букет изобретательских приемов: динамизация — «шлем» сделан подвижным; локальное качество — «шлем» защищает именно там, где нужно; асимметрия — флюгер имеет вынесенный хвост, на который и воздействует ветер; матрешка — ось вращения размешена внутри трубы; вред обратить в пользу и самоорганизация — чем сильнее ветер, тем надежнее «шлем» устанавливается в наилучшее положение. Полученная конструкция несравненно выше! не намного сложнее исходной, а ее преимущества В хорошем решении всегда объективно реализованы несколько творческих идей. Поэтому так важно изучать методом реинвентинга ранее сделанные изобретения, чтобы
увидеть не зависящие от воли изобретателя объективные идеи преобразования от «было», то есть «от существующего», к «стало», то есть «к возникающему»! Итак, мы можем сказать, что отдельные приемы как бы предлагают нам искать решение задачи «за один ход», как в одноходовой шахматной миниатюре. Однако, сложные задачи — это как минимум трех-, четырех- и пятиходовки! А то и целые блестящие партии! И поэтому «грозди» приемов ориентируют на разработку многоходовых комбинаций, тем более что в реальной изобретательской задаче никто заранее не знает, за сколько ходов она решается. Мы видим, что при совместном рассмотрении приемов они как бы усиливают возможности друг друга. Возникает сверхэффект — синергия приемов! Ранжированная «гроздь» приемов как бы описывает и предсказывает облик будущего решения, связывая идеальный конечный результат с новым, еще искомым, принципом действия и с будущей конструкцией. 12. Навигация решения физических противоречий 12.1. Интеграция физических противоречий Ключевая идея метода аналогична интеграции технических противоречий, а именно, соединить несовместимые требования, исходя из непосредственного описания модели противоречия. Но для физического противоречия это сделан, сложнее, так как в нем несовместимость выглядит более непримиримо и остро. Описание физического противоречия часто нефункционально, то есть содержит не инверсные способы действия, а инверсные и несовместимые свойства-состояния. Поэтому в Методе интеграции физических противоречий, предложенном автором учебника в 1989 году, имеются существенные отличия от Метода интеграции инверсных технических противоречий. Метод интеграции физических противоречий требует явного разрешения противоречия по доминирующему ресурсу. А для этого требуется творческое, интуитивное усилие и профессиональное знание физико-технических эффектов и конструкций, пригодных потенциально для достижения такого решения. Шаги метода формулируются следующим образом: • сформулировать физическое противоречие с двумя несовместимыми требованиями (факторами); • редуцировать исходную модель к конструктивной форме, в которой оба фактора представлены как целевые, позитивные; • разделить конструктивную модель на две модели — для одного фактора и для другого фактора; найти независимые альтернативные технические решения для каждого из факторов; • построить интегрированную модель на основе интеграции независимых альтернативных технических решений для каждого из факторов, в которой физическое противоречие отутствует и достигаются оба несовместимые ранее свойства. Примечание 1: физическое противоречие нужно стремиться сразу формулировать в конструктивном виде, что и рекомендуется в классической ТРИЗ. при этом возможно исключение первого шага метода. Примечание 2: разделение модели противоречия на две — это только прием для описания процесса генерации идеи решения, так как при определенном
опыте интегрированное решение находится непосредственно по конструктивной модели, при этом возможно исключение третьего шага метода. Здесь также нет какой-то магической формулы, а дело заключается в разделении конфликтующих свойств во времени, в пространстве, в структуре или в веществе (энергии) — см. следующий раздел 12.2 Каталоги фундаментальных трансформаций. Но интеграция разделенных моделей одного и того же исходного физического противоречия позволяет преодолеть психологическую инерцию отношения к проблеме, строит мост к созданию идеи решения, в которой «несовместимые» до этого свойства прекрасно сосуществуют и работают для обеспечения главной полезной функции системы. Для интеграции разделенных моделей в дальнейшем будет полезно также изучение раздела 15.3 Интеграция альтернативных систем. Рассмотрим примеры в привычном порядке — от «простых» к более сложным. Пример 72. Нагрев кремниевой пластины (решение на основе интеграции физических противоречий). В примере 60 мы достаточно легко соединили вместе инверсные процессы нагрева кремниевой пластины. Это произошло соединением инверсных действий по нагреву пластины в центре и на краях. При интеграции несовместимых физических моделей это сделать несколько сложнее, так как нужно обнаружить и реализовать трансформацию, не очевидную, не лежащую на поверхности, — разрешение конфликта в пространстве и в структуре. Причем сначала из исходного физического противоречия выделяются требуемые, но противоречивые состояния, затем условно устанавливается возможность их независимой технической реализации, после чего возможна интеграция альтернативных технических решений в одной конструкции, например, за счет изменения структуры индуктора для реализации требуемых свойств в непересекающихся зонах в пространстве. Выполним последовательно шаги Метода интеграции физических противоречий: 1) построим исходную модель физического противоречия: тепловое поле должно быть сильным, чтобы нагревать пластину по краям, и не должно быть сильным, чтобы не перегревать пластину в центре; 2) редуцируем исходную модель к конструктивной форме с позитивными несовместимыми свойствами: тепловое поле должно быть сильным, чтобы нагревать пластину по краям, и должно быть слабым, чтобы нагревать пластину в центре; 3) технические решения для каждой из раздельных моделей: в индукторе для сильного теплового поля должна быть большая плотность витков нагревающей спирали, а в индукторе для слабого теплового поля должна быть малая плотность витков нагревающей спирали; 4) интеграция этих альтернативных решений приводит к контрольному решению, которое Вам уже известно из примера 60: количество витков спирали в центре нагревательного элемента делается меньше, чем на краях. В этом решении спираль нового (интегрированного) нагревательного элемента приобрела неоднородную структуру, чтобы обеспечить требуемые условия нагрева в разных пространственных зонах. Пример 73. Две шляпки одним ударом. При производстве некоторых изделий забитый гвоздь нужно извлечь. Это характерно для тех случаев, когда гвоздь используется как элемент для временного, вспомогательного соединения деталей, после чего он должен быть удален. Это не просто сделать, не повреждая материал, в котором находится гвоздь, особенно шляпка гвоздя. В материал вдавливают острые концы специальных плоскогубцев или какой-нибудь острый и прочный предмет, чтобы зацепиться за шляпку, плотно прижатую к поверхности изделия, а иногда и полностью утопленную в материал. Выполним реинвентинг одного интересного решения, созданного на Украине. Построим модель проблемной ситуации в виде исходного физического противоречия.
Редуцируем исходную модель к конструктивной форме и разделим сразу на две независимые модели (обратите внимание на почти незаметные, но полезные отличия, которые мы показываем здесь в учебных целях). Теперь мы может видеть два независимых решения: первое — гвоздь забивается как обычно, и его шляпка прижата к поверхности изделия или даже утоплена в этой поверхности; второе — гвоздь забит так, что между нижней частью его шляпки и поверхностью изделия есть зазор, достаточный для того, чтобы можно было легко вытащить гвоздь, зацепившись за его шляпку. Вот теперь требуется преодолеть психологическую инерцию и соединить оба решения в одно, изобрести гвоздь, интегрирующий оба несовместимые состояния. Контрольное решение: гвоздь имеет две шляпки (рис. 12.1), расположенные одна над другой с зазором, достаточным для извлечения гвоздя. Нижняя шляпка прижимает изделие, а верхняя служит только для вытаскивания гвоздя. Доминирующий ресурс — функционально-структурный, так как изменено количество элементов объекта, при этом каждый элемент выполняет свою специализированную функцию. Вспомогательные ресурсы — пространственный, так как изменена форма объекта; временной — новые части объекта используются на различных непересекающихся интервалах времени; вещество — увеличилось количество материала в конструкции гвоздя. При наличии интереса Вы можете провести более детальную верификацию идеи решения, оценив в учебных, а может быть и в профессиональных, целях преимущества и недостатки такого решения. Пример 74. Сейф с двойным дном на пляже. Для того, чтобы ветер или злоумышленник на пляже не унес Ваши вещи и ценности, нужно найти какое-то техническое решение, опираясь на легко доступные ресурсы. Здесь приведем решение по сокращенному варианту с учетом примечаний 1 и 2 к шагам метода. Предположим, что Вы приходите на пляж с некоей конструкцией, назовем ее чемодан, сейф или холодильник, как Вам понравится. Оттуда Вы извлекаете надувной матрац и тент, туда Вы укладываете снятую одежду, деньги и документы, а заодно, возможно, там находятся принесенные Вами напитки, книги и игры. Выполним только два шага метода для этой конструкции (я выбираю название «сейф»): 2) сейф должен быть легким (для транспортировки) и должен быть тяжелым (чтобы его не мог унести ветер или злоумышленник) — представьте себе один легкий сейф для
транспортировки Ваших вещей и другой тяжелый, стоящий на пляже, в который Вы вставляете принесенный легкий сейф, и получается как бы двойной сейф, по крайней мере с двойными стенками; 4) теперь нужно из двух конструкций сделать одну: пусть теперь единственный носимый интегрированный сейф сам имеет двойные стенки, например, двойное дно, пространство между которыми Вы заполняете песком, галькой или даже водой, легко доступными на пляже. Именно такова идея «песчаного сейфа», запатентованная изобретателем из Великобритании. Доминирующий ресурс — вещество, изменение веса сейфа путем присоединения к нему внешнего материала. Использованные или принимаемые во внимание вспомогательные ресурсы: структура и пространство — сейф имеет двойные стенки и запирающийся на замок вход (выход) для заполнения пространства между стенками нагрузкой; временной — сейф имеет разный вес на непересекающихся интервалах времени. Этот объект может иметь интересное развитие. 12.2. Каталоги фундаментальных навигаторов Исключительная роль, которую играют модели физических противоречий при решении изобретательских задач, объясняется их «положением» в оперативной зоне. Физическое противоречие — это предельно острое выражение сути проблемы, это центральная точка любой оперативной зоны. В то же время Вы уже могли убедиться, в том числе и на вышеприведенных примерах, что и для физических противоречий есть подходы и модели трансформации, облегчающие генерацию новых идей. Этому же служат и А-Ката-логи № № 5—7 с приемами и стандартами на решение физических противоречий. Основной, хотя и совсем небольшой, Каталог 5 Фундаментальные трансформации иллюстрируется ниже рисунками 12.2—12.5. Здесь необходимо сделать небольшие пояснения к некоторым из этих иллюстраций. Большинство примеров иллюстрируют определенный доминирующий ресурс, например, пространственный или временной, соответствующий основной трансформации. Но при реализации трансформации оказываются задействованы и другие ресурсы, причем нередко не менее кардинально. Поэтому некоторые примеры могут одновременно хорошо иллюстрировать и другие трансформации. Рассмотрим иллюстрации к фундаментальным трансформациям в качестве примеров и упражнений на формулирование физических противоречий. а также на анализ примененных ресурсов. Пример 75. Фундаментальные трансформации в пространстве. Примеры моделей и решений физических противоречий к рисункам 12.2: а) Автомобили, выезжающие на перекресток дорог, пересекающихся в одном уровне, могут сталкиваться, и они не должны сталкиваться во избежание жертв и материального ущерба. Решение: разнесение дорог на разных уровнях с помощью мостов или тоннелей (доминирующий ресурс — пространственный).
b) Большая толпа людей должна быть упорядочена для избежания неудобств движения и травм от столкновений или давки в узких проходах, и не должна быть упорядочена вне этих проходов. Доминирующим ресурсом является пространственный в двух аспектах: отделение оперативной зоны и задание определенной траектории движения внутри оперативной зоны. Решение использует также структурный ресурс, так как в зависимости от ширины установленного прохода задает структуру очереди — по одному, по два и так далее. Для ограничения поступления людей в оперативную зону может использоваться также пространственно-временной ресурс — пропуск к разделительным барьерам небольших групп людей через определенные интервалы времени. c) Топлива на борту должно быть как можно больше и не должно быть много, чтобы облегчить балансировку самолета по мере использования топлива. Используются: пространственный ресурс (заполняются пустоты в фезюля-же и крыльях), структурный ресурс (топливо разделяется на многочисленные части) и структурно-временной ресурс (топливо сначала выбирается от самых крайних емкостей вдоль фезюляжа и крыльев). Пример 76. Фундаментальные трансформации во времени. Примеры моделей и решений физических противоречий к рисункам 12.3: a) то же, что и в пункте а) Примера 75; Решение: поочередное пересечение перекрестка конфликтующими потоками (доминирующий ресурс — временной). b) Лодка должна иметь мачту (для удержания паруса — на открытой воде) и не должна иметь мачту (чтобы свободно проходить под мостами). Лодка в оперативном времени обладает также переменной формой (пространственный ресурс), для чего в структуре мачты содержится динамический элемент (шарнир). В оперативном (конфликтном) времени мачта не выполняет своей главной полезной функции, а вне оперативного време-
ни — выполняет. Все это в сумме и позволило разрешить конфликт во времени. с) Луч лазера должен проходить по соседним линиям для создания сплошного рисунка и не должен проходить по соседним линиям, чтобы пластина не перегревалась и чтобы не уменьшалась точность нанесения рисунка. Запаздывание, с которым луч лазера попадает на соседнюю линию, позволяет избежать перегрева обрабатываемого материала — здесь в разрешении противоречия участвуют также пространственный ресурс (траектория движения луча) и вещественный ресурс (теплопроводность и теплоотдача материала). Пример 77. Фундаментальные трансформации в структуре. Примеры моделей и решений физических противоречий к рисункам 12.4: a) Велосипедная цепь должна быть гибкой, чтобы точно огибать звездочки передачи, и должна быть жесткой и твердой, чтобы передавать значительные усилия между звездочками. Структурное решение: части системы (звенья) твердые и негибкие, а вся система в целом (цепь) — гибкая. Проанализируйте роль и других ресурсов. b) Вне оперативного (аварийного) интервала времени спасательный трап должен иметь форму, не занимающую много места, а в оперативное время должен иметь оптимальную форму трапа. В этом примере сделан акцент на контрасте «мягкие» элементы — «жесткая» система в целом. Но для работы спасательного трапа в оперативном времени используются также энергия и объемный ресурс сжатого воздуха (вещество) и, конечно, изменение формы (ресурс пространства). c) Деталь сложной формы должна быть прочно и надежно зажата для обработки и не должна быть сильно зажата, чтобы не повредить ее поверхность. Доминирует пространственно-структурный ресурс — между прижимающими поверхностями тисков на специальной подставке располагаются
подвижные цилиндрические элементы, которые по мере сближения прижимающих поверхностей плотно охватывают деталь сложной формы, распределяя прижимное усилие по большей площади. Это обеспечивает прочное удержание деталей сложной формы в процессе обработки. Пример 78. Фундаментальные трансформации в веществе. Примеры моделей и решений физических противоречий к рисункам 12.5: a) Вещества должно быть мало, чтобы иметь экономный двигатель, и вещества должно быть много, чтобы разность в объеме до и после горения была достаточной для выполнения работы. Пример разрешения проблемы в веществе (в бензиновом двигателе): в процессе сгорания смеси небольшого количества бензина с воздухом продукты сгорания в виде высокотемпературного газа стремятся расшириться и с большой силой давят на поршень, скользящий в рабочем цилиндре. Выделившейся энергии достаточно, чтобы выполнить работу по перемещению поршня, движение которого через трансмиссию передастся на колеса автомобиля, отталкивающиеся от земли и толкающие в итоге автомобиль вперед. Проанализируйте роль и других ресурсов. b) Солнцезащитные очки должны менять свою прозрачность в зависимости от освещенности и не должны требовать для изменения прозрачности каких-либо действий пользователя. Идеальное решение в веществе: хроматические стекла сами меняют свою прозрачность в зависимости от освещенности! c) При фотосъемке вспышка должна быть, чтобы получить высокое качество снимка, и вспышка не должна быть, чтобы на фотоснимке зрачки глаз человека не были красного цвета (негативный эффект «красные глаза»). Для предупреждения появления на фотографии так называемых «красных глаз» при съемке со вспышкой кроме биофизического эффекта реагирования глаза на вспышку света использован, по крайней мере, временной ресурс, а именно вспышка меньшей силы, создаваемая с небольшим упреждением перед основной вспышкой.
Итак, по существу мы провели блиц-реинвентинг 12 технических решений, из которых не меньше половины являются настоящими изобретениями. Эти комментарии являются маленьким уроком понимания и выявления ресурсов в системах и в процессах. Каталоги 6 и 7 инструментируют фундаментальные трансформации с помощью АСтандартов и А-Приемов. Действительно, многие стандарты и приемы хорошо согласуются по направленности рекомендаций с определенными фундаментальными трансформациями. Именно эти стандарты и приемы включены в каталоги в качестве более детальных и практичных моделей трансформаций. А теперь поработаем с более сложными задачами. 12.3. Принципы применения фундаментальных навигаторов Пример 79. Тренировка по прыжкам в воду. Это одна из самых известных в ТРИЗ задач. Проблемная ситуация заключается в следующем. На тренировках по прыжкам в воду случаются неудачные попытки. При неправильном вхождении в воду спортсмен может получить травму из-за удара о полную поверхность. Как повысить безопасность тренировок? Административное противоречие, заложенное в заданном вопросе, превратим в более конструктивную модель в виде физического противоречия: Вполне очевидно, что в решении заинтересованы вещественный и структурный ресурсы: нужно сделать какое-то изменение вещества (воды), возможно только в ограниченной части системы (то есть не во всем бассейне). Ресурс времени играет вспомогательную роль и допускает, что решение задачи может применяться только на участке оперативного времени, а именно, если кто-то, например, тренер, видит, что прыжок может завершиться неудачно. Обратимся к каталогу 6 Фундаментальные трансформации и Компакт-Стандарты. Просмотр каталога показывает, что несколько позиций представляют интерес. Воспроизведем их здесь (рис. 12.6) с интерпретацией применительно к условиям решаемой задачи. Запишем функциональную идеальную модель па микроуровне: Х-ресурс, в виде частиц вещества или энергии находится в оперативной зоне и обеспечивает вместе с другими имеющимися ресурсами получение «мягкой воды».
Разделение в структуре Системный переход 1-е: вся система наделяется свойством С, а ее часть — свойством анти-С Разделение в веществе (энергии) Фазовый переход 1: замена ^>азового состояния части системы или внешней среды Фазовый переход 2: «двойственное» состояние одной части системы (переход этой части системы из одного состояния в другое я зависимости от условий работы) Системой является весь объем воды в бассейне. Часть системы (оперативная зона) — объем поды в месте вхождения спортсмена в воду, например, условный цилиндр с диаметром 3 метра и высотой, точнее, глубиной от поверхности воды до дна бассейна. Вот эта часть волы должна быть «мягкой" Жидкость не сжимается. В этом причина «жесткости» волы при быстром контакте с ней — вода не успевает быстро раздвинуться, но и не сжимается. Сделать воду «мягкой» означает сделать се «упру* гой«. «сжимаемой», например, уменьшением ее плотности Взять какую-то «другую» воду с меньшей ПЛОТНОСТЬЮ не представляется возможным. Следовательно, иелью может быть управляемое изменение свойств воды в оперативной зоне в оперативное время. При этом лучше это делать при каждом прыжке, если предполагаемое изменение свойств воды будет происходить с определённым запаздыванием Рис. 12.6. Выбранные модели фундаментальных трансформаций для примера 79 Имея конкретную цель изменения состояния вещества (воды), например, с помощью соединения воды с каким-то другим ресурсом, обратимся к поиску ресурсов в системе и в окружении. Наиболее доступным ресурсом является воздух. Контрольное решение: подавать в воду воздух! Действительно, в оперативной зоне на дне бассейна устроен выход системы нагнетания воздуха с диффузором, разбивающим большие пузыри воздуха, которые плохо сохраняются в воде, на маленькие, насыщающие весь столб воды в оперативной зоне. Получаемая временная воздушно-водная смесь имеет значительно меньшую плотность, чем вода. Прыжки становятся безопасными. Рассмотрите самостоятельно возможность решения этой задачи с помощью стандартных трансформаций (раздел 10.2). Пример 80. Для тех, кто любит газоны, но не очень любит их стричь. «Проблему», спрятанную в названии примера, можно сформулировать в виде административного вопроса-противоречия: как реже стричь траву? Превратим административное противоречие в физическое противоречие: нужно стричь, чтобы газон был красивым Т ва рг не нужно стричь... без лишних комментариев 1 Рис. 12.7. Модель физического противоречия для примера ЯО Вполне очевидно, что в решении должен быть задействован ресурс вещества, какое-то изменение этого вещества. Можно отметить причастность к решению пространственного и временного ресурсов, однако, не как «решающих», а как целевых через идеальный конечный результат: грана растет до какой-то определенной длины, а далее прекращает свой рост. Не очевидна роль структурною ресурса. Однако обращение к каталогу дает по крайней мере три интересных способа, два из которых как раз относятся к структурному ресурсу (рис. 12.8). Системный переход l-li: от системы к антненстеме пли объединение системы с внтнеистемой. Системный переход 2: переход к системе, работающей на мнкроуроннс
Фишко-хичическин переход: возникновение — исче нкшенне пешее гад ta enci разложения -соединения, ионизации — рекомбинации и т. и Рис. 12.8. Потенциально важные трансформации для примера КО Действительно, реализация идеального результата вполне созвучна первым двум трансформациям, а вторая трансформация тесно связана с третьей. Вопрос только в том, чтобы найти и применить, если он известен, или создать механизм такого идеального процесса. Контрольное решение: в университете города Канберра (Австралия) найдено вещество, которое тормозит рост травы. Работая с гормонами роста растений, исследователи обнаружили возможность получать вещество с противоположными свойствами, которое замедляет рост газонной травы в три раза. Полив газонов водой, содержащей антистимулятор (замедлитель) роста травы, увеличивает время между стрижками газона в несколько раз. Сверхэффект: применение нового вещества может оказаться перспективным для уменьшения длины соломины злаков, что уменьшит опасность их полегания под воздействием ветра, дождя и тяжести колоса. Пример 81. Кто победит — вертолет или самолет? Мы уже проводили учебный реинвентинг самолета с вертикальным взлетом и посадкой (см. пример 4). Ключевая идея состояла в применении приема 07 Динамизация. Для этого в конструкциях самолетов испытывались самые разные идеи и их комбинации: раздельные двигатели — отдельно для создания подъемной силы при взлете и посадке и отдельно для горизонтального полета; поворотное крыло (вместе с двигателями): поворотные двигатели; поворотные сопла реактивных двигателей; поворотные винты с подвижным приводом от неподвижных двигателей; поворотные лопатки на крыльях для отклонения газовой или воздушной струи и другие. Что движет разработчиками таких самолетов? Ведь сегодня, казалось бы, в небе безраздельно доминирует вертолет! Как это происходило и во многих других областях техники, изобретение вертолета в первую очередь преследовало военные цели. В гонке идей только в принципе предусматривалось невоенное применение таких машин. И это применение состоялось, причем практически в полном диапазоне возможностей машин с вертикальным взлетом и посадкой: спасательные служба и медицинская помощь, полицейское патрулирование и научные наблюдения, туризм и даже такси. И все же вертолет представляет собой еще один пример массовой психологической инерции — он уже есть, а другие технические идеи и возможности все еще остаются «фантазиями». А то. что этот вид технических систем унаследовал из поенной практики расточительный расход ограниченного общепланетарного запаса нефтепродуктов, просто не принимается во внимание и не является до настоящего времени глобальным критерием качества и эффективности. Однако, специалистам известно, что по сравнению с вертолетом самолет в 5 раз экономичнее и значительно безопаснее. Безопасность связана с возможностью совершить посадку в режиме обычного самолета с помощью планирования. И только в последние годы мы видим примеры построения альтернативных систем невоенного назначения (хотя, безусловно, на базе машин первоначально военного назначения), например, фирмой Bell Helicopter TEXTRON, USA совместно с фирмой Boeing. USA — машина Bell/Agusta 609 на базе военных машины Bell Helicopter (от тяжелой машины Bell Boeing V-22 Osprey до легкой Bell/Agusta HV 609). Кстати, фирма Bell Helicopter является одним из пионеров построения самолетов с вертикальным взлетом и посадкой еще с начала 1950-х годов. В основном, это машины с поворачивающимися двигателями.
И все же известные конструкции самолетов с поворотными двигателями (крыльями и так далее) явно унаследовали от вертолетов сам «вертолетный принцип» вертикального старта и посадки, а именно, с помощью огромных винтов с вертикальной осью вращения. Можно ли радикально повысить экономичность и безопасность самолетов с вертикальным взлетом и посадкой (по крайней мере, с небольшой полезной нагрузкой, например, до одной тонны), чтобы они могли составить серьезную конкуренцию вертолетам и «гибридам» вертолетов с самолетами? Упрошая предельно модель, как это и рекомендует ТРИЗ, можно сказать, что винты гибридного самолета создают поток воздуха, направленный вертикально для взлета и посадки. Винты отталкиваются от этого потока и поднимают весь самолет. Можно также сказать, что вертолет хорошо толкает воздух вниз и плохо — по горизонтали. А самолет хорошо толкает воздух по горизонтали, но вовсе не может толкать воздух вниз. Управлять поворотом винтов сложно и небезопасно. Идеально, если бы они оставались неподвижными, как у обычного самолета, и были ориентированы для горизонтального полета. Иными словами, можно ли построить гибридный самолет, но отправляясь не от вертолета, а от самолета? Тогда, принимая за прототип обычный самолет, нужно научить его хорошо отталкивать воздух вниз. Примем эту идею за идеальный конечный результат. Превратим административное противоречие в физическое противоречие: Доминирующие ресурсы: временной, пространственный и структурный. Временной ресурс участвует потому, что острый конфликт связан с двумя временными фазами полета — по горизонтали и по вертикали. Пространственный ресурс: нужно поворачивать поток воздуха в пространстве. Структурный ресурс: нужно, по крайне мере, использовать принцип «наоборот», а именно, отказаться от вертолетного старта и посадки, а найти иной способ поднятия и опускания самолета по вертикали. Сложный характер участия ресурсов подсказывает целесообразность обращения к Каталогу Фундаментальные трансформации и А-Приемы (Приложение 7):
Связь Л-наишашрпн Разделение Прием 05 «Вынесение-: отделить мешающую часть, выделить нужную часть. в пространстве Прием 19 -Переход в другое измерение»: увеличить степени свободы движения объекта, использовать многоэтажную компоновку, использовать боковые и другие поверхности. Прием 34 «Матрешка*: разместить объект последовательно один в другом, пропустить объект через полости (пустоты) в другом 1 Е Прием 07 «Динамизация*: в Й а " 3 £ 3 сделать объект (части объекта) подвижным, оптимизировать характеристики процесса (объекта) на каждом тагу работы. Прием 18Ъ «Посредник*: на время присоединить к объекту другой (легкоудаляемый) объект. Прием 40 «Непрерывность полезного действия»: устранить холостые и промежуточные ходы, все части объекта должны непрерывно работать с полной нагрузкой Прием 03 «Дробление»: разделить объект на части, увеличить степень о 1 | дробления. гз -* Прием 11 «Наоборот»: вместо действия, диктуемого обстоятс.илтвами, сделать обратное. Прием 12 «Местное качество»: перейти от однородной структуры к неоднородной, чтобы каждая часть выполняля свою функцию и в наилучших условиях. Прием 35а «Объединение»: соединить однородные или предназначенные для соседних операций объекты |* Интерпретация Нужно отделить ноток воздуха как управляемый объект, организовать его подачу в нужных направлениях, пропустить ноток через машину (через корпус, крылья или другие детали). Пример: применение потока воздуха вместо стабилизирующего ротора Поворачивать ноток воздуха с помощью устройств-посредников, обеспечить непрерывность управления. Примеры: повороты сопла-стабилизатора в вертолете M D Explorer фирм Hughes Helicopters и М с Donne 1 Douglas (этот вертолет не имеет хвостового ротора); повороты шелей в крыльях гибридных самолетов Поток воздуха разлепить на управляемые части. Управлять не поворотом впита, а поворотом струи воздуха с помощью посредников (см. выше пример машины M D Explorer). Для повышения надежности объединить устройства одного назначения. Пример: Двойные двигатели на каждый пинт в машине Bell/Agusia 61)9 Рис. 12.10. Важные трансформации и их интерпретация дли примера X I Контрольное решение: Московский авиационный институт (Москва, Россия) запатентовал новое техническое решение, аккумулирующее лучшие идеи из практики создания самолетов с вертикальным взлетом и посадкой (рис. 12.11) с ключевой идеей управления струями воздуха с помощью гибких поворотных пластин-решеток. Машина имеет три винта, приводимые в движение двумя газотурбинными двигателями (рис. 12.11,а). Носовой винт работает только при взлете и посадке. Подъемномаршевые винты работают постоянно. Направление и режим движения зависят от положения управляемых пластин (рис. 12.11,b), которые менее инерционны и поэтому обеспечивают лучшую управляемость при взлете и посадке по сравнению с поворотными
винтами. В горизонтальном полете передние воздухозаборные жалюзи и пластины управления закрыты. Пример 82. Протезирование сосудов. Ряд операций на кровеносных сосудах, на стенках пищевода, на желчных протоках и на некоторых других сосудах проводится с установкой поддерживающего протеза (трубки, спирали и т. п.) внутрь или снаружи сосуда. Протез придает сосуду требуемую форму, либо расширяя сосуд, либо сжимая его. В обоих случаях возникает острое противоречие: рабочий диаметр (сечение) протеза не соответствует размеру (сечению) поврежденного сосуда. Так, в узкий сосуд надо вставить более широкий протез, а на расширенный сосуд надеть узкий протез. Применение протезов с пружинящими свойствами сложно при большой длине протеза, так как его трудно удерживать в предварительно сжатом состоянии при установке внутрь сосуда или, наоборот, в растянутом состоянии при установке поверх сосуда. Нужен протез, который мог бы сам устанавливаться в нужное рабочее состояние при исходном состоянии, удобном для проведения операции. Первая модель физического противоречия: протез должен быть во время операции небольшим для установки внутрь сосуда и должен быть большим для постоянного пребывания внутри сосуда после операции. Вторая модель физического противоречия: протез должен быть во время операции большим для установки снаружи сосуда и должен быть небольшим для постоянного пребывания снаружи сосуда после операции. Важно отметить, что даже сами модели противоречий находятся в остром конфликте друг с другом, требуя прямо противоположных свойств от материала протеза! Итак, можно ли совместить «абсолютно несовместимое»? Очевидно, что прежде всего нужно учитывать следующие три ресурса: пространственный — увеличение-уменьшение размеров; временной — интервал времени на операцию и послеоперационное функционирование протеза; вещественный — нужен материал с особыми свойствами, в идеале имеющий два устойчивых состояния, переход между которыми был бы управляемым. В Каталоге Фундаментальные трансформации и А-Компакт-Стандарты (Приложение 6) имеется интересный пример в позиции 4.2, связанный с применением вещества с памятью формы. Если Вы не знакомы с такими материалами, то может быть, Вам будет интересно найти описания таких материалов в технических справочниках и энциклопедиях. Контрольное решение: Научный центр хирургии Российской Академии медицинских наук, Московский институт сплавов и стали, Российский государственный медицинский университет и другие институты разработали серию различных протезов для сосудов на основе металлов с памятью формы. Например, спираль из никелида титана, скрученную до небольшого диаметра при температуре около 0 С, вводят через минимальный разрез в сосуд, где эта спираль постепенно нагревается до температуры тела, увеличивается в диаметре до рабочего размера и расправляет сосуд.
Операция занимает меньше часа и идет без общего наркоза под наблюдением с помощью рентгенотелевидения. В другом случае каркас, состоящий из множества полуколец, при нулевой температуре разжимается так, чтобы ширина «разреза» полуколец стала больше размера оперируемого сосуда, и свободно надевается на сосуд. После нагрева металла до температуры тела края «разреза» сами соединяются, замыкая кольца, и протез надежно охватывает сосуд, не давая ему расширяться. Пример 83. Естественный свет в зале парламента. Из центра смотровой площадки на куполе здания Рейхстага (см. также пример 31) вниз вершиной висит огромный конус 3, оснащенный 360 зеркалами, отражающими дневной свет прямо в зал парламента (рис. 12.13). Физическое противоречие: свет должен быть (постоянно, так как зеркала неподвижны) и не должен быть (в яркий солнечный день, чтобы не слепить сидящих в зале). Явно доминируют пространственный и структурный ресурсы. Обращение к Приложению 7 дает целый ряд подходящих приемов, действие которых мы рассмотрим при описании контрольного решения: для отделения избыточного солнечного света от зеркал (05 Вынесение: отделить мешающую часть — свет; 12 Местное качество: каждая часть должна работать в наилучших условиях — зеркала) заранее установлен козырек (18 Посредник: присоединить на время другой объект; 28 Заранее подложенная подушка и 39 Предварительное антидействие: аварийные средства и противодействие нужно подготовить заранее), который подобен по форме верхней части купола (22 Сфероидальность: перейти от плоских поверхностей к сферическим) и перемещается вокруг конуса с зеркалами от исходного положения 1 в конечное положение 2 по направлению движения солнца (07 Динамизация: характеристики объекта должны быть оптимальными на каждом шаге работы, сделать объект подвижным; 22 Сфероидальность: перейти к вращательному движению; 39 Переход в другое измерение: переход к пространственному движению). Описание приемов специально встроено в описание решения, чтобы детально рассмотреть работу приемов в контексте всего решения. Для этого нужно внимательно прочитать все описание решения несколько раз, останавливаясь для обдумывания на каждом выделенном фрагменте, пока все описание не станет легко восприниматься за один проход. Пример 84. Газовая турбина концерна СИМЕНС. Краткое описание проблемной ситуации заключается в следующем. В любой энциклопедии можно прочитать, что для всех
турбин, применяемых на теплоэлектростанциях, важнейшим показателем эффективности является коэффициент полезного действия (КПД). Этот показатель относительно выше у крупногабаритных турбин. Однако с ростом размеров турбин растут проблемы обеспечения их надежности и долговечности. В первую очередь это связано с относительно небольшой долговечностью турбинных лопаток — главного элемента, воспринимающего температурную и механическую нагрузку от струй горячего газа. В 1995 году в прессе были опубликованы сообщения о новой газовой турбине концерна СИМЕНС с рекордным КПД для турбин своего класса. Приводился и снимок турбины на сборочном участке. За счет чего был получен лучший в мире КПД, в публикациях не сообщалось. Но указывались, что были во многом решены проблемы, о которых я написал выше. Ранее мне не приходилось иметь дело с турбинами. Но я готовился к одному из первых своих семинаров в Германии и поэтому подбирал примеры технических решений германских фирм. Основываясь только на приведенной информации, в течение одного вечера я провел реинвентинг и получил результаты, которые и привожу ниже. Как позднее выяснилось при встречах с разработчиками этой турбины, ход моих рассуждений почти точно повторил ход их поисков, но как бы ускоренный в сотни раз. Этап 1. Диагностика. Причина недолговечности турбинных лопаток заключается в том, что каждая лопатка испытывает экстремальные механические и термические нагрузки. При этом нагрузки носят ударный циклический характер. Ударные нагрузки могут вызывать разрушающие резонансные колебания. Термоциклические нагрузки ведут к ускоренному развитию усталостных явлений в материале лопаток. Поэтому турбину иногда приходится останавливать для ремонта лопаток, что также снижает полезную отдачу от турбины. В известных конструкциях имелись две симметрично установленные камеры сгорания, содержащие по несколько горелок (например, по 8). При выходе из строя двух или трех горелок турбину также надо останавливать для ремонта как из-за снижения КПД, так и из-за опасности возникновения вредных вибраций. При работе камер сгорания продукты горения давят на лопатки и тем самым поддерживают вращение турбины. Ясно, что лопатка испытывает максимальный механический и тепловой удар сразу за камерой сгорания. Затем давление на лопатку и ее
температура уменьшаются до попадания в зону другой камеры сгорания. И так дважды за один оборот турбины. Как можно улучшить конструкцию турбины? Этап 2. Редукция. В качестве нулевой оперативной зоны примем рабочую поверхность лопатки. Сформулируем физическое противоречие и представим в виде ФПМ (рис. 12.15). Из анализа обеих версий ФПМ видно, что идеальным конечным результатом было бы непрерывное давление продуктов горения на лопатку при постоянной температуре! Далее, из анализа ресурсов нетрудно видеть, что энергетический поток (давление продуктов горения) не является непрерывным, что не соответствует идеальной функциональной модели. Следовательно, решение можно искать в направлении согласования устройства турбины с требованиями идеального конечного результата. Однако, для этого необходимо искать ресурсы вне поверхности лопатки в более широкой оперативной зоне, например, в объеме рабочего пространства, в котором перемещаются лопатки. К важнейшим ресурсам относятся: пространственный — весь объем вокруг турбины, включая некоторый объем корпуса турбины, который непосредственно граничит с рабочим пространством, (его можно заполнить какими-то устройствами); временной — время перемещения лопаток между камерами сгорания (это время должно быть минимальным). Этап 3. Трансформация. Составим «портрет» решения в общем виде, опираясь на «пространственные» рекомендации таблицы 7 (см. приложения): Прием 19 «Переход в другое измерение»: использовать многоэтажную компоновку, использовать боковые и другие поверхности. Прием 34 «Матрешка»: пропустить объект через полости (пустоты) в другом. Прием 02 «Предварительное действие»: расставить объекты так, чтобы они быстрее вступили в действие. Прием 40 «Непрерывность полезного действия»: устранить холостые и промежуточные ходы, все части объекта должны непрерывно работать с полной нагрузкой. Прием 03 «Дробление»: разделить объект на части. Прием 12 «Местное качество»: каждая часть должна выполнять свою функцию и в наилучших условиях. Идея решения (рис. 12.16): камеры сгорания, дающие концентрированный удар, нужно разделить (по принципу 03) и применить много отдельных горелок, расположенных по окружности рабочего пространства турбины (по принципам 19 и 34); это сократит время перемещения лопатки между горелками (по принципам 02 и 40), уменьшит перепад температур и ослабит силу механического удара (по принципу 12).
Пример 85. Самолет XXI века? Воздух не только поддерживает самолет, но и тормозит его движение. Причем сопротивление воздуха растет в большей степени, чем скорость самолета. Энергия сожженного топлива расходуется в основном на работу по расталкиванию молекул сопротивляющегося воздуха (для сравнения посмотрите еще раз пример Пример 47. Судно на подводных крыльях). При этом атмосферный воздух разогревает носовую часть аппарата до недопустимой температуры. Поэтому для полета с гиперзвуковыми скоростями, например, более 10 М (число Маха показывает, во сколько раз превышается скорость звука), аппарат должен выходить в высокие разреженные слои атмосферы и даже в ближний космос. Однако на этом пути возникают фундаментальные проблемы создания гиперзвуковой машины: 1) конструкция гиперскоростного двигателя; 2) энергоснабжение бортовых систем; 3) топливо для двигателей; 4) перегрев носовой части аппарата; Решение этих проблем мы рассмотрим на примере реинвентинга гиперзвукового самолета Нева, концепция которою разработана в Санкт-Петербурге (Россия) группой инженеров под руководством Владимира Фрайштадта. Для полетов с гиперзвуковыми скоростями используется прямоточный воздушнореактивный двигатель (рис. 12.17). Его рабочим телом является воздух 1, попадающий в двигатель во время движения через воздухозаборник и выходящий через сопло в виде раскаленного газа 2. В двигателе сжигается топливо 3, что приводит к разогреву рабочего тела. Разогретый воздух расширяется и вместе с продуктами сгорания вырывается через сопло, толкая самолет вперед. Рис. 12.17. Принцип работы прямоточного иоиушно-рсакшнною лнигатсля Проблема: достижение гиперзвуковых скоростей истечения рабочего тела из двигателя. Ее решение обычно связывалось с дожиганием 4 выходной смеси. Но это
неперспективно для скоростей в 10 М и более. Кроме того, перед камерой сгорания 5 воздух должен иметь значительную плотность, что обеспечивается специальной формой воздухозаборника 6 двигателя (диффузора). Но уплотнение воздуха за счет создания механического препятствия ведет, по-су-ществу, к торможению самолета. Итак, модели физических противоречий: 1) сжатие воздуха перед камерой сгорания двигателя должно быть, чтобы обеспечить работу двигателя, и сжатия воздуха не должно быть, чтобы не тормозился самолет; 2) ускорение истечения газов из сопла должно быть, чтобы достигать гиперзвуковых скоростей, и ускорения не должно быть, так как это противоречит способу получения ускорения (дожигание смеси). Присутствие взаимно-обратных процессов на «входе» и «выходе» двигателя явно указывает на целесообразность разработки структурного направления 3.2 из Каталога Фундаментальные трансформации и А-Компакт-Стандарты, а также направлений 3.4 и 4.5, так как здесь явно задействованы вещественно-энергетические ресурсы. Оба невыполнимых требования (сжатие входящего воздуха и ускорение смеси) показывают, что нужна смена принципа работы двигателя. Здесь мы впервые обратимся к ещё одному инструменту ТРИЗ — к физико-техническим эффектам (см. следующий раздел 13). В позициях 5, 6, 12, 17 и 28 Приложения 8 находим сходные указания о возможности применения к газам магнитных полей. Дополнительный просмотр технических энциклопедий вскоре мог бы вывести нас на магнитогидродинамические генераторы — МГД-генераторы. Однако они используются для получения электротока (рис. 12.18). Предположим, что на входе в двигатель воздух ионизирован. Частицы ионизированного воздуха 1, пролетая через магнитное поле МГД-генератора, наводят в его катушках электрический ток. Но при этом ионизированные частицы тормозятся! Если такой МГД-генератор поставить на входе в известный прямоточный воздушно-реактивный двигатель, то можно осуществить замедление входного потока воздуха без замедления движения самолета, да еще попутно получить бортовую электростанцию! Вот пример успешного использования приема 21 Обратить вред в пользу: использовать вредные факторы, в частности, вредное воздействие среды, для получения положительного эффекта. МГД-генератор нужен для замедления воздуха, а получили бортовую элктро-станцию! Решена проблема № 2. Но как ускорить выходной поток газа? И вот здесь конструкторы явно поступили по приему 11 Наоборот: они подали достаточный ток в катушки МГД-ге-нератора, и образовавшееся мощное магнитное поле многократно ускорило движение вылетающего из камеры сгорания ионизированного газа. МГД-гсне-ратор стал МГД-ускорителем, или, в данном случае, МГД-двигателем!
Контрольное решение: предложен новый двигатель для гиперзвуковых аппаратов, дважды использующий принцип МГД-генератора — прямой и обра- А теперь рассмотрим проблему № 3 — топливо. Основным топливом для реактивных двигателей является керосин. В камере сгорания керосин нагревается, испаряется и начинается активный процесс окисления кислородом (горение). Мы видим, что часть энергии уходит на нагрев топлива. Сформулируем физическое противоречие: топливо должно быть предварительно нагрето, чтобы испаряться для последующего горения, и топливо не должно быть нагрето, чтобы на нагрев не тратилась энергия в камере сгорания, а значит и была бы выше температура продуктов горения. Системный анализ условий работы и структуры всей машины показывает, что снова нужно обратиться к только что примененным рекомендациям 3.2 и 4.5: объедить систему и анти-систему с управлением процессами на микроуровне! Итак, на самолете должен быть источник энергии для предварительного нагрева топлива. Просмотрите еще раз начальное описание проблем создания такого аппарата и Вы найдете бесплатный источник тепловой энергии! Нужно использовать керосин для охлаждения перегретой носовой части летательного аппарата! Заметьте, что мы снова имеем дело с замечательным применением приема 21 Обратить вред в пользу. Контрольное решение: корпус самолета в носовой части делается с двойными стенками, между которыми циркулирует керосин 1, отбирая тепло от внешней стенки (рис. 12.21). Одновременно решены проблемы № 3 и № 4. Высокоэффективное решение всегда несет с собой сверхэффекты, то есть неожиданные, не планировавшиеся положительные явления! 1. Кинетическая энергия набегающего воздуха стала из вредного положительным фактором, обеспечивая работу бортовой электростанции мощностью до 100 Мегаватт! Такой энергии достаточно для снабжения небольшого города. При этом часть энергии потребляет лазер, а часть идет на работу МГД-ускорителя. Остальная энергия может быть использована для обеспечения других функций жизнедеятельности самолета, а также для выполнения полезной работы: сжигание космического мусора, затягивание озонных дыр и т. п.
2. Применение для создания ионизации и ускорения рабочего тела не механических систем, а особой структуры электромагнитных систем, состоящей из системы и антисистемы, позволяет достичь первой космической скорости полета! Энергия извлекается из ионизированного потока и направляется на ионизацию и ускорение этого (нагретого) потока. 3. Проблема охлаждения корпуса самолета решена идеально — без создания специальной системы! То есть и проблемы нет, и затрат на ее решение тоже нет! Действительно, корпус охлаждается циркулирующим керосином, предварительный нагрев которого повышает эффективность работы двигателя! 4. Совершенно новый сверхэффект: ионизированный воздух не только попадает в двигатель, но и обтекает самолет, что можно использовать для создания дополнительной подъемной силы, увеличивая с помощью электромагнитов сопротивление движению воздуха под самолетом и уменьшая сопротивление воздуха над самолетом! 5. Наконец, еше один исключительный эффект: поскольку в состав топлива кроме керосина входит и вода, то при термохимическом разложении в присутствии катализатора из нее выделяется свободный водород, что приводит к ускорению сгорания топлива по сравнению с двигателями на жидком водороде в 5 раз! На рис. 12.22 приведен общий вид гиперзвукового летательного аппарата Нева, как он представляется его создателям, а на рис. 12.23 приведена схема и время полетов аппарата Нева между отдаленными пунктами земного шара. В заключение этого раздела вновь нужно обратить внимание на то, что приведенные примеры были упрощены и адаптированы автором с целью понима- ния возможно более широкой читательской аудиторией и использованы исключительно в учебных целях, то есть только как иллюстрации ТРИЗ-инстру-ментария. И еще вот о чем: в ТРИЗ рекомендуется использовать примеры из разных областей знания — это помогает преодолевать психологическую инерцию, обусловленную ограниченными профессиональными знаниями, интересами и традициями. Этой рекомендации автор также старался следовать. Наконец, последнее, но не менее важное: ТРИЗ-инструментарий хорошо работает только на основе профессиональных знаний и при достаточно большой! практике его применения. Это положение нужно помнить и не смущаться, если Ваши первые
самостоятельные попытки применения ТРИЗ-инструмен-тов покажутся Вам не столь впечатляющими, как некоторые из приведенных здесь примеров. Эта книга уже изменила Ваше мышление, усилила его интеллектуальную вооруженность! Просто задачи, которые Вы теперь поставили перед собой, намного сложнее, чем это могло бы произойти раньше или без знания Вами инструментов ТРИЗ. И эти задачи в разумное время и с отличным результатом могут быть решены только с ТРИЗ! 13* Навигаторы поиска нового принципа функционирования 13.1. Каталоги технических эффектов В самом общем виде эффектом можно назвать функциональную зависимость между двумя процессами. Это означает, что изменение одного процесса, называемое причиной, ведет к изменению другого процесса, называемому следствием. Собственно функциональную связь называют эффектом. Процесс обычно представляется каким-то параметром, например, давление, температура, скорость, ускорение и т.д. Тогда изменение значения параметра и есть реализация процесса. Крайним случаем является также сохранение параметра неизменным. В технике часто пользуются моделью, связывающей эффект с определенной технической системой (элементом), реализующей этот эффект. Например, пропускание тока через металлическую спираль ведет к нагреву спирали и к излучению тепловой энергии (для простоты мы не рассматриваем здесь другие эффекты, присутствующие в этой простой системе). То есть ток является причиной появления теплового излучения (следствия). В технической системе процесс-причину часто называют входным процессом, а процессследствие — выходным. Соответственно, совокупность элементов системы, непосредственно взаимодействующих с входным процессом, называют входом системы, а взаимодействующих с выходным процесом — выходом системы. Эффект называют действием, функцией, функционированием, преобразованием и другими терминами. Так что, в приведенном примере на вход нагревательного элемента подается электрический ток, а с выхода снимается тепловое поле, при этом нагревательный элемент осуществляет преобразование тока в тепловую энергию. В самих названиях систем (элементов) обычно закрепляется главное физическое действие, осуществляемое этой системой (элементом). Для приведенного примера мы могли бы услышать такое его название «электрический нагревательный элемент». Главное в этом названии, это закрепление принципа действия элемента. Могло быть применено и название «электрическая нагревательная спираль», если бы кроме принципа действия нужно было подчеркнуть еще и устройство (форму или конструкцию) элемента. Теперь можно в общем виде определить технический эффект как любое действие, преобразование, явление или функционирование, используемое в качестве принципа действия технической системы для создания самой системы. Например, можно сказать, что принцип действия рассмотренного нагревательного элемента основан на преобразовании энергии электрического тока в тепловую энергию с помощью пропускания тока через металлическую спи раль. Дополнительно к этому могут указываться параметры преобразования, материалы и т. д., то есть условия работы такой системы. Различают однофункциональные эффекты и сложные, составные (многопроцессные и многопараметрические). Функционирование технических систем представляет собой сложное взаимодействие множества различных эффектов. Для ориентировочной классификации и применения составляются каталоги физико-технических эффектов (то есть
физических явлений, примененных в технике), химико-технических, биотехнических и других. Для сокращения названий эффектов и каталогов часто опускают добавку «технический» и говорят, например, «каталог физических эффектов», «геометрические эффекты» и т. д. Как правило, основой выдающихся изобретений было первое использование ранее неизвестного эффекта, обычно называемого открытием, или неожиданное, новое использование известного эффекта (комбинации нескольких эффектов). Достаточно напомнить о создании радиотехники, образно говоря, на основе эффекта электромагнитного излучения куска металлического провода при прохождении по нему электрического тока (см. раздел 1 Изобретение цивилизации). Сам Генрих Герц не сумел предвидеть, что его открытие не только можно будет практически использовать (что он полагал нереальным изза технических проблем, казавшихся непреодолимыми), но и совершит вскоре грандиозную революцию в развитии цивилизации, В ТРИЗ на основе анализа сотен тысяч изобретений были составлены каталоги технического применения нескольких сотен эффектов. Для каждого применения были описаны вместе содержание эффекта и его техническая реализация примерно в следующем Паспорт технического эффекта Название Описание Классификация Применение Люминисценция Излучение сиеза телами, избыточное над их тепловым излучением и имеющее после прекращения действия возбудителя длительность, намного превышающую период световых волн Различается по виду возбудителя, например, фото-, катодо-, электро-, трибо-, рентгеиолюминисиеиния и т. д. 1. Отображение информации — различные телевизионные экраны. 2. Выявление дефектов: дефектоскопия, выявление утечки веществ. 3. Функции обнаружения: люминиецентный анализ и криминалистике, медицине, геологии, зашита денег и документов от подделки. 4 Функции измерения: исследование свойств материалов датчиками, яркость и спектр свечения которых зависят от параметров веществ и полей — химического состава, температуры, давления и т. д. 5. Освещение: светодиолы, люмииисцентные лампы (дневного света), электролюмпнисиентные конденсаторы и др. Рис. 13.1. Паспорт технического эфффекта виде (приводится в сокращении — рис. 13.1). Широкое применение модели технических эффектов получили только с появлением пионерского софтвера Invention Machine, а позднее крупнейшая база знаний технических эффектов была создана и постоянно пополняется в софтвере Tech Optimizer (см. раздел 21.1). Практическое применение нашли также сокращенные каталоги (Приложения 8—10), в которых для часто встречающихся технических действий указаны физические, химические или геометрические эффекты (в соответствии с назначением каталога), имевшие примеры эффективных технических реализаций. Сами примеры не приводятся, так как предполагается, что пользователь обратится к доступным ему техническим энциклопедиям и справочникам, зная названия эффектов, которые он выбрал в качестве возможного принципа действия. Этот простой и практичный подход реализован также в софтвере PentaCORE (см. раздел 21.3), в котором автоматизирована функция обращения к поисковым системам ряда специализированных и универсальных энциклопедий, доступных в Интернет. Следует указать также на связь эффектов с другими трансформациями. Так, совершенно очевидно, что физические эффекты являются базой для таких приемов как 01 Изменение агрегатного состояния, 04 Замена механической среды!, 06 Использование
механических колебаний и многих других. Химические эффекты присутствуют как базовые в приемах 15 Отброс и регенерация частей, 23 Применение инертной среды, 26 Использование фазовых переходов и в других. На геометрические эффекты опираются приемы 10 Копирование, 11 Наоборот, 19 Переход в другое измерение, 22 Сфероидальность, 34 Матрешка и другие. В качестве очень полезного, хотя и трудоемкого, упражнения Вы сами можете установить связь базовых технических эффектов с комплексными и фундаментальными трансформациями. Завершим этот раздел замечанием о том, что базовые технические эффекты должны отражать в идеале всю сумму научно-технических знаний, выработанных человечеством. Такие системы как Tech Optimizer, CoBrain и Knowledgist (см. раздел 21.1) развиваются именно на этом стратегическом направлении. Каждый из нас овладевает только частью этих знаний. Сюда входят универсальные знания, полученные в школе, специализированные знания, полученные в высшей школе, и знания, которые мы постоянно накапливаем при самостоятельной работе с источниками научно-технической информации. Разумеется, что мы используем относительно малую часть этих общих знаний, а именно ту, которая имеет непосредственное отношение к нашей отрасли. В то же время мы уже отмечали, что немало выдающихся изобретений возникало при привлечении для их создания знаний из других областей. Поэтому полезно усиливать свой творческий потенциал по крайней мерс ознакомлением с имеющимися базами знаний технических эффектов и изучением ключевых идей, на которых основаны решения в других областях науки и техники. 13.2. Принципы применения технических эффектов Трансформации с помощью технических эффектов основаны на принципе аналогии или на прямой реализации требуемой функции известным техническим решением (с поправкой на конкретные условия нового применения). Вместе с тем, все технические системы есть не что иное, как некоторые комбинации технических эффектов, реализованных в определенных конструкциях. При 2J4 Классические навигаторы изобретения А-Студии этом комбинации, обладающие признаками полезности и абсолютной новизны, признаются изобретениями. Охватить всё разнообразие и тонкости работы с техническими эффектами очень не просто лаже при наличии софтверной поддержки. Поэтому далее мы покажем только несколько примеров, которые могут служить лишь иллюстрацией и введением в чрезвычайно разнообразный инструментарий технических эффектов. Пример 86. Все ли гвозди цилиндрические? Обычный «цилиндрический» гвоздь хорошо входит в дерево, но со временем под действием изменений температуры и механических колебаний может расшатываться. Можно сказать, что само дерево легко «управляет» перемещением гвоздя. Обратимся к каталогу Геометрические эффекты (Приложение 10) с целью поиска подходящих рекомендаций для возможного изменения «принципа действия» гвоздя. В пункте 9 Снижение управляемости находим рекомендацию Замена круглых объектов на многоугольные. Контрольное решение: в Польше выпускается гвоздь с треугольным сечением, который лучше «сидит» в дереве, чем обычный гвоздь с круглым сечением. Пункт 10 того же каталога Повышение срока службы, надежности содержит рекомендации Изменение площади контакта и Специальный выбор формы. Контрольное
решение: в Германии выпускается гвоздь с четырехугольным сечением, но закрученным относительно оси симметрии по длине гвоздя так, что получается подобие шурупа с «шагом витка», равным длине шурупа (иначе: на гвозде образуется один «виток» с четырьмя нитками по количеству углов многоугольника первоначального сечения). Такой «гвоздь» является промежуточной конструкцией между гладким гвоздем и шурупом, но проще в производстве, чем шуруп, а держится в дереве намного лучше, чем гладкий гвоздь. Пример 87. Приятный... шум улицы. Громкий, непрерывный и относительно монотонный шум с улицы от сплошного потока машин утомляет и мешает работе. Обычная штора несколько снижает общий уровень шума, но его монотонность остается. Монотонность объясняется равномерным спектром (структурой) частот акустических колебаний, генерируемых транспортным потоком. Обратимся к каталогу Физические эффекты (Приложение 8) и в пункте 24 Создание заданной структуры, стабилизация структуры объекта выберем эффект Механические и акустические колебания. Из курса физики известно, что изменение структуры спектра каких либо сложных колебательных процессов (в том числе и акустических) может быть обеспечено применением так называемых частотных фильтров, посредников-преобразователей, которые хорошо пропускают колебания с определенной частотой и не пропускают (или ослабляют) колебания с другими частотами. Контрольное решение: в Англии предложена штора, конструкция которой содержит норы разных размеров и реализует идею механической фильтрации звуковых колебаний таким образом, чтобы полосы пропускания композиции фильтров примерно соответствовали спектру морского прибоя. Такой шум не вызывает негативных явлений утомляемости, потери внимания и т. п. Пример 88. Контроль износа двигателя. При износе двигателя увеличивается количество микрочастиц металла, попадающих в масло, смазывающее и охлаждающее движущиеся части. Следовательно, оценивая количество металлических частиц в масле, можно оценить степень износа двигателя. Проблема: как заметить присутствие металлических частиц в масле и оценить их количество? При просмотре каталога Физические эффекты (Приложение 8) обращают на себя внимание пункты 5 Индикация положения и перемещения объекта и 22 Контроль состояния и свойств в объеме. Зная уже принципы применения добавок по комплексным трансформациям, мы можем предположить, что это выглядит перспективно и не сложно по сравнению с другими рекомендациями. Поэтому, можно остановиться на рекомендации Введение «меток» — веществ, преобразующих внешние поля (люминофоры) или создающих свои поля (ферромагнетики) и потому легко обнаруживаемых. В справочниках можно более подробно рассмотреть применение люминисценции и попытаться интерпретировать найденные примеры применительно к решаемой проблеме. В данном случае, мы обратимся к приведенному выше паспорту физического эффекта Люминисценция, а затем продолжим поиск по справочникам более детальной информации для пункта 4, чтобы уточнить, каким именно образом яркость и спектр свечения люминофоров зависят от параметров веществ и полей — химического состава, температуры, давления и т. д. Мы обнаружим, что металлические частицы уменьшают яркость люминисцентного свечения. Отсюда возникает идея принципа действия будущей измерительной системы: если в масло добавить люминофор, то с увеличением количества металлических частиц в масле яркость свечения люминофора будет уменьшаться. Это и будет свидетельствовать об увеличении износа двигателя. Пример 89. Распустится ли роза, срезанная еще бутоном? Чтобы иметь максимально возможный срок до продажи роз после срезания, их можно срезать нераспустившимися. Это
позволяет доставить розы отдаленным продавцам. Как гарантировать, что бутоны распустятся? Мы можем вести поиск какого-то подходящего химического эффекта (Приложение 9) из пунктов 22 Контроль состояния и свойств в объеме (в частности. реакции с применением цветореагирующих веществ или веществ-индикаторов) и 23 Изменение объемных свойств объекта (плотность, концентрация и т. д.). Понятно, что для выяснения этого вопроса нужно было проводить предварительные исследования и найти какой-то индикатор, вещество или поле, присутствие которых в розах помогло бы надежно оценивать своевременность срезания роз. И результаты подобных исследований достаточно известны. Так. мы могли бы выяснить, что крахмал при взаимодействии с йодом дает интенсивное синее окрашивание. А крахмал является основным ресурсным углеводом растений. Тогда, действуя по аналогии, мы могли бы предложить применить пробу на окрашивание срезанных бутонов под воздействием пола. Контрольное решение: исследователи из Wageningen Agriculture University (Голландия) установили, что при содержании крахмала в бутоне менее 10% сухой массы цветка роза не распустится. Для этого бутону не хватит энергетических ресурсов, запасенных в крахмале. Пример 90. Можно ли изобрести новый «принцип действия» футбольного мяча? Обратимся, например, к пункту 5 Интенсификация процесса каталога Геометрические эффекты (Приложение 10). Из эффектов этого пункта вполне привлекательно выглядят рекомендации Переход от обработки по линии к обработке по поверхности и Эксцентриситет (смещение оси вращения тела от «оси симметрии»). Первая рекомендация ассоциируется, в частности, с физическим эффектом Магнуса из пункта 6 Управление перемещением объекта из каталога Физические эфекты (Приложение 8). Действительно, многие ли знают, что именно этот эффект строго научно объясняет и описывает поведение футбольного мяча. летящего по кривой траектории? В соответствии с эффектом Магнуса, тело. вращающееся в набегающем потоке газа (жидкости), испытывает воздействие поперечной силы. А именно, тело получает дополнительное смещение в ту сторону, на которой направление его вращения совпадает с направлением относительного движения набегающего потока газа (жидкости). Теперь Вы можете вспомнить и легко проанализировать, в какую сторону был закручен футбольный мяч при великолепном голе, когда мяч по крутой траектории облетел «стенку» защитников и, неожиданно повернув, влетел в ворота. Этот эффект (может быть не зная его названия) хорошо знают и теннисисты. А вот волейболисты хорошо знают другой эффект: в момент улара по волейбольному мячу на подаче при определенной ориентации мяча, учитывающей положение на покрышке ниппельного отверстия для накачивания, мяч через несколько метров полета вдруг несколько меняет свою траекторию, как бы прыгая в сторону. Этот эффект объясняется тем, что сначала (при ударе) ниппельное отверстие находится под рукой подающего, а потом во время полета несколько смешается из-за небольшой закрутки мяча под воздействием набегающего потока воздуха, из-за чего происходит дополнительное смещение центра тяжести мяча и еще большее отклонение (неожиданный прыжок в сторону) от первоначальной «прямой» траектории полета. Контрольное решение на основе соединения эффектов: внутри мяча на эластичных подвесах (или иным способом) закрепляется небольшой груз, который во время полета мяча меняет свое положение внутри мяча и смещает его центр тяжести. Мяч будет летать по причудливым траекториям с неожиданными случайными отклонениями от общего направления движения. Такой мяч можно использовать для развлекательных игр или для
тренировки скорости реакции спортсменов. А при «закручивающем ударе» по такому мячу к эффекту случайного смещения центра тяжести, являющемуся одновременно и центром вращения, добавится действие эффекта Магнуса, и можно будет наблюдать еще более неожиданные перемещения мяча. Пример 91. Мощная звуковая колонка... на ладони. Самая громоздкая часть любой аудиоаппаратуры — звуковые колонки, особенно низкочастотные. Причем, чем качественнее аппаратура, тем большие размеры имеют низкочастотные колонки. Это связано с тем, что для воспроизведения низких частот нужен излучательный элемент (динамик) большого диаметра. В примере 86 мы уже видели необычное применение физического эффекта фильтрации ко лебаний. Развивая здесь направление, связанное с созданием колебаний, обратимся к эффекту амплитудной модуляции. В принципе этот подход соответствует в каталоге Физические эффекты пункту 16 Передача энергии: механической, тепловой и др. В соответствии с Законом роста идеальности (см. раздел 15.1 ТРИЗ-Законы развития систем) идеальный конечный результат в данном случае был бы такой: качественный низкочастотный звук есть, а колонки для его излучения нет. Казалось бы, разрешить столь невероятное противоречие невозможно. Однако на американской фирме АТС думали иначе и предложили следующую идею: модулировать низкочастотными звуковыми колебаниями (речь, музыка) в диапазоне 20—20 000 герц высокочастотные колебания в диапазоне 200 020—220 000 герц и генерировать такие высокочастотные, не слышимые человеком, колебания с помощью маленьких пьезоэлектрических излучателей ультразвука (рис. 13.2). При этом с помощью других таких же излучателей, строго синхронно, но в противофазе излучающих основную несущую ультразвуковую частоту в 200 000 герц, «вычитают» из первого высокочастотного колебания основную составляющую в 200 000 герц. И снова мы видим совместную работу системы (ультразвук с определенной частотой) с антисистемой (ультразвук с той же частотой колебаний, но излучаемый в противофазе), что приводит к «совмещению несовместимого» в одном техническом решении и безусловному преодолению противоречия! Пример 92. Идеальная салфетка для очистки поверхностей от грязи. Сухая, а чаще смоченная водой, салфетка из обычной ткани при чистке керамической плитки, полированной мебели или поверхностей автомобиля не дает качественного результата. Тогда прибегают к примению химических средств. В соответствии с каталогом Химические эффекты (Приложение 9) это соответствует пункту 6 Управление перемещением объектов, пункту 20 Контроль состояния и свойств поверхностей и пункту 21 Изменение
поверхностных свойств, а именно, рекомендациям Использование гидрофильных и гидрофобных веществ и Применение поверхностно-активных веществ. Однако, применение химических моющих средств экологически не безупречно, а иногда может приводить к изменению цвета окрашенной поверхности, или могут появиться другие дефекты. Сами салфетки быстро загрязняются и также попадают в мусор, увеличивая количество бытовых или промышленных отходов. Идеальный требуемый результат: салфетка полностью снимает (собирает, поглощает, впитывает и т. д.) грязь с очищаемой поверхности и легко отдаст грязь, например, может очищаться водой (без применения химических средств). По сути дела мы имеем пока не идеальный результат, а противоречие на функциональном уровне. Вернемся к самому началу. Вода на салфетке играет роль «микроадсорбента», механически притягивающего и удержи мающего частички грязи, а ткань салфетки играет роль «макроадсорбента» и даже абсорбента (объяснение терминов нужно посмотреть в справочнике!), удерживающего воду в своих порах между нитями вместе с грязью. Проблема заключается в том, что грязь вместе с водой проникает в микропоры нитей, и уже не может быть удалена оттуда механически, простым смыванием при полоскании. Теперь исходное противоречие попробуем представить на «микроуровне», например, в таком виде: нити (салфетки) должны собирать воду вместе с грязью и не должны задерживать грязь. Однако эта модель просто неверна! По ТРИЗ нужно точно определять инструменты. Поэтому, внимательное рассмотрение (если нужно, то с применением «мысленного увеличителя» в виде модели Размер—Время—Стоимость — см. раздел 18.2) даст следующую формулировку точного физического противоречия: поры между нитями хорошо задерживают воду вместе с грязью, а нити не задерживают грязь. Здесь четко видно, что противоречие как бы само собой разрешено в пространстве, так как «несовместимые» требования относятся к разным объектам! А это означает, что из всех проблемных требований осталось одно — нити не должны задерживать грязь. Теперь требуемое свойство можно определить как отсутствие развитой пористой поверхности нити, или иными словами, как высокую гидрофоб-ность нити в соответствии с химическим (точнее, физикохимическим) эффектом, указанным выше. Такому свойству в высокой степени удовлетворяет нить из стопроцентной целлюлозы. Таково контрольное решение, разработанное и примененное фирмой H2O-Aktiv Vertricbsgesellschaft Rcinigungsprodukte mbH, Германия. Наконец, следует обратить внимание также на эффективное участие структурного ресурса в разрешении присутствующих здесь системных физических противоречий: высокую степень гидрофильности салфетки создает плотное переплетение тончайших нитей целлюлозы, что служит как бы активатором воды, снижая ее поверхностное натяжение для впитывания частиц грязи. То есть каждая нить салфетки (часть системы) гидрофобна, а салфетка в целом (вся система) — гидрофильна! При прополаскивании салфетки она легко отдает вместе с промывающей водой частицы грязи и становится пригодной к повторному многократному использованию. Благодаря высокой гидрофиль-ности салфетка удаляет (по сути дела водой!) даже такие загрязнения, как пятна машинного масла или свежей масляной краски! Пример 93. Сказочная реальность. Кто не читал в детстве сказку о волшебном горшке, из которого безостановочно выползала каша? И нужно было знать одно волшебное слово, чтобы каша начала расти, но знать и другое слово, может быть еще более важное, чтобы каша остановилась. Иначе она могла бы заполнить весь мир. По сказке. Сегодня такие ужасные картины не исключаются из опасении, высказываемых оппонентами генных и нанотехнологий. Только вместо каши смертельным оружием против
человечества могут стать вирусы, бактерии и какие-нибудь видимые или невидимые искусственные существа, может быть даже «мыслящие». Но здесь мы рассмотрим более простые и безопасные примеры. Как сделать, чтобы кроссовки (или другая обувь) точно облегали ногу? Все же ноги у всех разные, а обувь выпускается с небольшим разнообразием по длине и полноте. Нужен какой-то способ, по которому купленные кроссовки сами станут точной копией, или формой, для Вашей ноги! Обратимся к каталогу Химические эффекты (Приложение 9) и изучим пункты 22 Контроль состояния и свойств в объеме и 23 Изменение объемных свойств объекта. Гели! Вот что нужно искать. И действительно, работая со справочной литературой, Вы достаточно быстро обнаружите, что эти синтетические желеобразные вещества способны мгновенно или постепенно уменьшать или увеличивать спой объем до тысячи раз и более! Причем для запуска процесса изменения достаточно малейшей добавки вещества-активизатора, изменения температуры или других факторов. Целый класс таких веществ, созданных в Японии, был даже назван «умные гели». Первое изделие, в котором они были применены, оказалось именно кроссовками, которые при нагреве от ноги расширяются и плотно, но в то же время мягко, охватывают ногу. Так на уровне вещества и с применением химического эффекта разрешено «неразрешимое» физическое противоречие: кроссовки должны выпускаться без учета индивидуальных особенностей ног потребителя, и кроссовки должны абсолютно точно подходить каждому конкретному потребителю. А вот другое решение аналогичной проблемы: создание «умной упаковки». которая сама прочно и одновременно бережно прижмет в посылочной коробке любые посылаемые изделия, любой сложной формы и из самого хрупкого материала, например, из тонкого стекла. К рассмотренным химическим эффектам можно добавить Использование эластичных и пластичных веществ из пункта 19 Изменение размеров и формы объекта этого же каталога. Фирма Sealed Air Corporation (USA) разработала высокоэластичные полиэтиленовые мешки любых требуемых размеров, в которых при механическом или температурном стартовом воздействии запускается процесс образования полимерной пены, равномерно распределяющейся по всему объему (рис. 13.3). Рост уплотняющей упаковки останавливается самой посылаемой коробкой! Так что некоторые сказочные «изобретения» вполне могут рассматриваться сегодня как прототипы для совершенно реальных вещей! Цель этого примера не только в том, чтобы продемонстрировать действие того или иного химического эффекта, но и в том. чтобы показать их результа- Рис. 13.3. «Умная упаковка* и з «саморастушси» полимерной моим ты — новые технологии и объекты, которые можно применять, даже не зная, каким способом они получены. Однако найти такие объекты можно, обращаясь к известным универсальным энциклопедиям или специализированным техническим справочникам для поиска примеров реализации того или иного эффекта, или для поиска примеров получения в технике
требуемых свойств так, как мы это делали, обращаясь к очень ограниченному числу «входов» в рассмотренные каталоги. Что еще важно отметить для последного примера, это эффективное применение пены, а по сути, пустоты в каком-то веществе, например, в уплотняющей упаковке. Действительно, здесь пустота выступает как идеальное вещество, которого нет, и которое есть, так как оно заполняет почти весь объем упаковочного материала, выдавливая полиэтиленовую пленку во всех направлениях, где нет препятствий! Пример 94. Неподвижный флюгер! В любом справочнике мы прочитаем примерно следующее: флюгер — метеорологический прибор для определения направления и скорости ветра (рис. 13.4), имеющий две подвижные части — флюгарку 1, устанавливающуюся по направлению ветра благодаря наличию хвостовой лопасти 2, на которую воздействует ветер, и металлическую пластину 6, отклоняющуюся при большей силе ветра на больший угол. При своем вращении вместе со штоком 5 флюгарка устанавливает металлическую пластину навстречу ветру. Противовес 3, уравновешивающий вес лопасти флюгарки, указывает направление ветра относительно неподвижных штырей 4, ориентированных на стороны света, а угол отклонения металлической пластины относительно неподвижной дуги 7 с угловыми измерительными отметками указывает силу ветра. Этот старинный прибор не отличается большой точностью, так как флюгарка не поворачивается при малом ветре, а пластина не поднимается при малом ветре и неустойчиво ведет себя при большом ветре. Можно сформулировать два одинаковых физических противоречия: 1) флюгарка должна быть большой и легкой, чтобы работать при малом ветре, и должна быть небольшой и тяжелой, чтобы устойчиво работать и не ломаться при большом ветре; 2) пластина должна быть большой и легкой, чтобы работал, при малом ветре, и должна быть небольшой и тяжелой, чтобы устойчиво работам, и не ломаться при большом ветре. В идеале по ТРИЗ характеристику «малый», применительно к свойствам размер, вес или к каким-то негативным факторам, нужно стремиться представить как «нулевой вес» или «нулевой размер» и т. п. Но нулевая флюгарка и нулевая пластина вовсе не могут перемещаться! А это противоречит их принципу действия. Сделаем поправку: прежнему принципу действия, которому были присущи неразрешимые противоречия! А что. если
попытаться создать флюгер с нулевыми размерами и весом флюгарки и пластины?! Это звучит как полный парадокс — «неподвижный флюгер». Практически же это означает, что нужен новый принцип действия устройства с прежними функциями, но с лучшими показателями качества функционирования. Оставим за ним традиционное название — флюгер, может быть, с добавкой дополнительного определения по новому принципу действия. Новый принцип действия должен основываться на общем принципе всех измерительных приборов — выявлении и оценке абсолютного различия между какой-то неизменной эталонной величиной (направления сторон света) и измеряемой переменной величиной (положение флюгарки, а точнее, угол отклонения флюгарки от базового направления, например, на Север и по движению часовой стрелки) либо различия между изменениями двух сопоставляемых величин, одна из которых изменяется быстрее, чем другая (разностные измерения). Принимая последний подход, можно предположить, что набор потенциально подходящих эффектов может оказаться весьма большим. Попробуйте самостоятельно создать неподвижные флюгеры на иных принципах по сравнению с тем. который будет рассмотрен в качестве контрольного решения. А само контрольное решение покажет общий способ преодоления стереотипов нашего мышления, что и будет главным полезным результатом этого примера. Рассматривая каталоги технических эффектов, мы могли придти к выводу, что скорость ветра можно измерить, например, по степени охлаждения какого-то нагретого тела, находящегося на ветру (пункт 1 Измерение температуры каталога Физические эффекты и группа эффектов под общим названием Термоэлектрические явления). Но как измерить таким способом направление ветра? Может быть, прикрыть одну часть нагретого тела от ветра, а другую оставить на ветру, и поворачивая это тело, найти положение, при котором оно охлаждается быстрее всего — это и будет означать, что найдено направление, откуда дует ветер. Возможно, но сложно и. по-видимому, медленно. Нужно уйти от механических перемещений. Контрольное решение: сотрудниками DIMES Delft Institute of Microelectronics ana Submicron-technology при Delft University of Technology (Голландия) разработан флюгер (рис. 13.5), представляющий собой кремниевую микросхему примерно 5x5 мм 2, с каждой стороны которой размешена миниатурная термопара. Снизу микросхема равномерно подогревается. С той стороны, откуда дует ветер, микросхема несколько охлаждается, что сразу же замечает высокочувствительная термопара. Если ветер имеет промежуточное положение, по-разному срабатывают две термопары, фиксируя разное охлаждение сторон микросхемы, на которых они закреплены. Чем больше скорость ветра, тем больше охлаждение. Направление ветра вычисляет сама микросхема по разности токов, вырабатываемых термопарами. Этот пример демонстрирует также великолепное решение по свертыванию системы — исключению лишних, неэффективно работающих или ненадежных элементов (см. раздел 15.2.4 Мета-модель «Волна эволюции»). Новый принцип позволил создать компактную
систему без подвижных частей, работающую точно в более широком диапазоне — при силе ветра от К) сантиметров до 60 метров в секунду. Пример 95. Perpetuum Mobile для человечества?! Еще более впечатляющий пример свертывания появляется перед нами при рассмотрении идей создания двигателя на водородном топливе. Инерция мышления тут же рисует нам работу нового двигателя внутреннего сгорания, в котором в качестве топлива вместо бензина сгорает водород, соединяясь с кислородом с образованием воды как отхода. Мы воображаем, что такой двигатель абсолютно идеален экологически, и одно это уже выглядит совершенно замечательно! Однако на этот раз в реальности дело обстоит еще лучше — и намного! Дело в том, что в новых водородных двигателях фирмы DaimlerChrycler, Deutschland ничего не сгорает, так как они... вовсе не являются двигателями внутреннего сгорания! И это изобретение несет в себе новую техническую революцию, значение которой может оказаться и не оцененным в полной мере, и вновь из-за инерции мышления. Да, автомобиль будущего будет безупречен экологически, будет иметь высокий коэффициент полезного действия и высокую надежность двигательной установки на основе электромотора. Но! Но заправляться он будет внешне так же, как и раньше — на автозаправочных станциях, из шланга. И именно сохранение всех привычных действий по обслуживанию и управлению автомобилем не позволит заметить пришедшей революции! Ну что ж, пусть так и будет! Это будет реальный пример того, что действительно в цивилизации могут незаметно происходить грандиозные по масштабам революционные изменения! Остается только надеяться, что все они будут такими же позитивными, как приход новых автомобилей, которые, возможно, получат общее название NECAR (от New Electric Car) — так называется сегодня одна из испытательных серий такого автомобиля концерна DaimlerChrycler. Этот пример я привожу не как пример реинвентинга, а как пример выдающейся реализации комплекса физико-химических эффектов, лежащих в основе принципа действия прежде всего нового источника электроэнергии, а затем уже и новой двигательной и энергетической системы автомобиля. Хотя применение новой идеи этим далеко не ограничивается. А выводы для пополнения своих изобретательских знаний, не меньшие по значению, чем при ре-инвентинге, я надеюсь, Вы успешно сделаете сами. На рис. 13.6 показаны сразу два варианта одной ячейки нового источника электроэнергии некара: 1 — на основе заранее заготовленного водорода и II — на основе водорода, получаемого непосредственно на борту автомобиля. По схеме 1 водород пропускается через пористый анод 1, и его протоны в присутствии катализаторов 3 проникают через мембрану 4 (РЕМ — Proton Exchange Membrane) в катод 2, при этом на аноде 1 образуется отрицательный электрический заряд, а на катоде 2 — положительный. При соединении в пористом катоде 2 водорода с кислородом
действительно образуется вода, как отход. Первичные энергетические ячейки соединяются последовательно в большие батареи, к полюсам которой может быть подключена нагрузка, например, электродвигатель постоянного тока и система электропитания автомобиля. Схема II, разрабатываемая фирмой XCELLSIS, дочерней фирмой концерна DaimlerChrycler, отличается от схемы 1 только тем, что водород образуется прямо на борту автомобиля из смеси метанола с водой. При этой реакции, сопровождающейся выделением тепла, образуется также углекислый газ, однако в три раза меньше (!), чем в современных самых «чистых» двигателях внутреннего сгорания. По этой причине создатели некара назвали его «нуль-эмиссионным» автомобилем. Для заправки «некара» метанолом могут быть переоборудованы обычные бензиновые заправочные станции. Но и первая схема представляет интерес для крупных автотранспортных предприятий, которые могут иметь централизованные хранилища емкостей с водородом и обеспечить безопасную смену этих емкостей для грузовых автомобилей или автобусов. Создание некара означает окончание почти полуторавековой эры автомобиля на основе двигателя внутреннего сгорания — одного из выдающихся изобретений цивилизации и одновременно одного из главных загрязнителей атмосферы (см. пример 112 и весь раздел 15.3 Интеграция альтернативных систем). Но это может означать и нечто большее, так как по мнению специалистов новые энергетические источники смогут конкурировать с солнечными, ветровыми или водными источниками электроэнергии! Они предполагают также, что источники с новым принципом действия могут стать настолько эффективными и разнообразными, что найдут применение от мопедов и газонокосилок до лэптопов и хэнди. В заключение этого примера и раздела в целом следует отметить еще раз, что наиболее радикальные изменения несут, конечно, изобретения, основанные на новых принципах действия технических систем. А в основе таких изобретений лежат новые знания и открытия, полученные в результате научных исследований. Эти знания и есть интеллектуальная база для пополнения банка технических эффектов, база для изобретения технических систем на новых принципах функционирования. Практикум к разделам 10—13 19. Рекламный плакат (1). Рекламные плакаты, в том числе, огромных размеров, можно видеть сейчас везде — на боках автобусов и трамваев, на стенах домов и в холлах зданий. Плакат имеет на обратной стороне клеевой слой, и поэтому его наклейка требует тщательной примерки, так как после предварительного приклеивания хотя бы небольшого куска плаката исправить его ориентацию очень сложно, можно повредить материал плаката. Противоречие: плакат должен легко переметаться при наклейке и должен надежно фиксироваться при правильном размещении. Что можно предложить? 20. Рекламный плакат (2). Как сделать плакат, которым можно полностью заклеить всю внешнюю поверхность и все окна автобуса? Ведь должны же пассажиры что-то видеть из автобуса?! 21. Любая сковородка — тефлоновая! Как сделать любую сковородку или, например, гусятницу, уже имеющиеся у Вас дома, непригорающими? 22. Дверной звонок. Как сделать, чтобы в любом месте Вашей квартиры пли большого дома Вы могли услышать звонок в дверь? 23. Износ шин. Каким образом шина может сама сообщи п. о степени своего износа? 24. Нейтрализация выхлопных газов холодного двигателя. Особенно вредные выхлопные газы холодного, только что запущенного, двигателя. Каким образом можно устранить уровень загрязнения атмосферы самыми опасными первыми выхлопами? 25. Греющая одежда. Обычная одежда не греет. Она является пассивной системой, сохраняющей тепло, исходящее от тела. Предложите возможные принципы действия активной обогревающей одежды.
26. Микропинцет. Каким пинцетом можно плотно, но безвредно, работать на сосудах головного мозга, если размер закрытого рабочего острим пинцета чуть более 0,5 мм? 27. Как живут орлы и грифы? Каким образом можно обеспечить многомесячное непрерывнеое наблюдение за гнездом, ведь ни один наблюдатель не просидит, скажем, на соседней скале все это время? 28. Белый светодиод. Известно, что полупроводниковые светодиоды изл свет в синем, красном и зеленом диапазоне. Каким образом можно от миниатюрного светодиода получить, например, белый свет? 246 Ишссические навигаторы июбретения А-Студии 29. Зеркало для телескопа. Как изготовить зеркало идеальной вогнутой параболической формы из расплавленной стеклокерамики для телескопа диаметром 8 метров? 30. Заморозка ягод и фруктов. В известных установках быстрого замораживания свежих ягод и фруктов на подающем конвейере идет предварительная заморозка, чтобы продукты не смерзались вместе при последующей глубокой заморозке. Для окончательной заморозки продукты отделяются от конвейера, но при этом могут повреждаться. Каким образом можно улучшить весь процесс заморозки и исключить повреждение продуктов? 31. Непадающая зубная щетка. Зубную щетку, чтобы она высыхала, а также и не падала иногда с полочки в ванной, ставят в стакан или подвешивают, пропуская ручку в отверстие полочки. Вопрос: можно ли. опираясь на школьные знания по физике, сделать шетку с новым принципом функционирования, такую, чтобы, например, она сама стояла на полочке? 32. Тренировка скалолазов. Каким образом можно обеспечить тренировки спортсменов в обычном спортивном зале так, чтобы условия тренировки были максимально похожи на реальные и не было привыкания к одним и тем же «скальным поверхностям»? 33. Супермаховик. Супермаховик представляет собой диск, полученный навивкой обода 1 из высокопрочной ленты (проволоки, волокон) на несущий центр 2, также имеющий форму диска и отливаемый, например, из дюралюминия. Такие маховики могут служить, например, источниками энергии на несколь- ко часов движения автомобиля, для создания робо-тотехнических подвижных систем с механическими принципами работы во взрывоопасных средах, не допускающих появления электрических искр.
Проблема состоит в том, что ни один центр не выдерживает деформации расширения, когда при гигантских ускорениях в сотни тысяч g (g — ускорение свободного падения) охватывающий обод перестает сдавливать центр. Место начала разрушения диска приходится на держатель обода. Известно также, что компенсаторы зазора между ободом и диском также не выдерживают и ломаются. после чего ломается и центр. Нет ли у Вас подходящей идеи для создания надежного центра и всего супермаховика? 34. Испытания провода. Каким образом можно провести испытания контактного провода и токосъемного устройства для высокоскоростных поездов, если через провод должен проходить ток до 1000 ампер, а скорость поезда может достигать 500 км/час? По техническим условиям провод должен выдерживать не менее 2 миллионов проходов по нему токосъемника! Стратегия изобретения Проектирование технических систем, сто лет назад бывшее искусством, стало точной наукой и превращается в науку о развитии систем. Появление ТРИЗ, ее быстрое развитие — не случайность, а необходимость, продиктованная современной научно-технической революцией. Работа «по ТРИЗ» неизбежно вытеснит работу «наугад». Но человеческий ум не останется без дела: люди будут думать над еще более сложными задачами. Генрих Альтшуллер 14. Управление развитием систем 14.1. Развитие систем ТРИЗ не предсказывает будущее, но с помощью ТРИЗ Вы сможете прогнозировать развитие любой технической системы. Основу для прогнозирования дают наиболее общие закономерности (мета-модели) развития систем, выявленные при исследовании сотен тысяч изобретений, многие из которых были направлены на усовершенствование одного и того же типа систем на протяжении нескольких десятков лет. Мета-модели развития включают так называемые «ТРИЗ-Законы», «Линии системного развития», «Законы развертывания и свертывания систем», модели «Полиэкран» и «Системные переходы», метод «Интеграции альтернативных систем» и другие модели. Техника и наука стремительно усложняются. Стремительно происходит дальнейшая специализация и дифференциация знаний. Негативной стороной этих процессов является опасность искажения и подмены позитивных глобальных целей развития систем, разрушение самих критериев оценки прогрессивности или регрессивности создаваемых систем в угоду эгоистическим и корыстным интересам тех или иных производителей продукции или политическим амбициям. Нужно и можно противостоять этим опасным тенденциям. Этому в немалой степени должно способствовать понимание инженерами и учеными стратегических закономерностей развития систем, использование этих закономерностей для целенаправленной разработки систем, отвечающих критериям глобальной полезности.
Прохождение жизненного цикла каждой технической системы (ТС) от изобретения до прекращения выпуска и утилизации определяется сложным взаимодействием большого числа факторов. Наиболее крупные группы (66) «влияния» представлены на рис. 14.1. Системы обслуживания обеспечивают защиту действующих образцов ТС от разрушающего влияния окружающей среды. При этом следует отметить, что все ТС непрерывно «стареют» под воздействием среды. 6Л Идея этой схемы была предложена моим учителем, известным поенным системотехником профессором Александром Широковым ciuc к начале 1960-х годов. 250 Стратегия изобретения Системы модернизации обеспечивают модификацию ТС применительно к новым условиям эксплуатации. При этом противодействующие системы (например, деталь для обрабатывающего инструмента) неуклонно увеличивают износ ТС, сокращают продолжительность жизни конкретного образца ТС или разрушают его. Системы эксплуатации (например, автоводитель) могут использовать ТС бережно, т. е. со знаком (+) около соответствующей связи-стрелки, а могут — на экстремальных режимах, т. е. со знаком (—). В конце концов каждый конкретный экземпляр ТС подвергается воздействию системы утилизации, при этом последняя оказывает на ТС сугубо негативное, разрушительное физическое воздействие, т. е. со знаком (—). Творческие системы, включающие обширный круг изобретателей, конструкторов, изготовителей, продавцов (!) и т. д., в соответствии с «Законом роста идеальности» (см. след. раздел) обеспечивают непрерывное усовершенствование ТС. При этом для действующих образцов ТС одинаково гибельно замещение их как продукцией конкурентов, так и новыми образцами одного изготовителя. Эволюция искусственных систем содержит исключительно драматическое противоречие. С точки зрения получения максимальной интегральной эффективности от действующего образца ТС следовало бы стремиться к его максимальной долговечности. Однако, намного раньше изготовитель вынужден создавать новые образцы как по результатам эксплуатации, так и с учетом возможного появления
конкурирующей продукции. Изготовителю и его «сфере влияния» нужна незаурядная изобретательность для управления развитием производимого вида ТС, то есть, для рациональной модернизации, смены типов и поколений. Здесь следует ответить отрицательно на вопрос о том, можно ли, последовательно применяя изобретательские технологии к каждому очередному решению, изобрести либо некий самый лучший продукт, либо ряд будущих безусловных лидеров на рынке, например, на десятилетия вперед? Дело в том, что только испытание практикой по циклу, приведенному на рис. 14.2. дает реальные критерии для управления развитием систем. Реальные оценки необходимы для построения и корректировки эффективных сценариев развития. И чем раньше, тем лучше. А для этого приходится рисковать и выпускать новые образцы. И осуществлять параллельно непрерывный поиск новых идей. При этом можно и нужно применять методику изобретательского творчества для непрерывного прогнозирования на достаточно большие интервалы времени вперед. Ключевые аспекты и альтернативы развития систем показаны на рис. 14.3. Одним из практических результатов системного анализа должно быть решение о выборе стратегического направления предстоящих изменений в существующей системе или в создании новой системы. В классической ТРИЗ для этого были сформулированы концепции «Минимальной задачи» и «Максимальной задачи». Важнейшей является первая концепция, задающая стратегию достижения наилучшего результата с «нулевыми» затратами. Эта постановка расходится с известными принципами математической оптимизации, которая в самом экстремальном случае предусматривает готовность к
минимальным затратам при достижении максимального эффекта (минимаксные модели). Полому концепция «Минимальной задачи» имеет психологическое значение, гак как создает полезную установку на получение «идеального результата» и тем самым обеспечивает мобилизацию творческих ресурсов для достижения наилучших реальных результатов. Следует также отметить, что задачи могут быть как сложными, так и простыми при любой стратегии (рис. 14.4). Мета-стратегия Mniimui.ii.iuin ин)ача Слож VlOKl mill II. 114:1 ность проблемы ,.1.1,144 Ни Решающий ресурс Решающий пршши известен известен (ТРИЗ- таи инструменты) (ТРИЗ- инструменты) Средн Есть некоторый выбор Есть некоторый яя ресурсов выбор принципов (ТРИЗ-ннетрумснты) (ТРИЗ-ннструменты и Метол интеграции альтернативных систем 1 Высок Требуемые ресурсы Мрншнш решения ая отсутствуя! i иен шее ген (переформулирование или (переход на синтез замена задачи) системы) Рис. 14.4. Meia-стратегии разрешения проблемной ситуации В соответствии с этой таблицей все задачи можно разбить на 3 категории: «Исправительные задачи» — на устранение негативной функции, разумеется, без снижения качества реализации главной позитивной функции; «Альтернативные задачи» — на поиск другою способа (принципа) выполнения позитивной функции с попутным устранением имеющейся негативной функции или для более высокого уровня реализации полезной функции; «Отказные задачи» — на поиск способа отказаться от выполнения полезного действия. А теперь я приведу завершение истории, о которой начал рассказывать в разлете 7.1. На следующий день мой стенд посетили два инженера, направленные моим вчерашним собеседником и оппонентом, шефом отделения R&D машиностроительного предприятия. Через 30 минут демонстрации «Invention Machine» их восторг подавляло лишь собственное упоминание о том, что на их фирме не удастся убедить руководство приобрести этот софтвер! Конечно, я уже имел определенный опыт оценки размера фирм по размерам их стендов на выставках, но здесь я ошибся. Да, стенд этой фирмы впечатлял, но то, что я случайно узнал в беседе с инженерами, поразило еще больше. Оказалось, что только на перспективных разработках в отделении R&D занято почти 100 специалистов! Я еще раз передал свою визитку с посетившими меня инженерами. Вскоре поступило приглашение, и при второй встрече состоялся примерно следующий диалог: — Почему Вы не можете продавать успешнее других? — На рынке много производителей аналогичной продукции. — У вашей продукции есть преимущества? — Да, но не большие. Отрасль консервативна, с историей и традициями, трудно что-то необычное предложить.
— Но можете ли Вы предложить свои изделия по более низкой цене? — Нет. Очень высокая себестоимость. Много металла. Высокая трудоемкость. — Но что, в таком случае, делают 100 ваших R&D-специалистов? ?! — Ваши инженеры не виноваты в том, что я смог оценить численность ваших R&Dспециалистов. Но их цели мне не понятны. Если имеются спрос и рынок, тем более традиционный и консервативный, то есть только два пути успешно продавать: предложить более высокое качество и новые функции или при том же качестве снизить цену. — Очень трудно перестроить производство. — Да, если это не спланировано заранее. — Все внимательно наблюдают за изменениями у других. — Снижение себестоимости может быть незаметным для других. Тогда даже при неизменной позиции на рынке Вы можете несколько лет получать прибыль, не видимую для других. — Все же качество ценится больше. — Хорошо. Обучайте своих людей. За тот же срок подготовьте такие изменения, которые Вы выведете на рынок первыми. Тот, кто попробует потом Вас догонять, все еще будет в том положении, в котором он и Вы находитесь сейчас. Через месяц пришел заполненный бланк заказа на софтвер «Invention Machine». И все же начальная позиция слишком многих руководителей в промышленности остается сходной с той, которую Вы могли видеть у моего собеседника. И все же это еще не все. По ежегодной традиции я провел два дня в Ганновере на выставке lndustriemesse ' 2001. И снова записал потрясающий текст, отражающий, несомненно, непревзойденный талант самовыражения, сравнимый разве только с американским! В огромном холле железнодорожного портала, служащего наподобие парадного вестибюля выставки, на огромном плакате можно было прочитать следующее: Только огонь, к сожалению, изобрели не мы. (Потому что нас тогда еще не было.) Мы можем все. Кроме стандартного немецкого языка. Я полагаю, что Вы не только по достоинству оценили смелый юмор создателей этого плаката, но и, по-видимому, вспомнили о пионерских технических достижениях этого региона. Предприятие, о котором я рассказал, тоже из земли Баден-Вюртемберг (главный город — Штуттгарт), так что может быть нужно относиться к рассказанной истории с большим юмором и маркетинговым оптимизмом. 14.2. «Идеальная машина» Искусственные (технические) системы, подсистемы, узлы, детали, элементы, материалы создаются для выполнения полезных (позитивных) функций (PF — positive function). Одна из них может быть названа главной (MPF — main positive function), определяющей назначение всей системы (подсистемы, узла, детали, элемента, материала). Другие PF являются дополнительными и вспомогательными. В системе имеются нежелательные (негативные) функции (NF — negative function) и, соответственно, главная негативная функция (MNF — main negative function), являющаяся основным препятствием на пути развития системы. Негативные функции NF ухудшают степень выполнения системой своих позитивных функций PF или создают другие нежелательные эффекты, например, для окружающих систем.
Один из главных показателей в развитии технических систем — изменение их размеров. Это развитие может идти в обоих направлениях: как в сторону увеличения, так и в сторону уменьшения. Например, для многих транспортных и обрабатывающих машин характерно увеличение размеров (шагающий экскаватор, танкер-сухогруз или перевозчик нефти, пассажирский или грузовой самолет). Контрольно-измерительные приборы, средства связи, компьютеры, напротив, имеют тенденцию к миниатюризации. Это явление было замечено и проанализировано в ТРИЗ, и привело к весьма конструктивной концепции «идеальной машины». Концепция «Идеальной Матлжны» (IM — ideal machine) является в ТРИЗ такой же полезной метафорой, как и понятия «функциональная идеальная модель» и «идеальный конечный результат», и как бы конкретизирует последнее. Эта метафора имеет, однако, весьма фундаментальное обоснование, впервые четко сформулированное и конструктивно примененное именно в ТРИЗ. В наиболее обостренном и метафорическом виде определение звучит так: Идеальная машина — это такое решение, когда идеальный результат достигается, а самой машины нет. Или: Идеальная машина — это такое решение, когда главная полезная функция достигается с нулевыми затратами. Имеется в виду следующее: машина должна иметь нулевой вес, нулевые размеры, нулевую стоимость, нулевое потребление энергии, нулевые вредные отходы и т. п. Конечно, под идеальным конечным результатом в ТРИЗ понимается не какой-то произвольный волшебный результат, а вполне четкое и жесткое требование получить требуемую модель эффективного функционирования без неоправданного использования дополнительных, дорогих или трудно получаемых ресурсов. Здесь следует отметить, что само понятие эффективности является далеко не тривиальным. Более того, эффективность — это сложная эволюционирующая система понятий. Но независимо от способа оценки эффективности рост «идеальности» ТС осуществляется по следующим стратегическим направлениям: 1. Увеличение количества функций, выполняемых системой. 2. Увеличение качества выполняемых функций, представляемое часто в форме роста главного «параметра», например, скорости, мощности, производительности и т. п. 3. Снижение всех видов затрат на создание, применение и ликвидацию системы по окончании срока службы, то есть на интервале жизненного цикла ТС. 4. Снижение негативного воздействия на окружающие системы и среду. Теперь рассмотрим принятое в системотехнике и в ТРИЗ формальное выражение для оценки эффективности: k _ Сумма позитивных эффектов Сумма негативных эффектов К позитивным эффектам (факторам) относятся любые оценки целевого назначения системы на интервале их жизненного цикла. К негативным эффектам (факторам) относятся все издержки на получение позитивных эффектов, а также вред, причиняемый окружающей среде или другим системам. Эффективность Е — универсальная мера оценки результата
Если цель достигается с большими затратами, решение малоэффективно. Решение, достигающее цели с допустимыми затратами, признается эффективным, или по крайней мере, удовлетворительным. Если решение при достижении цели дает дополнительные, не предусмотренные заранее, преимущества, оно считается высокоэффективным. Дополнительное преимущество называется в ТРИЗ «сверхэффектом». Именно такие решения и называются изобретательскими. И именно такие решения будут интересовать нас в первую очередь. В большинстве случаев эффективность стремятся оценивать на основе специально составляемых формальных математических функционалов. Так как идеал для этого выражения достигается, если Е стремится к бесконечности, что математически возможно в случаях, когда либо числитель стремится к «бесконечности», либо знаменатель стремится к нулю — а это в реальности может быть принято только условно! Поэтому мы будем применять приведенное здесь выражение лишь как качественную модель, напоминающую нам о том, что нужно стремиться делать знаменатель как можно меньше, а числитель — как можно больше! И именно качественная интерпретация имеется в виду, когда мы говорим о стремлении систем к идеальности. Разные линии развития системы данного типа в конечном счете сходятся в одну точку — подобно тому, как сходятся меридианы к полюсу! Полюсом для всех линий развития является «идеальная машина»! К «своим» полюсам сходятся обтекаемые формы современных скоростных автомобилей. Не отличимы с первою взгляда российский «ТУ144» и европейский «Конкорд», российский многоразовый космический корабль «Буран» и американский «Шаттл». Читателю будет полезно продолжить вспоминать подобные примеры. Обычно, когда задача решается методом «проб и ошибок», поиски идут либо в направлении вектора психологической инерции либо, в лучшем случае, во все стороны. Между тем, приступая к решению задачи, изобретатель может резко сузить сектор поисков. Искомое решение должно приближать его к IM. Это и будет перспективное направление поиска. Разумеется, в каждом конкретном случае нужно суметь определить IM. Так. грузовой автомобиль, перевозящий 3 тонны груза, весит примерно 1,5 т. Примерно 30% мощности двигателя в этом случае тратится, чтобы перемешать саму конструкцию этого грузовика. Грузовик, рассчитанный на 15 т, весит примерно 5 т. Доля полезной нагрузки на единицу мощности двигателя явно стала выше, а это и приближает машину к «идеальной». Карьерный 140-тонный самосвал разгружается за 15 секунд! Это намного меньше времени, необходимого для разгрузки 28 пятитонных машин. Идеальный вертолет или самолет — это как бы одна летающая кабина. Хотя самолетные двигатели и без того поражают своими относительно малыми раз мерами и большой мощностью, позволяющей достигать высоких скоростей полета и большой грузоподъемности самолетов. 14.3. Кривая роста главного параметра системы Технические системы проходят функциональное развитие и характеризуются большим числом функций. Каждая функция характеризуется показателями, например, скорость, вес, производительность. Два первых показателя являются простыми, а вот производительность является комплексным показателем и может потребовать достаточно сложного определения. Три показателя для ТС являются особыми и основными:
эффективность, безопасность и надежность (для военных систем добавляется еще один — живучесть). Эффективность, например, может быть отношением такого параметра как «расход топлива на дистанции в 100 км» к параметру «заданная скорость движения на этой дистанции», т. е. мы получим оценку экономичности автомобиля на единицу заданной скорости. Один из показателей (параметров) может быть принят в качестве главного (МР — main parameter) — и это не обязательно будет эффективность, например, если речь идет о гоночной машине для установления абсолютного рекорда скорости. Наблюдение за эволюцией систем можно вести по изменению их показателей, т. е. по параметрическому развитию, иногда заменяемому наблюдением только за одним МР. Так, для компьютера — это его скорость вычислений тестовых задач (или рабочая частота при прочих равных условиях — разрядности представления данных, объемах запоминающих устройств, операционной системы и т. п.). Для истребителя — максимальная развиваемая скорость. Уровень развития ТС часто характеризуют значением МР, график роста которого имеет вид S-кривой (рис. 14.5). Пологий участок 1 означает достижение данным видом ТС пределов своего развития. Кривые 3 характеризуют развитие типов ТС. Кривые 3 огибают и сглаживают субкривые 2, характеризующие развитие поколений (видов) ТС. С точками (участками) 5 и 4 связывают появление изобретений, создающих (5) или кардинально улучшающих (4) область техники. То есть на S-кривых на рис. 14.5 можно увидеть «расположение» изобретений соответствующих уровней. Следует отметить, что экономическая эффективность может быть очень велика для изобретений любого уровня. Например, даже небольшие усовершенствования уровня 1 могут быть очень выгодны при массовом производстве. Однако, исключительные преимущества получает владелец изобретений уровней 4 и 5, если сможет реализовать стратегию «новый продукт — первый на рынке». 8 качестве примера на рис. 14.6 приведено семейство огибающих S-кривых для роста скоростей транспортных систем. 9 эак 12*
Рис. 14.5. Общий вил S-кривых развитии главного показатели ТС Рис. 14.6. Рост скоростей транспортных систем: I — конная тяга; 2 — железная лорога; 3 — автомобиль; 4 — поршневой самолет; 5 — реактивный самолет; 6 — ракеты на химическом; топливе; 7 — ракеты па ядерном топливе, испарении твердого тела, на солнечной энергии; 8 — огибающая кривая Машины рождаются слабыми и крепнут постепенно, вбирая в себя многие изобретения. На рис. 14.7 показана двухсотлетняя история функционального развития гребного винта (Г. Альтшуллер). Изобретательская мысль шла тремя разными путями — в качестве прототипов были взяты крылья ветряной мельницы, водоподъемный винт Архимеда и водяное мельничное колесо. Каждый из прототипов развивался усилиями многих изобретателей в разных странах. Однако, три цепи изобретений постепенно сближались и привели наконец к созданию современных гребных винтов. За любой совершенной технической системой стоят десятки и тысячи последовательно создаваемых изобретений. Даже по такой «системе» как карандаш выдано более 20 000 патентов и авторских свидетельств!! Каждое изобретение подталкивает развитие системы. В промежутках между толчками система остается неизменной. Нетрудно заметить, что раньше промежутки были длительными, машины совершенствовались медленно (см. рис. 14.7). Путь от идеи и первых экспериментальных образцов до практически применяемого изделия занимал десятки лет.

Еще пример: идея электрической лампы накаливания возникла еще в начале XIX века. Первый опыт освещения раскаленным проводником был поставлен в 1840 году. А первая лампа, пригодная для массового использования, появилась лишь 39 лет спустя! Пример из середины XX века: идея оптического квантового генератора была высказана в 1952 году67, через 2 года уже проводились испытания первого такого прибора, а еще через 6 лет был налажен промышленный выпуск разнообразных лазеров. Причем процесс развития конструкций и применений лазеров продолжается. Размеры лазеров занимают диапазон от долей миллиметра до нескольких метров, а излучаемая мощность
экспериментальных лазеров может перекрыть в очень коротком импульсе, например, суммарную мощность всех электростанций США! Лазер записывает и считывает информацию в факсимильном аппарате и на компактных дисках, лечит человека и зондирует атмосферу, измеряет расстояние до Луны и режет металл, «рисует» на кристалле размером в 1—2 см2 будущий микропроцессор с несколькими миллионами (!) элементарных переключающихся ячеек и создает грандиозное цве-томузыкальное шоу, видимое на много километров, передает в световолокно тысячи наших телефонных разговоров и телевизионные программы, создает «в воздухе» трехмерные «живые» голографические изображения... Вот за что присуждаются Нобелевские премии! Впрочем, лазер — это и «лучи смерти» не только в фантастике по Герберту Уэллсу (68) или по Алексею Толстому69: реальный лазер может поражать спутники как из космоса, так и с земли, прожигать и взрывать ракеты и самолеты, может убивать людей. Но это уже зависит от людей, а не от технической системы. Так же как и атомную энергию можно использовать как оружие, а можно как источник электроэнергии для человечества. Тому много примеров. Более того, в истории человечества одной из главных движущих сил развития технических систем было и все еще остается их военное применение. И все же, что происходит с системами, когда они достигают своего наивысшего развития (см. этап 1 на S-кривой на рис. 14.5)? Неизбежность замены системы становится очевидной, но предел развития данной системы воспринимается как предел развития вообще. Кажущаяся невозможность отказаться от привычной системы пугает и гипнотизирует. Смена системы может вызывать мощное сопротивление производителей, которые часто продолжают выпускать системы, например, экологически вредные (сверхкрупные авиалайнеры, сверхкрупные танкеры) либо вошедшие в противоречие с возможностями других систем (автомобиль или железная дорога). Так, бывший вицепрезидент «Дженерал Моторс» Джон де Лориан однажды сказал, что если бы небольшая часть тех средств, которые тратятся на совершенствование двигателей внутреннего сгорания, была направлена на развитие аккумуляторов, то За создание принципа лазера Лауреатами Нобелевской премии по физике за 1464 гол стали Н. Басов и А. Прохоров (СССР), а также Ч. Таунс (США). h!< Герберт Уэлс (1866—1948) — известный английский романист и писатель-фантаст. м А. Толстой (IKK3—1945) — известный русский советский писатель, создал в т. ч. роман «Петр Первый» и фантастическую повесть «Гиперболоид инженера Гарина». 67 мы давно имели бы экономичный электромобиль. Причем возможно, что здесь наибольшее сопротивление исходит не от производителей автомобилей и двигателей внутреннего сгорания, а от поставщиков нефтепродуктов. С тех пор прошло 25 лет! Нужно ли это комментировать? Переход к новой системе далеко не всегда означает полное прекращение применения системы предыдущего поколения. Так, например, сосуществуют парусные суда и современные дизельэлектроходы, реактивные и винтомоторные самолеты, кино и телевидение, морозильные фабрики и домашние холодильники, велосипеды и автомобили, рестораны и домашние кухни, стационарные и переносные радио- и телеприемники и так далее. В 1930-е годы быстро росло число кинотеатров. Теоретический предел должен был достигаться задолго до того, как на каждого человека придется по одному кинотеатру. И что-то похожее все же произошло: появились телевизоры — кинозал на одного человека!.
Казалось, что телевидение стало следующей ступенью после кино, вобрав его в себя в качестве подсистемы. Во многом так оно и произошло, особенно с развитием компьютерного оснащения телевизионных систем. Однако, сегодня мы наблюдаем параллельное существование и кино, и телевидения. Причем, тот же компьютер в кино создал аудио- и видеоэффекты, недостижимые пока для восприятия в пространстве квартиры, для этого нужны большие объемы. И все же телевидение можно рассматривать как «надсистему», то есть систему вышестоящего уровня для кино. Телевидение — это еще и оперативный выпуск новостей, это конференц-зал, это, наконец, показ событий в реальном времени. Так же на смену автомобилю, возможно, придет не столько электромобиль, а принципиально иная транспортная надсистема, в которой автомобиль (или эквивалентное ему транспортное средство) станет лишь подсистемой. Этот прогноз принадлежит Генриху Альтшуллеру. Любопытно, что в Беларуси, в городе Гомеле одновременно с этим предположением в 1982 году еще один изобретатель высказал такую же гипотезу, ставшую для него в дальнейшем целью жизни — это был молодой инженер Анатолий Юницкий (см. следующий раздел 15.3 Интеграция альтернативных систем). Раздел Стратегия и тактика изобретения кратко представляет основные ТРИЗпринципы и модели для учета объективных закономерностей развития систем. Сами по себе эти модели нейтральны к понятиям прогресса или регресса. Их позитивное или негативное проявление зависит только от моральных ценностей, исповедуемых для себя теми, кто применяет эти законы. Но позволим себе выразить надежду, что объективно в системе этих моделей все же проявляется нечто глобально позитивное, что и движет прогресс, несмотря на войны и болезни, на стихийные бедствия природного и техногенного характера. Это глобально позитивное можно попытаться выразить, воспользовавшись названием одного из интереснейших рассказов Джека Лондо-на70 — Любовь к жизни (Love of Life, 1905). Джек Лондон (1X76—1916) — известный американский писатель. 15. Классические ТРИЗ-модели инновационного развития 15.1. ТРИЗ-Законы развития систем А теперь на основе изложенного можно определить главный ТРИЗ-Закон, представляющий обобщенную цель создания изобретений: ЗАКОН РОСТА ИДЕАЛЬНОСТИ Все виды систем на интервале своего жизненного цикла стремятся повышать свою эффективность. Иными словами, развитие есть эволюция в направлении увеличения эффективности. Главным в изобретении является то, что техническая система переходит из одного состояния в другое, причем этот переход отражает процесс развития технической системы и осуществляется по объективным законам. Рассмотрим классические ТРИЗ-Законы, установленные еще к середине 1970-х годов. Эти законы были разделены в ТРИЗ на три группы, условно названные по аналогии с законами механики соответственно «статикой», «кинематикой» и «динамикой» (распределение законов по группам и рис. 15.1 даются в редакции автора — О.М.). Группу «статики» представляют законы, определяющие начало жизненного цикла технических систем.
1. 1. Закон полноты частей системы. Необходимым условием принципиальной жизнеспособности технической системы является наличие и минимальная работоспособность основных частей системы. Каждая техническая система должна включать четыре основные части: двигатель, трансмиссию, рабочий орган и орган управления. К этому можно добавить лишь объединяющую все эти части пятую часть — конструкцию (см. раздел 8.2 Ресурсы и рис. 8.4 Абстрактная машина). Достаточное условие жизнеспособности технической системы можно представить как развитие этого закона следующим образом (что особенно полезно для начинающих изобретателей): техническая система жизнеспособна лишь в том случае, когда минимально работоспособна каждая из ее частей, но и обеспечивается минимальная работоспособность всех частей как единой системы. Для практики весьма важно одно из следствий из этого закона: чтобы система была управляемой, необходимо, чтобы хотя бы одна из частей была управляемой. 1.2. Закон «энергетической проводимости» системы. Необходимым условием принципиальной жизнеспособности технической системы является сквозной проход энергии по всем частям системы. Каждая техническая система является преобразователем энергии, передаваемой от двигателя через трансмиссию к рабочему органу. Одно важное следствие из этого закона: чтобы часть технической системы была управляемой, необходимо обеспечить энергетическую проводимость между этой частью и органом управления. Можно говорить также об информационной проводимости, особенно, в задачах на измерение или обнаружение, хотя часто она сводится к энергетической, что может приводить к неправильному пониманию задачи. К «кинематике» в ТРИЗ относятся законы, определяющие развитие технических систем независимо от конкретных технических и физических факторов, обусловливающих это развитие. 2. 1. Закон неравномерности развития частей системы.
Развитие частей систем идет неравномерно, и чем сложнее система, тем неравномернее развитие ее частей. Неравномерность развития частей системы является причиной возникновения острых физико-технических противоречий, и следовательно, изобретательских задач. Например, рост численности автомобилей в центральной Европе вошел в противоречие с ограниченными возможностями строительства новых дорог. При этом имеющиеся дороги постоянно находятся в ремонте. Крупные города катастрофически страдают от трех проблем: загрязнение воздуха, отсутствие мест для парковки и низкая скорость движения, обусловленная постоянными заторами. 2.2. Закон перехода в надсистему. Исчерпав возможности развития, система включается в надсистему и развивается далее в качестве одной из частей. Приведем здесь только один пример: велосипед, оснащенный двигателем внутреннего сгорания, превратился в мопед и в мотоцикл! Но и остался велосипедом — как мы уже отмечали, возможно параллельное сосуществование предшествующих и последующих систем одного назначения. 2.3. Закон перехода с макроуровня на микроуровень. Развитие рабочих органов технической системы идет сначала на макроуровне, а в развитой системе — на микроуровне. В большинстве современных механических систем рабочими органами являются макродетали, например, винт самолета или резец токарного станка. Однако, в реактивном самолете рабочим органом является струя газа. Резцом может служить струя плазмы. Вместо макродеталей работа осуществляется на уровне частиц вещества, молекул, ионов, атомов. Перспективным и неисчерпаемым источником энергии остается энергия атомного ядра, извлекаемая либо при его делении, либо при его синтезе. Переход с развития на макроуровне к развитию на микроуровне есть сущность компьютерной революции! Законы «динамики» в ТРИЗ недостаточно полны и имеют более специализированный характер. Они определяют развитие современных технических систем как раз в зависимости от конкретных технических и физических факторов. 3.1. Закон согласования ритмики частей системы. Необходимым условием принципиальной жизнеспособности технической системы является согласование ритмики (частот механических или электромагнитных колебаний, периодичности функционирования и взаимодействия) всех частей системы. 3.2. Закон перехода к управляемым ресурсам. Развитие технических систем идет в направлении применения ресурсов с более высоким уровнем организации, например, более управляемых веществ и полей. Этот закон хорошо коррелирует с законами энергетической проводимости систем и главным законом о росте идеальности. Так, в линейном шаговом даигателе рабочим органом является электромагнитное поле. Информационные системы от первых телеграфных электромеханических конструкций развились в современные радио- и оптические системы с более высокоорганизованными полями — носителями информационных сигналов. Электронный микроскоп кардинально расширил возможности исследования строения веществ по сравнению с оптическим микроскопом. Нагревающее устройство на сверхвысокочастотном излучении совершило революцию на кухне современной квартиры!
Выделение изолированных друг от друга законов является, конечно, упрощением. Законы действуют в совокупности, проявляясь в реальном развитии систем. Знание ТРИЗ-Законов вместе с оценкой параметров 5-кривой для данного типа систем позволяет прогнозировать тенденции развития практически любой технической системы. 15.2. Линии системо-технического развития ТРИЗ-Законы дополняются и инструментируются так называемыми «Линиями система-технического развития». Это очень крупные мета-модели, схватывающие основные тенденции в развитии технических систем. Их применение для решения Ваших задач требует, как правило, проведения достаточно большого объема прадварительных исследований. Это объясняется тем, что практически все Линии развития опираются на историю и прогнозы развития усовершенствуемого объекта и его системного окружения. В настоящем учебнике мы дадим краткую характеристику следующих мета-моделей: 1) Линия роста степени «идеальности»; 2) Полиэкран; 3) Линия замещения человека в функционировании ТС; 4) «Волна эволюции»; 5) Длинные экономические волны (циклы) Кондратьева; 6) Переходы в надсистему — подсистему; 7) Линии «Моно — Би / Поли — Моно»; 15.2.1. Мета-модель Линия роста степени «идеальности». В истории человечества было не так уж много открытий и изобретений, потрясших основы человеческой популяции и давших мощный толчок развитию цивилизации. Например, распространение книгопечатания, открытие и применение электромагнитных полей в широком диапазоне частот и проявлений, выход в космос, создание компьютера как машины для переработки информации, биотехнология и генная инженерия. Историко-технический анализ показывает, что таким революционным изменениям предшествовали периоды более или менее длительного замедления или остановки роста каких-то жизненно важных функций для человечества. Так, можно привести примеры из настоящего времени, относящиеся, в частности, к странам Западной Европы: • расписания движения поездов не меняются десятилетиями, так как реальные (не рекордные!) скорости и пропускная способность железных дорог давно достигли технических пределов, причем замена существующих железных дорог на линии с магнитным подвесом ничего не может изменить кардинально и является на сегодня тупиковым направлением, опоздавшим в своем вхождении в цивилизацию; • скорости движения и пропускная способность автомагистралей ограничены и имеют нарастающую тенденцию к образованию заторов, длительность которых достигает десятков километров — ущерб от потери времени автомобильным транспортом только в Германии оценивается гигантскими величинами во многие десятки миллиардов марок в год! • остановился на уровне чуть выше 30 % рост коэффициента полезного действия атомных и тепловых электростанций — нужны новые источники энергии; • близка к предельному уровню урожайность зерновых культур — одной из основ питания человечества; • жесткие ограничения на возможности интенсификации в животноводстве поставлены Природой — нарушение этих ограничений немедленно ведет к вспышкам опаснейших болезней. Эти и многие другие признаки замедления указывают также на то, что именно по таким направлениям можно ожидать появления крупнейших изобретений. По каждому
новому направлению будет происходить рост его MPF, а также рост связанных с этим направлением MPF других отраслей техники. Далее рост MPF этого направления замедлится (см. рис. 14.3: направление выйдет на вершину S-кривой в область 1). Интересно проследить изменение количества 1 и качества (уровня) 2 изобретений на разных участках S-кривой рис. 15.2). В самом начале, после создания пионерского изобретения с самым высоким уровнем (4 или 5) происходит некоторое запаздывание изобретений в этом направлении. Настоящий прорыв начинается в области (а), когда создаются вспомогательные изобретения, иногда высокого уровня (3 или 4), обеспечивающие достаточные условия для промышленного производства продукта. Рис. 15.2. Изменение количества I и уровня 2 изобретений на интервале жизненного цикла типа системы; 3 — развитие новой системы В начале производства между областями (а) и (b) количество изобретений уменьшается, так как осторожные производители ждут первых испытаний и продаж. При успехе начинается бум изобретений, направленных на усовершенствование и продукта, и технологий. В области (с) надежным признаком полностью развернутого производства является уменьшение числа патентов и явная направленность их на мелкие технологические усовершенствования. В области (с), и нередко еще раньше, могут начинаться серьезные изменения с системой данного типа, направленные на ее выживание в случае, если появились альтернативные системы 3 того же назначения. В целом эта ситуация характеризуется линией роста степени идеальности системы данного типа, представленной на рис. 15.3. 15.2.2. Мета-модель Полиэкран. Изобретатели, не знающие законов развития технических систем, генерируют множество различных вариантов решения. Жизнеспособными оказываются только те мутации, которые действуют в направлении, совпадающем с объективно существующими законами развития. Такое мышление несистемно. Но в технике существует возможность накопить опыт мутаций, выявить правила удачных изменений и использовать их сознательно и направленно. И тогда талантливое мышление может приобрести другую структуру. Генрих Альшуллер дает следующее образное описание возможности новой организации системного мышления изобретателей. Обычно, если в задаче сказано «дерево», то человек видит именно некоторое дерево. То есть, воображение создает определенный образ задачи. Прочитал человек условия (обозначены как ?), и сразу же вспыхивает мысленный экран с высвеченной на нем картинкой-решением 1 (рис. 15.4).
Ненаправленный перебор вариантов приводит к тому, что таких картинок может быть очень много. Дерево становится то больше, то меньше, но ничего принципиально не меняется. Часто на этом все и кончается: ответ не найден, задача признана неразрешимой. Это — обычное мышление. Талантливое воображение одновременно зажигает три экрана (рис. 15.5). Видны надсистема 2 (группа деревьев), система 1 (дерево) и подсистема 3 (лист). Рис. 15.6. «Девятиэкранная» схема талантливого мышления Это, конечно, минимальная схема. Часто включаются и другие (верхние или нижние) экраны: наднадсистема (лес) и подподсистема (клетка листа). Но еще важнее видеть все это в развитии. И тогда нужно включить еще «боковые» экраны, показывающие прошлое и будущее на каждом уровне (рис. 15.6). Минимум девять (!) экранов системно и динамично отражают системный и динамичный мир. Пример 96. Финиковая пальма. За сезон финиковая пальма может дать до 240 литров сладкого сока, идущего на изготовление пальмового сахара. Но для сбора сока надо сделать надрез на стволе под самой кроной. А это 20 метров высоты! Задачу предложили фирме, выпускающей сельскохозяйственные машины и механизмы. Специалисты попробовали альпинистский способ — человек поднимается, вырубая ступеньки на стволе. Но способ оказался непригодным: много ступенек — дерево погибает, мало ступенек — трудно подниматься. Начали проектировать нечто вроде пожарной машины с раздвижной лестницей. Каково же было удивление специалистов, когда они узнали, что в Бангладеш крестьяне обладают секретом, позволяющим подниматься на пальму без всяких машин...
Эта задача не решается, если включен только экран 1. Но стоит только совместно рассмотреть хотя бы экраны 1 и 4, как решение становится очевидным. На экране 4 — маленькая пальма. Сока она еше не дает, но на ней легко можно сделать зарубку — будущую ступеньку. От одной-двух ступенек в год дерево не погибнет. На следующий год — еще несколько зарубок. И к тому времени, когда дерево вырастет и будет способно давать сок, на стволе окажется готовая лестница. Другое решение просматривается при включении экрана 2. К одному дереву надо приставлять лестницу. Но если рядом растут два дерева, то их стволы — почти готовая лестница, не хватает только веревочных перекладин. Генрих Альшуллер, приводя этот пример, подчеркивал: это не самый сложный случай — девять экранов. Гениальное мышление заставляет работать много больше экранов, например, 27! Когда параллельно первым 9 экранам рассматривается эволюция содействующих и противодействующих систем с их надсистемами и подсистемами. В ТРИЗ ставилась цель: дать правила организации мышления по многоэкранной схеме на основе изучения закономерностей развития систем. Многоэкранное мышление позволяет избежать многих драматических ошибок. Изобретатель обычно нетерпелив — найдя первое же решение задачи, он склонен считать свою миссию законченной. В результате новая техническая идея используется только частично, не в полную меру. 15.2.3. Мета-модель Линия замещения человека в функционировании ТС. Одной из главных линий системо-тсхнического развития ТС является замещение человека в функционировании самой ТС (рис. 15.7). Так, на исполнительном уровне происходило замещение рук, ног и мускульной силы человека искусственными инструментами, механизмами и иными источниками энергии. На уровне управления замещение шло в направлении создания автоматических регуляторов, копировально-обрабатываюших станков, автопилотов и автонавигаторов и т. д. На информационном уровне замещение началось с инструментов получения информации — различных датчиков и измерительных устройств, чувствительность, точность и скорость работы которых намного превосходит возможности челевечских органов чувств. Далее человек замещается в подсистемах получения и обработки информации, подготовки и принятия решений. Парадоксальной негативной тенденцией развития ТС (негативным сверх-сверхэффектом!) является замещение человека... в природе! Техносфера, развиваемая человеком, оказывает негативное воздействие на природу и может уничтожить ее, а значит, уничтожить и само человечество. По современным представлениям, жизнь на Земле зародилась около четырех миллиардов лет назад. Развиваясь, приспосабливаясь к существовавшим тогда на планете условиям, живые организмы начали преобразовывать окружающую среду. Эти преобразования привели к появлению кислородсодержащей атмосферы, почвы, озонного слоя, современного ландшафта с его лесами, реками, озерами, болотами, тундрой, тайгой и джунглями. Так появилась биосфера, в которой миллионы видов живых организмов и преобразованная ими планета идеально подогнаны друг к другу. Здесь нет ничего лишнего.
Но вот появился человек, который, благодаря разуму, стал усиливать мощь своих мускулов, органов чувств, интеллект, начал создавать технику и технологические процессы. Современная индустриальная мощь земной цивилизации — лишь логическое развитие технократического направления. Однако, экспансивное развитие технических систем оказывает негативное воздействие на Природу. Техносфере не нужна почва. Поэтому на планете все меньше и меньше плодородной земли, а все больше шлака, мертвых пустынь и терриконов. Техносфере не нужна кислородсодержащая атмосфера. Поэтому, например, уже сегодня промышленность США потребляет больше кислорода, чем его вырабатывают зеленые растения на территории США. США живут за счет кислорода, вырабатываемого российской тайгой и амазонскими джунглями. А если все страны достигнут такого уровня потребления кислорода? Техносфере не нужен озоновый слой в атмосфере. Хотя на озон приходится только одна десятимиллионная часть всей атмосферы, он поглощает около четырех процентов солнечной энергии, падающей на Землю, что в сотни раз превышает количество тепла, выбрасываемого в атмосферу всей современной индустрией. Поэтому влияние состояния озонного слоя на погоду и климат на планете значительно сильнее техногенного воздействия на приземные слои воздуха, а также сильнее парникового эффекта. Техносфере не нужна живая Природа. Интенсивно растет число заболеваний раком, аллергией, легочных и сердечно-сосудистых заболеваний, генетических и наследственных болезней, обусловленных заражением воды, воздуха. почвы. Это относится и к появлению опасных заболеваний промышленно разводимых животных, употребляемых для питания людей. Чрезвычайную опасность представляет СПИД, особенно в случае появления аналогов со свойствами вирусного распространения. Происходят необратимые изменения ландшафта, эрозия почв, исчезновение лесов, загрязнение морей и океанов, отравление питьевой воды. Техносфера занимает ту же экологическую нишу, что и биосфера в целом: машины, механизмы, технические устройства размещены на земле и в толще земли, воды, воздуха и активно обмениваются с ними веществом и энергией. Кардинальный выход из сложившейся ситуации только один: необходимо предоставить техносфере, особенно, ее индустриальной и энергетической части, экологическую нишу вне биосферы! Это обеспечит сохранение и развитие биосферы по тем законам и направлениям, которые были сформированы в течение миллиардов лет эволюции, а также гармоничное взаимодействие общности людей, как биологических объектов, с биосферой. Такой экологической ниши на Земле нет. Но она есть в космосе, где для большинства технологических процессов идеальные условия: невесомость, вакуум, сверхвысокие и криогенные температуры, неограниченные энергетические, пространственные и даже сырьевые ресурсы. Для широкомасштабного освоения космоса у человечества не так уж много времени, так как по целому ряду прогнозов из-за технократической агрессии против биосферы через од-но-два поколения (максимум в течение 50—80 лет!) начнется необратимая деградация биосферы, а значит и вымирание человеческого рода. Освоение ближнего космоса — это не причуды фантастов. Уже сегодня это становится делом спасения жизни на Земле. 15.2.4. Мета-модель «Волна эволюции». Повышение «идеальности» сложных систем обеспечивается двумя противонаправленными процессами: • развертывание — увеличение количества и качества выполняемых функций за счет усложнения системы;
• свертывание — увеличение (сохранение) количества и качества функций, выполняемых при одновременном относительном упрощении системы. Относительным упрощение системы является только потому, что, как правило, количество элементов становится меньшим. Однако при этом сложность уходит в более высокую (а значит, более сложную!) организацию вещества и энергии в элементах. Процессы развертывания-свертывания могут чередоваться для разных видов системы одного и того же типа, и могут идти параллельными путями, то есть могут сосуществовать в своих нишах техносфере разные по сложности системы одного типа. В целом в ТРИЗ совокупное действие процессов развертывания-свертывания представляется так называемой «Волной эволюции» систем71 (рис. 15.8). Трапециями показаны процессы, существенные для соответствующего периода. Линии развертывания (а) и свертывания (b) представлены на рис. 15.9. Пример 97. Электроника и компьютеры. Потрясающим примером разнообразия и прогресса, в котором полностью реализована закономерность развертывания—свертывания систем, являются компьютеры. Вы можете посмотреть любую книгу по истории компьютеров от первых машин середины 1940-х годов до середины 2006 года, чтобы самостоятельно увидеть подтверждение этой закономерности. Кратко можно указать на следующие примеры: первые компь Рисунок воспроизведен по работе Ю. Сачаматова из сборника Шанс на приключение / Составитель — А. Селюнкнй. — Петрозаводск, 1991. 71
ютеры на электронных лампах были менее мощными в вычислительных возможностях, чем любой современный многофункциональный карманный калькулятор, а их конструкции состояли из многих металлических шкафов и занимали целые комнаты; за последние 8 лет (с 1998 года) произошел невероятный рост тактовой частоты работы, а значит, и почти такой же рост производительности, персональных настольных и носимых компьютеров с начального среднего уровня около 200 Мегагерц до более чем 3000 Мегагерц (3 Гигагерц) при тех же размерах конструкции; ведущие фирмы продолжают создавать вычислительные комплексы, состоящие из тысяч и десятков тысяч процессоров (развертывание!). Примеров здесь очень много, особенно с учетом роста функциональных возможностей и интеграции с системами управления. Такие же примеры Вы легко обнаружите, если проследите мысленно изменение радиоприемников и телевизионных приемников, а также аудио- и видео-записываюших устройств в вашем доме, изменение телефонных устройств. Пример 98. Микропроцессоры и микросхемы памяти. Пример частичного свертывания; оперативная память RAM персонального компьютера сегодня состоит из нескольких конструктивных микроплат. Полное свертывание: микропроцессор на одном кристалле или в виде одного конструкционного элемента (микросхема). 15.2.5. Мета-модель Длинные экономические волны (циклы) Кондратьева. Экономисты хорошо знают модель циклического развития экономики, характеризующуюся волнами, имеющими стадии подъема, процветания, снижения и депрессии. Основу каждого цикла составляют крупнейшие открытия и изобретения, сделанные как правило на интервалах депрессии и полагающие начало очередной технической реконструкции цивилизации, а следовательно, и подъему экономики. Модель была предложена в 1925 году в России экономистом Н. Кондратьевым и вскоре признана во всем мире. Для стран, отличающихся уровнем развития, эти волны имеют расхождения во времени и в специфических особенностях, однако в целом во всех экономических системах этот закон проявляется вполне отчетливо. Более того, эти процессы свойственны и мировой экономике из-за все более растущего мирового рынка. Эти волны следует прогнозировать и учитывать в стратегическом планировании разработки новых технических систем. Так, в основе развития XVIII века лежали такие изобретения как паровой двигатель и ткацкий станок. Второй цикл, приходящийся на XIX век, связан с развитием металлургии и железнодорожного транспорта. На XX век приходятся третий цикл, обусловленный развитием электротехники, химии и автотранспорта, и четвертый цикл, обусловленный развитием авиастроения, высокомолекулярной нефтехимии и электроники. В ряде прогнозов указывается, что начало XXI века совпадает с началом нового экономического подъема. Прогнозируемый пятый цикл связывается с развитием целого комплекса направлений: биотехнологии, лазерная техника, микроэлектроника и нанотехнологии, системы коммуникации типа интернет, искусственный интеллект, космическая индустрия. Назрела также потребность в кардинальном изменении автомобильного и железнодорожного транспорта. 15.2.6. Мета-модель Переходы в надсистему — подсистему. Эта мета-модель хорошо коррелирует с моделями развертывания—свертывания, но имеет некоторые специфические особенности, когда исходная система «исчезает», а функция ее остается, но передается либо в надсистему, либо в развившуюся часть самой этой системы. Надо помнить, впрочем, что многие типы систем сходного назначения продолжают длительное время сосуществовать совместно, параллельно во времени, занимая свои ниши в
техносфере. Этот прием позволяет новой системе В преодолеть функциональное сопротивление со стороны «старой» системы А и блокирующее влияние инерции интересов производителей системы А (см. схему 14.1). Это означает, что конкуренция нового со старым может быть не столь драматичной. Более того, в принципе можно представить себе такую идеальную картину, когда крупные производители технических систем откажутся от преследования сугубо экономических корыстых целей, а всегда будут инициаторами и создателями прогрессивных крупномасштабных инноваций. Формула перехода в надсистему: новая система В приходит на смену системе А, включая систему А как одну из подсистем. Пример 99. Удаленное считывание данных. Считывание показаний квартирных датчиков расхода воды, газа и электроэнергии производится без посещения квартиры служащими соответствующих компаний, а с помощью дистанционного опроса этих приборов прямо с автомобиля, движущегося по улице, при этом в приборах содержится передающий радиопередатчик — функция считывания вынесена в надсистему сбора информации. Легко продолжить этот пример, подключив приборы к интернет. Таким образом, прибор стал частью надсистемы, так как одна из его важнейших функций — «передача» показаний — технически включена в надсистему, которой эти показания и нужны. Здесь инновация означает развертывание надсистемы и свертывание подсистемы. Формула перехода в подсистему: новая система В приходит на смену системе А, как одна из ее бывших подсистем, забирая при этом все функции системы А. Пример 100. Электрическое мотор-колесо. Первые большие карьерные самосвалы строились по традиционной схеме «дизельный двигатель — электрогенератор — электродвигатель — трансмиссия на каждое колесо — колеса». Вскоре был изобретен самосвал со следующей схемой: «дизельный двигатель — электрогенератор — электродвигатели-колеса», в которой электродвигатель встроен в каждое колесо. Это резко упростило всю систему, так как регулирование мощности и числа оборотов электродвигателя намного проще, чем в механической трансмиссии. Таким образом, механическая трансмиссия полностью исключена, а ее функции перешли к двигательколесу, в котором и двигатель стал частью колеса! Сверхэффектом такого свертывания стало улучшение управляемости самосвалом. Здесь, фактически, произошло свертывание прежней системы привода на колеса и развертывание самого колеса. 15.2.7. Мета-модель Линии «Моно — Би / Поли — Моно». Эту модель часто путают с рассмотренной выше. Они действительно похожи по механизму образования новых систем. Однако, в модели перехода в надсистему-подсисте-му система А сохраняется соответственно, либо как часть в структуре системы более высокого ранга (надсистема сбора информации включает первичные измерительные прибоы как датчики), либо как часть системы более низкого ранга. Линии «Моно — Би / Поли — Моно» (рис. 15.10) показывают возможность формирования систем одного и того же ранга, но с разной степенью сложности и функциональности. А теперь, после сделанного уточнения, можно сказать, что эта же модель может применяться и как механизм перехода в над-систему или в подсистему. Просто это не главное ее назначение.
Исходная техническая система (моно-система) удваивается с образованием бисистемы, и многократно увеличивается при обединении нескольких систем с образованием полисистемы. Как видно из рис. 15.10, могут объединяться системы с одинаковыми функциями, с функциями, имеющими отличия в параметрах (со смещенными свойствами), разнородными и инверсными (противоположными) функциями. Во всех этих случаях главным признаком изобретения является возникновение нового системного качества, отсутствующего по отдельности у ранее существовавших систем. Пример 101. Коллекция ножей. Если нож как моно-систему соединить с другим ножом, то получатся ножницы, имеющие иные свойства. Если металлическую пластину с определенным коэффициентом линейного расширения соединить параллельно с пластиной, имеющей другой коэффициент линейного расширения (то есть ту же функцию, но со сдвинутым параметром), то получим биметаллическую пластину с новым свойством — изгибание при нагревании (охлаждении). Если последовательно соединить пластины с одинаковым коэффициентом линейного расширения, но с инверсным направлением расширения (положительным и отрицательным), то получим би-систему с нулевым коэффициентом расширения! Пример 102. Крылья летательных аппаратов. Реинвентинг по мета-модели «Моно — Би / Поли — Моно» приведен на рис. 15.11. Исторически параллельно начали развиваться все виды самолетных крыльев: моноплан, биплан и полипланы. Вскоре более высокие показатели эффективности были достигнуты для бипланов, однако стремление получить как можно более высокую скорость полета привело к преимущественному развитию монопланов. Бипланы, неприхотливые к обустройству взлетно-посадочной площадки, постепенно были все же вытеснены быстрыми монопланами. Полипланы в конце 1930-х годов и вовсе были забыты. Это направление считалось неперспективным. Теория развивалась преимущественно для моноплана и, частично, для биплана. Монопланы достигли гиперзвуковых скоростей в 5, 7 и 10 скоростей звука, и рекордных высот более 100 км (исключительно военные машины)! Однако, некоторые качества моноплана оставались дорогими. Например, крыло-моноплан сложно в изготовлении и в управлении, имеет высокий вес. В середине 1950-х годов в Московском авиационном институте под руководством С. Белоцерковского сложился коллектив энтузиастов, разработавший впоследствии теорию и практические конструкции для полипланов. Возрождение забытого привело за минувшие
годы к открытию выдающихся свойств полиплана и к созданию действительно нового направления для развития самолетов будущего. При одинаковой подъемной силе вес полиплана в 4—6 раз меньше веса крыла со сплошным сечением и в 2—3 раза меньше веса крыла с полым сечением. С помощью динамизации шага между планами достигнута практически постоянная степень устойчивости во всем диапазоне скоростей от самых малых до гиперзвуковых! Сборка полипланов намного проще, чем крыла-моноплана. В этом примере Вы можете увидеть своеобразное обращение времени и возврат в прошлое, или, еще лучше — воспоминание о будущем, как подобное явление назвал бы известный исследователь удивительных загадок ушедших земных цивилизаций фон Деникен72! Практически же мы можем сделать вывод о том, что приемы, собранные в этой метамодели, показывают, что переходы могут идти не только строго Эрих фон Дсмикен (рол. 1035, Швейцарии) — известный австрийский ученый, исслелова тсль технических феноменов лрении.х ЭФФЕКТИВНОСТЬ = цивилизаций и возможней! посещении Земли ИНОПланп) нами. 72 Аэродина мическое качество » Маневренность + Скорость Вес + Компактность + Сложность изготовления линиям «Моно — Би / Поли — Моно», но и по линиям «Би / Поли — Моно — Би / Поли» или «Моно — Би / Поли». То есть, мы снова видим свойственную почти всем приемам ТРИЗ возможность версификации или обращения направления действия. 15.2.8. Мета-модель Линии развития ресурсов.
Развитие систем в направлении роста идеальности связано с достижением таких свойств, как повышение сте-пении координации ресурсов и применения хорошо управляемых ресурсов. Управляемость системы является свидетельством ее высокого развития. Но управляемость возможна только в том случае, когда управляемые компоненты системы используют динамизированные ресурсы, управляемый параметр которых изменяется в нужном диапазоне. Эти тенденции отражены в линиях развития ресурсов. Наиболее важные мета-модели представлены ниже. Переход к высокоэффективным полям приведен на рис. 15.12. Здесь следует иметь в виду, что некоторые из этих «полей» нужно рассматривать как физико-математические понятия. Например, если расмотреть все множество механических сил, приложенных к объекту, как множество векторов, то это множество и образует пространственное поле действия этих сил, или механическое поле. Далее, к механическим полям здесь отнесены также акустическое и гравитационное. Гравитация сообщает вес всем телам на Земле. Хотя само по себе гравитационное поле имеет далеко не полностью раскрытые свойства. Пример 103. Забивание свай. В течение одного десятилетия в 1970-х годах отмечено развитие способов забивания строительных свай по всей приведенной линии: падающий молот (гравитационный «механизм») — гидравлический молот — электрогидравлический удар (на основе эффекта Юткина) — электромагнитный молот (разгоняется в соленоиде) — «электромагнитная свая»: свернутая би-система «свая—молот», в которой поверхностный слой головки бетонной сваи пропитывается электролитом, бетон становится проводником, а вместо молота разгоняется сама свая. Следует отметить, что параллельно с этими инновациями были признаны изобретениями и несколько пневматических молотов, обладающих простой конструкцией. Следующие три линии также связаны с динамизацией систем. Примеры для иллюстрации дробления инструмента (по рис. 15.13): Пример 104. Линия дробления хирургического инструмента: металлический скальпель — ультразвуковой скальпель — вода под давлением — лазерный луч.
Пример 105. Линия дробления режущего инструмента газонокосилки: цельные металлические вращающиеся ножи — вращающаяся металлическая цепь — вращающаяся леска — вращающаяся струя воды под давлением. Примеры для иллюстрации дробления вещества (по рис. 15.14): Пример 106. Уменьшение трения скольжения в парах вращения «вал — опора»: непосредствеенный контакт трущихся металлических поверхностей вала и опоры скольжения — бесконтактная гидростатическая опора (жидкая смазка) — бесконтактная газостатическая опора (газ подается под давлением через пористые втулки) — магнитная сверхточная опора. Пример 107. Повышение долговечности и надежности контактов скольжения (щеток) для передачи тока на электродвигатели и от электрогенераторов: угольные щетки — щетки из спеченных углеродных волокон — ферромагнитный порошок с постоянным магнитным полем — магнитная жидкость — ионизированный газ — разряд в вакууме. Примеры для иллюстрации введения пустоты (по рис. 15.15): Пример 108. Применение пористых материалов в подшипниках скольжения (см. Пример 106). Пример 109. Автомобильная шина: сплошная — с воздушной полостью (камерная и бескамерная) — шина с перегородками (многокамерная) — шины из пористого материала — шины из капиллярно-пористого материала с охладителем — шины с заполнением пористыми полимерными частицами и гелеоб-разным веществом. В заключение этого раздела приведем одну более сложную мета-модель роста управляемости полей (рис. 15.16). Можно без преувеличения сказать, что прогресс современной радиотехники, электронной оптики, компьютерной вычислительной техники, компьютерной томографии, лазерной техники и микроэлектроники полностью опирается на эту линию развития.
15.3. Интеграция альтернативных систем Конкурирующими системами называют в ТРИЗ такие системы, которые имеют одно и то же назначение, одинаковую главную полезную функцию, но различную техническую реализацию и, следовательно, различную эффективность. Так, по этому определению, конкурирующими являются обычные железнодорожные поезда и поезда на магнитном подвесе. В принципе, конкуренцию систем можно рассматривать и в более широком контексте, и в более узком. В более широком смысле можно рассматривать конкурирующие системы разных классов (неоднородные системы), например, автомобильный и железнодорожный транспорт. В более узком — рассматривать конкуренцию близких (однотипных) систем, например, среди нескольких марок автомобилей с близкими характеристиками. В любом случае для интеграции выбираются так называемые альтернативные системы — имеющие прямо противоположные пары позитивных и негативных свойств. Пример 110 (начало). Колесо велосипеда. В известном ТРИЗ-примере рассматриваются спицевое колесо, которое имеет малый вес и высокую прочность, но сложно в сборке, и сплошное дисковое металлическое колесо (рис. 15.17,b), которое при простой сборке имеет повышенный вес либо пониженную прочность.
Метод интеграции альтернативных систем позволяет направленно конструировать новые системы путем объединения альтернативных систем таким образом, чтобы их позитивные свойства перешли в новую систему, а негативные исчезли или были значительно ослаблены. Тем самым достигается повышение степени идеальности (эффективности) новой системы. В частности, этот метод позволяет продлить жизнь существующих альтернативных систем, одна из которых (или обе) достигла пределов своего развития и исчерпала видимые ресурсы для дальнейшего прогресса. Действительно, эффективность систем оценивается как отношение показателей, принадлежащих к группам позитивных и негативных факторов, то есть к числителю и к знаменателю соответствующей формулы (см. раздел 14.2): 2) знаменатель: расход электроэнергии, расход топлива, затраты на обслуживание, сложность производства, экологический ущерб и его компенсация и т. д. При этом объединяемые системы должны иметь альтернативные пары свойств, например, одна система является высокопроизводительной, но дорогой и сложной, а другая — менее производительной, зато простой и недорогой. Важно, чтобы при объединении произошло свертывание (вытеснение) за пределы новой системы недостатков альтернативных систем и развертывание (возможно, с усилением) полезной функции, по которой происходит интеграция. Рассмотрим примеры интеграции однородных альтернативных систем. Пример ПО (окончание). Достоинство спицевого колеса обеспечивается предварительной напряженностью конструкции. Именно это свойство и нужно перенести на дисковое колесо. Для этого диск выполнен из двух тонких диафрагм 2 (рис. 15.18,а), устанавливаемых в обод колеса и растягиваемых в области осевой втулки 1 таким образом, чтобы возникло предварительное напряжение конструкции. Такое колесо (рис. 15.18,b), намного проще в изготовлении и регулировке и при одинаковой прочности обладает меньшим весом по сравнению со спицевым колесом! Дополнительные возможности для снижения веса практически без потери прочности состоят в создании на диафрагмах вырезов или отверстий (рис. 15.18,с). Процесс изготовления диафрагм при этом не усложняется, так как они получаются одним ударом штампа. Штамп, разумеется, становится более сложным, но это практически не сказывается на стоимости производства при достаточно большой серии. Пример 111. Подшипник скольжения? Такой подшипник прост в изготовлении, выдерживает большие радиальные нагрузки и тихо работает. Однако он имеет большой недостаток — требует приложения больших усилий для старта, так как в статичном состоянии смазка выдавливается между валом и опорой, и поэтому при старте фактически имеет место сухое трение. Подшипник качения является альтернативной системой, так как имеет малый пусковой момент, однако намного сложнее в изготовлении, дорог, плохо выдерживает радиальные нагрузки и работает с большим шумом.
В качестве базовой системы обычно выбирают более простую и недорогую, в данном случае, подшипник скольжения. Как сделать, чтобы его пусковой момент был почти таким же, как у подшипника качения? Нужно объединить обе системы. Например, следующим образом: добавить в смазку микрошарики! Тогда при старте потребуется значительно меньший пусковой момент, а при нормальной работе будет обеспечен режим скольжения. В качестве примера интеграции неоднородных систем рассмотрим идею Струнной Транспортной Системы (СТС) А. Юницкого (73). Пример 112. Струнная Транспортная Система А. Юницкого. С каким транспортом человечество входит в новое тысячелетие? Будет ли цивилизация медленно стагнировать, оставаясь в плену психологической инерции — безальтернативного поклонения автомобилю и самолету? Будет ли железная дорога и далее поглощать ресурсы на поддержание своей морально устаревшей технострукту-ры? Наконец, наступит ли понимание того, что наша планета сейчас не более надежна, чем «Титаник», на котором тоже не было надежного прогнозирования и управления и не хватало спасательных средств?! Автомобиль: 1. Появился в конце XIX века. Построено за прошедший век свыше 10 млн. км дорог, выпущено около 1 млрд. автомобилей. Автомобиль среднего класса стоит 15...20 тысяч долларов США. 2. Современный автобан стоит 5... 10 млн долларов США/км, изымает из землепользования около 5 га/км земли, а с инфраструктурой — до 10 га/км. Объем земляных работ превышает 50 тыс. м3/км. Автомобильные дороги и их инфраструктура отняли у человечества свыше 50 миллионов гектаров земли, причем отнюдь не худшей земли. Такова суммарная территория таких стран, как Германия и Великобритания. Резерва для строительства дополнительных автодорог в Германии практически нет. 3. Ежегодно простои автотранспорта в пробках наносят ущерб экономике Германии, исчисляемый многими десятками миллиардов долларов. 4. В последние десятилетия автомобиль стал основным рукотворным орудием убийства человека. По данным Всемирной организации здравоохранения на автомобильных дорогах мира ежегодно гибнет (в том числе и от послеаварийных травм) свыше 900 тыс. человек, несколько миллионов становятся калеками, а свыше 10 млн. человек — получает травмы. 5. Средневзвешенная скорость движения на дорогах 60...80 км/ч; автомобиль простаивает не менее 90 % времени своего жизненного цикла; среднее расстояние поездок — 10...20 км; ездить в течение одного дня более 400 км — утомительно и опасно даже по автобанам Германии. 6. Автомобиль стал основным источником шума и загрязнения воздуха в городах. Выхлоп автомобиля содержит около 20 канцерогенных веществ и Материалы для публикации предоставлены А. Юннпким. более 120 токсичных соединений. Автомобили расходуют суммарную мощность, превышающую мощность всех электростанций мира! 7. Негативное воздействие на Природу оказывают системы, которые обслуживают автотранспорт: нефтяные скважины и нефтепроводы, нефтеперерабатывающие и асфальтобетонные заводы и т. д. Железнодорожный транспорт: 1. В его современном понимании зародился в начале XIX века, хотя первые колейные дороги существовали еще в Древнем Риме. Во всем мире построено более миллиона километров железных дорог.
2. В современных условиях километр двухпутной дороги с инфраструктурой стоит 3...5 млн долларов США, пассажирский вагон — около 1 млн долларов США, электровоз — около 10 млн долларов США. Требует при строительстве много ресурсов: металла (стали, меди), железобетона, щебня. Объем земляных работ в среднем около 50 тыс. м3/км. Отнимает у землепользователя много земли — около 5 га/км, а с инфраструктурой — до 10 га/км. 3. В сложных географических условиях требует строительства уникальных сооружений — мостов, виадуков, эстакад, тоннелей, что значительно удорожает систему и усиливает негативное воздействие на Природу. Средневзвешенная скорость движения — 100...120 км/ч. 4. Шум, вибрация, тепловые и электромагнитные излучения от движущихся поездов влияют на среду обитания живых организмов и жителей прилегающих к дорогам населенных пунктов. Пассажирские поезда в течение года выбрасывают на 1 км полотна и полосы отвода до 12 тонн мусора и 250 кг фекалий. 5. Поезда на магнитном подвесе не могут кардинально изменить ситуацию на железнодорожном транспорте (по крайней мере, в Европе) и требуют недопустимых для экономики любого европейского государства затрат на строительство новых дорог и снос или реконструкцию существующих дорог. Авиация: 1. Самый экологически опасный и энергоемкий вид транспорта. У современных самолетов суммарный выброс вредных веществ в атмосферу достигает 30...40 кг/100 пассажиро-километров. Основная масса выбросов самолетов концентрируется в районах аэропортов, т. е. около крупных городов — во время прохода самолетов на низких высотах и при форсаже двигателей. На малых и средних высотах (до 5000...6000 м) загрязнение атмосферы окислами азота и углерода удерживается несколько дней, а затем вымывается влагой в виде кислотных дождей. На больших высотах авиация является единственным источником загрязнения. Продолжительность пребывания вредных веществ в стратосфере много дольше — около года. По своей токсичности современный реактивный лайнер эквивалентен 5... 8 тысячам легковых автомобилей и расходует столько кислорода на сжигание топли ва, сколько необходимо его для дыхания более 200 000 человек. На восстановление содержания такого количества кислорода в атмосфере необходимо несколько тысяч гектаров соснового леса или еще большая площадь планктона океана. 2. Каждый пассажир во время многочасового полета за счет космического естественного гамма-излучения получает дополнительную дозу облучения в несколько тысяч микрорентген (доза облучения в салоне самолета достигает 300...400 мкР/ч при норме 20 мкР/ч). 3. Под аэропорты необходимо отводить земли, по площади сопоставимые с полосой отвода под железные и автомобильные дороги, но расположенные в непосредственной близости от городов, а значит, более ценных. 4. Авиация оказывает очень сильное шумовое воздействие, особенно в районах аэропортов, а также — значительные электромагнитные загрязнения от радиолокационных станций. 5. Воздушный транспорт — самый дорогой. Стоимость современных аэробусов достигает 100 млн долларов США, затраты на строительство крупного международного аэропорта превышают 10 млрд долларов США. Этот краткий анализ не оставляет сомнений в необходимости искать возможности для кардинального изменения транспортных коммуникаций. К одной из таких возможностей относится и изобретение инженера из Республики Беларусь Анатолия Юницкого. Впервые
идея была опубликована им в 1982 году в бывшем СССР и, разумеется, не нашла официальной поддержки. Ее автор еще до этого события уже был занесен в списки неблагонадежных. Попытки дискредитации А. Юницкого предпринимались с конца 1970-х годов за его идею о геокосмической индустриализации (см. раздел 18.2), резко контрастировавшей с официальной триумфальной политикой ракетного освоения околоземного космоса. А теперь выполним реинвентинг изобретения А. Юницкого на основе Метода интеграции альтернативных систем. Альтернативная система 1 — высокая скорость, но малая маневренность (железнодорожный состав), система 2 — невысокая скорость, но большая маневренность (автомобиль). При междугородных коммуникациях нельзя игнорировать требование безопасности и достаточно большой скорости движения. Поэтому в данном случае за базовую принимается железная дорога. С другой стороны, в случае аварии по причине одиночного схода с путевой структуры автомобиль представляет меньшую опасность, так как несет меньшее количество пассажиров. То есть. технические преимущества автомобиля существенно обусловлены его модульностью и малыми габаритами по сравнению с поездом. Эти рассуждения приводят к первому положению: транспорт должен стать высокоскоростным на основе модулей с небольшим числом пассажиров. Далее, проблемы отчуждения земли и стоимость строительства новых трасс. Высокая скорость требует высокой ровности и прямолинейности путевой структуры. Именно этим требованиям в большей мере удовлетворяют железнодорожные пути. Однако, из-за огромного веса железнодорожных составов путевая структура требует обустройства мощных фундаментов, экологически вредных и дорогостоящих. Переход к модульной концепции транспорта приводит ко второму положению: путевая структура рельсового типа может представлять собой достаточно легкие сооружения, поднятые над землей и отличающиеся особой ровностью и прямолинейностью, относительно не зависящей от рельефа местности. Модульный транспорт безальтернативно должен быть только электродвижимым (см. далее Практикум 14—15). Отсюда третье положение: если автомобиль претендует на место в будущем, то он должен стать электромобилем, и быть интегрированным с новой путевой структурой. Идея СТС заключается в следующем. Основой СТС являются два специальных токонесущих рельса-струны (изолированные друг от друга и опор), по которым на высоте 10...20 м (или более, при необходимости) движется четырехколесный высокоскоростной модуль — электромобиль. Благодаря высокой ровности и жесткости струнной путевой структуры на СТС легко достижимы скорости движения в 250...350 км/час (в перспективе до 500...600 км/час и даже до 1000 км/час в вакууммированной трубе). Струнные элементы натянуты до суммарного усилия 300...500 тонн и жестко закреплены в анкерных опорах, установленных с шагом 1... 3 км. Поддерживающие опоры установлены с шагом 20... 100 м. Электромодули имеют грузоподъемность до 5000 кг и вместимость до 20 пассажиров (рис. 15.19 и 15.20). Запитка электрической энергией осуществляется через колеса, которые контактируют с токонесущими головками специальных рельсов.
При использовании автономного энергообеспечения модуля, головка рельса и, соответственно, вся путевая структура, будут обесточенными. Трассы СТС легко совмещается с линиями электропередач, с ветряными и солнечными электростанциями, с линиями связи, в том числе оптико-волоконными. Струны СТС выполняются из высокопрочной стальной проволоки диаметром 1... 5 мм каждая. Струны собираются в пучок и размещаются с минимально возможным провесом внутри пустотелого рельса (рис. 15.21).
Рельс монтируется таким образом, чтобы после фиксации струн путем заполнения полости рельса твердеющим заполнителем, например, на основе цемента или эпоксидной смолы, головка рельса оставалась идеально ровной. Поэтому головка, по которой и будет двигаться колесо транспортного модуля, не имеет провесов и стыков по всей своей длине. Наибольшее количество в СТС будет промежуточных опор, которые устанавливаются через 25... 100 м. СТС спроектирована таким образом, чтобы промежуточные опоры испытывали преимущественно только вертикальную нагрузку, причем незначительную — 25 тонн при пролете 50 м. Примерно такую же нагрузку испытывают опоры высоковольтных линий электропередач, поэтому они конструктивно и по материалоемкости близки друг к другу. Максимальные горизонтальные нагрузки на всей трассе испытывают только две концевые анкерные опоры (на них действует односторонняя нагрузка): 1000 тонн для двухпутной и 500 тонн для однопутной трассы. СТС спроектирована с очень жесткой путевой структурой. Например, при пролете 50 м абсолютный статический прогиб пути от сосредоточенной нагрузки в 5000 кгс, размешенной в середине пролета, составит всего 12,5 мм или 1/4000 от длины пролета. Для сравнения: современные мосты, в том числе и для скоростных железных дорог, проектируют с допустимым относительным прогибом, в десять раз большим — 1/400. Динамический прогиб пути СТС под действием подвижной нагрузки будет еще ниже — до 5 мм, или 1/10 000 пролета. Такой путь будет для колеса транспортного модуля более ровным, чем, например, дно соляного озера, где, как известно, в конце XX века автомобиль впервые преодолел скорость звука — 1200 км/час. Предельную скорость в СТС будет ограничивать не ровность и динамика колебаний пути, не проблемы во фрикционном контакте «колесо — рельс», а аэродинамика. Поэтому вопросам аэродинамики в СТС уделено особо пристальное внимание. Получены уникальные результаты, не имеющие аналогов в современном высокоскоростном транспорте, в том числе и в авиации. Коэффициент аэродинамического сопротивления модели пассажирского экипажа, измеренный при продувке в аэродинамической трубе, составил величину С х = 0,075. Намечены меры по уменьшению этого коэффициента до С х = 0,05...0,06. Благодаря низкому аэродинамическому сопротивлению двигатель мощностью 80 кВт обеспечит скорость движения двадцати местного экипажа в 300...350 км/час, 200 кВт — 400...450 км/час, 400 кВт — 500...550 км/час. При этом механические и электромеханические потери в СТС будут невелики, так как КПД стального колеса составит 99 %, мотор-колеса в целом — 92 %. Надежность путевой структуры и опор СТС как строительной конструкции будет на уровне надежности висячих и вантовых мостов, так как они конструктивно очень близки друг к другу, при этом струны в СТС значительно лучше защищены от климатических и механических воздействий, чем канаты мостов. В экономическом плане можно отметить, что при серийном производстве стоимость обустроенной двухпутной трассы СТС с инфраструктурой (вокзалы, станции, грузовые терминалы, депо и т. д.) составит, млн. USD/KM: 1,0...1,5 — на равнине, 1,5...2,5 — в горах, 1,5...2,5 — на морских участках при размещении трассы над водой и 5... 8 при размещении в подводной или подземной трубе-тоннеле. Юзах 139 Транспортный модуль конструктивно проще легкового автомобиля, поэтому при серийном производстве его стоимость будет на уровне стоимости микроавтобуса — 20...40 тыс. долларов США, или на одно посадочное место — I...2 тыс. долларов США/место (для двадцати местного электромодуля). Для сравнения приводим относительную стоимость подвижного состава в других скоростных системах: самолет — 100...200 тыс. долларов
США/место, поезд на магнитном подвесе — 100...200 тыс. долларов США/место, высокоскоростная железная дорога — 20...30 тыс. долларов США/место. Таким образом, технико-экономические и экологические характеристики предлагаемого вида транспорта чрезвычайно привлекательны: 1. Для прокладки струнных трасс потребуется незначительное отчуждение земли (в 150...200 раз меньше, чем для автомобильных и железных дорог). Отпадает необходимость в устройстве насыпей, выемок, тоннелей, в вырубке лесов, сносе строений, поэтому СТС легко внедряема в городскую инфрасреду и реализуема в сложных природных условиях: в зоне вечной мерзлоты, в горах, болотистой местности, пустыне, в зоне водных препятствий (реки, озера, морские проливы, шельф океана и др.). 2. Повышается устойчивость коммуникационной системы к стихийным бедствиям (землетрясения, оползни, наводнения, ураганы), неблагоприятным климатическим условиям (туман, дождь, гололед, снежные заносы, пыльные бури, сильные жара и холод и т. п.). 3. СТС экологически чище, экономичнее, технологичнее, безопаснее любой другой известной скоростной транспортной системы. 4. Благодаря низкой материалоемкости и высокой технологичности трассы СТС будут дешевле обычных (в 2... 3 раза) и скоростных (в 8... 10 раз) железных дорог и автобанов (в 3... 4 раза), монорельсовых дорог (в 2... 3 раза), поездов на магнитном подвесе (в 15...20 раз), поэтому проезд по СТС будет самым дешевым — 5... 8 долларов США/1000 пасс. км и до 2... 5 долларов США/1000 тонно • км. 5. СТС может строиться как технологические и специализированные трассы, грузовые, пассажирские и грузопассажирские транспортные линии; низкоскоростные (до 150 км/час), среднескоростные (150...300 км/час) и высокоскоростные (свыше 300 км/час) магистрали. Пропускная способность двухпутной трассы до 500 тыс. пасс/сутки и до 1 млн тонн грузов/сутки. По пропускной способности заменит современный нефтепровод, причем трасса СТС будет дешевле, а себестоимость транспортировки нефти будет в 1,5... 2 раза ниже, чем по нефтепроводу. СТС могут обеспечить вывоз мусора за пределы мегаполисов; доставку руды из карьеров на обогатительную фабрику; транспортировку угля к тепловой электростанции; транспортировку нефти от месторождения к нефтеперерабатывающему заводу; поставку в большом объеме — порядка 100 миллионов тонн в год — высококачественной природной питьевой воды в густонаселенные регионы мира на расстояние 5... 10 тысяч километров и т. п. 6. Например, общий объем затрат для трассы СТС Париж (Лондон) — Москва составит 5,7 млрд долларов США (протяженность трассы 3110 км), из них 5,2 млрд долларов США — на трассу и инфраструктуру, а 0,5 миллиарда долларов США — на подвижной состав. Через 5—7 лет трасса, вне-денная в строй, начнет окупаться. Себестоимость проезда из Москвы в Париж при этом составит 32 долларов США/пасс, время в пути — 7 час 10 мин (расстояние 2770 км, расчетная скорость движения 400 км/час). Через 10 лет эта струнная магистраль будет давать в среднем около 2 млрд долларов США в год чистой прибыли.
Могут быть предложены десятки вариантов прокладки струнных трасс (см. например, рис. 15.22 и рис. 15.23), важных практически для всех континентов и стран мира. В СТС реализованы следующие принципы ТРИЗ (рис. 15.24). Принцип Применение 02 Предварительное действие Вокзалы СТС находятся прямо в центре города в отличие, например, от аэропортов 03 Дробление 04 Замена механической среды OS Вынесение Вместо тяжелых энергоемких поездов — небольшие высокоскоростные модули Улучшение механической структуры — повышение ровности пути Вся дорога вынесена вверх над домами и землей! Или вниз — под землю или под воду! 06 08 Использование механических колебаний Периодическое действие Частота собственных колебаний струны доведена до предельно высоких значений для уменьшения времени затухания колебаний Между пассажирскими модулями движутся грузовые 11 12 Наоборот Местное качество 19 Переход в другое измерение Не тяжелые поезда и насыпные дороги. Струнный рельс идеально ровный; трасса может проходить по прямой между соединяемыми пунктами на оптимальной высоте Трасса перенесена вверх но координате высота! Рис. 15.24. Применение некоторых ТРИЗ-Приемов в изобретении СТС Применение СТС позволит: кардинально сократить число авиационных маршрутов на расстояния до 2000 км, сохранив самолеты только для трансокеанских перелетов и на расстояния свыше 2000 км; кардинально изменить нагрузку на автомобильные дороги и снять проблему пробок на автобанах; принципиально реконструировать (сократить) и реструктурировать систему железных дорог, сохранив их только для крупных грузовых артерий. Наше повышенное внимание к развитию транспорта обусловлено тем, что транспорт является одной из фундаментальных назревших проблем, требующих немедленных и решительных изменений. Коммуникации или транспорт как обмен (перевозка) материальных и человеческих ресурсов является неотъемлемым условием личного и общественного блага; это средство человеческого общения в территориальном и интеллектуальном пространстве; это образ жизни и одна из фундаментальн^гх ценностей культуры, показатель уровня цивилизованности страны. Неудовлетворительное состояние транспортной сети ведет к нарушению нормального функционирования экономики, спаду производства в смежных отраслях народного
хозяйства, неоправданным потерям времени и метериальных ресурсов, сокращению рабочих мест, повышению стоимости товаров и услуг, снижению уровня жизни населения и возможностей для развития образования и культуры, сдерживанию внешней торговли и туризма, ухудшению экологической ситуации, затруднениям в ликвидации последствий чрезвычайных ситуаций, повышению смертности населения. Практикум к разделам 14—15 35. Автомобиль. Примените мета-модели «Полиэкран» и «Моно — Би / Поли — Моно», «Метод интеграции альтернативных систем» и «Линии системо-технического развития». 35.1. Знаете ли Вы альтернативные источники энергии для автомобиля? Например, маховики профессора Гулия, двигатели на сжатом воздухе, водородные двигатели... Продолжите этот список. 35.2. Можете ли Вы предложить более экономичный двигатель с использованием иных физико-технических эффектов, например, пьезо-электрического. 35.3. Альтернативы развития модуля (модулей) СТС А. Юницкого: • кабина для перенесения людей или грузов; • платформа для перенесения легкового автомобиля вместе с пассажирами; • интегрированный модуль-автомобиль, который сам въезжает на рельсы СТС, движется по СТС, а затем съезжает и перемещается как обычный автономный автомобиль; • предложите собственные решения! Каким может быть идеальный автомобиль, если при использовании СТС отпадет необходимость ездить на автомобиле на расстояния, например, более 100 км со скоростью свыше 50 км/час? 36. Железная дорога и автобаны. Что может измениться в работе этих транспортных магистралей при развитии СТС? Не останутся ли они только для грузового транспорта? Примените мета-модели «Полиэкран» и «Метод интеграции альтернативных систем». 37. Воздушный транспорт. Безопасность! Экологичность! Экономичность! Где альтернативы? Действительно ли нужны гиперзвуковые авиалайнеры для перелета Москва — Сан-Франциско или Париж — Сидней на высоте 30 км со скоростью 10 000—12 000 км/час за 2 часа? Или «Цеппелины» больше подходят для будущего? 38. Транспорт в городе. Что лучше — вагоны на 100—200 человек или индивидуальные транспортные устройства? Самодвижущиеся тротуары и дороги или индивидуальные легкие летательные аппараты? Дороги в городе: под землей, на земле, на уровне 10—20 метров, над домами на уровнях 20—100 метров? Не забудьте о возможности параллельного сосуществования старых и новых систем. 39. Транспортировка нефти. Катастрофы с нефтеналивными танкерами. Катастрофы с трубонефтепроводами. Известны танкеры с модулями для перевозки грузов — это решение проблемы безопасности и экологичности? Является ли идея СТС идеальным решением для полного отказа от наземных трубонефте-проводов? Можно ли рассмотреть совместно идеи модульных танкеров и модульности СТС? 40. Вода. Где взять неограниченно много чистой и полезной воды? 41. Леса. Пришествие компьютера не уменьшило, а увеличило расход бумаги и уничтожение лесов — легких планеты. Ограничивать объемы газет и количество издаваемых газет? Перестать печатать книги? Не применять бумагу для упаковки? Или... Продолжите изобретать в более конструктивном духе.
42. Электроэнергетика. Над Землей так много солнечной энергии! И так много энергии содержится в ядерном синтезе! Так много электрической, тепловой и кинетической энергии в атмосфере и океанах Земли! А на Земле все еще не хватает энергетических ресурсов. И атмосфера Земли продолжает загрязняться и перегреваться от сжигания полезных ископаемых, и прежде всего, нефти, только для получения энергии! 43. Жилище в городе. Недопустимый шум. Пыль. Транспортные проблемы. Отсутствие связи с живой Природой. Зависимость от соседей. Где и как может обустраивать свое жилище человек ближайшего будущего? В частности, допустите, что перемещение в центр метрополии и из него в радиусе 100 км будет занимать не более одного часа. Еще одно небольшое допущение — жизнь вместе с природой! Тактика изобретения Машины развиваются постоянно, и потому в изобретательских задачах никогда нет недостатка. Суть ТРИЗ в том, что она принципиально меняет технологию производства новых технических идей. Вместо перебора вариантов ТРИЗ предлагает мыслительные действия, опирающиеся на знание законов развития технических систем 74. Генрих Альтшуллер 16. Диагностика проблемы 16.1. Типы проблемных ситуаций Выявление и решение конструкторско-технологических проблем с острыми физикотехнологическими противоречиями всегда происходит при наличии определенной стратегической цели. Это могут быть цели устранения дефектов при производстве продукции, цели модернизации самой продукции, цели создания переспективнх конкурентоспособных идей и т. д. Практика поставляет инженеру непрерывный поток более или менее сложных задач, требующих как немедленного решения, так и осторожного продумывания на будущее. Поэтому при появлении некоторой проблемы следует, по крайней мере, определить ее значимость, необходимый срок для решения, допустимые инвестиции на поиск решения и ряд других вопросов. Мы можем исходить из того (рис. 16.1), что на каждом предприятии применяются И» работ Г. Альтшуллера 197.1 и I9K6 п. (О.М.). определенные методы и модели анализа качества продукции (и технологий), например, на базе методологии Total Quality Management (TQM). Также мы исходим из того, что создание изменений поддерживается определенными средствами автоматизации проектирования, моделирования и испытаний, входящими в состав средств Computer Aided Engineering (CAE) и использующими определенные методы системы Innovation Design Management (IDM), дополненной методами TRIZ/ CROST — Technologie. В этом случае улучшение продукции (производства) осуществляется путем непрерывного создания инноваций на основе цикла: TQM показывает, что нужно улучшить, a IDM показывает, как это сделать.
Краткий анализ проблемной ситуации должен включать тактические вопросы по оценке сложности проблемы и выбору способа ее решения. Если на предприятии не проводится постоянный анализ качества продукции (производства), то постановки задач часто даются в расплывчатой форме, неточно и неполно. Поэтому необходимо правильно определять хотя бы степень полноты исходного описания и характер проблемной ситуации. В школе ТРИЗ были сформулированы признаки для ориентировочного определения типа проблемной ситуации. Все проблемные ситуации были разделены на 6 типов (рис. 16.2) в зависимости от состава и полноты описания признаков ситуации на основе «матрицы Квинтиллиона» (рис. 4.1). Гни проблемной ситуации Признак н его содержание | 1 16 с) 1 К Субъект 2 Г Место 3 Ч Объект ( сп) + и о z« Ё 2 3 5ы if ч -1 11 5— ё р ( ( пт) кг) + и Л к в 9я Е S .\ I • л I 1 : ( кн) ( + ( ни) ( +■) +) + + + + + то? + S ч з < + де? то? 4 К Время + + + огда? 3 К Способ + + + ак? АЧ Средств + + ем? о 7 Ч Цель + ачей? (или причина) Рис. 16.2. Тили проблемных ситуаций Описание ситуации социального типа (с) включает в себя проблемы экономики, планирования, управления, рекламы, маркетинга, образования и так далее без упоминания конкретной технической системы. В формулировках проблем присутствуют в основном субъекты ситуации, а проблемные противоречия относятся к отдельным людям или к
группам людей. Например: Предложите мероприятия по повышению творческой активности работников предприятия. Часто такие задачи пытаются решать экономико-социальными методами, хотя в основе могут лежать технические проблемы, связанные, например, с технической оснащенностью рабочих мест. Ситуация социально-производственного типа (сп) дополняется указанием места конфликта и включает проблемы качества продукции, вопросы экологии и безопасности труда и так далее. Рассмотрим исходные ситуации и их разрешение на «старинном» ТРИЗпримере. Пример 113 (начало). Закалочная ванна. Предложите способ очистки воздуха в цехе термообработки. Основной признак — конфликт между человеком и производственной системой. В этой постановке также отсутствует указание на причину проблемы в виде технической системы. Описание производственно-технологического типа (пт) уже включает технические объекты и проблемы их функционирования, связанные с несоответствием технологических, эксплуатационных и физико-химических параметров системы требуемым значениям (дефекты, аварии, высокий расход энергии и материалов, появление вредных факторов). Пример 113 (продолжение 1). В цехе термообработки на участке закалки при опускании в масляную ванну крупногабаритной детали выделяется много вредного дыма; предложите способ очистки атмосферы цеха. Основным недостатком таких постановок является ошибочное принятие следствия за причину. Здесь явно присутствует только административное противоречие, в то время как для практического решения проблемы нужно получить техническое или физическое противоречие. Ситуация конструкторско-технологического типа (кт) включает постановку проблемы развития существующей технической системы. Характерным признаком такой ситуации является наличие явной формулировки технического противоречия. Пример 113 (продолжение 2). При ускоренном опускании крупногабаритной детали в масляную закалочную ванну выделяется меньше дыма, но нарушается режим закалки. Вполне четко указано, где, что и когда происходит, но не ясно, как решить проблему. Конечно, такой информации может быть также недостаточно для решения задачи, но сама постановка уже вполне конструктивна и может служить основой для попыток решить проблему на уровне технического противоречия, а также для дальнейшего изучения условий возникновения проблемы, то есть для выяснения физических причин проблемы. Ситуация конструкторско-исследовательского типа (ки) возникает при постановке проблемы синтеза новой системы или при необходимости понять и изучить физические процессы в оперативной зоне проблемы. То есть здесь далеко не ясно, с помощью каких средств (ресурсов) и как можно решить поставленную проблему. Пример 113 (продолжение 3). В закалочной ванне во время погружения крупногабаритной детали происходит возгорание масла; как устранить это явление? Здесь сразу присутствует физическое противоречие, например, в таком виде: масло должно соприкасаться с раскаленной деталью (что требуется для закалки) и масло не должно соприкасаться с раскаленной деталью (чтобы температура масла не достигла температуры возгорания). Или в таком виде: масло не должно соприкасаться с кислородом воздуха (чтобы на загораться) и масло должно соприкасаться с кислородом воздуха (так как масляная ванна открыта, чтобы в нее можно было опускать деталь). Теперь для решения проблемы могут быть применены приемы, стандарты и фонд научно-технических эффектов. Наконец, если проблема для своего решения требует приобретения новых знаний о природе физико-химических процессов в технической системе, то
имеет место ситуация научно-исследовательского типа (ни). Основной признак: несоответствие между известными (ожидаемыми) и получаемыми (реальными) результатами при реализации в технической системе какого-либо физико-химического процесса. Например: Предложите способ закалки крупногабаритных деталей без охлаждения в масляной ванне. Ко всем вопросам здесь добавляется необходимость узнать причины, истоки тех или иных явлений, определить возможные цели их использования. Характерно также, что часто постановки проблем в таких ситуациях снова сближаются с проблемными ситуациями социального типа, так как отсутствие специального знания обнаруживается в социальной системе — в системах научных исследований или в системе образования. Треугольником в таблице на рис. 16.2 показана область преимущественного применения методов классической ТРИЗ. Для правильного анализа проблемной ситуации необходимо ответить на вопросы, которые приведут к формированию технического или физического противоречия. Это поможет избежать нерациональных затрат времени и других ресурсов на разрешение проблемной ситуации, тем более, что это открывает возможность полного использования инструментария ТРИЗ. 16.2. Алгоритм диагностики проблемной ситуации Главной целью диагностики является определение оперативной зоны и постановка связанной с ней конкретной задачи. Этап диагностики должен предшествовать всякой постановке задачи, однако как раз это простое правило далеко не всегда выполняется или выполняется неверно. Наиболее часты ошибки, когда к решению проблемы приступают, не получив точной формулировки противоречия. Также нередки случаи неверного определения причин проблемы. И еще одна типичная ошибка состоит в попытках решить задачу, которая на самом деле включает в себя несколько взаимносвязанных задач. Перед диагностикой полезно применить процедуры неалгоритмического «растряхивания» проблемной ситуации (см. разделы 18 и 19). Это помогает ослабить привычные (неточные, неполные, недостоверные) представления о проблеме и подготовить мышление к выдвижению нетривиальных функциональных идеальных моделей, к определению достоверных причин проблемы, моделей противоречий и ресурсов в оперативной зоне. Для правильной диагностики проблемной ситуации полезно придерживаться определенной схемы, называемой здесь Алгоритмом диагностики проблемной ситуации. Эта схема (рис. 16.3) включает ряд процедур, выполнение которых в совокупности существенно повышает качество анализа исходной ситуации и подготавливает мышление к дальнейшим конструктивным действиям с помощью инструментов ТРИЗ. Опытные специалисты могут пропускать какие-то процедуры, но в целом схема соответствует оптимальной организации диагностики проблемы.
Номер и условное название шага I Цель 2 Система 3 Противоречия и оперативные зовы 4 Ресурсы 5 Мета-страте гня 6 Ранжирование задач 7 Задачи Алгоритм диагностики проблемной ситуации Описание основных процедур Определение целей развития системы на основе функционально-стоимостного анализа (или другими методами) и сопоставления с законами и линиями развития систем (см. разделы 14—15) Построение системно-функциональной модели конкретного конфликта для определения его истоков (оперативных зон — см. ниже в этом разделе) Предварительное определение множества технических или физических противоречий и множества соответствующих оперативных зон Предварительное определение ресурсов в выбранных оперативных зонах, в системе и в системном окружении Выбор Мета-стратегии решения проблемы для каждой оперативной зоны (см. раздел 14.1, рис. 14.4) Ранжирование оперативных зон по сложности содержащихся в них проблем и установление порядка решения шдач (рекомендации см. ниже в этом разделе) Краткая формулировка по одной конкретной сдаче для каждой оперативной зоны И переход к этапу редукции Рнс. 16.3. Рекомендуемые процедуры для диагностики проблемной ситуации На шаге 1 проводится общая диагностика системы с целью определения компонентов системы, подлежащих усовершенствованию или устранению — на основании функционально-стоимостного анализа, либо на основании сопоставления уровня развития технической системы и ее компонентов с законами и линиями развития систем, либо на основании иных способов оценки эффективности компонентов. Пример 113 (продолжение 4). Ранее для устранения возгорания масла пытались закрывать ванну крышкой с отверстием точно по габаритам детали. Однако, для деталей разных размеров приходилось изготавливать новые крышки. Здесь видно, что решение опиралось на нединамизированную часть (крышку) в противоречии с законом 3.1. Согласование ритмики частей системы, а также на самую низкую позицию на линиях развития инструмента (рис. 15.13) и вещества (рис. 15.14). На шаге 2 для сложных узлов и, разумеется, для всей системы в целом, могут строиться так называемые системно-функциональные модели конфликта. Целью такого моделирования является определение компонентов (или функций и действий), которые одновременно участвуют в создании позитивных и негативных функций. Такие компоненты называются оперативными и будут включены в состав соответствующих оперативных зон. Пример 113 (продолжение 5). В состав компонентов, принимаемых во внимание в данной конфликтной ситуации, входят: изделие, масло, дым, воздух. Всю схему взаимодействия этих компонентов полезно представлять графически (рис. 16.4).
Здесь масло, воздействуя на поверхность изделия, постепенно охлаждает его. Однако под воздействием высокой температуры на поверхности изделия и в присутствии кислорода воздуха масло загорается и выделяет дым. Дым загрязняет воздух. Для целей диагностики могут строиться и более подробные схемы, например, с учетом того, что масло состоит из двух частей — общая масса и узкий пограничный слой, непосредственно контактирующий с высокотемпературной поверхностью изделия. Именно этот пограничный слой быстро нагревается, а затем загорается в присутствии кислорода воздуха, выделяя продукты сгорания в виде дыма. На шаге 3 нужно сформулировать противоречия взаимодействия компонентов, включенных в системно-функциональную модель, и сформулировать описания оперативных зон, связанных с полученными противоречиями. Пример 113 (продолжение 6). В зависимости от уровня физико-химического исследования компонентов могут быть рассмотрены разные процессы и в соответствии с этим построены разные модели противоречий. Мы будем придерживаться макро-уровня, представленного на рис. 16.4. Для этой схемы могут быть сформулированы, например, следующие версии противоречий. Техническое противоречие (вариант 1): закалка изделия в масле улучшает качество изделия, но загрязняет воздух из-за появления дыма. Техническое противоречие (вариант 2): погружение раскаленного изделия в масло нужно для закалки изделия, но приводит к возгоранию масла, что имеет следствием загрязнение воздуха продуктами горения. Для одной и той же системно-функциональной схемы модели противоречия могут быть представлены отличающимися описаниями. Нужно стремиться отразить в моделях противоречий главные позитивные и негативные функциональные свойства: раскаленное изделие, качество (закалка) изделия, возгорание масла. Поэтому второй вариант предпочтительнее. Физическое противоречие (вариант 1): масло должно гореть в присутствии кислорода воздуха и при высокой температуре поверхности изделия и не должно гореть, так это загрязняет воздух. Физическое противоречие (вариант 2): масло должно нагреваться, чтобы забирать тепло от изделия и охлаждать его, и не должно нагреваться, чтобы не было возгорания. Физическое противоречие (вариант 3): кислород должен быть в воздухе, так как это определено природным составом воздуха, и кислород не должен быть в воздухе, чтобы масло не возгоралось. Физическое противоречие (вариант 4): дым должен быть в воздухе, так как он является продуктом горения масла, и дым не должен быть в воздухе, чтобы воздух не загрязнялся. Физическое противоречие должно отражать физико-химические свойства процесса, связывающие его с позитивной и негативной функциями для данной проблемной ситуации. Нельзя, например, записать такое противоречие: изделие должно быть раскаленным, чтобы произошла закалка, и не должно быть раскаленным, чтобы масло не загоралось. Практически эта модель ориентирует на смену способа закалки и на смену задачи, что неприемлемо в данной ситуации, так как требуется сохранить принцип закалки в масле. Существование нескольких альтернативных моделей на этапе диагностики не должно восприниматься как недопустимая ситуация. Более точные формулировки будут отрабатываться на этапе редукции. Однако, следует иметь в виду, что разные формулировки противоречий могут приводить к разным функциональным идеальным моделям, и следовательно, к разным направлениям поиска решения.
Пример 113 (продолжение 7). На этом простом примере нетрудно видеть, что с физическим противоречием по второму варианту связаны компоненты I и 2, с физическим противоречием по третьему варианту связаны компоненты 2 и 3, а с физическим противоречием по четвертому варианту — компоненты 3 и 4. Структурные модели для каждой из оперативных зон приведены на рис. 16.5. На шаге 4 нужно предварительно оценить ресурсы, находящихся в каждой из выделенных оперативных зон. Это может повлиять на оценку сложности задач, содержащихся в оперативных зонах. Анализ можно проводить на основе таблицы выбора ресурсов (раздел 8.2, рис. 8.7 и 8.8). Здесь мы дадим упрощенные оценки. Так для оперативной зоны а) потенциально полезными ресурсами являются: размеры и скорость опускания детали, размеры и форма ванны, расположение ванны в цехе, возможность вынесения ванны из цеха. Для второй оперативной зоны b): то же, что и для а) плюс возможность введения присадок в масло, снижающих его способность к окислению, возможность создания бескислородной атмосферы или вакуума в оперативной зоне. Для третьей оперативной зоны с): то же, что и для а). На шаге 5 нужно ориентировочно определить характер задач и предполагаемые Метастратегии для их решения. Пример 113 (продолжение 8). Так, для оперативных зон а) и b) явно просматриваются исправительные задачи с Мини-стратегиями среднего уровня сложности, так как в оперативных зонах имеются или могут быть введены некоторые ресурсы, потенциально пригодные для решения задач. В оперативной зоне с) может быть сформулирована исправительная задача по Мини-стратегии с наименьшим уровнем сложности, так как известны и способ вытяжки грязного воздуха, и способ подвода чистого воздуха. В то же время постановка с) не исключает возможности создания далеко не тривиальных решений. На шаге 6 нужно оценить сложность задач, находящихся в каждой оперативной зоне и установить определенную последовательность решения задач. Пример 113 (продолжение 9). В данном случае по результатам диагностики мы ограничились тремя разными постановками задач. Далеко не всегда легко заранее определить, какой из вариантов постановки окажется наилучшим для усовершенствования системы в целом. Например, здравый смысл подсказывает, что поскольку решение по модели с) не устраняет причины возгорания масла, то оно выглядит недостаточно перспективным. Однако, это может быть очень недорогое решение (и даже не изобретательское), соответствующее Мини-стратегии, например, оборудование хорошей вытяжки. В то же время, мышление, свободное от стереотипов, могло бы рассмотреть возможности применения вредного дыма для выполнения какой-то полезной функции в этом процессе или в цехе.
Два других варианта примерно равноценны, хотя вариант а) выглядит несколько проще, но только потому, что предполагается найти решение, не углубляясь в физикохимические особенности процесса горения, как это может потребоваться в оперативной зоне b). С другой стороны, решения на уровне вещества обычно самые эффективные в долгосрочной перспективе, что и отражено в линиях развития инструмента и вещества. В целом рекомендуются следующие правила: 1) сначала решаются задачи с техническими противоречиями, а потом — с физическими; 2) сначала решаются более простые задачи, потом более сложные — на простых задачах можно лучше подготовиться к решению более сложных, так как есть надежда увидеть проблему в целом или обнаружить скрытые осложнения; 3) первой выбирается задача, решение которой могло бы устранить сразу несколько проблем (такая задача называется ключевой или корневой — в современной ТРИЗ имеются рекомендации по выявлению таких задач). Для определенности примем, что первой будет решаться задача для оперативной зоны с), затем для зоны а), а затем для зоны b). На шаге 7 нужно сформулировать уточненные постановки задач для каждой оперативной зоны. Пример 113 (продолжение 10, а далее см. Практикум к разделам 16—17). В системе, включающей изделие, масло, ванну и воздух, нужно устранить с минимальными изменениями загорание масла при следующих вариантах постановок задач: • для оперативной зоны с): при опускании раскаленной крупногабаритной детали в закалочную масляную ванну образуется дым, загрязняющий воздух; • для оперативной зоны а): при опускании раскаленной крупногабаритной детали в закалочную масляную ванну пограничный слой масла, непосредственно соприкасающийся с поверхностью изделия, успевает нагреться до температуры возгорания и загорается; • для оперативной зоны b): наличие кислорода воздуха в закалочной ванне приводит к возгоранию масла при соприкосновении с высокотемпературной поверхностью закаливаемой крупногабаритной детали. Рассмотренный алгоритм диагностики дает необходимые основания для перехода к этапу редукции для точного моделирования противоречий, формирования идеальных функциональных моделей и тщательного анализа ресурсов. Далее решение идет в соответствии с этапами Мета-АРИЗ, причем возможно, что для отдельных задач нужно будет циклически повторить и некоторые процедуры или весь этап диагностики. 17» Верификация решения 17.1. Эффективность решения Верификация является ответственным и непростым этапом. Это обусловлено почти невозможным требованием владеть самыми разнообразными знаниями, чтобы суметь предвидеть и полностью оценить качество решения и последствия применения найденной идеи. Сколько драматических судеб изобретателей связано как с переоценкой своих идей, так и с их недооценкой! В первом случае изобретатели фанатично сражались за признание своей идеи, либо недостаточно обоснованной, либо неэффективной, а иногда и просто надуманной и ненужной. Во втором случае изобретатели упускали сильнейшие продолжения своих пионерских идей и не смогли развить их до практически реализуемых решений. Это сделали за них другие, ставшие впоследствии и известными изобретателями, и успешными предпринимателями.
Ориентация на Идеальный конечный результат, на Функциональную идеальную модель (см. раздел 9.2) сразу отсекает неэффективные варианты и связанный с их поиском перебор и ориентирует на выход в область существования сильных, то есть высокоэффективных решений. Однако, многие инженеры, не знаюшие ТРИЗ, уклоняются от решения проблем с острыми физико-техническими противоречиями и легко соглашаются платить за требуемую функцию каким угодно расходом энергии, вещества, информации; неудобствами производства, эксплуатации, утилизации; неэкологичностью и так далее. Традиционное инженерное мышление недостаточно ориентировано и на эффективное использование ресурсов при решении технико-технологических проблем. Высокоэффективное решение непременно должно улучшать показатели качества системы за счет увеличения веса позитивных факторов и уменьшения веса негативных факторов (раздел 14.2 «Идеальная машина»). При небольших конструкторских изменениях выявить последствия решений сравнительно нетрудно. Особенно, если для этого имеются хорошо отработанные математические имитационные модели в CAD-системах. Однако, при создании изобретательского решения дело обстоит не так просто. Во-первых, любая идея до завершения этапа Верификация по Мета-АРИЗ рассматривается только лишь как гипотеза об усовершенствовании технической системы. Это означает, что эта идея еще не проходила конструкторскую проработку. В лучшем случае идея только обсуждается вместе с конструкторами, если они участвуют в работе изобретательской команды. Но еще чаще над поиском решения работает один специалист, нередко по собственной инициативе, и поэтому он не имеет необходимой поддержки специалистов другого профиля. Во-вторых, применение CAD-систем еще невозможно, так как для нового решения нужно построить адекватную математическую модель, а это требует немалого времени и, возможно, дополнительных математических исследований. И все же для верификации идеи решения в ТРИЗ были выработаны некоторые практические рекомендации, помогающие избежать серьезных ошибок в оценке качества решения. В эти рекомендации входят следующие проверки. Правило исключения противоречия. Необходимым признаком эффективного решения является устранение противоречия как причины проблемы. Для проверки выполнения этого условия достаточно сравнить два описания «Было» и «Стало» и в самом общем виде составить заключение о том, разрешено ли и каким именно образом разрешено противоречие, которое и было причиной существования проблемы. Проверка должна осуществляться для каждой альтернативы технического противоречия или для каждого конфликтующего состояния физического противоречия. Правило выявления сверхэффектов. Это правило ориентирует на поиск непредвиденных качественных и количественных изменений, которые могут появиться в новом функционировании. При внесении изменений мы меняем свойства компонентов (элементов, деталей, узлов, подсистем, систем, изделия в целом). Свойства компонентов описываются параметрами. Для количественных изменений характерны линейные оценки типа «больше» или «меньше». Если свойство имеет качественный характер, например, форма, цвет или удобство применения, либо при вносимых изменениях наступают изменения в свойствах, то говорят о качественных изменениях (нелинейных, меняющих сами свойства объекта). При качественном изменении у объекта обязательно появляются новые свойства, причем исчезновение каких-то свойств в системном смысле тоже есть появление нового свойства. При этом, если новое свойство не являлось прямой целью создания изобретения, то оно называется сверхэффектом (еще раз посмотрите определение в разделе 14.2). К сожалению, могут возникать не только позитивные сверхэффекты, но и негативные сверхэффекты.
Ввиду особой важности методика поиска сверхэффектов оформлена в виде Алгоритма верификации решения и приводится ниже в разделе 17.3. Правило проверки осуществимости. В полной мере оценить все свойства идеи можно лишь на практике. Многое можно проверить на опытных образцах, макетах и путем математического моделирования. Но все это происходит позже, когда сама идея уже принята по крайней мере для конструкторской проработки. Это правило ориентирует на предварительную оценку идей решения на непротиворечивость основным физическим и техническим законам. Например, до сих пор встречаются попытки изобрести «вечный двигатель» — Perpetuum Mobile. При выполнении этого правила могут выявляться скрытые ранее проблемы, требующие создания новых изобретательских решений. Правило проверки применимости. Это правило ориентирует не останавливаться на конкретном применении полученной идеи, а рассмотреть возможности ее развития или перенесения на другие системы и в другие области техники. Следование этому правилу также может приводить к выявлению и решению новых изобретательских задач. Правило проверки новизны. Правило предусматривает исследование патентного фонда и технической литературы для проверки степени новизны полученного решения. Это необходимо в случае предполагаемого патентования идеи решения. Правило проверки метода. Правило рекомендует проверить, не является ли новым сам способ решения проблемы. В этом случае можно пополнить Ваш инструментарий новым способом, внести его в ТРИЗ-Каталоги или оформить каким-то иным образом. 17.2. Развитие решения Для развития самого технического решения и возможностей его применения могут быть использованы различные инструменты, из которых простейшими и весьма эффективными являются комбинаторные таблицы наподобие морфологической матрицы (раздел 4.2, рис. 4.5). Приведем еще один «старинный» ТРИЗ-пример «Развитие магнитного фильтра». Когда-то для очистки горячего газа от пыли использовали фильтры, сделанные из многих слоев металлической ткани. Газ должен свободно проходить сквозь ткань, а пыль должны застревать в ячейках ткани. Такие фильтры имели крупный недостаток: они быстро забивались пылью, от которой было трудно их очищать (продувкой воздуха в обратном направлении). Был изобретен магнитный фильтр (рис. 17.1). Пример 114. Магнитный фильтр. По формуле изобретения 1 (см. дальше табл. 17.2) между полюсами мощного электромагнита расположены ферромагнитные частицы
(крупинки металла). Они образуют пористую массу, через которую пропускают запыленный газ. Пыль застревает в порах. Освободить такой фильтр от пыли легко: достаточно отключить электромагнит. Фильтр «рассыплется», так как ферромагнитные частицы вместе с пылью упадут вниз, например, в промывочную ванну. Затем электромагнит включают, и фильтр из очищенных частиц «собирается» заново. Построим структурную модель фильтра в виде формулы. По исходной версии снаружи находится магнитная система М, внутри ее — ферромагнитный порошок (рабочий орган или индуктор И), а внутри порошка — пыль (изделие или рецептор Р) из потока запыленного газа. Значит, структуру можно записать в виде: МИРРИМ. Здесь Р взято дважды для симметрии. Первый прием трансформации — перестановка символов структурной формулы: 1. МИРРИМ, 2. ИМРРМИ, 3. РМИИМР, 4. МРИИРМ, 5. ИРММРИ, 6. РИММИР. Получились ли здесь новые фильтры? Например, по схеме 5, сделанной как бы по принципу «наоборот» по отношению к схеме 1. Здесь магнит должен быть окружен порошком, сквозь который проходит газ. Пример 115. Развитие магнитного фильтра. Для проверки подхода нашлось изобретение 2: электромагнитный фильтр для механической очистки газов и жидкостей, содержащий источник магнитного поля и фильтрующий элемент из зернистого магнитного материала, отличающийся тем, что, с целью снижения удельного расхода электроэнергии и увеличения производительности, фильтрующий элемент размещен вокруг источника магнитного поля и образует внешний замкнутый магнитный контур. Полное соответствие схеме 5, но сделано это изобретение через 7 лет после изобретения 1! Второй прием трансформации: изменение параметров компонентов структурной формулы. Пример 116. Магнитный вентиль. Что будет, если магнитное поле плотнее сожмет ферромагнитный порошок? Тогда через фильтр ничего не пройдет — ни пыль, ни газ, ни жидкость. Но ведь теперь фильтр превратился в вентиль! И по этой идее было получено несколько патентов для регулирования потоков самых различных веществ, причем каждый раз другими авторами и с интервалами в годы! Изобретатели не работали над развитием решения, они не замечали, что придуманные ими устройства могут иметь разнообразные варианты реализации и различные применения, все из которых являются изобретениями! Третий прием трансформации: изменение структуры и параметров компонентов изобретения. Здесь удобно применять морфологические матрицы. Например, можно построить матрицу (рис. 17.2), в которой учтем все 6 структурных компоновок и 5 состояний изделия. Состояние изделия Схема конструкции ИМ РМ МР ИР Р МН РРМИ ИИМР ИИРМ ММРИ ИМ РРИМ МИР 1 2 3 4 5 Газ 6 7 8 9 10 11 12 Жидкость 13 14 |I 16 17 18 Твердое тело Порошок 19 20 21 22 23 24
25 26 27 2S 29 30 Эластично е вещество Рис. 17.2. Морфологическая матрица для идеи развития магнитного фильтра Исходный магнитный фильтр по изобретению 1 попадает в клетку 19: схема МИРРИМ, изделие — пыль (а это порошок!). Магнитный вентиль — клетки 1, 7 и 19. Интересно посмотреть клетку 13: сквозь ферромагнитный порошок идет «поток» твердого вещества — например, протягивается проволока. Под действием магнитного поля порошок сдавливает проволоку, и она становится тоньше. Похожий процесс используется при изготовлении проволоки: заготовку протягивают через отверстия металлической плиты (фильеры). Сначала заготовка проходит через крупные фильеры, потом — через более и более маленькие, так что заготовка постепенно превращается в тонкую проволоку. Фильеры быстро изнашиваются. Но можно ли вместо плиты использовать магнитный порошок, сжимаемый полем в соответствии с клеткой 13? Такое изобретение 3 было сделано. Пример 117. Бесфильерное волочение проволоки. Способ бесфильерного волочения стальной проволоки, включающий деформацию растяжением, отличающийся тем, что, с целью получения проволоки постоянного диаметра, необходимую деформацию осущестляют протягиванием проволоки через ферромагнитную массу, помещенную в магнитном поле. Рассмотрим еще два примера. Пример 118. Способ шлифования. Изобретение 4: способ шлифования поверхностей инструментом, выполненным в виде баллона из эластичного материала, отличающийся тем, что, с целью повышения качества обработки, в баллон вводят ферромагнитные частицы, а прижим инструмента осуществляют путем воздействия внешнего магнитного поля. Снаружи находится магнитное поле, внутри — баллон с эластичными стенками, в баллоне — ферромагнитный порошок. Схема МРИИРМ, клетка 28. Пример 119. Способ распыления расплавов. Изобретение 5: способ распыления полимерных расплавов путем воздействия сжатого газа на поток расплава, отличающийся тем, что, с целью повышения дисперсности расплава, в расплав вводят ферромагнитный порошок, после чего расплав пропускают через зону действия знакопеременного магнитного поля. Снаружи находится магнитное поле, внутри — расплав полимера, а в нем — порошок. Схема МРИИРМ, клетка 10. Перестановка компонентов дает 6 схем устройства, изменение состояния изделия — 5. Но вместе эти изменения дают 30 сочетаний (рис. 17.2). Во всех этих схемах магнитное поле и изделие перемещались относительно друг друга поступательно. А что будет, если ввести относительное вращение? И такое изобретени было создано. Пример 120. Способ интенсификации процесса. Изобретение 6: способ получения неорганических пигментов, отличающийся тем, что, с целью повышения интенсивности, взаимодействие осуществляют во вращающемся магнитном поле в присутствии ферромагнитных частиц. Снова схема МРИИРМ, и если бы поле было не вращающимся, то изобретение 6 заняло бы клетку 22 в таблице 17.2. Но для схем с вращением магнитного поля нужно построить такую же таблицу, но с номерами клеток от 31 до 60. Тогда изобретение 6 заняло бы клетку 52. Оказывается, что единственную исходную схему магнитного фильтра можно развернуть в 60 (!) различных схем. Но мало кто это заметил... Поэтому в соответствии с ТРИЗ для каждого изобретения на этапе «Верификация» по Мета-АРИЗ рекомендуется искать возможности развития решения. 17.3. Алгоритм верификации решения
При поиске сверхэффектов фактически проводится исследование всех свойств нового решения. Именно поэтому методика получила такое обобщенное название как Алгоритм верификации решения (рис. 17.3). В свою очередь, именно выявление сверхэффектов имеет две важнейшие цели: определить возможности развития решения и исключить неоправданные затраты на дальнейшую разработку и попытки реализации неприемлемой идеи. В качестве примера ниже приведены результаты верификации решения при модернизации газовой турбины в концерне СИМЕНС (см. раздел 12, Пример 84). Пример 84. Газовая турбина концерна СИМЕНС (окончание). Проверка необходимого условия: сделан принципиально правильный шаг в направлении полного устранения основных физических противоречий. Проверка достаточных условий: результаты представлены в таблице на рис. 17.4 (точные данные принадлежат концерну СИМЕНС).
№ 1 2 3 4 5 6 7 8 9 10 II 12 13 14 Процедуры Построить структурную схему предлагаемого объекта Определить функции компонентов всех уровней Определить по структурной схеме потоки всех (или главных) ресурсов Построить зависимости функций от параметров. Определить качественные и количественные свойства и функции Указать новые введенные компоненты Начиная от новых введенных компонентов, проследить изменения по каждому из потоков ресурсов для оценки изменения функций всех рангов вплоть до самого высокого ранга (главная полезная функция объекта) Проверить характер изменения функций в предконфликтной. конфликтной и постконфликтной фазах в оперативном времени по старому решению Проверить изменения конструкционных ресурсов Проверить появление новых позитивных функций и свойств (позитивных сверхлрфек-тов). Оценить их влияние на показатели эффективности объекта Рассмотреть последствия появления позитивных сверхэффектов. Составить перечень изменений (позитивных и негативных) в окружении данного объекта, в способах его производства и эксплуатации на интервале его жизненного никла Рассмотреть возможности улучшения решения Проверить появление новых негативных функций и свойств (негативных сверхэдм/нгк-тов). Оценить их влияние на показатели эффективности объекта Рассмотреть последствия появления негативных сверхзффектов. Составить перечень изменений (позитивных и негативных) в окружении данного объекта, в способах его производства и эксплуатации на интервале его жизненного цикла Рассмотреть возможности преодоления возникших недостатков. При необходимости, отклонить проверяемое решение, сформулировать новые изобретательские проблемы и вернуться к поиску новых идей Рис. 17.3. Алгоритм верификации решения
№ Процедуры 5 Указать новые введенные компоненты: по окружности рабочего пространства в корпусе турбины установлены 2-) горелки. 6 Оценка изменения функций всех рангов вплоть ло самого высокою ранга (главная полезная функция объекта): КПД вырос во 38.35 % вместо прежних 36 % ! Это очень большой успех.' 7 Проверить характер изменения функций в прелконфликтной. конфликтной и постконфликтной фазах в оперативном времени по старому решению: обеспечивается более равномерная нагрузка на лопатки 8 Проверить изменения конструкционных ресурсов: обнаружен сверхэффект — возможность выполнения турбины меньшего размера при прежнем КПД 9 Проверить появление новых позитивных функций и свойств (позитивных сверхф1>ек-тов). Оценить их влияние на показатели эффективности объекта: обнаружен особенно ценный сверхэффект — улучшение ремонтопригодности турбины, так как теперь ремонт любой неисправной горелки стало возможным производить без остановки турьины! 10 Рассмотреть последствия использования возможностей, возникающих с появлением позитивных сверхэффектов. Составить перечень изменений (позитивных и негативных) в окружении данного объекта, в способах его производства и эксплуатации на интервале его жизненного цикла: 1) экономия материалов и трудозатрат при производстве турбины; 2) экономия площадей и расхода газового топлива при эксплуатации турбины; 3 ) налоюго более длительный жизненный цикл лопаток — экономия материалов и трудозатрат. Суммарный экономический эффект (на интервале жизненного инк ни на каждой турбине исчисляется многими миллионами марок 11 Рассмотреть возможности улучшения решения: 1) следует рассмотреть стратегию, связанную с разделением противоречивых свойств в веществе лопаток; 2) необходимо продолжить линию дробления рабочего органа 1'ис. 17.4. Пример верификации решения Практикум к разделам 16—17 44. Закалочная ванна. Завершите решение трех задач для примера 14.1, основываясь на формулировках, полученных в примере 14.1 (продолжение 10 в конце раздела 14.2). Примечания: • Не забудьте формулировать функциональные идеальные модели для каждой задачи.
• Проверьте наличие позитивных и негативных сверхэффектов в Ваших решениях. • Проверьте возможность использования Ваших решений для решения проблем в других отраслях промышленности. • Обратите внимание на то, что некоторые идеи пригодны для решения задач при разных постановках. Иногда могут быть получены такие решения, которые кардинально снимают проблему при нескольких возможных постановках, так что при получении такого решения отпадает необходимость решать другие задачи. • Сравните все полученные решения по различным критериям, например, с точки зрения экологичности, простоты технической реализации, экономической эффективности. • При возникновении непреодолимых трудностей при решении задач в постановках а) и b) попробуйте применить Метод моделирования маленькими фигурками из нижеследующего раздела 18.3. 45. Газовая турбина СИМЕНС. Рассмотрите возможности развития полученного решения. Проведите диагностику новой системы с целью ее усовершенствования на основе Законов и Линий развития систем (см. также разделы 15.1 и 15.2). 46. Автобан. Проведите диагностику автобана с целью его усовершенствования на основе Законов и Линий развития систем. Сформулируйте противоречия, определите множество оперативных зон и составьте для каждой оперативной зоны изобретательскую задачу. 47. Идеи для предпринимательства. Проверьте возможность развития продукции Вашего предприятия или снижения затрат на производство (хранение, транспортировку, обслуживание) на основе анализа достоинств и недостатков объектов, выбранных для анализа, и разработки задач усовершенствования этих объектов на основе Алгоритма диагностики проблемной ситуации. 48. Ваши изобретения. Проверьте возможность развития решений и расширения применения изобретений, сделанных Вами ранее. Искусство изобретения Хорошие результаты могут быть достигнуты только при высокой культуре мышления. Ученому, конструктору, изобретателю нужна мощная и послушная фантазия. Между тем во многих случаях потенциал фантазии катастрофически низок. Может показаться, что применение законов, приемов, стандартов диаметрально противоположно полету фантазии. На деле же весь аппарат ТРИЗ рассчитан на сильную, хорошо управляемую фантазию. Генрих Альтшуллер 18. Практицизм фантазии 18.1. Неалгоритмические ТРИЗ-методы «Развитие техники, как и всякое развитие, происходит по законам диалектики. Поэтому ТРИЗ основывается на приложении диалектической логики к творческому решению технических задач. Но... одной логики недостаточно. Необходимо учитывать особенности «инструмента», с помощью которого работает изобретатель, а «инструмент» этот весьма своеобразный — мозг человека» — так писал основатель ТРИЗ 30 лет назад [3].1 Он же подчеркивал, что в любом творчестве максимально используются сильные стороны человеческого мышления и характера, такие, как интуиция, способность Злссь и далее с моими небольшими стилистическими изменениями (ОМ).
воображения, настойчивость, огромная работоспособность, смелость, эрудиция и т. д. Но во избежание ошибок и потерь времени, как для творческой личности, так и для человечества, нужно учитывать и слабые стороны мышления, особенно, психологическую инерцию. Г. Альтшуллер приводит два примера: 1) для погружения и пребывания на глубине водолазы используют свинцовые галоши. Более 100 лет эти галоши делались одного размера, и одним были малы, а другим, разумеется, велики. И только примерно через век сделали «раздвижные галоши» — простейшее, но очень полезное усовершенствование! 2) Линзы и очки были известны за 300 лет до изобретения телескопа. 300 лет никому не приходило в голову посмотреть на мир через две последовательно установленные линзы! Почему? Считалось, что линза дает искаженное изображение. Две последовательно установленные линзы должны были (так подсказывал «здравый смысл») давать еще большее искажение. Этот психологический барьер задержал появление телескопа на 3 столетия! Между тем трудно назвать изобретение, которое оказало бы более революционизирующее влияние на мировоззрение человека. Телескоп открыл человеку звездные миры, дал огромный толчок развитию науки. Трудно даже представить, насколько вперед ушла бы цивилизация, если бы телескоп появился на 300 лет раньше. О психологической инерции автор ТРИЗ писал также следующее [6]: «Изобретатель строит ряд мысленных моделей и как бы экспериментирует с ними. При этом мышление изобретающего человека имеет характерную особенность: ...исходной моделью чаще всего берется уже существующая машина. Такая исходная модель имеет ограниченные возможности, сковывающие во-бражение. В этих условиях трудно прийти к принципиально новому решению. Если же изобретатель начинает с определения идеального конечного результата, то в качестве исходной модели принимается идеальная схема — предельно упрощенная и улучшенная. Дальнейшие мысленные эксперименты не отягощаются грузом привычных конструкционных форм и сразу же получают наиболее перспективное направление: изобретатель стремится достичь наибольшего результата наименьшими средствами.» Сознание контролирует нас через образы, заложенные в слова [6]: «Задача ставится в известных терминах. И эти термины не остаются нейтральными, они стремятся сохранить присущее им содержание. Изобретение же состоит в том, чтобы придать старым терминам или их совокупности новое содержание. Инерцией, присущей технической терминологии, прежде всего и объясняется инерция мышления...» Пример 121. Нефтепровод [5]. На одном из семинаров рассматривалась задача о переброске трубопровода для перекачки нефти через ущелье. По условиям задачи устройство опор или подвески исключалось. Обычно в таких случаях изгибают трубопровод в виде арки (обращенной выпуклостью вверх или вниз — при больших пролетах). Решение получилось тривиальное: нужно увеличить площадь поперечного сечения трубы. В следующий раз та же задача формулировалась иначе: необходимо перебросить нефтепровод. На этот раз среди решений оказалось и такое: прочность зависит как от площади, так и от формы поперечного сечения. При той же площади поперечного сечения наиболее прочной будет конструкция в виде полого двутавра (рис. 18.1,а). Еще вариант (рис. 18.1,b): двутавр можно изготовить из двух труб меньшего диаметра, чем исходный трубопровод, расположенных одна над другой и соединенных жесткими вертикальными связями. В итоге, путем замены специального технического термина участники семинара отошли от привычного представления о трубе с круглым сечением, с которым только и ассоциируется слово труба, а смогли предложить нефтепровод, но не круглого сечения.
Модель этого процесса можно построить на основе известной схемы преодоления познавательно-психологического барьера, предложенной академиком Б. Кедровым2 (рис. 18.2). В поисках решения мысль человека движется от фактов Ф, описывающих исходную ситуацию, к выявлению особенного О, что присуще этим фактам для выдвижения Идеи решения. Движение мысли идет в некотором направлении (а) и упирается в познавательнопсихологический барьер Б. Этот барьер означает либо отсутствие достаточных знаний, либо отсутствие необходимого психологического состояния. Какие действия ассоциируются с задачей о преодолении барьера? Например, такие: перелезть или перепрыгнуть через барьер. Именно это и показано, как модель творческого инсайта, представленного неким трамплином, перебрасывающим мысль через барьер! Таким трамплином может служить другая мысль, идущая, например, в направлении ((3). Это может быть, практически, любая ассоциация: предмет или явление (в Методе фокального объекта), другая идея, даже неверная (в Брейнсторминге), фантастическая аналогия (в Синектике) и так далее. На самом деле и здесь срабатывает все та же психологическая инерция! Спросите себя: а чем именно мешает барьер? Если Вы хотите всего лишь увидеть Идею, находящуюся за барьером, то Ваши действия могут оказаться совсем иными! Могут подойти, например, такие ассоциации: • обойти барьер сбоку; • подняться над барьером на лестнице или воздушном шаре; • снизить или разрушить барьер; • пробить барьер, сделать в нем отверстие, туннель и так далее. Все это разные образы. И они так же специфичны и вводят в заблуждение, как и термины в любой другой постановке проблемы. Суть же метафоры Б. Кедрова в том, что 2 Б. М. Кедров. О теории научного открытия. Сборник «Научное творчество- М.. 1%ч
мысли нужен метод для усмотрения с его помошью «неочевидной Идеи». Таким методом в ТРИЗ является Функциональное идеальное моделирование (см. раздел 9.2). Продолжая игру слов и смыслов, и переходя к более фантастическим образам, можно сказать, что метод функционального идеального моделирования делает барьер... прозрачным! То есть сквозь него что-то становится видно. На рис. 18.3 представлена таблица сравнения «обычного» и ТРИЗ-мышления. «Обычное мышление контролируется сознанием, оно сдерживает нас от нелогичных поступков, налагает массу запретов. Но каждое изобретение — это преодоление привычных представлений о возможном и невозможном3.» Традиционное № мышление Тенденция к 1 облегчению, упрощению требований задачи 2 Тенденция к уклонению от «невероятных» путей 3 Зрительное представление об объекте нечеткое и привязанное к объекту-прототипу Представление об 4 объекте «плоское» 5 Представление объекте «сиюминутное» об 6 Представление об объекте «жесткое», трудно поддающееся изменениям 7 Память подсказывает близкие (и потому слабые) аналогии С годами усиливается 8 «барьер специализации» 9 Степень управляемости мышления не повышается ТРИЗ-мышлепие Тенденция к обострению, усложнению требований задачи Стремление идти но пути увеличивающейся «невероятности» Зрительное представление об объекте четкое и привязанное к идеальному конечному результату Представление об объекте «объемное»: одновременно рассматриваются не только объект, но и его подсистемы, а также налсистема. в которую он входит Объект виден в историческом движении: каким он был вчера, какой он сейчас, каким он должен стать завтра (если сохранить линию развития) Представление об объекте «пластичное», легко поддающееся сильным изменениям в пространстве и во времени Память подсказывает далекие (и потому сильные) аналогии, причем запас информации постоянно пополняется la C'PCI собираемых новых принципов, приемов и т. д. • Барьер специализации» постепенно разрушается Мышление становится все более управляемым: изобретатель как бы видит ход мышления со стороны, легко управляет процессом мышления (например, Ю. Саламатов. Как стать изобретателем: 50 часов творчества / Книга для учителя, М.. 1991).
2 легко уходит от «напрашивающихся» вариантов) Рис. 18.3. Сравнение традиционного и ТРИЗ-мышления Саму способность к функционально-идеальному моделированию также надо тренировать. Например, чтением научно-фантастической литературы, детективных романов, анекдотов, даже сказок, просмотром юмористических и фантастических рисунков, произведений живописи, прослушиванием необычных музыкальных произведений. Кроме концепции функционального идеального моделирования, для преодоления психологической инерции в ТРИЗ был создан ряд «неалгоритмических» методов: • «Фантограмма» и моделирование по координатам «Размерность — Время — Стоимость» (специальная сокращенная форма «Фантограммы»); • модель «Было — Стало»; • «Моделирование маленькими фигурками»; • рекомендации по предотвращению логических и психологических ошибок. Первые два метода используются для снятия психологической инерции на начальных стадиях решения задачи, при се «растряске», а третий метод является эффективным «неалгоритмическим» инструментом для генерирования новых идей. Психологические рекомендации рассмотрены ниже в разделе 19 Интеграция ТРИЗ в профессиональную деятельность. 18.2. Модели «Фантограмма» и «Было — Стало» Первая модель применяется прежде всего для «расчистки» мышления от негативных стереотипных представлений об исходной задаче и о целях се решения. Цель — увидеть (нестрого!) особенности этого объекта, границы возможностей его трансформации. «Фантограмма» представляет собой таблицу (рис. 18.4), помогающую провести экспресс-тренинг или экспресс-стимуляцию воображения непосредственно на примере объекта решаемой проблемы. Сама идея «Фантограммы» возникла у Г. Альтшуллера при изучении сотен произведений научной фантастики. Он подошел к оценке этих произведений так же, как и к оценке изобретений на новизну и полезность. Действительно, в «фантастике» является правилом создание произведений только с новой, оригинальной идеей фантастического сюжета. Это требует незаурядного воображения и знаний. В то же время, для тренинга участникам полезно самим пробовать создавать новые объекты и процессы, применяя для этого «Фантограмму». «Многие привыкли смотреть на научно-фантастическую литературу как на развлекательное чтение, на литературу второго сорта... Ни одна из сравнительных таблиц предсказаний и степени их реального воплощения, составлен11 эак 139 Искусство изобретении Изменение: объект способ 7 2I с I I я я в _ й1Л г ? О -., К К "Z ' г: S 5 3 X 5иX §э хi 4 z5 | г л. U Ш _1 0 1 о 8 -J ц 2 1 с й
В !5 чь О ои 1 X — о U 11 > о £ a s о . С О > , 1— * Я Р X -в о и X Щ о 2 С g 1 2 S я ^ 5 Сделать наоборот Увеличить — уменьшить Динамизации — статика Ускорить — замедлить Универсальность — специализация Дробление — объединение Квантование — непрерывность Внесение — вынесение Смешение во времени Оживление Изменение связей Изменение законов природы Рис. 18.4. "Фантограмма* ных по оценкам ученых, не дает столь высокого процента успеха, как у писателейфантастов. А ведь писатели-фантасты заглядывают в будущее на десятки и сотни лет. Например: утопия Ф. Одоевского «4338 год. Петербургские письма» (1840) — самолеты, электропоезда, синтетические ткани, самодвижущиеся дороги; роман А. Богданова «Красная звезда» (1908) — атомные двигатели, заводы-автоматы; утопия В. Никольского «Через тысячу лет» (1926) — прямое предсказание, что первая атомная бомба будет взорвана в 1945 году; роман первого американского писателя-фантаста X. Гернсбека «Ральф 124С41+» (1911) — видеотелефон, гипнопедия, микрофильмы, радиолокация, ракеты (78).» Жюль Верну79 принадлежит следующее высказывание: «Все, что человек способен представить в своем воображении, другие сумеют претворить в жизнь.» Г. Альтшуллер составил таблицу (80) (рис. 18.5), убедительно подтверждающую, что «история научной фантастики дала яркие примеры превращения «невозможного» в «возможное»»
* По вышеуказанной работе Ю:Саламатопа. Жю.ть Верп (I.S2K—1405) — выдающийся французский писатель, основатель жанра НИ) ................................................................................................................ >п фантастики. *в По вышеука шиной работе Г. Адьтшуллера. 7 ,ч Судьба фантастических идей Автор Общее кол-во новых идей Сбылись Кол-во Ж. Берн Г. Уэллс 108 86 50 А. Беляев41 64 57 21 Оказались ошибочными н л и неосуществимыми Подтвердилась принципиальная возможность Кол-во % % Кол-во 59 66 42 32 23 52 9 34 20 26 II 3 с ,- 9 11 1. Рис. 18.5. Таблица «успеха» предсказаний писателей-фантастов (по Г. Ап.тшуллеру) Потрясающим научно-фантастическим предвидением обладал основоположник теории ракетного и космического движения Константин Циолковский4-. Вот некоторые из его сбывшихся, а также вполне вероятных идей: 1. Ракетный самолет с крыльями и обыкновенными органами управления. 2. Уменьшение крыльев самолета с увеличением тяги двигателей и скорости полета. 3. Проникновение в разреженные слои атмосферы, полет за пределы атмосферы и спуск планированием. 4. Основание подвижных станций вне атмосферы (искусственные спутники Земли).. 5. Посадка на Луну. 6. Скафандры, в том числе с жидкостным наполнением. 7. Использование космонавтами энергии Солнца сначала для жизненных целей станции, а затем и для перемещения в космосе. 8. Увеличение числа космических станций, развитие в космосе индустрии (см. еще один проект А. Юницкого далее в этом разделе). Вместе с тем, механизм воздействия фантастики на науку не сводится к простой формуле «фантаст предсказал — ученый осуществил». Часть прогнозов оказывается, например, неверной или социально неприемлемой. Специализированная форма «Фантограммы» ТРИЗ-инструментом в виде модели «Размерность (для краткости: модель РВС). стала самостоятельным — Время — Стоимость» Как и «Фантограмма», модель РВС предназначена для расшатывания привычных представлений об объекте. То есть ее назначение — переводить «привычное» в «непривычное». При использовании этой модели последовательно рассматривают изменение условий задачи в зависимости от изменения трех параметров: геометрических размеров — Р (однако, в общем случае, это могут 81 Александр Беляев (1884 — 1942) — один из первых русских авторов- фантастов. Константин Циолковский (1857—1935) — выдающийся русский ученый-самоучка, основоположник теории ракетного движения, движения спутников и полетов на Луну и другие планеты. 4
быть изменения «размера» любого параметра, например, температуры, прочности, яркости и т. п.), времени — В, стоимости — С. Для РВС-моделирова-ния используется специальная таблица (рис. 18.6). Каждый параметр нужно изменять в максимально большом диапазоне, границами которого может быть только потеря физического смысла задачи. Значения параметров нужно менять ступенями так, чтобы можно было понимать и контролировать физическое содержание задачи в новых условиях. Рассмотрим один из классических примеров, разработанный еще Г. Альтшуллером. Пример 122. РВС-моделирование. Допустим, что проводится подготовка к решению задачи об обнаружении неплотностей и утечки рабочего вещества из агрегатов холодильника. Результаты РВС-моделирования представлены в таблице на рис. 18.6. Па П Реальн Каким может раметр редел ое шачение быть решение Р Дни га Количество I детали < 1 и теряемого вещества I мало. Надо сделать его легко обнаруживаемым Длима Обнаружение на С детали > 100 расстоянии — О км радиолокация, оптическая локация, термолокация 0 Обнару Механические и жить надо iii химические способы ().()() 1 с исключаются. Возможны только электромагнитные или оптические В X Обнару Рабочее жить надо вещество может ■.! 10 лет реагировать с материалом деталей. Тогда можно контролировать изменение внешнего вида деталей ( Стоим Нужно, чтобы С 1 ость протекающее вещество обнаружении сильно .сообщало» о раина О себе 100 Добавлять в 000$ рабочее вещество чтото дорогое, но легко обнаруживаемое Возможный пришит решения Какие-то микродобавки, обнаруживаемые при малейшей уте ч ксЛокация обычных инфракрасных радиолокация в или лучах, Электромагнитн ые или оптические поля и эффекты. « Индикатором утечки может служить материал деталей Развить принцип самообслуживания — самообнаружения Какие-то добавки, возможно дорогие, но хорошо обнаруживаемые при утечке Рис. 18.6. Таблица и пример РВС-молслирования (по Г. Альтшуллеру)
При РВС-моделировании ответы могут быть очень разными — это зависит от фантазии, знаний, опыта, индивидуальных качеств человека. Нельзя только заменять цель исходной задачи! Например, нельзя в последней строке писать: повысить качество изготовления агрегатов — хотя, конечно, на практике разумнее предотвратить появление неплотностей, чем потом «бороться» с ними. И еще о стоимости: изменение этого параметра в сторону увеличения означает лишь допущение, что есть гипотетическая «возможность» заплатить за изменение как угодно много. А ответить нужно на вопрос: что при этом изменится в отношении к проблеме? Как она тогда может быть решена и почему? РВС-моделирование часто сопровождается иллюстрациями. При этом рекомендуется выполнять рисунки с возможной тщательностью, не допуская небрежности. Плохой рисунок, как правило, свидетельствует о плохом понимании задачи. При этом минимальное количество рисунков два: рисунок «Было» (или «Есть») и рисунок «Стало» (или «Должно быть»). Иногда полезно выполнить оба рисунка в одном масштабе, а потом совместить их, и все отличия выделить потом цветом. А теперь два примера. Пример 123. Кольцо на земном шаре. Это также одна из разминочных задач для тренингов. Она формулируется очень просто и имеет очень простой ответ. Но дело в том, что на тренинге требуется решить эту задачу за 20 секунд! Возьмите часы с секундной стрелкой и только после этого прочитайте условие задачи. Оказывается, наши возможности восприятия и осознания условий задачи также непостоянны и зависят от многих факторов. В частности, если на семинаре сначала говорится, что Вы должны решить достаточно сложную задачу, а потом время ограничивается 20 секундами, то процент правильно и вовремя решивших задачу падает! Итак, задача: предположим, что на «идеально круглый» земной шар плотно надето тонкое раздвигающееся кольцо. Вам нужно раздвинуть его так, чтобы с одной стороны образовался зазор между кольцом и поверхностью Земли, достаточный, чтобы Вы проползли под кольцом, например, в 0,5 м. На сколько километров нужно увеличить окружность кольца? Пример 124. Космический транспорт и космическое индустриальное кольцо А. Юницкого. Потрясающий пример РВС-моделирования представляет собой исследование еще одного невероятного, но не противоречащего физическим законам, изобретения уже известного нам изобретателя Анатолия Юницкого (см. раздел 15.3). На этот раз он изобрел... колесо! Но не простое, а размером в земной шар! Да, он именно и предложил надеть на Землю по экватору кольцо, которое будет затем космическим транспортным средством: на рис. 18.7, а «Было = Кольцо», а на рис. 18.7,b «Стало = КТС (Космическая Транспортная Система)». Фантастичность этого проекта превосходит выдумку самого барона Мюнхгаузена, который вытянул себя вместе с лошадью из болота за собственную косичку! Однако, в КТС дело обстоит именно таким образом — КТС сама себя выносит в космос. Пусть кольцо 1 (рис. 18.7,а) представляет собой ротор шагового электродвигателя на магнитном подвесе. Статор двигателя выполнен внутри оболочки, в которой находится ротор, и также охватывает земной шар. Ротор висит в оболочке на магнитном подвесе и никакими элементами не касается оболочки. Размер ротора может быть 20—40 см. Внутри ротора могут располагаться материалы для создания сооружений в космосе или сырье для работы космической промышленности. После разгона ротора до скорости, превышающей первую космическую скорость, например, до 10 км/сек, он становится... невесомым! Тогда отключают магнитный подвес, и ротор уносится в космос! На .126 Искусство изобретения
высоте ло 10 км (позиция 2 на рис. 18.7, b) сбрасывается оболочка, опускаемая на Землю на парашютах. Далее ротор поднимается на заданную высоту. Например, в позиции 2 на рис. 16.7, b высота над Землей может быть 100 км. а в позиции 3—1000 км. Ротор выполнен состоящим из секций, соединенных телескопическими связями. Поэтому он свободно увеличивается по размеру диаметра и, соответственно, по размеру окружности. При диаметре Земли по экватору в 12 756 км окружность экватора равна примерно 40 000 км. Такова же и стартовая окружность ротора. На высоте 100 км его окружность увеличится всего лишь на 628 км или на 1,6%, а на высоте в 1000 км — на 6280 км или на 15,7%. (Сравните с параметрами в предыдущей задаче, но с учетом того, что там кольцо прижимается к Земле с одной стороны и отодвигается с другой!) При торможении ротора он начинает сжиматься и может опускаться на Землю! При этом возможен дополнительный возврат (рекуперация) огромного количества энергии! Если в космосе производить хотя бы 1 % сегодняшних конструкционных материалов или 50 % вырабатываемой сейчас энергии, то геокосмический грузопоток должен быть минимум 10 миллионов тонн в год. Для выведения такого количества груза на орбиту, скажем, к 2020 году, кораблями типа «Шаттл» при интенсивности запусков 60 в год эту программу надо было начинать осуществлять раньше, чем в Древнем Египте приступили к строительству пирамиды Хеопса! А выводить столько грузов в год — вовсе нереально! Причем уже сегодня ракетный транспорт близок к потенциальным пределам своего развития как с экономической, так и с технической и экологической точек зрения. Например, подсчитано, что всего лишь не более 100 частых запусков орбитального корабля типа «Шаттл» приведут к катастрофическому и необратимому разрушению озонового слоя планеты продуктами сгорания ракетного топлива. КТС способен вывести в космос и забрать из космического индустриального кольца за один полет от 1 до 5 миллионов тонн полезного груза! В год могут быть сделаны десятки стартов-посадок, практически безвредных для природы! Себестоимость выведения грузов в космос с помощью АТС будет менее 1 доллара США за килограмм, что в тысячи раз меньше в сравнении с ракетным транспортом! В таблице на рис. 18.8 приведен сокращенный перечень изобретательских приемов, реализованных в космической транспортной системе А. Юницкого. Х Прием Применение 0 Дробление Секционирование ротора а 3 4 0 Замена Применение магнитных подвесов механической среды линейных шаговых >лек-тролвигателей п
0 Вынесение 0 Динамизация 5 Дзя создания ОТС выделено единственно нужное свойство са м он од н и ма ю ш и йся ротор Тело ротора изменяется в рашерах 7 Не уменьшать, а увеличивать — в миллионы раз! — полезный груз, выводимый в космос 1 Местное Каждая часть ОТС на всех участках 2 качество иодега находится в наилучших условиях дли реализации своих функции 1 Частичное или Если нельзя запустить в гол 100 кораблей 6 избыточное действие типа Шли л. га' нельзя ЛИ поднять нужный груз при однократном полете.'! I Посредник Ротор — посредник, переносящий груз в N ОТС! 1 Переход В ОТС перемешается в плоскости — 9 другое измерение прашлись по круп и изменяясь и радиальном направлении (как расшириюшииси/сжимающийся ротор) 2 Обратить вред в Огромный вес ОТС ста.) его полезной 1 пользу нагрузкой! 2 Применение В частности: изменение веса ротора при 6 фазовых переходов pan one ли нерпой космической скорости! 2 Самообслужива ОТС — единственный самонесуший 9 ние транспорт! 3 Антивес Веса ротора компенсирован 2 центробежными силами при его раскручивании! 3 Маз решка ОТС — многоуровневая вложенная 4 конструкция: ipyi ротор — оболочка — статор (зс та кала) 3 Объединение ОТС — сумма огромного числа секций 5 одного шиначенин 3 Эквинотенциал Раскручивание ОТС по эквнпотенпиали 7 ьность на широте зкиаюра (в отличие от вертикального ракетного польем.и Рис. 18.8. Реинвентинг Космической Транспортной Системы А. Юницкою На начало III тысячелетия применение космической транспортной системы А. Юницкого для создания геокосмической индустриальной цивилизации — самая практичная идея из всех самых фантастических идей. И в заключение этого раздела приведем оптимистическое напутствие Г. Альтшуллера: «Освоение техники фантазирования нисколько не похоже на зазуб I Наоборот I ривание шаблонных текстов. Одно и то же упражнение может быть выполнено поразному в зависимости от личности человека. Здесь, как в музыке, технические приемы помогают раскрытию индивидуальных качеств, и интересно выполнение упражнения порой доставляют подлинно эстетическое удовольствие, как хорошо сыгранное музыкальное произведение.»
18.3. Моделирование маленькими фигурками По-видимому, первым примером применения ТРИЗ к самой себе для своего же развития было создание Метода моделирования маленькими фигурками (ММФ). Г. Альтшуллер обратил внимание на противоречия приема эмпатии (уподобления себя изменяемому объекту) из Синектики Гордона: сильная сторона — включение фантазии и органов чувств для стимуляции воображения, слабая сторона — принципиальная ограниченность метода при некоторых часто встречающихся трансформациях типа разделения объекта, разрезания, растворения, скручивания, взрывания или конденсации, сжатия, нагрева и т. п. Итак, эмпатия должна быть, и ее не должно быть! Идеальное решение — принцип копирования! Пусть действия моделируются, но не самим изобретателем, а какой-то условной моделью-фигуркой, а еще лучше толпами маленьких фигурок в любом нужном количестве и с любыми неожиданными и фантастическими свойствами! Аналогами для такой идеи послужили известные примеры из истории творческих решений. Так, известный химик Кекуле 5 «увидел» структурную формулу молекулы бензола (С6Н6) сначала в виде кольца обезьян, ухватившихся за прутья клетки, а также за передние и задние руки друг друга. А в мысленном эксперименте Максвелла6 требовалось из одного и того же сосуда с газом перевести в другой сосуд частички газа с большей энергией. Максвелл мысленно соединил сосуды трубочкой с «дверцей», которую «маленькие демоны» открывали перед высокоэнергстическими быстрыми частичками и закрывали перед медленными. Историю с Кекуле историки творчества обычно приводили только для того, чтобы поговорить о роли случайности в открытии или изобретении, а из опыта Максвелла делали и без того очевидный вывод о важности воображения для ученого. И только Г. Альтшуллер превратил эти случаи в метод! Он дал ему название: Метод моделирования маленькими человечками. Много лет назад автор учебника заменил в названии слово «человечки» на более эмоционально-нейтральное — «фигурки». Дело в том, что в некоторых ситуациях часть или всех «человечков» нужно тем или иным способом уничтожать, что вызывает психологический дискомфорт при использовании этого образа и также мешает успешно решать творческие задачи. Дискомфорт практически отсутствует при следующем представлении о «фигурках»: они умеют выполнять любые наши фантазии, умеют активно действовать, но остаются абсолютно абстрактными объектами наподобие шахматных фигур или нарисованных карикатурных персонажей. «Фигурки» не более «живые» и «эмоциональные», чем любой напечатанный на этой странице символ: буква, запятая, точка, скобка, которые при необходимости можно спокойно стереть, чтобы заменить новыми символами. Взяты именно условные «фигурки», а не, например, молекулы или микробы. Дело в том, что для мысленного моделирования нужно, чтобы маленькие частицы «видели», «понимали», могли действовать «коллективно»! Применяя ММФ, изобретатель также использует эмпатию, но не сам! Это за него делают маленькие фигурки! А изобретатель, словно кукловод или художник-аниматор управляет этими фигурками и сам наблюдает их действия. Сохранена сильная сторона эмпатии без присущих ей недостатков. Правила ММФ представлены в таблице на рис. 18.9. Метоп моделирования маленькими фигурками Ш Мысленные операции 5 6 Кекуле фон Страдониц Ф. А. (1829—1896) — немецкий химик, открывший формулу бензола. Джеймс Максвелл (1831 — 1879) шотладский физик, создавший теоретические основы описания электромагнитных нолей.
аг 1 Выделить часть объекта, которая не может выполнить требуемые несовместимые требования. Представить эту часть в пиле множества маленьких фигурок Разделить множество маленьких фигурок на группы, 2 действующие в соответствии с ситуацией. На этом шаге нужно нарисовать ситуацию как «Есть* или «БылоПроанализировать исходную ситуацию и перестроить модель 3 (объекта) так. чтобы она соответствовала требуемому идеальному функционированию, и чтобы были устранены исходные противоречия. На этом шаге нужно нарисовать ситуацию как «Стало» или «Должно быть4 Перейти к технической интерпретации и поиску средств дли реал и мини Рис. 18.9. Шаги и операции ММФ ТАБЛИЦА Одной из первых демонстрационных задач по ММФ была следующая. Пример 125. Адаптивный полировальный круг. Для полирования сложных поверхностей трудно применять обычные полировальные круги, так как при большой толщине круга он не может попасть в узкие щели в изделии, а при узком круге падает производительность полирования. Применение ММФ может быть представлено следующим описанием. Шаг 1. Изменять по правилам ТРИЗ нужно инструмент. Представим полировальный круг состоящим из двух частей, одна из которых, по-видимому, соприкасающаяся с изделием, должна быть подвергнута трансформации (слева на рис. 18.10,а). Шаг 2. Теперь нарисуем множество фигурок, стремящихся изменить (справа на рис. 18.10,а) цилиндрическую поверхность круга! Более того, пусть фигурки будут сами полировать деталь! А другие фигурки пусть держат тех, кто полирует. Шаг 3. Пусть дана деталь сложной формы (рис. 18.10,b). Теперь во время вращения круга человечки прижимаются к детали, но только в месте соприкосновения круга с деталью. А после выхода из контакта с деталью фигурки собираются в группу, придающую кругу привычную форму тела вращения. Здесь все соответствует максимальной функциональной идеальной модели: круг сам принимает форму детали! Шаг 4. Таким образом, становится яснее, что круг должен быть устроен так, чтобы его наружнаяя рабочая часть была динамизирована и могла адаптироваться к профилю поверхности детали. Первая техническая возможность: составные круги из многих пластин.
Идея выглядит сомнительной из-за сложности, а из-за неравномерного износа пластин и вовсе может не дать нужного результата. Вторая возможность: выполнить внешнюю, динамизируемую часть из магнитоабразивного порошка, а сердцевину круга — в виде магнита. Тогда магнитоабразивные частицы будут, как и маленькие фигурки, подвижными, чтобы принимать вместе форму детали, и будут твердыми (по отдельности), чтобы полировать деталь. На нерабочих участках во время вращения круга частицы будут немедленно располагаться в соответствии со структурой удерживающего их внутреннего магнитного поля. ММФ снижает инерцию, связанную с визуальным представлением и восприятием объектов. Поэтому принципиально важно рисовать объект достаточно крупно, чтобы силы, моделируемые в объекте, были представлены толпами фигурок, не стесненными линиями маленького рисунка и действующими нужным идеальным образом. 19. Интеграция ТРИЗ в профессиональную деятельность 19.1. Мотивация и развитие личности Одним из наиболее постыдных явлений для современного человечества (начало III тысячелетия!) можно назвать довольно широко распространенное отношение к изобретателям как к людям, мягко говоря, со странностями. Человек, сделавший открытие или изобретение, и сообщивший, естественно, о своем открытии окружающим, вполне может получить ярлык чудака, еретика, психа и т. п. Чем крупнее и «еретичнее» изобретение, тем больше вероятность для его автора оказаться осмеянным и даже отверженным. Отношение к самому изобретению по-прежнему проходит через следующие печально известные стадии: • для первой стадии характерны безапелляционные выражения «Этого не может быть!», «Это — нелепая выдумка!», «Это — ложная теория» и т. п.; • на второй стадии звучат глубокомысленные высказывания типа «В этом что-то есть, но кому это все нужно?», «Это невозможно реализовать» или «Это преждевременно»; • на третьей стадии те же говоруны всех сортов и пород обязательно будут твердить как можно громче «Что тут нового — это всем известно!», «Я всегда видел в этом перспективу!», «Это не принадлежит только одному N.! Мы все внесли свой вклад в...» и т. д. В ТРИЗ-школе различают творческую деятельность трех типов: 1) применение известной идеи по известному назначению; 2) создание новой идеи для известной цели; 3) создание новой цели и идеи для се достижения. Посмотрите еще раз таблицу уровня изобретений на рис. 3.2. Творческая деятельность первого типа включает решения 1 и 2 уровней; деятельность второго типа — решения 3 и 4 уровней. Третий тип творчества включает 5 уровень, а также не указанный в таблице 6 уровень как систему открытий (изобретений) 5 уровня. Ступени творчества отличаются, однако, не только уровнем постановки и решения проблем, но и стимулами, мотивацией самого творчества и, как отмечено выше, характерной негативной реакцией окружающих на энтузиастов творческой деятельности и их результаты. Слишком многих изобретателей и первооткрывателей, создававших великие вехи в истории человечества, постигла драматическая или трагическая судьба.
Исследования тысяч судеб выдающихся творческих личностей (следует подчеркнуть, что к ним не относятся «изобретательные» преступники, аморальные и иные асоциальные типы), проведенные под руководством автора ТРИЗ Генриха Альтшуллера на эту тему, привели к разработке теоретической модели [6], на основе которой творческая личность могла бы противостоять негативным воздействиям внешних обстоятельств. Однако, краткие принципы были сформулированы Г. Альтшуллсром вместе с учениками и последователями еще за 10 лет до публикации указанной книги. Эти принципы должны помочь творческой личности сознательно вступать в борьбу со старыми представлениями и научиться, как говорят в боксе, умению «держать удар». «Творческий комплекс» включает шесть необходимых качеств. 1. Нужна достойная цель — новая, еще не достигнутая, значительная, общественно полезная. Для уровня творчества третьего типа можно говорить о выборе цели служения общественному прогрессу, цели гуманистического развития цивилизации (см. раздел Стратегия и тактика изобретения). 2. Нужен комплекс реальных рабочих планов достижения цели и регулярный самоконтроль за вытолнением этих планов. Цель останется смутной мечтой, если не будет разработан пакет планов, например, на 10 лет, на 5 лет, на год. И если не будет оценки выполнения этих планов — каждый месяц или даже каждый день. В большинстве случаев планы включают приобретение новых знаний и умений, например, знание иностранных языков для чтения нужных работ в оригинале. 3. Высокая работоспособность в выполнении намеченных планов. Накопление и систематизация вспомогательной информации. Жюль Верн оставил после себя картотеку из 20 000 (!) тетрадей. 4. Хорошая техника решения задач. Биографы Огюста Пиккара85 писали, что изобретение им батискафа коренным образом отличается от множества прочих изобретений, зачастую случайных и, во всяком случае, интуитивных. Пиккар приходил к своим открытиям только благодаря систематическим. продуманным поискам решений. Создатель стратостата и батискафа умел видеть технические противоречия и владел немалым количеством изобретательских приемов даже с точки зрения современной ТРИЗ. 5. Способность отстаивать свои идеи — «умение держать удар». Сорок лет прошло от мечты о спуске на максимальные океанские глубины до реального ss Огюст Пиккар (INK4—1962) — шненилрекиП инженер и исследователь. спуска первого батискафа. За эти годы Огюсту Пиккару довелось испытать многое: нехватку средств, издевки журналистов, сопротивление морских специалистов. Пиккару было 70 лет, и он уступил место пилота своему сыну Жаку. 6. Результативность. При наличии первых пяти качеств должны быть частичные положительные результаты на пути к цели. ТРИЗ непосредственно связана только с четвертым качеством из этого комплекса. Но качества образуют систему: нельзя добиться высоких показателей по одному пункту, если на нуле все остальные. Для развития общества важен любой из указанных типов творчества. Но если жизнь связана с творческой дейтельностью первого типа, она чаще благополучна, если же с деятельностью второго или третьего типов — почти всегда не проста или драматична. Если творчество первого типа непосредственно реализует прогресс, то деятельность второго и третьего типов определяет его тактические и стратегические направления, ставит и решает задачи отдаленного, но непременно грядущего будущего. Поэтому важность такого творчества для общества в целом намного значительнее.
И поэтому же ТРИЗ рекомендует, кроме мотивации, развивать творческие навыки. Путем упражнений, накопления опыта решения изобретательских задач, совершенствования техники решения на основе ТРИЗ, изучения жизни выдающихся творческих личностей, изучения творческих решений в искусстве, литературе, кино, политике, экономике, психологии и в других областях человеческой деятельности. 19.2. Адаптация ТРИЗ-знаний к профессии Главная цель ТРИЗ — сделать мышление талантливым, сделать интуицию управляемой, закономерно появляющейся и хорошо работающей. Заметных изменений в Вашей вооруженности для решения новых задач Вы достигнете на основе проработки задач данного учебника. Вместе с тем для адаптации ТРИЗ к Вашей профессиональной сфере необходима постоянная работа и тренировка. Это объясняется вполне понятными явлениями. Во-первых, читая специальную литературу в своей профессиональной сфере, Вы интерпретируете новые знания и извлекаете из них только те, которые кажутся непосредственно примененимыми в Вашей работе. То есть Вы отбираете и систематизируете информацию. ТРИЗ, напротив, универсальна и достаточно обширна. Поэтому ее нужно осваивать всю и без пропусков! Это обратная задача по отношению к тому, к чему мы привыкли за многие годы нашей профессиональной деятельности. Во-вторых, любая деятельность требует накопления опыта. Действительно, ни один врач не имеет права приступить к лечению пациента без достаточной практики и аттестации под наблюдением более опытных врачей. Ни один врач не должен останавливаться в накоплении и анализе своего опыта практически во всей своей будущей деятельности. Тогда почему же многие инженеры позволяют себе утверждаться в мысли, что они-то уж точно постигли все тонкости своей профессии? Или, еще хуже, если так же думают о себе менеджеры! В-третьих, разве мы удивляемся, когда видим даже в окно спортивного зала (то есть не слыша ритма музыки или команд тренера) множество людей разного возраста, прыгающих и размахивающих руками или совершающих одинаковые ритмичные движения? Мы знаем, что это идет тренировка спортсменов или, скорее всего, «группы здоровья». Эти тренировки стали стандартным элементом культуры современного общества. Тогда почему рекомендация тренинга умственных способностей вызывает усмешку или удивление, считается ненужной или даже оскорбительной? Не потому ли, что культура мышления современного общества еще недостаточно высока, чтобы включить в себя постоянный тренинг мышления как обязательный способ поддержания его долговечности и эффективности?! Наконец, как много людей, считающих себя вполне цивилизованными, вообще следуют даже известным и уже упомянутым рецептам здоровья? Из книги «Как стать гением» и других источников: здоровым мечтает быть каждый, и рецепт прост — не пить алкоголь, не курить, не слушать чрезмерно громкую музыку, особенно в наушниках, соблюдать режим и умеренность в еде, ежедневно совершать пробежки и разминки. Вроде бы все просто. Но многие ли используют эту «простоту» в жизни? А ведь речь идет о бесспорном — о сохранении здоровья. Что же говорить о творчестве, когда альтернативой притаились по сути своей разрушительные для здоровья «удовольствия»? И когда само здоровье не воспринимается как удовольствие? Итак, конкретные рекомендации. 1. Не следует думать, что сразу после прочтения этой книги Вы сможете решить любую творческую проблему. Сравните: решились бы Вы выйти на ринг только после того,
как прочитали какое-нибудь наставление по боксу и даже не представляя, с кем Вам предстоит встретиться? А ведь кто знает, какая «проблема-супертяжеловес» поджидает Вас в реальности на интеллектуальном ринге? 2. Регулярно работайте с этой и подобными книгами. Еще и еще раз пробуйте проходить решения задач по памяти, все меньше подглядывая за ходом прицеленного в учебнике варианта решения. 3. Следите за принципом приема, а не за поясняющим его примером. Вся сила приема — в его принципе. И в Вашей фантазии, в способности интерпретировать прием применительно к решаемой задаче. 4. Заменяйте термины! Это «золотое» ТРИЗ-правило! Нужно учиться представлять любые проблемы описаниями, понятными даже школьникам, хотя бы старшеклассникам. Нередко неумение представить проблему иными словами в виде, понятном для человека не из Вашей отрасли, свидетельствует о том, что Вы сами недостаточно или неточно понимаете ее. 5. Составляйте собственные каталоги приемов и оригинальных идеи решений из патентов, технической литературы, фантастики, детективов и любых других интеллектуальных источников. 6. Записывайте! И это «золотое» ТРИЗ-правило! Во-первых, мы относимся к записанному с гораздо большей ответственностью, чем к произнесенному. Во-вторых, визуализация и использование чисто механических усилий возбуждает дополнительные и очень мощные нейронные поля и ассоциации, подключающиеся к решению проблемы. Втретьих, когда Вы знаете, что уже не забудете свои быстролетящие мысли, поскольку записали их, то этим Вы освобождаете место в «оперативной памяти» мозга для новых мыслей! 7. Используйте ТРИЗ-Софтвер. Известные продукты описаны в разделе 21. CAI: Computer Aided Innovation/Invention. Одним из преимуществ ТРИЗ-софтве-ра является наличие разнообразных примеров применения ТРИЗ-инструмен-тов. Вторым преимуществом, особенно, в системе Idea Navigator (раздел 21.3. Idea Navigator: интеграция интеллектов), является возможность вносить собственные примеры пользователя непосредственно в каталоги и навигаторы системы. Эта функция в системе Idea Navigator создана именно для последующей адаптации этой системы к профессиональной деятельности пользователя, на придание системе отраслевой ориентации с учетом индивидуальной специализации и вкусов. 8. Тренируйте свою наблюдательность, чуство красоты решения. В процессе поиска решения может случиться так, что Вам не удается создание идеи, несмотря на применение приемов и других рекомендаций. Вполне возможно, что Вы имеете дело с задачей, для решения которой нужны новые знания, новые научные исследования. По сути дела, здесь проходит фундаментальная граница между возможностью и невозможностью создать и реализовать некоторую техническую идею. Если бы перед самым талантливым изобретателем середины XIX века поставили задачу создать устройство для «просвечивания» металлических изделий, то он только пожал бы плечами. А сейчас конструкторы используют для этого и рентгеновские лучи, и гаммалучи, и ультразвук. Для правильной оценки возникшей ситуации Вы должны хорошо знать историю своей отрасли, да и сопредельных отраслей. И все же, что делать, если кажется, что никакие приемы уже не работают? В этом случае могут быть полезны поиски обходных путей, включая использование психологических резервов человека.
Правило 1. Его можно выразить вопросами: «Почему было так и почему должно быть иначе?» Опытный изобретатель никогда не приступит к решению задачи, прежде чем не представит себе ясно, в каком направлении идет развитие техники (см. раздел Стратегия и тактика изобретения). Правило 2. Его можно выразить в двух словах: «Пусть случится!» Для этого надо представить себе, что негативное действие по техническому противоречию все же случилось. Нужно проследить за тем, а не является ли это действие более естественным для рассматриваемой системы, только плохо реализуемым. На одном заводе немало усилий было затрачено на разработку захватов для листов стали, переносимых краном. Размеры и вес листов постоянно увеличивались, случалось, что листы падали, приходилось искать новую конструкцию захвата. Потом пошли по другому пути. Пусть «случай станет правилом» — листы должны находиться поближе к земле, их не надо поднимать! И были применены простые тележки на рельсовых путях, позволившие перемещать листы практически любого нужного веса. Правило 3. Это правило точно отражает главное психологическое открытие в методике изобретательства, а именно, — опору на главное противоречие и иде-альныш результат; «Чем больше нарастают трудности при уточнении формулировки противоречия, тем ближе верное решение!» Для себя я формулирую это правило короче: «Чем труднее — тем лучше!» В конце прошлого века шведский изобретатель Лаваль, работая над усовершенствованием паровой турбины, столкнулся с почти непреодолимым затруднением. Ротор турбины делал почти тридцать тысяч оборотов в минуту. При такой скорости вращения необходимо было очень точно уравновесить ротор, а это как раз не удавалось сделать. Трудности непрерывно нарастали. Изобретатель увеличивал диаметр вала, делал вал более жестким, но каждый раз в машине возникали вибрации, и вал деформировался. Поняв, что увеличивать далее жесткость вала невозможно, Лаваль решил проверить прямо противоположный путь: для опыта массивный деревянный диск был насажен на... камышовый стебель — прием 11 Наоборот и правило «Пусть случится!». И вдруг оказалось, что «гибкий вал» при вращении уравновешивается сам собой! Правило 4. Очень полезное правило, если оно срабатывает! Его также можно определить коротко для запоминания: «Минус умножить на минус дает плюс!» или «Одним выстрелом убить двух зайцев!» Это означает стремление устранить негативный эффект другим, обратно направленным, негативным эффектом в той же системе. Например, диафрагму на первых фотоаппаратах с простыми объективами устанавливали либо перед объективом, либо позади объектива. В первом случае изображение несколько «раздувалось», во втором — сжималось. Это явление (дисторсия) долго не могли устранить. А выход был найден в следующем: установили две диафрагмы — перед объективом и позади него! Поток лучей несколько расширялся, а затем настолько же сжимался. Один недостаток компенсировался другим. В целом, полезно помнить о том, что ТРИЗ. как и всякая теория, полезна всем, но хорошо работает в талантливых руках. Теория шахматной игры создавалась в результате накопления и анализа очень большого числа сложных реальных партий. По такому пути шла и продолжает идти ТРИЗ. Но если шахматные записи в какой-то мере отражают ход мыслей шахматистов, то в описаниях изобретений зафиксирован только итог работы. Для реконструирования хода мыслей изобретателя нужен реинвентинг! ТРИЗ учит такому рсин-вентингу. И тем самым учит решению новых задач.
В основе шахматного анализа лежит стремление понять, чем игра гроссмейстера отличается от игры обычного шахматиста-любителя. Понять гроссмейстера может только близкий ему по силе шахматист! ТРИЗ же вооружает Вас наиболее сильными ходами, сыгранными в миллионах «изобретательских партий», раскрывает секреты гроссмейстерской игры для каждого, кто захочет их открыть для себя! Условное название I Тупик 1 Чрезмерная конкретизация Прожектерство 3 4 5 б 7 8 9 10 Пояснения Постановка проблемы с самого начала ориентирует на поиск в бесперспективном направлении. Ошибка характерна для попыток усовершенствовать системы, ресурсы развития которых исчерпаны Слишком узкая постановка задачи, характерная для заводских специалистов Вместо решения конкретной задачи пытаются решить неизмеримо более сложную Путаница Ситуация, когда под видом одной задачи прячется клубок взаимосвязанных задач Избыток Ситуация, когда специалист, ставящий задачу, выдает массу информации, в которой нужная информация «тонет». Пытаясь этим облегчить решение, он в информации итоге усложняет его Ситуация, когда специалист, ставящий задачу, упускает важные сведения, Наюститок например, об имеющихся ресурсах, либо считан и\ несущественными, либо информации полагая, что они всем известны. "Jt.i же ошибка характерна, когда задачу ставят по чужой информации, не владея точными сведениями Избыточные Характерно ТРЕБОВАНИЕ решать задачу строго определенным образом, ограничения например, «ничего не менять* Вторичное Ситуация, когда специачисты объясняют тот или иной эффект, факт, (Я1ьяснение особенности системы не реальными причинами, а ошибочными, по ставшими привычными Кшзорукая задача Постановка задачи без учета изменений, которые мотут произойти за то время, пока она будет решаться и пока будет создатт.ся «но-ваяоеистема. Здесь могут быть ошибочными как требования к системе, так и неучет масштабов ее производили ИЛИ продажи Исправительная задача Ситуация, когда предлагается усовершенствовать технологический участок, созданный для устранения недостатков, вместо усовершенствования предыдущей технологической операции, па которой эти недостатки возникают Рис. 19,1. Таблица «типичных ошибок- в изобретательской деятельности 19.3. Десять типичных ошибок В изобретательской практике встречается немало типичных ошибок (рис. 19.1). Эти ошибки имеют разную природу, но все они мешают поиску решений (с ТРИЗ или без ТРИЗ). 19.4. Примеры реинвентинга Ниже мы рассмотрим два практических примера, которые демонстрируют применение ТРИЗ при решении «неразрешимых» практических проблем. Пример 126. Удержание большого тонкого стеклянного листа в вакууме Общее описание проблемы Одна из компаний в Южной Корее выпускает несколько необычные машины для производства жидкокристаллических экранов. В этих машинах соединяются вместе два очень тонких (менее 1 мм толщиной), гибких, легко ломающихся, стеклянных листа с размерами по каждой стороне почти до 2 метров. На площади листа располагается несколько будущих экранов (рис. 19.2).
Робот приносит и укладывает первый (нижний) лист на нижнюю платформу машины. Затем робот подносит второй (верхний) лист к верхней платформе. С помощью вакуума этот лист прижимается к верхней платформе и удерживается перед операцией. Каждый лист должен надежно удерживаться и прижиматься к соответствующей платформе. После этого верхняя платформа опускается навстречу нижней, и положение верхнего листа относительно нижнего выравнивается по специальным меткам. В это время воздух из рабочей камеры выкачивается до установления глубокого вакуума. Поэтому удержание стекол осуществляется с помощью другого способа, а именно, с помощью электростатического поля. При всей «ТРИЗ-идеальности» с точки зрения линий развития веществ и полей, этот способ на практике имеет два больших недостатка: слишком большой расход энергии на создание требуемой величины электростатического напряжения и слишком большие затраты времени на переходные процессы при включении и выключении электростатического поля. Особое затруднение возникает из-за особого требования применяемой технологии сборки, состоящего в том, что стекла должны быть ориентированы горизонтально. Первичные точки жидких кристаллов наносятся на нижнее стекло в заданных местах расположения будущих экранов. Герметизирующие полоски эпоксидного клея, окаймляющие будущие экраны по контуру, наносятся на нижнюю поверхность верхнего листа. После сближения на очень маленькую дистанцию (доли миллиметра!) и позиционирования листов друг относительно друга, по всей поверхности верхнего листа подается импульс нейтрального газа, что приводит к прижатию верхнего листа к нижнему (прессование). Схема на рис. 19.2 иллюстрирует приведенное описание технологического процесса. Следует еще раз отметить, что удержание листов происходит в вакуумной камере. Автором этой книги было разработано более 20 решений этой задачи. Некоторые из этих решений использованы здесь в виде, более подходящем для учебных целей.
ДИАГНОСТИКА Проблемная ситуация Сначала листы удерживаются вакуумными капиллярами, выполненными в платформах, а в условиях вакуума — электростатическим полем. Несмотря на то, что электростатическое поле является более прогрессивным в соответствии с линиями развития ресурсов (и его применение может быть значительно улучшено!), заказчик потребовал (и это нередкий случай, когда консультанту приходится действовать вопреки ТРИЗ-законам развития) полностью исключить применение электростатического способа. Экстрагирование проблемы из исходной проблемной ситуации Под действием собственного веса верхний лист стремится оторваться от верхней платформы и упасть вниз. И, несмотря на вакуум, верхний лист должен полностью быть прижат к верхней платформе плотно и равномерно. Как это может быть сделано? Стратегия решения завист от определения оперативной зоны, ресурсов и оперативного времени. Рассмотрим следующие версии: 1) работа только с верхним листом в оперативное время; 2) работа с двумя листами в оперативное время; 3) совместное изучение системы на интервалах предоперативного, оперативного и пост-оперативного времени; 4) комбинированное изучение возможностей. РЕДУКЦИЯ Оперативная зона и ресурсы Верхняя поверхность верхнего листа (для удержания!); пространство между этим листом и платформой; поверхность верхней платформы над верхним листом; силы гравитации (вес листа); глубокий вакуум. Должны быть приняты во внимание материал листа (стекло) и материал платформы (алюминий). Индуктор и рецептор Индуктор — платформа. Рецептор — лист. Техническое противоречие
1сйствне, состояние, объект ТП Удержание верхнего листа ( + )-фактор Удерживать г Удерж и ваТ ь 09 и вакууме Удобство изготовления Удобство изготовления 3 Большая площадь диета Площадь подвижного объекта 1 09 н вакууме 17 (-)-фактор Вредное действие сил гравитации Вредное действие сил гравитации Пот реблен ие лорогостои-шей электроэнергии при электрсктатическом удержании 1 Внешние вредные 3 факторы 3 Затраты энергии 7 подвижным объектом 3 2 Вес подвижного .. объекта 05. 18 03. 04. 10, 13 04. 05. ! 14, 19 Рис. 19.4. Избранные технические противоречия для моделирования проблемы Платформа S2 должна удерживать лист S1, но эффективное взаимодействие между листом и платформой отсутствует. Другими словами: платформа должна удерживать лист, однако силы гравитации противодействуют этому. Физическое противоречие Платформа S2 должна удерживать лист S1 для обеспечения главной полезной функции, и платформа S2 не должна удерживать лист S1 из-за отсутствия ресурсов (полей, сил). Идеальный Функциональный Результат Macro-FIM: Х-ресурс, не усложняя систему и не вызывая негативных эффектов, обеспечивает вместе с другими имеющимися ресурсами [ надежное удержание верхнего листа (при глубоком вакууме)]. Дополнительное моделирование (рис. 19.5) Построенная модель неполна, так как содержит только два вещества: S1 — рецептор и S2 — индуктор, а поле Fm полезного взаимодействия между ними отсутствует (!). При этом имеется вредное воздействие гравитационного поля Fg, которое оторвёт S1 от S2. ТРАНСФОРМАЦИЯ Решение технических противоречий По таблице противоречий (рис. 19.4) можно извлечь ранжированное множество навигаторов: 03 , 042 , 052, 10, 13, 14, 18 и 19. Тогда обобщенный «портрет» решения может иметь такое описание: 3 Дробление — разделить объект на независимые части; 4 Замена механической среды — с) перейти от неподвижных полей к движущимся, от фиксированных — к меняющимся во времени, от неструктурированных — к имеющим определенную структуру; d) использовать поля в сочетании с ферромагнитными частицами; 5 Вынесение — отделить от объекта «мешающую часть» («мешающее» свойство) или, наоборот, выделить единственно нужную часть (нужное свойство); 10 Копирование — а) вместо недоступного, сложного, дорогостоящего, неудобного или хрупкого объекта использовать его упрощенные и дешевые копии
13 Дешевая недолговечность вместо дорогой долговечности — заменить дорогой объект набором дешевых объектов, поступившись при этом некоторыми качествами (например, долговечностью); 14 Использование пневмо — и гидроконструкций — вместо твердых частей объекта использовать газообразные и жидкие: надувные и гидронаполняемые, воздушную подушку, гидростатические и гидрореактивные; 18 Посредник — а) использовать промежуточный объект, переносящий или передающий действие; b) на время присоединить к объекту другой (легкоудаляе-мый) объект; 19 Переход в другое измерение — b) использовать многоэтажную компоновку; наклонить объект или положить его «набок»; использовать обратную сторону данной площади. Несколько решений может быть сформулировано на основе навигаторов 10, 13, 18 и 19. При этом общая идея состоит в том, чтобы использовать копию листа в качестве посредника, который держит лист по всей его верхней поверхности, а сам плотно прижат к нижней поверхности верхней платформы. Другие решения могут быть сформулированы на основе навигаторов 05 и 14: продолжить использовать вакуум для удержания листа. Решение физического противоречия в общем виде В этом случае необходимо найти и применить подходящий физико-технический эффект для получения поля Fm (рис. 19.5, b), создающего достаточное усилие для удержания листа под верхней платформой в условиях вакуума. Идеи технических решений В соответствии с рассмотренными моделями может быть получено немало тезнических решений. Рассмотрим некоторые из них. Идея 01. Более глубокий вакуум Верхний лист удерживается прижатым к верхней платформе при условии, что давление Р1 < Р2 на определенную величину, где Р2 — остаточное давление в вакуумной камере. Идея 02. Клей Верхний лист удерживается с помощью клея S3. Клей может быть временно нанесен до поступления листа в камеру или выделяться из капилляров на верхней платформе. Клей может быть нанесен не по всей поверхности.
S2 - Inductor 1 Рис. 19.7. Решение на основе создания временного клеевого слоя между листом и платформой По окончании операции клей может быть втянут обратно в капилляры верхней платформы. Идея 03. Двусторонняя адгезивная пленка-посредник или тонкая (толстая) пластина Идея 04. Адгезивный ферромагнитными частицами посредник в виде пленки или пластины с В верхней платформе встраиваются электромагниты. Временный одностороннеадгезивный слой S3 с ферромагнитными частицами нанесен (наклеен) на верхнюю поверхность листа. После включения электромагнитов ферромагнитный посредник притягивается к верхней платформе вместе с листом.
Идея 05. Адгезивные ферромагнитные контуры в «пуст^гх», технологических зонах под листом между экранами Спорный вариант «идеального» решения: ферромагнитные частицы добавляются в эпоксидный клей S3. Проблема состоит в нарушении требуемых свойств слоя эпоксидного клея. Идея 06. Двойное магнитное поле Специальная пластина-посредник с управляемыми электромагнитами S1' прикрепляется к верхнему листу на основе адгезии. В нижней платформе имеются электромагниты S2, которые создают поле такой же полярности, что и верхние электромагниты. Благодаря этому, возникает эффект левитации, то есть верхний лист висит над нижним листом. После создания вакуума параметры токов электромагнитов изменяются так, чтобы верхний лист аккуратно опустился на нижний. Затем с помощью изменения полярности тока и магнитного поля одной из групп магнитов осуществляется прессование листов непосредственно в вакууме. ВЕРИФИКАЦИЯ Экономический эффект от создания новой конструкции без применения электростатического способа составляет около 800 000 долларов США на одну машину. Экономический эффект от сокращения энергопотребления86 оценивается дополнительно в миллион долларов в течение от 3 до 5 лет. Кроме рассмотренных, имеются и другие, еще более эффективные решении. Пример 127. Ортопедическое изобретение (87) FITBONE® Общее описание проблемы Известны разнообразные конструкции для удержания в правильном положении и постепенного удлинения кости после тяжелой травмы. Некоторые из таких конструкций относительно сложны, а их применение создает неудобства и болевые ощущения для пациента. Проблема является очень сложной, имеющей историю в несколько десятилетий. Можно ли улучшить некоторые из таких конструкций? Рассмотрим реинвентинг усовершенствования одного из ортопедических устройств (рис. 19.12), созданных по методу Г.А. Илизарова (88). Для создания FITBONE изобретатель доктор Т. Байер успешно применил ТРИЗ и МАИ.
ДИАГНОСТИКА Исходная конструкция «держателя» состоит из стержней, связанных в единое целое с помощью сборных колец. Вся конструкция может постепенно увеличиваться по длине при постепенном изменении длины стержней. Разрывы в кости, полученные при травме, заполняются фрагментами кости, взятыми у самого пациента и подготовленными специальным образом. Одной из проблем применения этой конструкции является трудоемкость ее «настройки», что может иметь следствием появление ошибок в форме восстанавливаемой кости. Еще одной проблемой является наличие многочисленных открытых ранок от спиц, проходящих сквозь кожу до кости. Это может иметь следствием попадание в ранки инфекций. Наконец, эта конструкция ограничивает подвижность пациента и причиняет значительные болевые ощущения. РЕДУКЦИЯ Оперативная зона и ресурсы OZ: кость. ОТ: время удержания и растяжения. Индуктор и рецептор Индуктор — стержни и спицы растягивающей конструкции. Рецептор кость. Т о р г о в а я м а р к а , р и с у н к и и и с х о д н ы е м а т е р и а л ы п р и н а д л еж а т к о м п а н и и W i t t e n st e i n i n t e n s AG . Г е р м а н и я . С м . т а к ж е м а т е р и а л ы и з о б р е т а т ел я D r . T . B a y er : T R I Z i n d er WIT T ENST E IN AG. — 4 " Eu ro p ea n T R IZ -C o ng r e ss, 2 0 0 5 ; д оп о лн и т е льн ый и с т оч н и к: ma ga zi n e « DER SP IEG EL » , No . 3 0 . Ju n e 2 0 0 5 a n d www. fi tb o n e. d e . 8 8 Ак а д е м и к Г а в р и и л Аб р а м о в и ч И л и з а р о в ( 1 9 2 1 — 1 9 9 2 ) — в ы д а ю щ и й с я о р т о п ед и д е я т е л ь м е дицины Технические противоречии для метода CICO Полное описание проблемы связано с выявлением и формулированием многих противоречий. В учебных целях приведем только некоторые из них. После этого возможно применение метода CICO. № Действие, состояние, объект ТП Удержание кости для растяжения (—)-фактор (+)-фактор Инфекци Большое 1 Вредные и; ограничение факторы 4 самого время с Время действия 0 7. 21.
подвижности и помехи для сна Инфекци 2 и; ограничение подвижности и помехи для сна 3 Ускорен ие ] выздоровления объекта открытыми ранками 4 Вредные Примен факторы самого ение 0 объекта значительных усилий подвижного объекта 31. 38 3 Сила 0 1.03. 04. 17 0 Производител Сложно 1 Удобств 0 ьность сть настройки 0 о 3, 04, эксплуатации 0S. 1.4 4 Инфекци 3 Внешние Сложно 2 Время 0 и; ограничение вредные сть 3 действия 4, 07. подвижности и факторы сохранение подвижного 21, 38 помехи для правильного объекта 1 сна положения конструкции Ранжирование по методу CICO: 04-\ ОЗ2. 072. 212, 382, 01, 08. 17, 31. 34 Рис. 19.13. Избранные технические противоречия для моделирования проблемы по методу CICO Физическое противоречие (упрошенный вариант) Идеальный Функциональный Результат Macro-FIM: Х-ресурс, не вносящий нежелательных эффектов и не создающий усложнения системы, обеспечивает вместе с другими имеющимися ресурсами получение: [правильная форма кости (с уменьшением боли, ограничения движения и помех для сна)]. ТРАНСФОРМАЦИЯ Нетрудно видеть, что доминирующим здесь является ресурс пространства. Рассмотрим первый раздел Каталога фундаментальных трансформаций со специализированными А-Навигаторами (Приложение 7).
J № Принцип трансформации 1 Разделение противоречивых свойств н пространстве Связь с А-Навнгаторамн 05 Вынесение: отделить мешающую часть, выделить нужную часть. 10 Копирование: использовать упрошенные и дешевые копии или изображения. 19 Переход в другое измерение: увеличить степени свободы движения объекта, использовать многоэтажную компоновку, использовать боковые и другие поверхности. 22 Сфероидальность' ncpeiiTH к криволинейным поверхностям и траекториям днижения, использовать ролики, шарики, спирали. 24 Асимметрия: перейти к асимметричным формам, усилить асимметрию. 25 Использование гибких оболочек и тонких пленок: вместо обычных конструкций использовать гибкие оболочки и тонкие пленки. 34 Матрешка: ра )местить объект последовательно одни в другом, пропустить объект через полости (пустоты) п яругам. Рис. 19.15. Фрагмент Каталога из Приложении 7 Анализ навигаторов и формирование идей могут быть сделаны в следующем виде. В соответствии с навигатором 05 было бы целесообразно внести Х-ресурс как можно ближе к кости (внести в оперативную зону!). В соответствии с навигатором 10 возможно применить какой-то Х-ресурс наподобие самой восстанавливаемой кости (?). Навигатор 19 может быть интерпретирован как рекомендация рассмотреть не только внешние поверхности кости, но и внутренние (дополнительное оперативное пространство! Но разве это возможно?). После рассмотрения навигатора 19 навигатор 34 Матрешка уже не выглядит странным и совершенно непригодным для развития новой конструкции. Действительно, возможен ли такой Х-ресурс, который обеспечил бы растяжение кости ... изнутри самой кости (!?). Аналогично можно рассуждать при рассмотрении навигаторов из результирующего кластера по методу СЮО. Тогда обобщенный «портрет» будущего решения может быть описан по «фрагментам» и «проекциям» в следующем виде: 04 Замена механической среды — Да! Нужно использовать электрические, магнитные или электромагнитные поля для управления новым Х-ресурсом в оперативной зоне около или внутри (!?) кости; 7 Динамизация — Да! Нужно в любом случае сделать параметры Х-ресурса (индуктора) и кости (рецептора) изменяемыми и управляемыми для согласовать оптимального увеличения длины кости при растягивании! 8 Периодическое действие — Интересно! Возможно, нужно перейти от непрерывного воздействия к периодическому (импульсному), чтобы создать небольшие удлинения кости без значительных болевых ощущений?
17 Применение композиционных материалов — Да, в любом случае нужно обеспечить совместимость материалов с тканями и костью; 31 Применение пористых материалов — Интересно! Это выглядит как рекомендация дополнительно применить пористые элементы (вставки, оболочки и т. п.) для фиксации Хресурса снаружи или внутри кости; 34 Матрешка — Действительно, а почему бы и нет, в конце концов! Почему бы не быть Х-ресурсу конструкцией внутри кости! Примем во внимание, что и после анализа таблицы на рис. 19.15 навигатор 34 Матрешка выглядел вполне обещающе. Вместе с навигаторами 04, 07 и 31 идея разместить конструкцию внутри кости выглядит перспективно! Главная итоговая идея (рис. 19.16): реализовать растягивающее устройство в виде специального управляемого стержня (обозначенного на рисунке как FITBONE®), вставленного в кость и увеличивающегося по длине с помощью встроенного микро-мотора и миниатюрной трансмиссии. ВЕРИФИКАЦИЯ Оба вида противоречий — техническое и физическое — устранены. Конструкция обеспечивает надежное, легко контролируемое и управляемое растяжение и поддержание правильной формы кости. Сильный сверх-эффект: метод намного безболезненней. Изобретатели сообщают, что обеспечивается рост кости примерно на 1 мм в сутки. Через небольшое время пациент начинает нормально спать, умываться и даже работать. Конечно, в реальности все происходит не так просто, как в учебном примере. Но наша задача состояла в том, чтобы воспроизвести и показать шаги по созданию реального изобретения с помощью ТРИЗ и при движении по этапам Мета-Алгоритма Изобретения. Кроме этого, автор должен напомнить, что для решения проблем большой сложности, особенно таких, как в последнем примере, наряду с ТРИЗ безусловно необходимы специальные знания. Так, при решении проблем первого примера автор опирался на поддержку со стороны специалистов компании, производящей упомянутые машины для сборки жидкокристаллических экранов. А при решении второй проблемы изобретатели и инженеры-биомехани-ки работали совместно с врачами — специалистами в хирургии и протезировании.
Практикум IS—19 349 Практикум к разделам 18—19 49. «Увидеть» невидимое. Вспомните, каким образом врач в рентгенкабинете настраивает рентгенаппарат, чтобы получить снимок только нужной области тела. Ведь чувствительная пленка находится в закрытой коробке, устанавливаемой к тому же за пластмассовой доской, на которой, впрочем, также нанесена вспомогательная разметка для грубого позиционирования тела относительно невидимой пленки. Какие приемы применены здесь? 50. Допустить «невозможное». Предположим, что геокосмический индустриальный комплекс использует космическую транспортную систему (КТС) А. Юницкого. Индустриальное кольцо вынесено на высоту, например. 1000 км. Между кольцом и Землей курсирует КТС. Можно допустить, что в космосе функционируют несколько индустриальных колец и несколько КТС (попробуйте нарисовать эти ситуации). Вопросы: 1) Можно ли установить промежуточное кольцо между существующими кольцами при старте КТС с Земли? 2) Можно ли опустить промежуточное КТС на Землю? 3) Как можно осуществлять обмен веществом и энергией между Землей и ближайшим индустриальным кольцом при наличии нескольких промежуточных КТС? 4) Как могут обмениваться соседние и несоседние индустриальные кольца веществом и энергией на основе КТС или иными способами? 5) Может ли быть КТС или индустриальное кольцо запущено или переведено на полярную орбиту (движение в плоскости, перпендикулярной по отношению к плоскости экватора и проходящей через Северный и Южный полюсы)? 6) Какие проблемы обеспечения технической надежности, безопасности и живучести КТС и индустриальных колец нужно решить? 51. Понять «непостижимое». Известно, что винтовую лестницу строили, чтобы сэкономить место в доме или, например, в башне храма или замка. Она обычно крутая и относительно узкая. На ней трудно разминуться, если кто-то поднимается, а кто-то спускается. Можно ли удвоить пропускную способность винтовой лестницы, не меняя диаметра сооружения? 52. Достойные цели. Хотите ли Вы и сможете ли решить следующие проблемы: 52.1. Обеспечить Землю чистыми продуктами питания. 52.2. Обеспечить Землю чистыми видами энергии. 52.3. Выравнивание уровня жизни на планете и установление глобальных принципов развития и прогресса. 52.4. Обеспечить защищенность людей от асоциально-направленного информационного влияния (особенно, скрытого и медленно действующего) через средства массовой информации: радио, телевидение, пресса, кино, аудио- и видеопродукция, литература и т. д. 52.5. Обеспечить безопасность автомобильного транспорта. 52.6. Обеспечить безопасность полетов авилайнеров. 52.7. Исключить открытый или скрытый захват власти в регионе или над планетой асоциальными элементами.
52.8. Устранение терроризма или защита от терроризма — в школах, общественных местах, на уровне региона или государства. 52.9. Устранение всех или наиболее опасных видов преступности. 52.10.Устранение наркомании. 52.11.Устранение никотиновой зависимости. Развитие ТРИЗ Прогресс держится на творчестве и зависит от концентрации талантливых людей в каждом поколении. Творческой личности необходимо уметь решать сложнейшие задачи... Сегодня время работает на ТРИЗ. Первое поколение разработало основы. Но оно не имеет той свободы, раскованности, которая нужна для истинного исследования. Нужно второе поколение разработчиков. Теперь слово за исследователями. Смелыми, дерзкими, способными сохранить то, что важно, то, что достойно сохранения на новом этапе, и смело выбросить все остальное. Сегодня теория переросла свое название, но в силу традиций пока не получила новое. Сейчас впереди новая эпоха ТРИЗ 7. Генрих Альтшуллер 20. Выбор стратегии: человек или компьютер? 20.1. ТРИЗ-знания: стратегии развития и применения Огромное достоинство ТРИЗ как системы знаний состоит в том, что основные принципы ТРИЗ не устареют. Они инвариантны во времени! Действительно, не приходится сомневаться в неизменности главного открытия ТРИЗ — принципа противоречия в развитии систем и в создании изобретения как преодоления главного противоречия проблемы. Не приходится сомневаться и в основных закономерностях и приемах ТРИЗ. Также инвариантным останется и Мета-Алгоритм изобретения, Стареть могут только примеры изобретений, так как они больше связаны с конкретным уровнем развития инженерных и общенаучных знаний, с конкретно-историческим уровнем развития технических систем. Так инвариантна арифметика, независимо от того, рассчитывается ли время поездки на автомобиле на работу или траектория полета на Марс. На рис. 20.1 приведены оценки темпов старения различных знаний. Вопрос состоит в том, чтобы определить, в каких направлениях могут и должны развиваться ТРИЗ-знания. В качестве альтернативных стратегических тенденций можно указать следующие: 1) ориентация на изобретение инноваций человеком; 2) ориентация на формальный синтез решений компьютером. Второе направление на самом деле практически полностью опирается на формализацию процедур синтеза инноваций интеллектом человека. Правда, ряд математических моделей, в частности, моделей распознавания образов и моделей многокритериальной оптимизации, обещают сделать процесс компьютерного синтеза идей достаточно обоснованным и эффективным. Составлено мной-но работе [8| — М. О.
Но можно указать, по крайней мере, на следующие принципиальные нерешенные проблемы компьютерного синтеза идей: 1) автоматическое формирование функциональной идеальной модели как цели инновации и трансформации; 2) автоматическое формирование и учет социально-значимых (этических, экологических, эстетических и других гуманистически-ориентированных) аспектов. Одним словом, машина не может пока делать главное — изобретать социальноценный образ будущего. Это способен делать только человеческий интеллект. Г. Альтшуллер указывал также следующее: «Простые задачи решаются буквальным преодолением физического противоречия, например, разделением противоречивых свойств во времени или в пространстве. Решение сложных задач обычно связано с изменением смысла задачи — снятием первоначальных ограничений, обусловленных психологической инерцией и до решения кажущихся самоочевидными. Для правильного понимания задачи необходимо... ее решить (!): изобретательские задачи не могут быть сразу поставлены точно. Процесс решения, в сущности, есть процесс корректировки задачи.» И это переосмысление содержания задачи может делать только человек! Означает ли это, что стратегия развития ТРИЗ-знаний должна быть ориентирована на разработку методов, ориентированных только на использование интеллектуальнопсихических ресурсов человека? Опыт работы автора с системами искусственного интеллекта и разработки таких систем для CAD/САМ, опыт применения и разработки ТРИЗ-моделей и ТРИЗ-софтвера показывает, что центр тяжести исследований должен находиться ближе к первому направлению: поддержка синтеза идей человеком. При этом компьютерные системы являются неотъемлемым инструментом творчества человека. То есть автор следует наиболее мощному приему ТРИЗ — интеграции альтернативных систем с получением позитивного системного сверхэффекта. Компьютер может и должен освободить человека от рутинной и невыполнимой в ограниченное время работы, например, по поиску аналогов в патентном фонде или для доступа к различным знаниям, хранящихся в эн циклопедиях. Процедуры доступа должны включать описание цели и критериев поиска, а также сами методы поиска, обеспечивающие эффективную селекцию знаний и экстракцию нужных знаний применительно к целям синтеза новых идей.
До настоящего (до 2006 года) остается малоизученным и малопродуктивным направление создания компьютерных систем психологической поддержки процесса творчества, и особенно, инновационною и изобретательского творчества. Таким образом, можно указать следующие фундаментальные направления развития ТРИЗ-знаний, ориентированных на поддержку инновационной деятельности человека интеллектуальными компьютерными системами: 1) создание систем обработки знаний для инновационной и изобретательской деятельности; 2) создание универсальных и специализированных прикладных систем на основе ТРИЗ; 3) интеграция ТРИЗ-систем с другими системами поддержки деятельности человека, например, с системами образования, проектирования, управления, научных исследований; 4) создание систем психологической поддержки инновационной и изобретательской деятельности; 5) создание систем поддержки социально-ценностной ориентации человека с учетом закономерностей, ограничений и целей экологического и социального прогресса. Особым фундаментальным направлением является расширение ТРИЗ-транс-фера в сферы искусства, менеджмента, воспитания. ТРИЗ может сыграть выдающуюся социальнозначимую роль в развитии широкого движения с целью воспитания творческих личностей, начиная с детского возраста. Как психолого-педагогическое кредо этого последнего по упоминанию, но не но важности, направления, приведу высказывания самого Г. Альтшуллера8: «Обычно мы живем по трехзвенной схеме: работа — деньги — удовольствия. Творческий стиль жизни предусматривает сокращение среднего звена, избыточного для схемы творческая работа —удовольствия. Удовлетворение приносит сам процесс работы. Творчество — это возможность самовыражения, самопознания, познания окружающего мира, принесения добра этому миру. Творчество — это путешествие в страну мечты. Разве можно мечтать за деньги? Творческий труд избирается человеком по доброй воле. Нельзя 15 часов в день добровольно заниматься нелюбимым занятием: это запредельная нагрузка. Переход к творческому ритму жизни возможен только тогда, когда работа превращается в потребность. Поэтому 15 часов работы воспринимаются как 15 часов удовольствия! 15 часов награды. ...Чего мы хотим? Вообще, в дальнейшем, в целом. Прогресс человечества зависит от концентрации талантливых людей в каждом поколении. Чем выше в поколении процент творческих личностей, тем лучше и выше общество. Это главный параметр общества, который определяет его дела, занятия, возможности, перспективы. Если Эйнштейн занят работой, ему не до агрессии, не до склок в коридоре, он не будет этим заниматься. Это только отнимает время. Можно привести несколько исключений (в смысле отрицательного творчества), но все равно прогресс остается и держится на творчестве.» 20.2. Homo Inventor: человек изобретательный Поскольку автор отдает приоритет исследованиям и разработкам, стратегически ориентированным на интеллектуально-психическую активность человека при решении проблем и создании инновационных идей, то следует хотя бы кратко объяснить связь развиваемой им творческой методологии с ТРИЗ. '| " Также составлено мной по работе |Х| — \1 О.
Вопрос о выборе творческого метода является в начале III тысячелетия не менее остродискуссионным, чем до начала христианского летоисчисления. Действительно, что находится между методом Брэйнсторминг, относящимся к «чистому» искусству, и, например, методом Морфологического анализа, относящимся к «чистой» науке? Оба метода отличаются простотой и универсальностью применения. Однако, они теряют свои преимущества в сложных задачах. И тогда случайный (?) поиск по методу Брэйнсторминг или сплошной перебор по методу Морфологического анализа утрачивают свои преимущества, казавшиеся столь явными. ТРИЗ создавалась школой Г. Альтшуллера как непримиримая альтернатива методу Проб-и-Ошибок, под которым понималось, фактически, все, что не относилось к ТРИЗ. Для оценки сложности задачи применялся мультипликативный функционал от размерности шкал переменных факторов. Например, если решение нужно найти в пространстве 5 факторов, каждый из которых может принимать по 10 значений, то пространство перебора содержит 100 000 комбинаций. В качестве примера нередко приводится метод Эдисона, примененный им при создании щелочного аккумулятора, при котором потребовалось провести 50 тысяч экспериментов. Однако, многие другие не менее известные примеры показывают, что удивительные решения обнаруживались в условиях немыслимой ком-1 бинаторной сложности. Это говорит в пользу того, что мозг человека использует не просто и не столько переборные механизмы, а какие-то иные, гораздо более эффективные. Учитывая эти доводы, представляется вполне философским разрешение этого противопоставления в стиле самой ТРИЗ, а именно, объединением альтернативных подходов. Целью объединения является обоснованная интеграция методов творчества, считавшихся ранее несовместимыми и взаимно отвергавшимися в различных направлениях. Основой для интеграции служит понимание природы мышления хотя бы в том виде и объеме, какие объективно присутствуют в интегральном взаимодополняющем функционировании левого и правого полушарий мозга и в нейрофизиологической активности полушарий, а также лобных долей при генерации новых идей. Обобщение этих знаний позволило автору в начале 1990-х годов построить три схемы творческого мышления, которые послужили в дальнейшем основой для практических разработок и проверки самих этих схем. Результаты применения подхода и новые данные о работе мозга подтвердили правильность и полезность этих схем. Первая схема, приведенная на рис. 20.2, отражает фундаментальные различия лево- и правополушарного мышления и позволяет сформулировать требования к теоретическим и прикладным разработкам: 1) время: учет макроритмов мышления и микроритмов функционирования мозга; 2) пространство: интеграция логико-алгоритмических моделей с эмоциональнообразными, метафорическими; 3) эмоции: учет психофизиологических особенностей конкретной личности — мотивация, психологические ресурсы, здоровье, подготовленность.
Результаты исследования активности мозга, особенно, российской школы нейрофизиологов, стали основой для «топологической модели рождения идеи», представленной на рис. 20.3. И, наконец, третья схема даст представление об эмоционально-временных явлениях, которые необходимо учитывать в новых разработках (рис. 20.4).
20.3. CROST: пять ядер творчества Таким образом, интеграция подходов имеет вполне надежные психологические обоснования и обнаруживает с этих позиций и гармоничность, и прагматичность. Начало такой интеграции было положено в конце 1980-х голов автором настоящего учебника в
направлении, которое получило название CROST™ — Constructive Result& Resource Oriented Strategy of Thinking& Transforming. CROST интегрирует следующие концепты: Constructive — в основе направления лежит ТРИЗ как конструктивная теория и конструктивный инструментарий для управляемого синтеза идей, направленного на преобразование (трансформацию) улучшаемого объекта; Result&Resource Oriented — подход ориентирован на достижение результата с применением минимально необходимых, наиболее доступных ресурсов, учитывая и интеллектуально-психические ресурсы человека; Strategy of Thinking&Transforming — подход дисциплинирует и организует мышление в направлении конструктивных, улучшающих трансформаций, отвечающих содержанию и стратегическим целям задачи. Весь объем знаний, имеющих отношение к мотивам, целям и способам творчества человека, трудно представить какой-то одной схемой. И все же разработанная автором учебника и приводимая ниже схема представляется весьма простой и конструктивной. Благодаря этой схеме, можно увидеть конкретные ступени в развитии методов творчества, связь этого развития с естественнои-сторической эволюцией общества и Природы. Она рационально дифференцирует знания о творчестве. И что особенно важно, в ней аккумулированы возможности для будущего направленного развития этих знаний. При разработке под руководством автора нового софтвера эта схема получила метафорическое название Idea Navigator™. Пять ядер дают нам стратегическую основу для конструктивного анализа и синтеза технологий творчества, для практического сопоставления и интегрированного применения «старых» и новых методов. Пять символов, которые использованы в названии Idea Navigator™, составлены из понятий, образно отражающих основное содержание соответствующего ядра Idea Navigator™. А теперь построим Idea Navigator™ вместе. И начнем со второй буквы — «В». Ключевые понятия — Brainstorming и Brainwave. Для наших целей уместно принять, что все методы, основанные на догадках и свободных ассоциациях, на полете фантазии и произвольных аналогиях, это и есть Brainstorming, имеющий результатом Brainwave. По сути своей, это методы правополушарного, художественного мышления. Независимо от конкретных версий, Brainstorming нередко определяют как метод «Проб-и-Ошибок». Но абсолютное большинство изобретений за время существования человечества было сделано именно этим, можно сказать, «экспериментально-творческим методом». Поэтому не Мы также имеем возможность связать символ В с именем психолога и педагога, ученого и писателя, Эдварда де Боно, специалиста, который на протяжении уже более 30 лет
успешно развивает этот класс методов, придавая ему то характер рациональнонаправленного поиска, то характер игры и шутки. Идеи де Боно так же, как и идеи Г. Альтшуллера, далеко не исчерпаны, и мы будем использовать их не только в рамках В-ядра. В-ядро тесно связано с ядром, научное развитие которого привело к конструктивным результатам только в последние 30—40 лет. Это ядро аккумулирует в себе знания о психике и психологии человека. Ключевым понятием мы избрали понятие доминанты (dominant, dominance), определившее название этого ядра как D-ядра. Именно доминирующая мотивация личности, направленность и конкретные состояния во многом определяют возможности открытия и изобретения нового. Интуитивно это прекрасно осознавали выдающиеся мыслители во всех известных нам эпохах цивилизации. Другое дело, какие конструктивные, то есть практичные и результативные, рекомендации они смогли нам дать. Такие рекомендации чаще носили характер философского осмысления, созерцательного и образного описания процесса и отдельных проявлений творческого акта. Однако в последние несколько десятилетий с появлением исследований о доминантах мышления, о роли и организации совместной работы различных отделов мозга, появились предпосылки к разработке инструментальных рекомендаций для управления и поддержки творческой деятельности. Здесь же важно только указать на вполне очевидную иерархическую взаимосвязь этих двух ядер (рис. 20.6), вместе и неразделимо развивавшихся уже не одно тысячелетие. Рис. 20.6 И все же принципиальными недостатками «старых» методов В-ядра и тем более Dядра являлись следующие: случайный, мало управляемый характер поиска новых идей, невозможность передачи накопленного опыта. Стремительный прогресс технологий и рост знаний с середины XX века потребовали создания адекватных методов творчества. Методов, основанных на закономерностях эволюции технических систем, на закономерностях создания изобретений высокого уровня. Такой подход и был предложен в ТРИЗ, которая строится на фундаменте систематического исследования знаний, аккумулированных в мировом патентном фонде. Конструктивизм этой концеп ции заключается в том, что для создания методов и теории изобретения необходимо выявлять конкретные приемы и правила, модели и ресурсы, которые привели к созданию высокоэффективных изобретений. По сути, это методы левополушарного, логического мышления. Свой главный метод Г. Альтшуллер назвал Алгоритмом решения изобретательских задач. Отсюда, а также и от имени автора ТРИЗ, появилось название ядра алгоритмических (algorithm, algorithmic) методов — А-Ядро. Ясно, что с этим подходом соседствуют методы систематического конструирования и методы математического (компьютерного) синтеза технических решений в САПР. Таким образом, в целом мы имеем здесь дело с новым классом методов, дающих стратегию направленного поиска решений и оперирующих с логическими моделями. То есть мы можем говорить о ядре методов преимущественно левополушарного мышления. Именно методы А-ядра становятся стержнем для всех других ядер и должны быть включены в них как обязательное ядро (рис. 20.7).
Во второй половине XX века чрезвычайно обострились проблемы, связанные с сохранением Природы, с обеспечением гармоничного и гуманистического развития человечества, с предотвращением войн, терроризма и преступности, с необходимостью выравнивания развития различных регионов планеты. Проблемы позитивной эволюции цивилизации всегда находились в центре внимания выдающихся мыслителей в истории человечества. Однако именно накануне III тысячелетия эти проблемы приобрели острый характер и требуют безотлагательного решения. Глобальные проблемы могут быть решены только на основе новых изобретений и открытий. Методы и модели, связанные с творчеством и направленные непосредственно на эволюцию Природы и цивилизации, мы выделяем в отдельное Е-ядро. Ключевые понятия: Evolution и Ecology (рис. 20.8). Автор сформулировал концепцию интеграции методов А-и В-ядер в конце 1980-х годов. Они должны образовать взаимнодополняющий инструментарий. Этот подход соответствует одному из наиболее конструктивных приемов ТРИЗ — интеграции альтернативных систем. Таким образом, появился пример применения приемов ТРИЗ к развитию самой ТРИЗ. Однако, обоснованное и скоординированное применение методов из разных ядер требует дальнейшей разработки и экспериментальной проверки. Эффективное использование современных знаний D- и Е-ядер также требует разработки инструментальных моделей и методов. Эти методы должны учитывать прогрессивные цели и категорические ограничения эволюции. Они должны создавать позитивную мотивацию личности и существенно увеличивать творческие возможности человека. Мы полагаем, что к этим проблемам будет привлечено внимание многих новых исследователей. Полому, в ТЯК Idea Navigator™ присутствует еще одно ядро, а именно, С-ядро для конструктивной интеграции моделей. Ключевыми понятиями являются Challenge и Constructivism (рис. 20.9). В понятии Constructivism мы аккумулируем позитивные. созидательные модели и подходы в оппозиции к деструктивным, разрушительным тенденциям, которые имеют место в обществе, а нередко и в психике человека. Challenge означает решение экстремально сложных проблем на основе моделирования развития систем. Мы вкладываем в это понятие стремление к открытию нового и в то же время безусловно полезного, конструктивного, как это было, в частности, в истоках русского художественного и архитектурного конструктивизма первой половины XX века, выросшего в течение Европейского конструктивизма, а позднее проявившегося в творчестве многих всемирно известных художников, писателей, композиторов, инженеров и архитекторов. И в заключение данного раздела расположим полученные системы в соответствии с моделью асимметричного мозга (рис. 20.10).
Основные разделы учебника посвящены анализу и систематизации методов А-ядра и в необходимой степени — методов С-ядра (в разделах «Мета-Алгоритм изобретения» и «Стратегия и тактика изобретения»). Методы В-ядра рассмотрены в самом общем виде в разделах «Методы творчества» и «Искусство изобретения». Это объясняется наличием обширной литературы по методам В-ядра. Несмотря на то, что в библиографии приведен ограниченный список публикаций, которые были нам нужны для этой работы, этот список может помочь нахождению других работ на эту тему. Идеи и методы D- и Е-ядср представлены фрагментарно по мере их соприкосновения с методами А-, В- и С-ядер. Ограниченный объем учебника не позволил уделить этим моделям необходимое внимание. 21. CAI: Computer Aided Innovation/Invention 21.1. От Invention Machine к CoBrain В Минске (столица Республики Беларусь, одной из бывших союзных республик эксСССР) в конце 1980-х годов, после примерно 7 лет экспериментальных работ, по инициативе и под руководством доктора Валерия Цурикова, специалиста ТРИЗ и исследователя, работавшего в области систем искусственного интеллекта, группой энтузиастов был создан пионерский ТРИЗ-соф-твер Изобретающая Машина (Invention Machine). К 1991 году было реализовано более 2000 копий. В 1992 году Валерий Цуриков выехал в США и основал компанию Invention Machine Corp., при этом программирование новой Windows-версии продолжалось в Минске. 1995 год принес фирме большой успех заключением контракта с фирмой Motorola на 3 млн долларов, а в 1996 году фирма Mitsubishi приобрела версию Invention Machine на 18 млн долларов. В 1997 году ТРИЗ-софтвер Invention Machine вышел в расширенной версии под названием TechOptimizer. Стремительное распространение софтвера TechOptimizer привело к всемирной известности ТРИЗ и сделало фирму Invention Machine Corp. признанным лидером в области CAI — Computer Aided Innovation / Invention. На начало 2001 года TechOptimizer 3.5 являлся наиболее мошной системой, основанной на ТРИЗ. Инструментальную часть системы представляют четыре подсистемы, основанные на ТРИЗ-моделях: «Principles Module* — реализует А-Матрицу и А-Каталог; «Prediction Module* — реализует ТРИЗ-закономер-ности развития систем и оригинальные модели трансформации, детализирующие и развивающие модели типа «Стандарты»; «Effects Module* — база знаний технических эффектов; «Feature Transfer Module* — реализует Метод интеграции альтернативных систем. Исключительно ценной является подсистема «Effects Module*. В ней собрано более 4400 (!) эффектов из разных областей знания.
Подсистемы «Product Analysis Module* и «Process Analysis Module* основаны на моделях функционально-стоимостного анализа и помогают правильно формулировать проблемы. Наконец, подсистема «Internet Assistant Module with Patent Analyzer* впервые дала пользователю возможность доступа к известным патентным и другим фондам через Интернет непосредственно из ТРИЗ-софтвера. 364 Развитое ТРИ! Настоящий учебник принесет Вам несомненную пользу в работе с TechOptimizer 3.5 по следующим обстоятельствам: 1) Для работы с софтвером TechOptimizer 3.5 требуется предварительное изучение основ ТРИЗ. В этом отношении настоящий учебник дает необходимые знания для работы с ТРИЗ-подсистемами «Principles Module». «Prediction Module», «Effects Module» и «Feature Transfer Module»; 2) Существенную помощь пользователю в работе с софтвером TechOptimizer 3.5 окажет знание Мета-АРИЗ и понимание заложенной в него стратегии направленного решения инновационных проблем, так как TechOptimizer 3.5 не содержит такого обобщенного навигатора; 3) Знание принципов диагностики проблем, стратегии и тактики изобретения и ТРИЗзакономерностей развития систем поможет пользователям в работе как с подсистемами «Product Analysis Module» и «Process Analysis Module», так и с ТРИЗ-подсистемами. В заключение этого раздела следует обратить внимание читателей на новые выдающиеся инструменты фирмы Invention Machine Corp., а именно, системы Knowledgist, CoBrain и Goldfire Intelligence. Все системы являются мощными семантическими процессорами и предназначены для поиска знаний в патентных и других электронных информационных фондах. Например, система Knowledgist может обеспечить пользователю обращение к базам знаний «Effects Module» на естественном языке, при этом с помощью синонимической интерпретации система подберет пользователю наиболее подходящие разделы и примеры. Системы CoBrain и Goldfire Intelligence чрезвычайно эффективны, например, для быстрого просмотра и анализа патентных фондов с целью поиска аналогов, для прогнозирования развития отрасли или оценки конкурентоспособности продукции. Таким образом, софтвер фирмы Invention Machine Corp. ориентирован на первое и третье фундаментальные направления развития ТРИЗ-знаний — создание систем обработки знаний для инновационной и изобретательской деятельности, особенно для интеграция с системами поддержки проектирования, управления, научных исследований. Знание ТРИЗ-закономерностей и моделей развития систем по разделу «Стратегия и тактика изобретения», метода реинвентинга и моделей структурирования оперативной зоны обеспечит Вам необходимую целевую ориентацию при работе с системами Knowledgist, CoBrain и Goldfire Intelligence. Дальнейшую информацию можно получать в Интернет по адресу www.inventionmachine.com. 21.2. От Problem Formulator к Innovation Workbench Выдающийся теоретик ТРИЗ, ТРИЗ-писатель и педагог Борис Злотин прошел большой творческий путь вместе с основателем ТРИЗ Генрихом Альтшулле-ром. Также в 1992 году состоялся переезд Б. Злотина и его школы в США, где с его участием была основана фирма Ideation International Inc.
Консалтинговая деятельность Б. Злотина вскоре принесла дальнейшую известность ТРИЗ в США, а вместе с деятельностью фирмы В. Цурикова стала мощным катализатором как применения ТРИЗ, так и быстрого роста числа консалтинговых и обучающих ТРИЗфирм. Так, ряд других ТРИЗ-специали-стов, переехавших вскоре из России в США, приняли участие в воссоздании там в 1996 году международного издания ТРИЗ Journal — ранее единственного ТРИЗ-журнала в СССР, выходившего с 1990 года 1—2 раза в год (для сравнения — по 12 выпусков в год в США!). Фирма Ideation International Inc., начиная с середины 1990-х годов, выпустила несколько софтверных систем, таких как Problem Formulator, Innovation Situation Questionnaire, Ideator, Improver, Anticipatory Failure Determination (AFD), Knowledge Wizard, Innovation Workbench. Так или иначе все системы семейства TProSoft фирмы Ideation International Inc. опираются на классические ТРИЗ-модели трансформации, хотя содержат и иные оригинальные инструменты, особенно система AFD, предназначенная для анализа и предупреждения появления системных дефектов. Таким образом, софтвер фирмы Ideation International Inc. ориентирован на второе (и частично, на третье и четвертое) фундаментальное направления развития ТРИЗ-знаний — создание универсальных и специализированных прикладных систем на основе ТРИЗ. Знакомство с основами классической ТРИЗ по настоящему учебнику, и особенно, с концепцией Мета-АРИЗ и моделями развития систем, позволит Вам, при необходимости, быстро освоить большинство из указанных систем фирмы Ideation International Inc. Дальнейшую информацию можно получать в Интернет по адресу www.ideationtriz.com. 21.3. TRIZ Idea Navigator™: интеграция интеллектов Представленные выше софтверные продукты ориентированы на крупные предприятия, способные организовать непрерывный ТРИЗ-тренинг своих сотрудников. Но применение таких систем средними и малыми предприятиями оказывается далеко не таким простым, поскольку требует длительной предварительной подготовки как по ТРИЗ-основам, так и по достаточно большому числу разнообразных системотехнических методов и моделей, выходящих за рамки ТРИЗ. Все упомянутые выше продукты не содержат единой навигационной системы при поиске изобретательских идей и инновационных решений и не содержат специальных средств психологической поддержки процесса мышления. Чтобы сделать ТРИЗ более доступным малым и средним предприятиям, не так давно мы начали разработку как можно более простого софтвера. На момент редактирования этой книги ко второму изданию разработано несколько версий нового софтвера под общим названием Idea Navigator. Все версии основаны на Мета-Алгоритме Изобретения (МАИ) и используют «стандартную* форму МАИ для обучения пользователей с помощью примеров, аккумулированных в базе данных софтвера, так и для генерации идей. Рассмотрим здесь два примера «простейшего» софтвера Idea Navigator и его перспективную версию 21.3.1. Idea Navigator"' EasyTRIZ™ Этот софтвер разработан на базе простейшей версии МАИ под названием SMART (Simplest Meta-Algorithm of Resourceful Thinking) — Простейший Ме-т^-Алгоритм Изобретательного М^тшления. Этот алгоритм (рис. 21.1) применяется нами под названием SMART-2000 Т-Р-И-3 много лет (как SMART с конца 1990-х) на тренингах и в реальных проектах по решению
проблем как «бескомпьютерный» метод. Именно этот опыт и наблюдение за работой тех, кто только начал изучение ТРИЗ, и привели к идее создания «простейшего» ТРИЗ-софтвера Idea Navigator™ EasyTRIZ™. Одной из немаловажных методических целей стала идея подобрать такое сочетание названий этапов, чтобы получить достаточно «осмысленное» и запоминающееся раскрытие аббревиатуры ТРИЗ для англоязычного пользователя. Особенно для молодых людей — школьников и студентов. Были подобраны названия «Targeting — Reducing — Inventing — Zooming», дающих в сокращении TRIZ. Автор решил предложить этот эксперимент и для русскоязычного читателя и пользователя. Итак, первый этап МАИ «Диагностика* был назван в SMART-2000 как «Targeting*, что можно перевести на русский как «нацеливание*. Но хорошего эквивалента, начинающегося в русском языке с буквы Т, не оказалось. Тогда для русского перевода было решено ввести название «Тренд*, совпадающее с английским «Trend* и также неплохо отражающее назначение этапа. Действительно, одна из важнейших задач диагностики состоит в том, чтобы определить цель и, следовательно, направление — тренд — развития системы и решения проблем, связанных с устранением недостатков и причин, мешающих этому развитию. При необходимости, можно было бы для русскоязычного «благозвучия*, привычного уху некоторых «ортодоксальных* и «радикальных* тризовцев, применить слово «Теханализ*, то есть «технический анализ*, но что сделано, то сделано. Кроме того, выбору понятия есть и более глубокое объяснение, сходное выбору новых названий для моделей противоречий (см. дальше). Второй этап называется «Редукция*, что соответствует основному назначению этого этапа в МАИ и не требует дополнительных пояснений. Третий этап был назван «Изобретение*, что также ясно соответствует целям и действиям на этом этапе. Четвертый этап назван «Зуминг* (в английском — Zooming), что вполне эффективно может быть интерпретировано как изучение новой идеи в различном масштабе и в различном системном окружении подобно изучению географического местоположения на
картах разного масштаба или подобно масштабированию (зумингу) при наведении фотоили видеокамеры на объект съемки. Действительно, детальное изучение идеи можно вполне интерпретировать как увеличение масштаба и приближение объекта съемки, а изучение окружения системы или сверх-систем можно интерпретировать с уменьшением масштаба. И само слово «Зуминг* уже достаточно прижилось в русском языке в связи с появлением систем компьютерной графики, а затем цифровых фотокамер и видеорекордеров. Кроме всего сказанного, достаточно не забывать, что любые названия — это не более чем метафоры, все они метафоричны — более или менее удачно, что покажет время. Алгоритм SMART Т-Р-И-3* сначала был проверен в течение нескольких лет и в разных странах в его «бескомпьютерной* форме (рис. 21.2). При этом выяснилось, что эта схема является полезной и применяемой также достаточно опытными пользователями для экспресс-решения проблем и для стандартного представления процесса решения при «бескомпьютерной* работе, так сказать, с листом бумаги. Вторая методическая и маркетинговая идея для EasyTRIZ™ состояла в том. чтобы создать «одноэкранный* софтвер! Это должен был быть простейший софтвер с единственным (!) экраном для сквозного прохода по алгоритму МАИ при решении «всех* проблем — и ничего больше! Не считая небольшого количества вспомогательных всплываю щих окон. А схема алгоритма «Т-Р-И-3» должна все время присутствовать на экране и запоминаться «навсегда». Софтвер поддерживается специально написанным для этого уровня пользователей, простым, но достаточно строгим в определениях учебником пол названием EasyTRIZ (91) («Нетрудный ТРИЗ»). Скрин-шот основного экрана софтвера Idea Navigator™ EasyTRIZ™ показан на рис. 21.3. В этом софтвере также используются новые названия для «классических» понятий «Техническое противоречие» и «Физическое противоречие». «Классические» названия для бинарных моделей противоречий не подходят для многих практических ситуаций, которые не относятся к техническим объектам, особенно с участием человека. Так для замены понятия «Техническое противоречие» на английском языке хорошо подходит «Standard contradiction». Смысл нового названия в том, чтобы указать на способ разрешения этого противоречия, включающего подбор подходящих названий конфликтующих свойств (плюс- и минус-факторов) из «стандартных» 39 факторов и ведущих к выбору «стандартных» навигаторов (приемов) для разрешения именно этого «стандартного» противоречия. Для замещения понятия «Физическое противоречие» вполне подходит «Радикальное противоречие». Во-первых, модель этого противоречия лежит в основе, в «корне» любого «Стандартного противоречия», а во-вторых, разрешение этого противоречия, если уж не удалось решить проблему на уровне «Стандартного противоречия», возможно исключительно путем радикальной трансформации исходной ситуации на основе четырех фундаментальных навигаторов — одного, двух или в иных сочетаниях. Названия «Стандартное противоречие» и «Радикальное противоречие» были введены после немалых обсуждений и поисков. Но они открывают возможность их универсального применения для любых без исключения ситуаций и объектов без всяких натяжек и неудобств при интерпретации, особенно применительно к межперсональным конфликтам. При соответствующем расширении типов примеров в софтвере (либо при дополнении специальными учебными пособиями) он может стать универсальным средством для обучения основам ТРИЗ школьников и студентов, специалистов любого профессионального направления.
Подготовка и запись информации о процессе решения задачи реализуется на бланке, структура полей которого близка к полному SMART-формату (рис. 21.2). Некоторые другие версии софтвера Idea Navigator также используют SMART T-R-I-Z. www.easytriz.com
21.3.2. Ideo Navigator HandyTRIZ Этот софтвер9 также разработан на основе SMART-2000. В отличие от EasyTRIZ™, софтвер Idea Navigator™ HmdyTRIZ™ включает инструменты из трех студий А, В и С (рис. 21.4) и ориентирован на профессиональное применение инженерами и исследователями, знакомыми с основами ТРИЗ. ч- www.handytriz.cnm
Каждая студия использует одну и ту же схему МАИ, но со «своими* инструментами. Студия А включает все главные А-навигаторы. Используются также и новые инструменты, разработанные в последнее время на основе А-Матрицы. Студия В включает метод «Размер — Время — Стоимость* и матрицу для брейнсторминга. Студия С включает наиболее популярные инструменты на базе линий развития ресурсов. Работа в каждой студии поддерживается Проект-навигатором (рис. 21.5), который автоматически записывает информацию, созданную пользователем в процессе решения задачи. При этом регистрация любой информации реализуется в одной и той же стандартной МАИ-структуре. Каждый пример для пояснения действия любого навигатора имеет МАИ-формат (см. далее Примеры 128 и 129). Этим задается стандартный формат для решения проблемы как начинающим, так и профессиональным пользователем. Специальные всплывающие окна используются для промежуточных записей и для записи новых идей. Все окна могут быть «свернуты», если временно не используются (см. рис. 21.5, на котором окно «Идея» свернуто в «линию»). «Ведущим» окном является окно SMART-навигатора, появляющееся на экране справа (рис. 21.6). Оно помогает пользователю легко ориентироваться в его текущем «положении» на определенном этапе МАИ и «вспоминать» применяемый инструмент в процессе решения. Если SMART-навигация временно не нужна, то это окно сворачивается либо удаляется с экрана. В дополнение к инструментам указанных трех студий всплывающее окно «Доминатор» (рис. 21.5) реализует также один из простейших инструментов

D-студии, а именно, психологическую поддержку на основе цветовой стимуляции. В этом окне пользователь может задавать цвет, который соответствует его субъективному предпочтению на том или ином этапе МАИ, либо при применении определенного инструмента. Здесь реализована «динамизация* известного метода де Боно Six Thinking Hats (Шесть Мыслительных Шляп), так как можно менять цвета для разных «творческих фаз*. Для отдыха или стимуляции мышления можно раскрывать окно «Доминатор* на весь экран. Весьма важно то, что стандартная структура МАИ используется для навигации во всех версиях софтвера. Благодаря этому, пользователь может легко переходить к следующей версии по мере накопления достаточного опыта при работе с предшествующей версией. Комбинирование инструментов трех студий дает пользователю большую свободу в управлении процессом решения проблемы. Софтвер Idea NavigatorTM HandyTRIZTM занимает промежуточное положение между софтвером EasyTRIZ™ и наиболее продвинутой версией TRIZ PentaCORE™, которая описывается далее. 21.3.3. Idea Navigator 1 TRIZ PentaCORE Ниже представлена укрупненная структура софтвера Idea Navigator™ TRIZ PentaCORE™ (рис. 21.7 и 21.8), развиваемого под руководством автора и предоставляющего пользователям максимальные удобства для творческого решения инженерных проблем на основе интеграции самых мощных и проверенных практикой теорий и методов. По совокупности функциональных свойств и по уровню системной интеграции TRIZ PentaCORE™ является пионерским софтвером, не имеющим аналогов. В основе концепции софтвера TRIZ PentaCORE™ лежит фундаментальная идея интеграции рационально-логического интеллекта и эмоционального интеллекта. TRIZ PentaCORE™ содержит пять инструментальных модулей-ядер, определивших название софтвера, и один центральный модуль общесистемной навигации (рис. 21.7). Модули называются студиями, модели и инструменты которых человек выбирает и применяет в своем творчестве. Важнейшие модели и инструменты студий, приведенные на рис. 21.8, в TRIZ PentaCORE™ называются навигаторами (см. раздел 6. От практики к теории). Важную роль для интеграции интеллектов играют два навигатора из управляющего FМодуля: Мега-Навигатор и Мета-Навигатор. Название модуля F определяется его прямым отношением к фундаментальному понятию абстрактной алгебры и конструктивной математики Functor (сложное преобразование между категориями, чему строго соответствует Мета-АРИЗ) и определению Frontal, ассоциативно указывающему на связь с фронтальными (лобными) отделами мозга, ответственными за генерацию идей (см. рис. 20.2, 20.3 и 20.10). Мега-Навигатор опирается на таблицу выбора стратегии и стиля мышления (приводится в сокращенном виде на рис. 21.9). Мета-Навигатор реализует функции Мета-АРИЗ (см. раздел 7.2. Мета-Алгоритм изобретения). При этом в цветовой гамме оформления (рис. 21.10) и в инструкциях к применению Мета-Навигатор интегрирует идею навигации мышления по де Боно под названием «Six Thinking Hats» — «Шесть мыслительных шляп». В основе этой идеи лежит управление эмоциональным интеллектом в процессе творческого поиска решения проблемы. Мета-Навигатор является инвариантной, а значит, хорошо узнаваемой, структурой для всех студий софтвера TRIZ PentaCORE™. При этом Мета-Навигатор любой студии на фазах Диагностика и Редукция опирается на модели и рекомендации классической ТРИЗ, изложенные в настоящем учебнике.
Таким образом, софтвер TRIZ PentaCORE™ ориентирован на четыре (со второго по пятое) фундаментальных направления развития ТРИЗ-знаний. TRIZ PentaCORE™ является универсальной системой на основе ТРИЗ, интегрирующей также методы психологической поддержки инновационной и изобретательской деятельности и модели закономерностей, ограничений и целей экологического и социального прогресса, и имеющей механизмы для интеграции с другими система- I I sa
Стратегические стили мышления Конструкти Художник Мыслитель вист — The — Emotional — Rational Golden Mean Intellect Intellect Operator А ЛВ В Tactician AC A BCD BD Strategist АСЕ ABCDE BDE Master Composite Neuro-Dynamical Navigator of Thinking (C-NI)NT) Genius Personal Neuro-Dynamical Navigator of Thinking tPNDNT) Рис. 21,9. Структура Mera-Навигации софтвера TRIZ PentaCORE" .тля ninei ранни рационально-логического и эмоционального интеллектов Стратеги ческие уровни мышления
ми поддержки деятельности человека, например, с системами образования, проектирования, управления, научных исследований. Дальнейшую информацию можно получать в Интернет по адресу www.modern-trizacademy.com. В дополнение к изложенному приведем два примера из банка софтвера Idea Navigator™ EasyTRIZTM. Они отражают также общий ход работы в EasyTRIZ (за исключением передачи цветовой поддержки). Пример 128. Прогулочная подводная лодка Тренд Создание автономной прогулочной подводной лодки требует больших денежных затрат и сопряжено с большим количеством проблем обеспечения надежности и безопасности. Поэтому в конечном итоге такие проекты приводили к большой стоимости такой услуги для клиентов и не имели большого распространения. Административное противоречие: что можно сделать для создания коммерчески выгодного аттракциона пребывания отдыхающих, спортсменов или исследователей под водой? Редукция Прежде всего административное противоречие необходимо перевести в техническое. Стандартное противоречие (СП) 1: прогулочная подводная лодка должна быть простой в эксплуатации, но из-за внешних вредных воздействий она может стать небезопасной. СП 2: при простоте эксплуатации лодка должна быть недорогой, а значит, несложной в изготовлении. 03 и ведущие оперативные ресурсы: конфликтуют функциональные свойства всей системы в целом. Макро-ФИМ: Х-ресурс, абсолютно не усложняя систему и не вызывая негативных эффектов, обеспечивает вместе с другими имеющимися ресурсами получение [недорогой, безопасной, простой в эксплуатации подводной лодки для прогулок]. Модели СП: N Действие, состояние, объект Прогулочная подводная лодка ° 1 ТП 1 я (+) — Фактор Удобна 1 в 0 во Удобст (—) — Фактор Дол 1 жна быть Внешние 04. 05. 23. 24
эксплуатации Удобна я в0 эксплуатации 2 эксплуатации безопасной вредные факторы 1 Удобст Дол 07 во жна быть Удобство нзго-| 37 эксплуатации недорогой товдения 05. 35. Явно выделяется прием 05 Вынесение. Изобретение Идея по навигатору 05: оставить главную полезную функцию (находиться под водой) за корпусом подводной лодки, а функции управления, перемещения и обеспечения безопасности вынести в надсистему, применив буксирующее судно (Х-ресурс). При этом пассажиры могут изменять глубину погружения и осуществлять небольшие отклонения относительно курса буксирующего судна. В частности, подводная лодка может быть открытой, а пассажиры могут быть в скафандрах или в легких водолазных костюмах. Зуминг Оба СП устранены. Краткое описание примера С целью создания недорогой и простой в эксплуатации прогулочной подводной лодки главная полезная функция (находиться под водой) оставлена за конструкцией лодки, а функции управления, перемещения и обеспечения безопасности вынесены в надсистему, а именно, переданы буксирующему судну (навигатор 05). Пример 129. Летающая цистерна Тренд При тушении пожаров в высотных зданиях исключительно сложной проблемой является доставка воды и других гасящих веществ на нужную высоту. Использование вертолетов часто затруднено из-за опасности задеть винтами за здание и из-за большой задымленности, а иногда и опасности возгорания самих вертолетов. Как можно увеличить возможность ликвидации пожаров в высотных зданиях? Редукция Запишем это СП в табличной форме: ХвТП Действие, состояние. объект Вертолет (-) — Фактор 1 Коммент. (+) — Фактор 16 доставляет воду на нужную высоту Длина неподвижного объекта Этот фактор выглядит паиГичсе подходящим при интерпретации 10 Не должен подвергаться опасности аварии Удобство эксплуатации 05. 29 Может включать и требование безопасности Прежде всего переведем административное противоречие в техническое. Сформулируем СП в следующем виде: вертолет должен доставлять воду на нужную высоту, но не должен подвергаться опасности аварии или крушения.
Изобретение Идея по приему 05: воду или другие средства тушения огня вынести в отдельную цистерну, прикрепленную к вертолету тросами с возможностью изменения длины тросов. При этом вертолет может находиться на безопасной высоте над зданием, а цистерна может быть внесена в зону, максимально близкую к пожару, и управляться либо дистанционно, либо специальным экипажем. Цистерна может иметь дополнительные средства маневрирования. Зуминг СП устранено. Системный сверхэффект 1: много цистерн (а не дорогостоящих вертолетов!) может быть готово к применению. Системный сверхэффект 2: цистерны могут заправляться параллельно с работой занятых вертолетов. Краткое описание Для обеспечения доставки воды или других средств пожаротушения на нужную высоту высотного здания эти средства вынесены в отдельную емкость, например, в виде цистерны, прикрепленной к вертолету на тросах с управляемым изменением длины тросов (навигатор 05). В цистерну могут быть вынесены средства локального маневрирования для оптимального сближения с очагом пожара. Послесловие автора Решение любой сложной задачи из инженерной практики всегда есть не только сугубо логическое рассуждение или решение по аналогии, но более всего акт интуитивного творчества, поддержанною и логикой, и аналогиями. Инструменты классической ТРИЗ, рассмотренные в учебнике, позволяют успешно решать не менее 70—75 % «стандартных* изобретательских задач для совершенствования изделий и технологий. При достаточном опыте на основе комбинирования этих инструментов возможно решать около 90% задач. И эти дополнительные 15—20 % стоят не менее предыдущих, так как относятся к решениям очень сложных «нестандартных* задач. И все же в числе оставшихся 10 % задач — «экстремально* сложные, требующие изобретательского таланта и... творческой удачи. Но тем более для их решения важна ТРИЗ. ТРИЗ незаменима для «экстремально* сложных проблем, так как подготавливает и высвобождает «сверхсознание* для генерации решающей идеи. В решении любой задачи огромную роль играют развитое воображение, умение мыслить нестандартно, умение не идти по «вектору психологической инерции*, не поддаваться кажущейся простоте случайною угадывания идеи решения. Инструменты классической ТРИЗ прекрасно помогают преодолеть эти психологические препятствия. Но остается еще мотивация. Трудно ожидать прихода идеи к тому, кто не стремится к решению задачи, для кого это не важно или не интересно. Границы возможностей ТРИЗ совпадают лишь с актуальными границами естественнонаучных знаний человечества, так как для синтеза идей ТРИЗ опирается на эти знания. В то же время ТРИЗ выходит за границы этих знаний. так как помогает исследователю и
инженеру преодолеть и расширить сами эти ограничения. Рассмотренные и специальные методы ТРИЗ способствуют решению исследовательских проблем самого высокою уровня. Классическая ТРИЗ потому и является классической, что ее основные принципы останутся навсегда неизменной, инвариантной основой любой инженерной теории синтеза творческих решений. Систематизация и упорядочивание терминологии, выполненные в этой книге, представляют собой первую ступень в будущей интеграции ТРИЗ с системотехническими и специальными инженерными дисциплинами. ТРИЗ должна войти неотъемлемым компонентом в любую теорию принятия решений, в любую теорию проектирования. Совершенно необходимо применение ТРИЗ-концептов и инструментов во всех инженерных дисциплинах и во всех высших учебных заведениях. Преподавание основ ТРИЗ необходимо в каждой школе. Исключительно важные возможности открывает ТРИЗ для развития детского творчества, для воспитании творческих личностей. Имеются многочисленные примеры успешного применения ТРИЗ-моделей при организации воспитательного процесса и для непосредственного игрового усвоения ключевых компонентов ТРИЗ с самого раннего возраста. Конструктивные перспективы имеет интеграция ТРИЗ с любыми другими областями деятельности, традиционно не относящимися к инженерным. ТРИЗ имеет примеры успешного применения для решения медицинских задач, социальных проблем, менеджмента, организации избирательных кампаний, обеспечения надежности и безопасности технических объектов, проектов и организаций. Обобщая, можно повторить высказывание, распространенное в среде приверженцев ТРИЗ: Внимание! Изучение ТРИЗ может изменить силу вашего мышления! Конечно, если Вы уже освоили эту книгу, приведенное «предупреждение» несколько опоздало. Но зато Вы, я надеюсь, убедились в его справедливости и теперь сможете убедить в этом других людей. Чтобы сделать их более вооруженными перед появляющимися проблемами. Чтобы увеличить их способность находить отличные идеи. Чтобы, наконец, просто добавить радостных ощущений в жизни через особую радость творческих побед. ТРИЗ учит и приучает мыслить парадоксами, противоречиями. Она внушает обоснованный оптимизм и дает уверенность в решении самых острых «неразрешимых» проблем. Она воспитывает многостороннее видение и понимание мира, его сложных явлений и проблем. Через логические модели и образные метафоры ТРИЗ расширяет границы нашего мировосприятия, увеличивает остроту и гибкость нашего мышления. Конечно, многие люди чрезвычайно талантливы от природы. Но нет никаких сомнений в том, что всем им также полезна ТРИЗ! Как инструмент. Как теория систематического изобретательства. Как безупречная модель мышления! Я хочу напомнить здесь талантливые решения сэра Нормана Фостера при восстановлении здания Рейхстага (пример 31), сделанные им, по-видимому, без знания ТРИЗ. Но эти решения настолько эффективны, что достойны анализа на основе ТРИЗреинвентинга и включения в «золотую коллекцию» ТРИЗ-моделей. И уже следующие поколения архитекторов могут освоить готовые образцы для рационального синтеза творческих идей в своих проектах. Одним из наиболее парадоксальных и смелых решений было создание купола как места свободного посещения Рейхстага всеми желающими! Через большие прозрачные плоскости в верхнем своде зала заседаний посетители могут видеть парламентариев, изобретающих внизу судьбу государства. Возникает приятная иллюзия, что политика и экономика совершенно прозрачны для каждого из нас!
Но еще более концентрированный, главный образ невидимо присутствует в куполе, когда мы обратим внимание на системную связь всех, кто имеет отношение к этому зданию. Это каждый свободный в демократическом обществе человек, имеющий возможность ходить над парламентариями. Это парламентарии, работающие внизу для этого свободного человека. И это — Бог над всеми нами, над нашей совестью. И возникает модель демократии, о которой подумалось при первом же посещении купола: Каждый над правительством, но под Богом. Итак, завершение первой работы с учебником означает и завершение важного этапа Вашего восхождения в искусстве ТРИЗ. Я мог бы запершить книгу словами одного из участников моих семинаров, ставшего впоследствии моим коллегой: Классическая ТРИЗ — это выход из болота «Пробы — и — ошибки* к океану «Пробы — и— удачи*! Но еще несколько слов, обращенных к неискушенному читателю, впервые знакомящемуся с ТРИЗ, кажутся все же необходимыми. Человек отражается в сотнях зеркал своих эмоций, способностей, мотивов, умений, поступков. Человек многомерен и неоднозначен. Человек противоречив и сложно связан с окружающим его Миром. Но он ищет решения. Ищет их каждодневно. Часто находит. Иногда — нет. Хорошие решения находит не часто. Очень хорошие или гениальные — очень редко. Можно ли помочь тем, кто стремится к поиску хороших решений? Кто не желает попусту тратить время своей жизни на поиск вслепую, наощупь, случайным образом, в необоснованном выжидании какого-то озарения или какого-то невероятного удачного события! Да, можно. Таким людям необходима ТРИЗ. Только ТРИЗ впервые в истории цивилизации предлагает систематический путь к преодолению проблемных противоречий, к созданию эффективных идей. ТРИЗ-менталитет помогает более эффективно организовать и другие аспекты жизни человека. Помогает выдерживать удары судьбы. Помогает нередко предвидеть и предотвращать проблемы. Помогает находить ресурсы в безнадежных, как представлялось, ситуациях! Я благодарю Вас за внимание и доверие. Я желаю Вам благополучия и успеха. стр.383 в книге пропущена, она пустая! Да, изобретать по старинке проще. Рыть землю лопатой проще, чем управлять экскаватором. Ходить пешком проще, чем водить машину. За скорость, мощность, эффективность любого действия приходится платить знаниями. Изобретательство не исключение. Хочешь быстро решать трудные задачи — учись, осваивай «изобретательскую физику» и все остальное. Впрочем ... для решения изобретательских задач важны не столько новые знания, сколько хорошая организация тех знаний, которыми человек уже обладает. Изобретательская деятельность многогранна. И все-таки ... решение — основа основ изобретательства. Изобретателем XIX века был мастер-умелец, он своими руками строил новую машину, переделывал ее на все лады, добиваясь, чтобы она работала. Современный изобретатель, прежде всего, мыслитель, интеллектуал. Самое важное — тонкие и точные интеллектуальные операции. Генрих Альтшуллер. И тут появился изобретатель.
Москва, 1987. Приложения: каталоги навигаторов А-Студии Приложение 1 Каталог Структурно-функциональные модели НАЗВАНИЕ GМОДЕЛЬ 1 ПРОТИВОДЕЙСТ (В) ВИЕ 2 ДВОЙНОЕ ДЕЙСТВИЕ ОПИСАНИ Е (А>~Л А действует на В полезно. В действует на А вредно (А) ; Чв) А действует на В полезно п вредно А действует на В полезно, но при этом создает для себя вред-нос действие 3 САМОПОВРЕЖД ЕНИЕ 4 ) (5) 4 III ( (ЖМИ ТПМЫЕ ДЕЙСТВИЯ А и С действуют на В полезно, но при этом мешают друг другу А W действует полезно на В н вредно на С 0---КВ) А взаимодействует с В неэффективно или нужное действие отсутствует 5 II ИСТИН! н \ ДВА ОБЪЕКТА 6 НЕЭФФЕКТИВН ОЕ ДЕЙСТВИЕ Приложение 2 Каталог А-Компакт-Стаидарты ПРИМЕРЫ РЕШЕНИЙ В ОБЩЕМ ВИДЕ Заменить или изменить вещество одного или обоих элементов, ввести добавки внутрь (или на поверхность) элементов или в среду, изменить характер действия Представить проблему в | виде 1—3. изменить состояние В Изменить состав (например, ввести ресурспосредник), расположение, форму или время действия объектов: принести проблему к виду 1—3
SI I.I.I -I.I.5 I.2.I-I.2.4 5.I.1-5.I.4 5.2.I5.2.3 5.4.1 5.5. I-5.5.3 S2 2.1. 1. 2.1.2 2.2.12.2.5 5.3.15.3.5 2.3.1. 2.3.2 1.2.5 2.4. 1-2.4.12 4.4.14.4.5 ДОБАВКИ 1. Использовать возможность введения добавок в уже имеющиеся вещества для придания системе требуемых свойств, например, для повышения управляемости. 2. Использовать возможность присоединения дополнительных нешеств к веществам в системе. 3. Дополнительное вещество может вводиться временно. 4. Дополнительное вещество может быть производным от нешеств. уже имеющихся в системе. 5. Вместо вещества вводят «пустоту» (воздух, иену и т. и). 6. Вместо вещества вводят поле, нейтрализующее вредное действие. 7. Вводят в очень малых дозах особо активную добавку. 8. Вводят обычную добавку, но располагают ее концентрированно 9. Использовать модели (копни), в которые можно вводить добавки. 10. Вещество вводят в химическом соединении, из которою оно выделястся в нужное время. 11. Вещество получают рах'юженнем или изменением агрегатного состоянии части объекта и/или внешней среды. 12. Требуемые частицы вещества получают разрушением вещества более высокого структурного уровня (например, молекчл). 13. Требуемые частииы вещества (например, молекулы) получанм достроикон или объединением частиц более низкого структурною уровня (например, попов). УШ'АВЛЯММОСТЬ 1. Использовать возможность превратить часть объекта (вещества! в управляемую систему. 2. Использовать возможность введения в систему хорошо управляемою ноля, скоординированных полей. 3. Если веществу должна быть придана определенная пространственная структура, процесс следует вести в поле, которое имеет структуру, еоотвекчиуюшую тре1 буемой структуре вещества. 4. Использовать дробление вещества (ноли), применить капиллярно-пористые
структуры, ввести динамизацию полем и компонентов, исполыовап. фа юные переходы вещества, применить согласование/рассогласование ритмики н частот. 5. Использовать для управления объектом возможность добавления ферромагнитных частиц (стружка, гранулы, «магнитная жидкость» и т. п.) и воздействия на эти частицы магнитным или электромагнитным полем; использовать ферромагнитные добавки вместе с капиллярно-пористыми материалами. 6. Использовать возможность добавления ферромагнитных материалов во внешнюю среду. 7. Для получения минимального (дозированного, оптимального) режима можно использовать максимальный режим, а избыток устранить. . 8. Для сохранения максимального режима максимальное действие можно направить на другое вещество, связанное с веществом объекта. 9. Для обеспечения максимально-минимального (избирательного) режима используют максимальное воздействие, при этом защищают места, где нужно минимальное воздействие; используют также минимальное воздействие, при этом в места, где нужно максимальное воздействие, вводят добавки (вещество, поле), дающие усиление минимального воздействия. 10. Использовать состояния вещества, близкие к «критическим», когда энергия запасается в веществе, а входной сигнал играет роль «спускового крючка». ОБНАРУЖЕНИЕ И ИЗМЕРЕНИЕ S3 4.1 1. Использовать возможность изменить задачу так, 1-4.1.3 чтобы отпала необходимость в 4.2.1обнаружении/измерении. 4.2.4 2. Использовать возможность перевести исходную 4.3.1задачу в задачу на последова4.3.3 тельное (пошаговое) обнаружение изменений. 4.5.13. Перейти к измерению первой или второй 4.5.2 производной от функции. 4. Использовать возможность добавок во внешнюю среду для получения легко обнаруживаемого (измеряемого) поля, по которому можно судить о состоянии наблюдаемого объекта. 5. Перейти к бисистсме или полисистсмс; использовать копии. 6. Использовать технические эффекты. 1.1.61.1.8 5.4.2
РАЗВЕРТЫВАНИЕ S4 3.1. 1. Использовать объединение объекта с другой 1-3.1.3 системой (или системами) в более сложную би- или полисистсму. 2. Ускорить развитие связей между частями системы и между системой и внешним окружением. 3. Увеличить функциональную нагрузку на систему и се части. СВЕРТЫВАНИЕ S5 3.1. 1. Использовать возможность сокращения 4-3.1.5 вспомогательных и малоиагруженных 3.2.1 частей (элементов) системы. 2. Использовать возможность распределения несовместимых свойств между системой, наделяемой свойством F, и частями этой же системы» наделяемыми свойством анти-F. 3. Использовать возможность реализации функций системы на микроуровне — на уровне вещества или/и полей. Приложение 3 А-Матрица для выбора специализированных А-Навигаторов Список плюс- и минус-факторов 0 Производительность 1 0 Универсальность, 2 адаптация 0 Степень автоматизации 3 0 Надежность 4 0 Точность изготовления 5 0 Точность измерения 6 0 Сложность устройства 7 0 Сложность контроля и 8 измерения 0 Удобство изготовления 9 1 Удобство эксплуатации 0 1 Удобство ремонта 1 2 Форма 2 Скорость 1 2 3 4 действия 2 Время подвижного объекта действия 2 Время неподвижного объекта 2 Потери времени 5 2 Количество вещества 2 Потери вещества 2 Прочность 6 7 8 9 2 Устойчивость объекта 3 Сила состава 0 3 1 Напряжение, давление
1 Потери информации 2 3 4 5 6 7 8 3 Вес подвижною объекта 2 вредные 1 Внешние факторы 1 Вредные факторы самого объекта подвижного 1 Длина объекта неподвижного 1 Длина объекта подвижного 1 Плошадь объекта неподвижного 1 Площадь объекта 1 Объем подвижного объекта 9 3 4 неподвижного А-Мотрица (начало) 3 Освещенность 3 Мощность 5 6 8 9 2 Объем 0 объекта неподвижного 3 Вес объекта 3 Температура Затраты энергии подвижным объектом энергии 3 Затраты неподвижным объектом 3 Потери энергии
А-Матрица (продолжение)

I ! Приложение 4 Каталог специализированных А-Навигаторов 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 Изменение агрегатного состояния Предварительное действие Дробление Замена механической среды Вынесение Использование механических колебаний Динамизация Периодическое действие Изменение окраски Копирование Наоборот Местное качество Дешевая недолговечность вместо дорогой долговечности Использование пневмо- и гилроконструкций Отброс и регенерация частей Частичное или избыточное действие Применение композиционных материалов Посредник Переход в другое измерение Универсальность
21 Обратить вред в пользу Сфсроидал ы 1ость 22 23 Применение инертной среди 24 Асимметрии 25 Использование гибких оболочек и тонких пленок 26 1 Применение фазовых переходов 27 Применение теплового расширения 28 Заранее подложенная подушка 29 Самообслуживание 30 Применение сильных окислителей 31 Применение пористых материалов 32 Антивсс 33 Проскок 34 Матрешка 35 Объединение 36 Обратная связь 37 Эквипотснциалыюсть 38 Однородность 39 Предварительное антидействие 40 Непрерывность полезного действия НАВИГАТОР а) Сюда входят не только ИЗМЕНЕНИЯ «ТЕГАТНОГО простые переходы, например, от СОСТОЯНИЯ ОБЪЕКТА твердого состоянии к жидкому, но и переходы к -псевдосостонниим» («псевдожидкость») и к промежуточным состояниям, например, использование эластичных свойств твердых тел; Ь( Изменить концентрацию или консистенцию, степень гибкости, температур] и т. п. 1. Применение магниторсологических или элсктрореологических жидкостей с управляемой степенью вязкости от жилкого состояния до твердого. 2. При неудачном тренировочном прыжке спортсмена с вышки в бассейне тренер вк.ночлс! подачу импульса сжатою воздуха в область падения спортсмена в воду, при этом иода ••вспенивается» и становится -мягкой-, исключающей травмирование спортсмена. 3. Участок аварийного торможения на посадочной полосе аэродрома, выполненный в виде бас» ссина. заполненного вязкой жидкостью, покрытой толстым слоем эластичного материала: то же — с Заполнением сыпучим материалом. НАВИГАТОР a) Заранее выполнить 0 ПРЕДВАРИТЕЛЬНОГО требуемое измене2 ДЕЙСТВИЯ ние объекта (полностью или хотя бы час| 0 1
ТОЧНО); b) Заранее расставить объекты так. чтобы они могли вступить в действие с наиболее удобного места и без затрат времени на доставку. Заготовку летали делают по форме и размерам, близким к 1. конечным. 2. Перед посадкой растений (томаты и др.) в грунт садоводы выращивают лома рассаду. 3. Для улучшения и ускорения полива деревьев, посаженных вдоль удин, вокруг основания дерена в грунт вставлены пластмассовые трубки. НАВИГАТ а) Разделить объект на 0 ОР ДРОБЛЕНИЯ независимые части; Ы 3 Выполнить объект разборным; с) Увеличить степень дробления (измсль- f чении) объекта. 1. Многоступенчатая ракета. 2. Пневматическая шина, разделенная на независимые секции для повышения живучести. 3. Вместо пилы для резания камня применили струю жидкости (с абразивным порошком), подаваемую под большим давлением. НАВИГАТОР а) Заменить механическую 0 ЗАМЕНЫ МЕХАНИЧЕСКОЙ схему оптической, акустической 4 СРЕДЫ или -занаховой»: h) Использован, электрические, магнитные и электромагнитные поля для взаимодействия с объектом; c) Перейти от неподвижных полей к движущимся, от фиксированных — к меняющимся во времени, от неструктурированных — к имеющим определенную структуру: d) Использовать поля в сочетании с ферромагнитными частицами. I (.Станки и транспортирующие системы на основе линейного шагового двигателя. 2. Навигатор действия ксерокопировального аппарата или струиночерни.тыюго включает создание электростатического ноля со структурой, точно соответствующей изображению (соответственно, копируемому или выводимому из компьютера) и управляющему интенсивностью н координатами нанесения красящих частичек на чистый лист бумаги.
| 3. Применение магниторсологических и алсктрореологических жидкостей (см. прием № 01) НАВИГАТ Отделить от объекта 0 ОР ВЫНЕСЕНИЯ «мешающую часть« 5 («мешающее» свойство) или. наоборот, выделить единственно нужную часть (нуж-Ное свойство). 1. Педали велосипеда мешали, будучи когда-то установленными на переднем колесе: позже их V перенесли на раму. 2. Робот-рука достает из «Шаттла» и выпускает на орбиту спутники; этот метод заменяет запуск нескольких ракет-носителей, как это было ранее. 3. За кораблем на тросе под водой буксируется негерметичный прозрачный модуль с исследователями или туристами в аквалангах; модуль имеет рули глубины. НАВИГАТОР a) Привести объект в 0 ИСПОЛЬЗОВАНИЯ колебательное дви6 МЕХАНИЧЕСКИХ КОЛЕБАНИЙ жение; b) Если такое движение уже совершается, увеличить его частоту (вплоть до ультразвуковой); c) Использовать резонансную частоту: применить пьезовибраторы; d) Использовать ультразвуковые колебания в сочетании с электромагнитными полями. I 1. Способ термокомпрессионной сварки, например, для присоединения проводника к металлизированной контактной плашадке интегральной микросхемы, при котором прижимающему рабочему органу сообщают механические колебания с управляемой частотой в ультразвуковом диапазоне. 1 2. Детали сообщают механические колебания с целью измерения значений резонансных частот для обнаружения отклонений и выявления наличия дефектов. 3. Ультразвуковой скальпель для хирургических операций. НАВИГАТОР a) Характеристики 0 ДИНАМИЗАЦИИ объекта (или внешней 7 среды) должны меняться так, чтобы быть оптимальными на каждом шаге работы: b) Объект разделить на части, способные перемещаться относительно друг друга; c) Если объект
неподвижен, сделать его' подвижным, перемещающимся 1. Автомобиль со всеми поворачивающимися колесами. 2. Самолет с переменной стреловидностью крыла. 3. Столбик для блокировки несанкционированного занятия автостоянки, снимаемый или укрепленный (вертикально или горизонтально) на шарнире и снабженный замками, придающими . столбику жесткость в рабочем положении; см. также п.35.2 в навигаторе № 35 — шарнирное соединение секций составного судна. 4. Один из выставочных павильонов фирмы Сименс с подвижной системой защиты от солнца i на всю высоту (!) здания. НАВИГАТОР ' a) Перейти от ПЕРИОДИЧЕСКОГО непрерывного действия к ДЕЙСТВИЯ периодическому (импульсному); b) Если действие уже осуществляется периодически, изменить периодичность: c) Использовать паузы между импульсами для другого действия. 1. Способ управляемой термообработки деталей, использующий локальное воздействие охлади1 телем в импульсном режиме с управляемыми параметрами импульсной подачи охладителя в 1 совокупность охлаждаемых зон (см. также навигатор № 12). 2. Параллельно установленные гребные винты с пересекающимися траекториями вращения синхронизированы гак. что лопасти каждого винта проходят в пространстве между лопастями другого (см. гакже навигатор № 34). НАВИГАТОР ИЗМЕНЕНИЯ a) Изменить окраску ОКРАСКИ объекта или внешней среды; b) Изменить степень прозрачности объекта или внешней среды; c) Для наблюдения за плохо видимыми объектами или процессами использовать красящие добавки; d) Если такие добавки уже применяются, использовать люминофоры. 1. Утюг с инфракрасным излучателем и прозрачным основанием. 2. В поток рабочего всшсства (воздуха — в аэродинамической
трубе; воды или иной жидкости — в гидродинамической трубе) добавляются красящие вещества для видсорегистрации процессов движения рабочих веществ относительно испытываемого объекта. 3. Волокна с люминогенами добавляются в материал, из которого изготавливают ценные бумаги и денежные банкноты. НАВИГАТОР a) Вместо КОПИРОВАНИЯ недоступного, сложного, дорогостоящего, неудобного или хрупкого объекта использовать его упрошенные и дешевые копии; b) Заменить объект или систему объектов их оптическими копиями (изображениями); использовать при этом изменение масштаба (увеличить или уменьшить копни): c) Если используются видимые оптические копии, перейти к копиям инфракрасным или ультрафиолетовым. 1. Манекены и роботы - объемные и плоские; увеличенные, уменьшенные или в реальную величину; неподвижные или подвижные; «говорящие» или «поющие» и т. п. — для привлечения внимания прохожих около кафе, магазинов, бюро путешествий, выставочных стендов и т. п. 2. На «плоском» ре1Гтгеповском снимке одновременно делается снимок масштабных горизонтальной и вертикальной линеек; на «стереоскопическом» рентгеновском снимке делается снимок «мерного стереоскопического куба», что позволяет точно определить расположение очага заболевания в трехмерном пространстве. 3. Голографическос «натуральное» изображение дорогостоящих изделий, картин, скульптур. НАВИГАТ a) Вместо действия, ОР диктуемого условиями «НАОБОРОТ. задачи, осуществить обратное действие (например, не охлаждать объект, а нагревать);
b) Сделать движущуюся часть объекта (или внешней среды) неподвижной, а неподвижную — подвижной; c) Перевернуть объект «вверх ногами», вывернуть его. 1. При резании металлов инструмент нужно охлаждать, для чего поливают его и, заодно, деталь охлаждающей жидкостью. Предложена технология с локальным охлаждением инструмента, но с локальным лазерным нагревом (!) зоны резания в детали, что улучшает экономичность и качество обработки (см. также навигатор № 21). 2. Многочисленные тренажеры и испытательные стенды: спортсмен относительно помещения (земли) не перемещается, а перемешается подвижная часть имитатора — в бассейне создано управляемое течение для тренировки пловца, воднолыжника: в специальном бассейне проводятся испытания моделей кораблей и подводных аппаратов; в аэродинамической трубе 3. «Мощными», включая сверхзвуковые, потоками воздуха испытываются летательные аппараты. 4. Чтобы стружка при резании не попадала па деталь, резеи устанавливается под деталью. НАВИГАТОР МЕСТНОГО а) Перейти от однородное 1 КАЧЕСТВА структуры объекта (или внешней 2 среды, внешнего воздействия) к неоднородной; о) Разные части объекта должны иметь разные функции; с) Каждая часть объекта должна находиться в условиях, наиболее соответствующих се работе. 1. Трамвай-автобус имеет металлические колеса для движения по рельсам и имеет обычные автомобильные колеса для движения на участках, где нет рельсов, при этом автомобильные колеса при движении по рельсам по-прежнему служат движителем, а металлические колеса служат только для направления движения. 2. Солнечная кремниевая батарея снабжена следящим приводом для поворота в оптимальное положение для наилучшего освещения солнцем. 3. Тренажеры в спорт-центре предназначены для тренировки определенных групп мышц. НАВИГАТОР Заменить дорогой объект 1
ДЕШЕВОЙ набором дешевых объектов, НЕДОЛГОВЕЧНОСТИ ВЗАМЕН поступившись при этом ДОРОГОЙ ДОЛГОВЕЧНОСТИ некоторыми качествами (например, долговечностью) 1. Одноразовые носовые платки TEMPO по патенту фирмы Procter & Gamble. 2. Перегорающие или плавкие предохранители для зашиты электроаппаратуры от аварийных перегрузок. 3. См. пример конструирования русских военных кораблей. НАВИГАТОР Вместо твердых частей 1 ИСПОЛЬЗОВАНИЯ ПИЕВМО-И объекта использовать 4 ГИДРОКОНСТРУКЦИЙ газообразные и жидкие, надувные и гилронаполнясмыс. воздушную подушку, гидростатические и гидрореактивные. 1. Гидравлический домкрат, в котором рабочая жидкость нагнетается в установленные одна на другой в нужном количестве эластичные подушки, поднимающие и поддерживающие груз. 2. Воздушный или гидравлический прижим, в котором рабочим органом является эластичная подушка, обжимающая с равномерным усилием удерживаемую деталь. 3. Надувные оболочки для создания выставочных павильонов и временных «строений», например, развлекательных «замков» для детей. Надувные и гилронаполнясмыс оболочки для создания спальных матрацев, массажных матрацев, для создания «стенок и дна» переносных и сезонных бассейнов. НАВИГАТОР a) Выполнившая свое 1 ОТБРОСА И РЕГЕНЕРАЦИИ назначение или 5 ЧАСТЕЙ ставшая ненужной часть объекта должна быть отброшена (растворена, испарена ит. п.) или видоизменена непосредственно в ходе работы; b) Расходуемые части объекта должны быть восстановлены непосредственно в ходе работы. 1. Реактивный самолет или ракета может иметь дополнительные сбрасываемые топливные баки для старта. Аналогично, отбрасываются первые отработавшие ступени ракет. 2. Для игры в гольф на борту океанского лайнера мячи для гольфа делаются из компонентов, 3
которые без вреда могут быть употреблены рыбами или быстро разлагаются. 3. Способ исследования высокотемпературных зон, при котором в исследуемую зону непрерывно подают плавящийся зонд-световод со скоростью, не меньшей скорости плавления. НАВИГАТОР Если трудно получить 1 ЧАСТИЧНОГО ИЛИ 100% требуемого! эффекта, надо 6 ИЗБЫТОЧНОГО ДЕЙСТВИЯ получить «чуть меньше» или «чуть больше». Задача может при этом суj щественно упроститься. 1. Метол окраски деталей окунанием в ванну с краской и последующим раскручиванием на центрифуге для удаления избыточной краски и предварительного подсушивания. 2 А 1ч улучшения сохранности некоторых видов овощей и фруктов их.снимают при неполной спелости, так как они «набирают» полную зрелость без связи с растением, что позволяет во время «дозревания» транспортировать их и намного долбше хранить на складах. НАВИГАТОР Перейти от однородных 1 ПРИМЕНЕНИЯ материалов к композиционным. 7 КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ 1. Детали каркаса автомобиля из композиции «сталь—алюминий», «сталь— пеноалюминий» и. в перспективе, возможно, «сталь— пеноалюминий—пеносталь» — высокая прочность сочетается с ! высоким поглощением вибраций и низким весом, недостижимыми на основе других материалов. НАВИГАТОР a) Использовать 1 «ПОСРЕДНИКА» промежуточный объект, 8 переносящий или передающий действие: b) На время присоединить к объекту другой (легкоудаляемый) объект. 1. Система управления поворотом колес автомобиля включает 1 «устройство-посредник» — сер1 воусилитель. 2. Диски тренировочной штанги в фитнес-центре покрыты резиной, чтобы уменьшить шум при опускании штанги на пол. 3. Для защиты отдельных участков интегральной микросхемы от воздействия облучения эти участки покрывают (напылением или наращиванием) защищающим веществом, которое впоследствии легко удаляется. НАВИГАТОР a) Объект 1 ПЕРЕХОДА В ДРУГОЕ приобретает возможность пере9 ИЗМЕРЕНИЕ мешаться (размешаться) не только по линии, но и в двух измерениях (т. е. на плос-
кости); возможно улучшение при переходе от движения в плоскости к пространственному; b) Использовать многоэтажную компоновку; наклонить объект или положить его «набок»; использовать обратную сторону данной площади: c) Использовать оптические потоки, паi дающие на соседнюю плошадь или на об| ратную сторону имеющейся плошали. 1. Склады-стеллажи в больших магазинах, размешенные непосредственно над торговыми залами; многоэтажные гаражи с лифтами — дтя хранения лодок. 2. Чертежный стол с переменным наклоном рабочей поверхности (см. также навигатор № 07). 3. Инструкция для применения или настольная игра (в рекламных целях), нанесенная на внутi реннюю сторону упаковочной коробки. НАВИГАТОР Объект выполняет 1 УНИВЕРСАЛЬНОСТИ несколько разных функций, 20 благодаря чему отпадает необходимость в других объектах. J 1. Универсальный велосипедный ключ, имеющий множество вырезов на все нужные размеры " гаек. 1 2. Универсальный комби-автомобиль. j У. Многофункциональность: музыкальный центр. НАВИГАТОР a) Использовать 2 •ОБРАТИТЬ ВРЕД В ПОЛЬЗУ. вредные факторы (и част1 ности, вредное воздействие среды) для получения положительного эффекта; b) Устранить вредный фактор при сложе' нии с другими вредными факторами; c) Усилить вредный фактор гак. чтобы он перестал быть вредным. 1. В асфальт засыпают резиновую крошку, получаемую в результате специального измельчении
старых шин (отхолы. которые где-то нужно хранить!), для повышении эластичности дорожного полотна, что снижает «шумность» дорожного покрытии, уменьшает истирание колес автомобилей и замедляет процесс «появления™ дополнительных изношенных шин. 2. См. пример № 11.1: действие тепла усилено, но сделано направленным и локализованным. НАВИГАТОР a) Перейти от 2 СФЕРОИДАЛЬНОСТИ прямолинейных частей объ2 екта к криволинейным, от плоских поверхностей к сферическим, ог частей, выполненных в виде куба или параллелепипеда, к шаровым конструкциям: b) Использовать ролики, шарики, спирали; c) Перейти к вращательному движению, использовать центробежную силу. 1. Мебель для детской комнаты без острых элементов конструкции. 2. Транспортер деталей методом •самоспуска* между станками, установленными на разной высоте, выполнен в виде спирали с определенным углом для исключения разгона деталей до не11 р и е мл е м ы х с коросте й. 3. С целью повышения износостойкости электроды для точечной электросварки выполнены в виде врашаюшихся роликов. НАВИГАТОР a) Заменить обычную 2 ПРИМЕНЕНИЯ ИНЕРТНОМ среду инертной: 3 СРЕДЫ b) Вести процесс в вакууме. 1. Для предохранения загорания хлопка при хранении его подвергают обработке инертным I.I-1 зом. 1 2. Обработка кремниевых пластин в среде инертного газа: выполнение некоторых операций | проводится в вакууме, например, напыление путем испарения в вакууме, ионное легирование и 1ДРНАВИГАТО a) Перейти от 2 Р \( ИММЕТРИИ симметричной формы объ4 екта к несимметричной. b) Если объект уже асимметричен, увеличить степень асимметрии. 1. В отличие от других кораблей авианосец имеет несимметричную конструкцию главной палубы: стартовая полоса, под углом к ней — посадочная полоса, а сбоку от них —
командный пункт; этим создаются условия для независимого старта и посадки самолетов. 2. Правая фара автомобиля направляет световой поток прямо, а левая — под углом вправо. 3. Книжки для детей: несимметричной формы — со скосами под различными углами, со сложными вырезами — ОЛЯ привлечения внимания и улучшения запоминания. НАВИГАТОР a) Вместо обычных 2 ИСПОЛЬЗОВАНИЯ ГИБКИХ конструкции исиолыо5 ОБОЛОЧЕК И ТОНКИХ ПЛЕНОК вать гибкие оболочки и тонкие пленки: b) Изолировать обчлкт от внешней среды с помощью гибких оболочек и тонких пленок. 1. Тонкопленочные конструкции в микроэлектронике. 2. Декоративные гальванические, проклеиваемые и напыляемые покрытия в виде пленок: для отделки зеркал и посулы — металлической и неметаллической; для создания оптических и автомобильных стекол, многослойных «бронестекол» и т. л. 3. Всевозможные теплины и парники. НАВИГАТОР ПРИМЕНЕНИЯ ФАЗОВЫХ ПЕРЕХОДОВ Использовать явлении, возникающие при фазовых 6 переходах, например, изменение объема, выделение или поглощение тепла и т. д. 1. Конструкция тепловой трубы для теплопереноса от нагретой зоны к холодной (нагреваемой) с помощью испарения теплоносителя на высокотемпературном конце трубы (с поглощением тепла) и конденсации этого теплоносителя на низкотемпературном конце (с отдачей тепла). 2. Тонкостенные пластмассовые емкости с заранее замороженными кубиками льда укладываются в переносной контейнер для краткосрочного поддержания переносимых материалов, например, лекарств или продуктов, и охлажденном состоянии. НАВИГАТОР а) Использовать тепловое 2 ПРИМЕНЕНИЯ расширение (или сжатие) 7 ТЕПЛОВОГО РАСШИРЕНИЯ материалов; Ы Использовать несколько материалов с разными коэффициентами теплового расширения. 1. Биметаллические пластины из материалов с разным коэффициентом теплоного расширения 2
используются для размыкания иди замыкания электрических пеней при повышении или понижении контролируемой температуры. 2. Конструкция крыши парника из шарнирно-закрепленных пустотелых трубок, внутри которых находится легкоиспаряюшаяся жидкость. При изменении температуры меняется центр тяжести трубок, поэтому крыша парника «сама» приподнимается при повышении температуры и опускается при ее понижении. НАВИГАТОР Компенсировать 2 •ЗАРАНЕЕ относительно невысокую 8 ПОДЛОЖЕННОЙ ПОДУШКИ. надежность объекта заранее подготовленными аварийными средствами. 1. Надувные подушки в автомобиле. Спасательные лодки, крути, надувные плоты, жилеты и т. д. на кораблях и самолетах. 2. Аварийные съсзды-«улоиители. на горных дорогах на случай отказа двигателя или тормозов. 3. Пожарные огнетушители, находящиеся в зданиях на доступных местах и готовые к применению при простейших подготовительных действиях. НАВИГАТОР a) Объект сам себя 2 САМООБСЛУЖИВАНИЯ должен обслуживать, 9 выполняя вспомогательные и ремонтные операции; b) Использовать отходы (энергии, вещества). 1. Колесо со встроенной ампулой с веществом для автоматической заделки мелкой пробоины. 2. Автомобильный кондиционер использует «даровое» тепло работающего двигателя. НАВИГАТОР a) Заменить обычный 3 ПРИМЕНЕНИЯ (ИЛЬНЫХ воздух обогащен0 ОКИСЛИТЕЛЕЙ ным; b) Заменить обогащенный воздух кислородом; c) Воздействовать на воздух или кислород ионизирующими излучениями; d) Использовать озонированный кислород; с) Заменить озонированный (или ионизированный) кислород озоном. 1. Плазмснно-дуговая резка нержавеющей стали вереде чистого
кислорода. 2. Интенсивная кратковременная обработка озоном овощехранилищ и хранимых овощей или фруктов. НАВИГАТОР a) 31 ПРИМЕНЕНИЯ ПОРИСТЫХ Выполнить объект МАТЕРИАЛОВ пористым или использовать дополнительные пористые эле-1 менты (вставки, покрытия и т. д.); b) Если объект уже был выполнен пористым, предварительно заполнить норы каким-то веществом. 1. Подшипники скольжения, турбинные лопатки И т. д.. выполненные н ниде пористою м,мерцала, заполненного или пополняемого принудительно смазывающим или охлаждающим вешеством. 2. Всевозможные лечебные и косметические накладки, повязки, маски и т. д.. пропитанные дезинфицирующими, обезболивающими, лечебными или витаминными препаратами. НАВИГАТОР a) 32 АНТИВЕСА Компенсировать вес объекта соединением с другими объектами, обладающими подъемной силой; b) Компенсировать вес объекта взаимодействием со средой (за счет аэро-. гидродинамических и других сил). 1. Воздушный шар. дирижабль, парашют, корабль, подводная лодка: запатентована идея дома, всплывающего при наводнении — подвал сделан в виде понтона, заполненного пенопластом. 2. Скоростной катер с подводными крыльями. НАВИГАТОР Вести процесс 33 ПРОСКОКА иди его отлельные лапы (например, вредные или опасные) па большой скорости. 1. В п. 40.2 навигатора №40 лазерный луч как бы мгновенно .проскакивает» нал
фотошаблоном, уходя с предыдущего («убегающего-) и перехоля на следующее <-набегающее-) юркало, и поэтому не попадает в «ненужном месте» на создаваемый фотошаблон. 2. Устройство для разрезания эластичных (пластмассовых и др.) тонкостенных груб большою 1 диаметра, в котором нож так быстро рассекает трубу, что она не успевает деформирования. НАВИГАТОР a) Один зд МАТРЕШКИ объект размешен 34 BHVIPH другого объекта, который в свою очередь находится внутри третито и т л,: b) Один объект проходит сквозь полость в другом объекте. (.Телескопическая удочка: выдвижная стрела подъемною крана па автомобильной платформе. НАВИГАТОР a) 35 ОБЪЕДИНЕНИЯ Соединить однородные или прелпатначеннные ДЛЯ смежных операции объекты; b) Объединить во времени однородные или Смежные операции. 1. Ракетная двигательная система из 4.6.8 и более отдельных двигателей 2. Речное или морское составное судно, состоящее из нескольких несамоходных секции и одной или более самоходных секций. Секции MOI>T быть соединены жестко либо шарнирно. *is НАВИГАТОР a) Ввести JD ОБРАТНОЙ СВЯЗИ обратную связь: b) Если обратная связь есть, изменить ее. (.Устройство для полдержания читанной скорости движения непрерывно измеряет денешп-тельную скорость и по возникающим отклонениям увеличивает или уменьшает подачу топлива в двигатель так же. как )то и летает опытный водитель ->«■, НАВИГАТОР Изменить -Э / условия работы так. ЭКВИПОТЕНЦНЛЛЬНОСТП чтобы не приходилось поднимать или
опускать объект. 1. Ванна с водонепроницаемой дверцей и боковой поверхности для входа и ванну и выхода из нее малоподвижных людей (полезна также система ускоренного удаления волы из ванны). 2. «Переходы», соединяющие соседние здания на одном или нескольких этажах. НАВИГАТОР Объекты, 38 ОДНОРОДНОСТИ взаимодействующие с данным объектом, должны быть сделаны из того же материала (иди близкою ему по свойствам). 1 Контакты внутри микрозлектронных схем ои-линшогся проиолниклми ИЗ (ОЩ же материала, обычно, из золота; контакты разъемов микросхем и печатных плат дли предупреждения вредных физико-химических явлений также покрываются или изготавливаются из одних и тех же материалов. 2. Взаимодействующие зубчатые колеса в силовых передачах делаются обычно из одного материала, 'И НАВИГАТОР Если по 39 П условиям задачи РЕДВАРИТЕЛ необходимо ЬНОГО совершить какое-то АНТИДЕЙСТ действие, надо ВИЯ заранее совершить антилействис. 1. Предварительно напряженный железобетон: чтобы бетон лучше работал на растяжение, ею предварительно «укорачивают» путем сжатия. 2. Железнодорожное полотно на поворотах имеет наклон в сторону, противоположную направлению центробежной силы, возникающей на повороте. НАВИГАТОР a) Вести 40 НЕПРЕРЫВН работу непрерывно ОСТИ (все части ПОЛЕЗНОГО объекта должны нее ДЕЙСТВИЯ время работать с полной нагрузкой 1: b) Устранить холостые и
промежуточные ходы. 1 1. Способ, по которому лазерный луч создает «рисунок» на фотошаблоне при прямом и обратном ходе луча (метод «качающегося» зеркала). 2. Способ, по которому лазерный луч создает «рисунок» на фотошаблоне только при прямом ходе без холостого перехода, так как отражается другим зеркалом, сменяющим предыдущее (метод «вращающихся» зеркал) — см. также навигатор N° Л Приложение 5 Каталог фундаментальных А-Навигаторов . Назван Содержание Пример V ие 0 Разделе Одно свойство Пересекающиеся 1 ние в реализовано в одной дороги разнесены на пространстве области пространства, а разные уровни — одна противоположное — в проходит выше другой другой. 0 Разделе Одно свойство Работа светофора на 2 ние во реализовано в одном перекрестке. времени интервале времени, а противоположное — в другом. 0 Разделе Часть системы Гибкая велосипедная 3 ние в обладает одним цепь состоит из твердых структуре свойством, а вся система в звеньев. целом — противоположным 0 Разделе Вещество или Вода (жидкое) в 4 ние в энергетическое поле (или трубе замораживается и веществе их части) обладает для создает временную пробку (энергии) одной цели одним (твердое) дли ремонта свойством, а для другой трубы «ниже по течению. цели — противоположным. Приложение 6 Каталог фундаментальных классических стандартов IIHIмодель Разделение пространстие А-Навигаторов, А-Компакт-Стандартов Расширенные Примеры трансформации В 1.1. Разделение Пр.1. Для противоречивых пылеподавления при свойств в горных работах В скобках указаны обозначения компакт-стандартов, например. S2. и стандартов из полного классического каталога, например. 2.2.3. 1 и
пространстве 2 I'.i иремсни иеленис 3 Разделение структуре 2.1. Разделение но противоречивых свойств во времени 3.1. Системный и переход 1-а: объединение однородных систем в надсистему 3.2. Системный переход 1-Ь: от системы к антнсистеме или сочетанию системы с антисистемой 3.3. Системный переход 1-е: вся система наделяется свойством С. а ее части — свойством анти-С 3.4. Системный переход 2: переход к системе, работающей на микроуровне капельки | воды должны быть мелкими. 1 Но мелкие капельки образуют туман. Предложено окружать мелкие капли конусом из крупных Пр.2. (Стандарт S2 - 2.2.3'). Ширину ленточного электрода меняют в зависимости от ширины сварного шва Пр.З. (Стандарт S4 — 3.1.1). Слябы (горячие металлические брусы) транспортируют по рольгангам впритык один к другому, чтобы не охлаждались торны Пр.4. (Стандарт S4 - 3.1.3). Способ останонки кровотечения: прикладывают салфетку, пропитанную кровью иной группы Пр.5. (Стандарт S5 - 3.1.5). Рабочие части тисков для зажимов деталей сложной формы: каждая часть (стальная втулка) твердая, а в целом зажим податливый — способен менять форму Пр.6. (Стандарт S5 - 3.2.1). Вместо механического крана — «термокран» из двух материалов с разным коэффициентом линейного расширения. При нагреве образуется зазор Продолжение каталога фундаментальных А-Навигаторов Базовая модель
Разделение в веществе (энергии) Расширенные трансформации 4.1. Фаювын переход I: замена фазового состояния части системы или внешней среды Примеры Пр.7. (Стандарт S2 - 5.3.1). Способ снабжения потребителей газа в шахтах — ipancnopтнруют сжатый ia i 4.2. Фазовый переход 2: «двойственное" состояние одной части системы (переход этой части системы из одного состояния в другое в зависимости от условии работы) Пр.8. (Стандарт S2 5.3.2). Теплообменник снабжен прижатыми к нему «лепестками» из пикелида титана (вещество, запоминающее форму): при повышении те.мперапр лепестки» отгибаются, увеличивается плоишь охлаждения 4.3. Фазовый переход 3: использование явлении, сопутствующих фазовому переходу Пр.9. (Стандарт S2 - 5.3.3). Приспособление для транспортировки мороженых грузов имеет опорные элементы в виде брусков льда (снижение трения Н) счс! ГВЯНИЯ льда) 4.4. Фазовый переход 4: замена однофазного вещества двухфазным Ир. 10. (Оаиллрты S2 - 5.3.4 и 5.3.5). Способ полирования изделия. Рабочая среда состоит из жидкости (расплав свинка) и ферромагнитных абразивных частиц 4.5. Физико-химический переход: возникновение — исчезновение вещества за счет разложения — соединения, ионизации — рекомбинации Пр.!!. (Стандарты SI - 5.5.1. и 5.5.2). I -я пластификации древесины (повышение податливости и эластичности для последующей обработки.) аммиаком осуществляют пропитку древесины солями аммония, разлагающимися при трении Приложение 7 Каталог фундаментальных специализированными А-Навигаторами трансформаций со Принцип трансформации Связь с А-Навигаторами 1 Разделение противоречивых свойств я пространстве 05 Вынесение: отделить мешающую часть, выделить нужную часть. 10 Копирование: использовать упрошенные и дешевые конин или изображения. 19 Переход в другое измерение: увеличить степени свободы движения объекта, использовать многоэтажную компоновку, использовать боковые и другие поверхности.
22 Сфероидальность: перейти к криволинейным ПОверхНОСгим н траекториям движения, использовать ролики, шарики, спирали. 24Асимметрия: перейти к асимметричным формам, усилить асимметрию. 25Использование гибких оболочек и тонких пленок: вместо обычных конструкций использовать гибкие оболочки и тонкие пленки. 34 Матрешка: разместить объект последовательно один и другом, пропустить объект через полости (пустоты) в другом. Разделение противоречивых свойств во времени 02 Предварительное действие: полностью или частично выполнить нужное действие; расставить объекты так. чтобы они быстрее вступили в действие. 7 Динамизация: сделать объект (части объекта) подвижным, оптимизировать характеристики процесса (объекта) на каждом шагу работы. 8 Периодическое действие: перейти от непрерывного действия к периодическому, менять периодичность, использовать паузы. 18Ь Посредник: на время присоединить к объекту другой (.ICI коулаляе-мый) объект. 28 Заранее подложенная полушка: заранее подготовить аварийные средства. 33 Проскок: вести процесс на большой скорости, чтобы вредные последствия не успели наступить. 35Ь Объединение: объединить во времени однородные или смежные операции. 39Предварительное антнлействие: дли совершения основного действия надо предварительно совершить противоположное действие. 40Непрерывность полезного действия: устранить холостые п промежуточные ходы, все части объекта должны непрерывно работать с полной нагрузкой. Разделение 03 Дробление: разделить объект на части, увеличить степень дроб.тенротиворечивых | ния. свойств II Наоборот: вместо действия, диктуемого обстоятельствами, сделать в структуре обрат нос. 12 Местное качество: перейти от однородной структуры к неолпород -ной. чтобы каждая часть выполняли свою функцию н в наилучших условиях. Продолжение каталога фундаментальных трансформаций Принцип трансформации Связь с А-Навигаторами Разделение противоречивых свойств в структуре 15 Отброс и регенерация частей: отслужившая часть может бы п. отброшена или востановлена во время работы. 18а Посредник: использовать Промежуточный объект для передачи или переноса действия. 35а Объединение: соединить однородные или предназначенные для соседних операций объекты. Разделение противоречивых свойств в веществе
01 Изменение агрегатного состояния объекта: изменение концентрации или консистенции, использование свойств Эластичности материалов и т. п. 17 Применение композиционных материалов: перейти от однородных материалов к композиционным. 23 Применение инертной среды: заменить среду инертной, вести процесс в вакууме. 26Применение фазовых переходов: использовать явления, возникающие при фазовых переходах: изменение объема, поглощение (выделение) тепла И т. п. 27Применение теплового расширения: использовать тепловое расширение материалов, использовать материалы с разными коэффициентами теплового расширения. 29Ь Самообслуживание: использовать отходы вещества и энергии. 30Применение сильных окислителей: заменить воздух кислородом, воздействовать на воздух ионизированным излучением, использовать озон. 31Применение пористых материалов: выполнить объект пористым, пористые части заполнить каким-то веществом. 38 Однородность: взаимодействующие обтюкты сделать из одного материала Приложение 8 Каталог физических эффектов № Требуемое Физическое явление, эффект, фактор, способ действие, свойство 1 Измерение Тепловое расширение И вызванное им температуры изменение собственной частоты колебаний. Термоэлектрические явления. Спектр излучения. Изменение оптических, электрических магнитных свойств вещества. Переход через точку Кюри. Эффекты Гоикинса и Баркгаузена. Тепловое излучение 2 11оинжени Теплопроводность. Конвекция. Ихтученис. с температуры Фазовые переходы. Эф- f фект Джоуля—Томпсона. Эффект Ранка. Мапплокалористический Эффект» Термоэлектрические явления 3 Повышени Теплопроводность. Конвекция. е температуры Излучение.Электромагнитная индукция. Вихревые токи. Диэлектрический нагрев. Электронный нагрев. Электрические разряды. Поглощение излучения веществом. Термоэлектрические явления. Сжатие тела. Ядерные реакции J Стабили Фаювые переходы (в том числе переход через танин точку Кюри). Тепловая изоляции юмперапры 5 Пиликании Введение меток — веществ, преобразующих положения и внешние поля (люминофоры) или создающих свои перемещения поля (ферромагнетики), и потому легко объекта обнаруживаемых. Отражение и испускание света. Фотоэффект. Деформация. Рентгеновское и радиоактивное излучения. Электрические разряды. Эффект Доплера. Интерференция
6 Управлени Действие магнитным полем на объект или на е перемещением (|>ерромагнетик. соединенный с объектом. Действие обьектов электрическим полем на заряженный или электризующийся объект. Передача давления жидкостями и газами. Механические колебания. Центробежные силы. Тепловое расширение. Световое давление. Пьезоэффект. Эффект Магнуса 7 N Капиллярность. Осмос. Электроосмос. Эффект правление Томса. Эффект Бер-НуЛЛИ. Волноное днижение. движением Центробежные силы. Эффект Вайссен-берга. жидкое in и i.i ia «Газирование» жидкостей. Эффект Коанла 1 ________ К Управлени Электризация. Электрические и магнитные е потоками поля. Давление света. | Конденсация. Звуковые аэрозолей волны. Инфразвук (им.п.. дым, туман) Образование растворов. Ультразвук. ' 11сремен1 Инфразвук. Кавитация. Диффузия. Электрические ) ивание смесей поля. Магнитное иоле в сочетании с ферромагнитным веществом. Электрофорез. Резонанс I I Разделение Электро- и магпитосеиарация. Изменение I) смесей кажущейся плотности жидкости — разделителя под действием электрических и магнитных полей. Центробежные силы.Фазовыс переходы. Диффузия. Осмос Продолжение каталога фи шческих эффектов . Требуемое Физическое пиление, зффект. фактор, V" действие, свойство способ Электрические и магнитные поля. Фиксация в 1 Стабилизация тиерлею-ших в магнитном и 1 положения объекта жидкостях, электрическом полях. Гироскопический эффект. Реактивное движение. Деформация. Сварка, диффузионная сварка. Фазовый переход Действие магнитным полем через 1 Силовое ферромапнпное вещество Фазовые переходы. 2 воздействие. Центробежные силы. Регулирование сил. Тепловое расширение. Изменение гидростатических сил путем изменения Создание больших и кажущейся плотности магнитной или малых давлений электропроводной жидкости в магнитном поле. Применение взрывчатых веществ. ЭлектротндравлическнИ тффект. Оптикогилравлическнй эффект. Осмос. Сорбпия. Диффушя. Эффект Магнуса Эффект Джонсона—Рабека. Воздействие 1 Изменение излучений. Явление Кра-гельского. Колебания. 3 трения Действие магнитным нолем через ферромагнитное,
4 5 6 7 8 9 0 1 2 1 Разрушение объекта 1 Аккумулирова ние механической и тепловой энергии 1 Передача энергии: механической, тепловой, электрической) вещество. Фазовый переход. Сверхтекучесть. Электроосмос Электрические разряды. Электро!илрандическии »ффскт Резонанс. Ультразвук. Кавитация. Индуцированное излучение. Фазовые переходы. Тепловое расширение. Взрыв Упругие деформации. Маховики. Фазовые переходы. Гидростатическое давление. Термоэлектрические явления Деформации. Колебания. Эффект Александрова. Волновое движение, в том числе ударные волны. Излучение. Теплопроводность. Конвекция. Явление отражения света (световоды). Индуцированное излучение. Эффект Зеебека. Электромагнитная индукция Сверхпроводимость. Преобразование энергии из одного вила в ipj гой. более «удобный» для передачи. Инфразвук. Эффект памяти формы Использование электромагнитных полей (переход 01 -нешесiпенных»- связей к "полевым»). Использование потоков жидкостей и I.I-зов. Эффект памяти формы 1 Установление взаимодействия между подвижными (меняющимися) и неподвижными (не меняющимися) объектами Измерение собственной частотыколебаннй. 1 Измерение размеров объектов Нанесение и считыва- i ние магнитных и электрических параметров. Голография Тепловое расширение. Биметаллические 1 Изменение Деформации размеров и формы КОНСТРУКЦИИ. Магнитоэлектрострикния. Пьезоэлектрический объектов эффект. Фазовые переходы. Эффект памяти формы Электрические разряды. Отражение света. 2 Контроль эмиссия. Муаровый эффект. состояния и свойств Электронная Излучения. Голография поверхности Трение. Адсорбция. Диффузия. Эффект 2 Изменение Баушингсра. Электрические разряды. Механические поверхностных и акустические колебания. Облучение. Наклеп. свойств Термообработка Физическое явление, эффект, фактор, способ № Требуемое действие, свойство Введение «меток» — веществ, преобразующих 2 Контроль состояния и свойств внешние поля (люми- 1 нофоры) или создающих свои поля (ферромагнетики), зависящие от \ в объеме состояния и свойств исследуемого вещества. Изменение удельного электрического сопротивления в зависимости от изменения структуры и свойств объекта. Поглощение, отражение, преломление света. Электро- и
3 4 5 6 7 8 9 магнитооптические явления. Поляризованный свет. Рентгеновские и радиоактивные излучения. Электронный парамагнитный и ядерный магнитный резонансы. Магнитоупругий эффект. Переход через точку Кюри.Эффекты Гопкинса и Баркгаузсиа. Измерение собственной частоты колебаний объекта. Ультразвук, инфразвук. Эффект Мессбауэра. Эффект Холла. Голографии. Акустическая эмиссия Изменение свойств жидкости (плотности, 2 Изменение объемных свойств вязкости) под действием электрических и магнитных полей. Введение ферромагнитного веобъекта щества и действие магнитным полем. Тепловое воздействие. Фазовые переходы. Ионизация пол действием электрического поля. Ультрафиолетовое, рентгеновское, радиоактивное излучения. Диффузия. Электрические и магнитные поля. Эффект Баушингера. Термоэлектрические, термомагнитные и магнитооптические эффекты. Кавитация. Фотохромный эффект. Внутренний фотоэффект. «Газирование» жидкостей, вспенивание. СВЧ излучение Интерференция волн. Дифракция. Стоячие 2 Создание волны. Муаровый эффект. Магнитные и заданной электрические поля. Фазовые переходы. структуры. Механические и акустические колебании. Кавитация Стабилизация структуры объекта Осмос. Электризация тел. Электрические 2 Индикация электрических и разряды. Пьезо- и сегне-тоэлектрические эффекты. Электреты. Электронная эмиссия. магнитных нолей Электрооптические явления. Эффекты Гопкинса и Баркгаузена. Эффект Холла. Ядерный магнитный резонанс. Гиромагнитные и магнитооптические явления. Электролюминесценция. Ферромагнетизм Оптико-акустический эффект. Тепловое 2 Идикаиия расширение. Фотопластический эффект. излучении Электрический разряд Эффект Джозефсона. Явление 2 Генерация электромагнитного индуцированного излучения. Тун- 1 цельный эффект. Люминесценция. Эффект Ганна. Эффект излучения Черен- . кова. Эффект Зеемана. Экранирование. Изменение состояния среды, 2 Управление электромагнитными например, уведиче- 1 нис или уменьшение ее электропроводности. Изменение формы полями поверхности тел. взаимодействующих с полями. Пннч-эффект ~* 1 2 Управление Преломление и отражение света. Электро- и потоками света. магнитооптические явления. Фотоупругость, Модуляция света эффекты Керра и Фарадея.Эффект Ганна. Эффект Франца—Келдыша. Преобразование светового
0 1 потока в электрический сигнал и обратно, стимулированное излучение Ультразвук. Инфразвук. Кавитация. 3 Инициировани е и интенсификация Ультрафиолетовое, рентгенов-скос, радиоактивное излучения. Электрические разряды. Деформации. химических Ударные волны. Каталнзация. Нагрев превращений Сорбция. Осмос. Электрические поля. 3 Анализ Воздействие излучений. Анализ излучения тел. состава тел Оптикоакустический эффект. Эффект Мессбауэра. Электронный парамагнитный и ядерный магнитный резонанс. Поляризованый свет Приложение 9 Каталог химических эффектов № Требуемое Химический эффект, явление, типы действие, свойство реакций вещества Термохромные реакции. Сдвиг химическою Измерение равновесия при изменении температуры. температуры Хсмилюмннсснснцин 2 Понижение Эндотермические реакции. Растворение веществ. Разложение газов температуры 3 Повышение Экзотермические реакции. Горение. Самораспространяющийся высокотемпературный температуры синтез. Использование сильных окислителей. Использование термитных составов 4 Стабилизаци Использование гидратов металлов. Применение тепловой ию-ляиии из вспененных я температуры полимеров 5 Индикация Использование меток на основе вешестиположения и красителей. Хемнлю-МИНесцениия. Реакция с выделением газов перемещения объекта ь Управление иеремещени- Реакции с выделением газов. Горение. Взрыв. Применение поем объектов верхностно-активных веществ. Электролиз Т Управление Использование полупроницаемых мембран. Транспортные реакции. Реакции с выделением движением газа. Взрыв. Использование гидридов жидкости и газа Распыление веществ, химически Управление взаимодействующих с частицами аэрозоли. потоками аэрозолей, взвесей Использование коагулянтов Смеси из химически невзаимодействующих Перемешива веществ. Сииерге-тический эффект. Растворение. ние смесей Транспортные реакции. Реакции окисления — восстановления. Химическое связывание газов. Использование гидратов, гидридов. Применение комплек-санов 1 Разделение Электролиз. Транспортные реакции.
Реакции восстановления. Выделение химически связанных газов. Смещение химического равновесия. Выделение из гидридов и адсорбентов! Использование комплексонов. Применение полупроницаемых мембран. Перевод одного из компонентов в другое состояние (в том числе фазовое) Реакции полимеризации (использование | Стабилизаци жидкого стекла, самотвердсюших | я положения клеев, 1 пластмасс). Использование гелей. Применение объекта 2 поверхностно-активных веществ. Растворение связки Взрыв. Разложение гаюгидратов. гидридов. Разбухание метал-' лов при поглощении Силовое водорода. Реакции с выделением газа. Реакции воздействие. полпмерн МШИ Регулирование сил. Создание больших и малых давлении i^J Требуемое Химический эффект, явление, типы действие, свойство реакций вещества 1 Изменение Восстановление металла из соединения. 3 зрения Электролиз (с выделением газов). Использование поверхностно-активных веществ и полимерных покрытий. Гидрирование 1 1*а «рушение Растворение. Реакции окисления — 4 объекта восстановлении. Горение. Взрыв. Фото- и электрохимические реакции. Транспортные реакции. Разложение вещества на компоненты. Гидрирование. Смешение химического равновесия в смесях 1 Аккумулиров Экзои эндотермические реакции. 5 ание механической. Растворение. Разложение ве- . шества на 1 ендовой и компоненты (для хранения). Фазовые переходы, электрической электрохимические реакции. Хемомсханичеекий энергии эффект 1 Передача Экзои эндотермические реакции. 6 энерши Растворение. Хемилюминес-иенция. Транспортные реакции. Гидриды. Электрохимические реакции. Преобразование энергии из одною вида в Другой; более «удобный- для передачи 1 Установление Перемешивание. Транспортные реакции. 7 взаимодей-С1ния Смешение химнчеекго равновесия. между подвижными Гидрирование. Молекулярная самосборка. и неподвижными Хеми.тю-МИНесиеяцНя. Электролиз. объектами Самораспространяющийся высокотемпературный синтез I Измерение По скорости и времени его химического 0 вешесгва
X размеров объектов взаимодействий с окружающей средой 1 Изменение Транспортные реакции. Использование 9 размеров и формы шлрилов. гидратов. Растворение (в том числе в объекта сжатых газах). Взрыв. Реакции окисления. Горение. Перевод в химически связанный вид. Электролиз. Использование эластичных и пластичных веществ 2 Контроль Раликало-рекомбпнанионная 0 состояния и свойств люминесценция. Использование гидрофильных и поверхности гидрофобных веидеств. Реакции окисления — восстановления. Использование фото-, электро-, термохромов 2 Изменение Транспортные реакции. Использование 1 поверхностных гидратов, гидридов. Применение фотохромов. свойств Реакции окисления-восстановления. Применение поверхностно-активных веществ. Молекулярная самосборка. Электролиз. Травление. Обменные реакции. Использование лаков 2 Контроль Реакции с применением цнеторсагируюших 2 состояния и свойств веществ или веществ — индикаторов. в объеме Химические реакции с измерением цвета. Образование гелей Химические реакции, приводящие к I Изменение 23 объемных изменению состава веществ;!, из которого свойств объекта изготовлен объект (окислительные, (плотность, восстановительные реакции, реакции обмена). концентрация) Транспортные реакции. Перевод и химически связанный вид. Гидрирование. Растворение. Разбавление раствора. Горение. Использование гелей 2 Создание Электрохимические реакции. 4 заданной Транспортные реакции. Газовые гидраты. структуры. Гидриды. Молекулярная самосборка. Стабилизация Комплексоны структуры объекта 25 Ииликаиия Электролиз. Электрохимические (в том электрических полей числе — элсктрохром-ные) реакции Требуемое Химический эффект, явление, типы действие, свойство реакций вещества 2 Индикация Фото-, терме-, радиохимические (в том 6 электромагнитного числе фон>-. гермо-, радиохромные) реакции излучения 2 Генерация Реакция горения. Хе.милюминсснснння. 7 электромагнитного Химические реакции в газах — активной среде излучения лазеров. Люминесценция. Биолюминесценция 2 Управление Растворение с образованием электролита 8 электромагнитными Выделение металлов ИЗ окислов и солей. полями Электролиз 2 Управление Фотохромные реакции. Электрохимические
9 0 1 2 3 4 потоками света. Модуляция света 3 Инициирован ие и интенсификация химических превращений 3 Анализ состава тел 3 Обезвоживан ие реакции. Реакции обратимого электроосажления. Периодические реакции. Реакции горения Катализ. Использование более сильных окислителей, восстановителей. Возбуждение молекул. Разделение продуктов реакции. Использование омагниченнои волы Реакции окисления. Восстановления. Использование веществ- и нл и катеров Перевод в гндратное состояние. Гидрирование. Использование молекулярных мембран 3 Изменение Растворение. Разложение. Химическое фазового состояния связывание тов. Выделение из растворов. Реакции с выделением киов. Использование гелей. Сжигание 3 Замедление и Ингибиторы. Использование инертных предотвращение тазов. Исполыованис инертных газов. химических Использование нешесгв-протекюров. Изменение превращений поверхностных свойств (см. п. «Изменение поверхностных свойств») Приложение 10 Каталог геометрических эффектов Требуемое действие, свойство 1 Уменьшение или увеличение объема тела при неизменной массе 2 Уменьшение или увеличение плошали или длины тела при той же массе 3 Преобразование одного вида движения в другой Концентрация г потока энергии, частиц 5 Интенсификация процесса Геометрический эффект Плотная упаковка элементов. Гофры. Однолопастный гиперболоид Многоэтажная компоновка. Гофры. Использовать фигуры С переменным сечением. Лента Мебиуса. Использовать соседние плошали Треугольник Рело. Конусообразная трамбовка. Криво-шипно-шатунная передача Параболоид, эллипс, циклоида Переход от обработки по линии к обработке по поверхности. Лента Мебиуса. Эксцентриситет. Гофры. Винт. Щетки Гофры. Изменение сечения рабочих Снижение потерь энергии или вещества поверхностей. Лента Мебиуса Щетки. Специальный подбор формы 7 Повышение или траектории движения обрабатывающего точности обработки инструмента
8 Повышение управляемости 0 1 ----------------------------------------------- 1 Щетки. Гиперболоид. Спираль. Треугольник. Использование объектов меняющейся формы. Перейти от поступательного днижения к вращательному. Несоосный винтовой механизм Эксцентриситет. Замена круглых 9 Снижение объектов на многоугольные управляемости 1 Лента Мебиуса. Изменение плошали Повышение срока службы, контакта. Специальный выбор формы надежности Принцип подобия. Конформные Снижение усилий 1 отображения. Гиперболоид. Использование комбинации простых геометрических форм Указатель примеров * ! Пример С тр. 0 Пример 1. 3a 3000 лет от гусиного пера — к авторучке (переход 1) 5 0 Из Примера 1 02 0Х 0 Пример 2. За 50 лет от авторучки — к шариковой ручке 03 (переход 2) 6 0 Пример 3. За 25 лет от шариковой ручки — к 04" капиллярной ручке (переход 3) 8 ( Дополнительный пример. Эра электронных ручек 105 9 0 Пример 4 (Задача) Самолет с вертикальным взлетом06 посадкой 5. Из Примера 4 1 007 09 0 Пример 4 (дополнение) 08 25 i 0 Пример 5 (Задача). Дом у реки 09 6 0 Пример 6 (Задача). Виноградная лоза 10 6 Пример 4 (Решение). Самолет с вертикальным взлетомо посадкой 7' н 0 Пример 5 (Решение). Дом у реки 12 0 Пример 6 (Решение). Виноградная лоза 13 81 0 Пример 7. Подъемный кран на автомобильной платформе 14 9 0 Пример 8. Строительный мусоропровод 2 01 1 2 2 2 7 1 1 7 7 7 7 7 8
IS 0| 0 Пример 9. Шоколадная конфета -KJndcr-Сюрприз* 16 8 0[ 0 Пример 10. Как спасают пальмы на центральном бульваре 17 от жары 1 0 Из Примера 10 18 09 0 Пример 11. Как обеспечить подачу газа в шахту 19 2 0 Пример 12. Как делают шоколадные бутылочки с 20 ликером 3 0 Из Примера 12 21 10 0 Пример 13. Стрельба по летающим «тарелочкам» 22 6 | Пример 14. Свая 023 8■ 0 Из Примера 14 24 О 0 Пример 15. Автомобильная навигационная система 25 15 0 Пример 16. Изобретение... интереса 26 .5 0 Пример 17. На пути к DVD 27 16 1 Пример IS Многопроцессорные системы j 028 16 0 Пример 19. Что обшего между кино, электролампочкой и 1.6 29 дисплеем? 0 Пример 20. Коридор для самолета и спутника 30 8 1 8 8 1 9 9 П 1 1 1 1 1 17 1 Пример 21. Солнцезащитные очки 031 1 17 ' 0 Пример 22. Электростанция в каминной трубе 1 17 • 32 _ Пример 23. Как увидеть сквозняки в здании °J3_ 1 20 0 Пример 24. Кокосовые пальмы 0 Пример 25. Лампочка для Лунохода 0 Пример 26. Вода в воле 34 1 20 35 1 20 1 120 36 J 0 Пример 27. Тренажер-стойка в фитнес-иентре (начало) 37 1 26 № Пример С
тр. 1 0 Пример 28. Виброударное -забивание сваи (начало) I26 38 0 Пример 29. Вывод группы спутников на точные орбиты 39 (начало) 26 0 Пример 30. Лекционная доска (начало) 40 27 0 Пример 31. Купол Рейхстага (начато) 41 27 ( Пример 32. Разделительный барьер (начало) 142 29 0 Пример 33. Реакция водителя автомобиля (начато) 43 30 0 Пример 34. Свая (начато последнего примера, связанного 44 со сваями) 30 0 Пример 35. Ремонт трубопровода (начало) 45 30 0 Пример 36. Лекционная доска (обострение проблемной 46 ситуации по примеру 30) 30 \ 0 Пример 37. Купат Ре.хстлга (обострение проблемной 47 ситуации по примеру 31) 31 0 Пример 38. Ваза в музее 4S 32 0 Пример 39. Киль яхты 49 32 0 Пример 40. Токосъемник трамвая 50 33 1 0 Пример 41 Вездеход-неваляшка 51 36 ' Пример 42. Зимние ботинки 052 37 0 Пример 43. Столик дли работы или приема пиши в 53 постели 37 1 0 Пример 44. Лестница мемориала _________ 54 38 0 Пример 45. Бутылочка с опасным веществом 55 38 0 Пример 27. Тренажер-стойка в фитнес-центре (окончание) 56 41 0 Пример 2S. Внброуларнос забивание сваи (окончание) 57 42 _ Пример 29. Вывод группы спутников на точные орбиты 058 (окончание) 43 0 Пример 30. Лекционная доска (окончание) 591 44 0 Пример 31 и 37. Купол Рейхстага (окончание) 60 46 0 Пример 32. Разделительный барьер (окончание) 61 47 1 , . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 62 63 64 65 66 67 68 69 70 7! 072 отз 074 75 076 077 78 79 ISO 81 82 83 X4 Пример 33. Реакция водителя автомобиля (окончание) 47 0 Пример 34. Свая (окончание примера, связанного со сваями) 48 0 Пример 35. Ремонт трубопровода (окончание) 50 0 Пример 46. Лекционная доска («окончательное окончание» примера 30) 50 0 Пример 47. Судно на подводных крыльях 52 0 Пример 48. Солнечный дом 35 0 Пример 49. Стена 57 0 Пример 50. Градирня 58 0 Пример 51. Диск штанги 70 | 0 Пример 52. Разъем платы 7. 1 ] Пример 53. Медные проводники на микрочипах 71 Г Пример 54. Гранулы для сбора нефти 72 I Пример 55 «Бронированная» бутылка 73 , 0 Пример 56. Бритва Жиллет 74 | Пример 57. Стадион «Франция* 75 I Пример 58. Бетонные конструкции 75 0 Пример 59. Виноградная лоза (решение с помощью интеграции инверсных технических прошворсчнИ) 80 0 Пример 60. Нагрев кремниевой пластины 81 ( Пример 61. Тушение пожаров на нефтяных и газовых скважинах 85 0 Пример 62. Джинсы... на удобрение 86 № Пример тр. 0 Пример 63. Новое — это хорошо забытое старое! 87 0 Пример 64. Спасение в снежной лавине 88 0 Пример 65. Сортировка металлического лома 89) 0 Пример 66. Фирма Microsoft патентует... куклу! 1 1 1 1 1 1 1 1 1 . 1 1 1 1 1 1 1 1 1 1 ( 1 1 1 1
8S 91 0 Пример 67. Зашита автомобиля от несанкционированного доступа 92 0 Пример 6S. Ветровые >лсктростанции 87 94 0 Пример 69. Шумящая сеть 88 96 0 Пример 70. Раклетт? А почему бы и нет?! 89 98 Г Пример 71. «Крышка* над дымоходом 090 01 ; 0 Пример 72. Нагрев кремниевой пластины (решение на 91 основе интеграции физических противоречий) 07 0 Пример 73. Две шляпки одним ударом 92 08 [ Пример 74. Сейф с двойным дном на пляже 093 09 Г Пример 75. Фундаментальные трансформации в 094 пространстве 10 0 Пример 76. Фундаментальные трансформации во времени 95~] 11 0 Пример 77. Фундаментальные трансформации в 46 структуре 12 0 Пример 78. Фундаментальные трансформации в веществе 97 0 Пример 79. Тренировка по прыжкам в воду 98 14 0 Пример 80. Для тех. кто любит газоны, но не очень любит 99 их стричь 15 1 Пример 81. Кто победит — вертолет или самолет? 00 16 1 Пример 82. Протезирование сосудов 01 19 ' 1 Пример 83. Естественный свет в зале парламента 02 20 1 Пример 84. Газовая турбина концерна СИМЕНС 03 21 1 Пример 84 Га юная турбина концерна СИМЕНС 04 (окончание) 11 1 Пример 85. Самолет XXI века? 05 24 1 Пример 86 Псе ли гвозди цилиндрические'' 06 34 1 Пример 87. Приятный... шум улицы 07 34 1 Пример 88. Контроль износа двигателя 08 35 1 Пример 89. Распустится ли роза, срезанная еще бутоном? 09 35 1 86 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2
П Пример 90. Можно ли изобрести новый «принцип О действия" футбольного мяча'' 36 1 Пример 91. Мощная звуковая колонка... на ладони 11 236 1 Пример 92. Идеальная салфетка для очистки 12 поверхностей от грязи 37 1 Пример 93. Сказочная реальность 13 39 1 Пример 94. Неподвижный флюгер! 14 40 1 Пример 95. Perpetuum Mobile для человечества?! 15 42 1 Пример 96. Финиковая пальма 16 70 1 Пример 97. Электроника и компьютеры 17 73j 1 Пример 98. Микропроцессоры и микросхемы памяти 18 74 | Пример 99. Удаленное считывание данных 119 75 1 Пример 100. Электрическое мотор-колесо 20 75 1 Пример 101. Коллекция ножей 277 21 1 Пример 102. Крылья летательных аппаратов 22 77 1 Пример 103. «Забивание свай» 23 80 1 Пример 104. Дробление хирургического инструмента 24 80 1 Пример 105. Дробление резака газонокосилки 25 X0 № Пример тр. 2 ^ 2 2 2 2 2 2 2 2 2 2 2 2 2 С 2 80 1 Пример 106. Дробление нешества в пире скольжении 1 Пример ,07. Дробление нешества в контактной паре 26 27 29 30_ 31 2 81 Ж Пример I0S. Введение пористого вещества дли смазки подшипника 81 1 Пример 109. Введение пористого вещества для повышения надежности шин 81 1 Пример НО. (начато). Колесо велосипеда 82 | 1 Пример 1 HI (окончание I 83 1 Пример III. Подшипник скольжения? 2 2 2 2 2
132 33 83 1 Пример 112. Струнная Транспортная Юнинкого ' Пример 113. Закалочная ванна (начало). Система 134 л. 2 84 ■ 2 98 ] 1 Пример 113. (Продолжение 1) 1 Пример 113. (Продолжение 2) 1 Пример 113. (Продолжение 3) 1 Пример 113. (Продолжение 4) 2 135 99 ,| 2 36 99 | 2 137 99 3 38 01 1 Пример ИЗ. (Продолжение 5) 3 39 01 1 Пример 113. (Продолжение 6) 3 4(1 02 1 Пример 113. (Продолжение 7) 3 41 03 1 1 Пример 113. (Продолжение 8) [ Пример 113 (Продолжение 9) 304 ^ 42 143 3 04 1 Пример ИЗ. (Продолжение 10) 44 3 05 1 Пример 114. Магнитный фильтр т 1 Пример 115. Развитие магнитною фильтра 3 | Пример 116. Магнитный вентиль 1 Пример 117. Бссфильерное волочение проволоки 1 Пример 118. Способ шлифования 45 46 09 147 3 09 310 48 149 40 Г Пример 119. Способ распыления расплавов 150 1 Пример 120. Способ интенсификации процесса 1 34'1 1 1 .Пример 121. Нефтепровод 1 Пример 122. РВС-моделирование Г Пример 123. Кольцо на земном шаре 152 3 18 153 55 3 11 51 154 3 3 24 25 1 Пример 124. Космический транспорт и космическое индустриальное колыш А Юницкого 25 1 Пример 125. Адаптивный полировальный круг 3 3 3
56 57 5X 59 60 29 ' , Пример 126. Удержание большого тонкою стеклянного листа в вакууме 38 I Пример 127. Ортопедическое изобретение FITBONE 45 1 Пример 128. Прогулочная подводная лодка 377 i 1 Пример 129. Летающая цистерна 78 Ответы и решения 3 3 " 3 Практикум к разделам 3—5 34. Портрет звука. Практически применено соединение физического (отражение звука) и геометрического эффектов: пещера имеет форму правильного эллипса (даже дыни в объемном представлении), поэтому звук от хлопка ладонями или крик в одном из центров эллипса многократно отражается от стен и потолка и долго не затихает. Эти десятикратно сложившиеся эхо напоминают топот целого стада. Негромкие звуки возвращаются как... «ответ предков», нарисованных на стенах. 35. Александрийский маяк. Свое имя строитель скрыл под толстым слоем штукатурки, а имя императора написал сверху штукатурки, которая, конечно, со временем обсыпалась (ресурс времени, материала и пространства — см. прием 34 Матрешка). 36. Загадки пирамид. Использовался физический эффект («горизонтальность» жидкости в относительно короткой емкости — желобе, трубке, траншее) и эффекты геометрического подобия: a) предположительно, по периметру основания будущей пирамиды выкапывалась траншея, которая заполнялась водой. По наклону уровня воды относительно краев траншеи можно было судить о горизонтальности подготовленной строительной площадки. b) этот ответ известен достоверно. Высота пирамиды контролировалась на основе принципа подобия по сравнению с высотой вертикально стоящей вехи в момент, когда высота вехи становилась равной длине ее тени. В этот момент длина тени пирамиды была равна ее высоте. c) могло использоваться свойство прямой линии. С двух сторон можно было установить по две вехи так, чтобы третья веха, установленная в середине площадки была бы третьей точкой, лежащей на двух взаимно перпендикулярных прямых линиях, каждая из которых включает две вехи и центральную веху. По мере роста пирамиды достаточно было контролировать положение центральной вехи, поднимающейся вместе с верхним строительным уровнем. d) есть две гипотезы, основанные на одном и том же эффекте: куча песка, насыпаемая строго с вершины, как псевдотекучее твердое тело имеет форму правильного конуса, угол наклона образующей которого составляет около 52?. Тогда можно было бы вместо средней вехи для контроля за симметрией пирамиды насыпать достаточно высокий песчаный конус, и при строительстве пирамиды контролировать одновременно симметрию и углы наклона граней. По второй гипотезе пирамида строилась насыпанием конуса в центре строительной площадки до самого верха пирамиды. По мере роста гигантского искусственного конуса он обкладывался блоками (которые мы и видим снаружи пирамид), и в конусе устраивались из блоков укрепленные помещения и проходы.
37. Посол Исмений. Посол умышленно уронил перстень с пальца и наклонился, чтобы поднять его. Противоречие разрешено в структуре (действии): по внешнему проявлению одно и то же, а по содержанию — нет. 38. Коронация императоров. Карл Великий выхватил корону из рук Папы и сам надел себе на голову. То же сделал и Наполеон. Противоречие разрешено в пространстве и во времени — часть целого действия (коронование) выполнила одна персона, а другую часть — другая. 39. Пизанская башня. Ответ на второй вопрос (см. рисунок): с северной стороны под основанием башни были просверлены 12 отверстий, фундамент осел, и вылет 7-го яруса башни уменьшился на 40 см и достиг, как считают, безопасной величины в 4,07 м. Практикум к разделам 6—7 40. Кубик льда. Функциональное идеальное моделирование: форма имеет вид перевернутой усеченной пирамиды с достаточно пологими углами наклона граней, из которой лед, расширяясь, будет «извлекаться» сам. Усиление: дно формы сделано гибким и также заполнено водой, которая при замерзании вытолкнет кубики вверх. Приемы и стандарты, связанные с фазовым переходом. 41. Агрессивная жидкость. Идеальный конечный результат: налить агрессивную жидкость в стакан из испытуемого материала (прием 11 Наоборот). 42. Колпачок для свечи. Колпачок укреплен на проволочном держателе, имеющем в основании форму трубки, надеваемой прямо на верхнюю часть свечи. По мере горения верхняя часть свечи и держатель с колпачком опускаются. Приемы 5, 6, 21, 29. 43. Кремлевские звезды. Ось вращения звезды смещена так, что звезда приобретает функцию флюгера. Чем сильнее ветер, тем надежнее звезда устанавливается по ветру (приемы 21 Обратить вред в пользу и 29 Самообслуживание). 44. Заварник для чая. В нижней передней части заварника делается накопитель для чаинок (см. рисунок). Разрешение противоречия в пространстве и структуре. 45. Игрушка. Надувная или раздвижная игрушка. Разрешение противоречия во времени, пространстве и структуре.
46. Переход на пляж. Для того, чтобы песок с пляжа не переносился обувью на прогулочную зону, используется... солома и скошенная трава. Приемы 18 Посредник, 28 Заранее подложенная подушка и 31 Применение пористых материалов. 47. Тренировка по прыжкам в воду. Ответ в разделе 12.3, пример 79. 48. Поезд метро. Поезд содержит меньше вагонов — разрешение противоречия в структуре и пространстве. 49. Ги де Мопассан и башня Густава Эйфеля. Прием 34 Матрешка, но главное — разрешение противоречия в структуре и пространстве: чтобы не видеть целого, можно забраться в часть этого целого. 50. Направление движения жидкости в трубе. Разрешение противоречия в веществе и во времени: нагреть пятно на трубе около повреждения и измерять температуру трубы недалеко от места нагрева. Если температура вырастет, то вода течет в направлении от места нагрева к месту измерения. Если температура не изменится, то вода течет в обратном направлении. 51. Полки в обувном магазине. Отдельные коробки выдвинуты и играют роль полок. Приемы 5, 12, 13, 19, 24. Практикум к разделам 10—13 52. Рекламный плакат (1). Фирма ЗМ, USA включила в клеевой слой стеклянные микрошарики. До прижатия плакат легко перемещается. Разрешение противоречия во времени, материале и структуре. Использован комплексный стандарт на введение добавок и принцип интеграции альтернативных систем. 53. Рекламный плакат (2). Плакат сделан из перфорированного материала — изнутри хорошо видно все, что находится снаружи, так как глаза находятся достаточно близко к отверстиям перфорации. Разрешение противоречия в структуре и материале. В регионах с жарким климатом появляется сверхэффект — плакат защищает от солнца. 54. Любая сковородка — тефлоновая! Прием 18 Посредник: фирма Дюпон (США) выпускает тефлоновые пленки многократного применения, укладываемые в посуду. 55. Дверной звонок. Приемы 4, 5, 10, 12: используется миниатюрный, лежащий в кармане источник звука с радиоприемным устройством, а от кнопки дверного звонка срабатывает радиопередатчик, запускающий «карманный звонок». Следующая задача: как сделать, чтобы во всех соседних квартирах не срабатывали «карманные звонки», если гость пришел к одному из соседей? 56. Износ шин. Фирма Мишлен (Франция) выпустила цветные автопокрышки, которые могут стать весьма модными. По аналогии и на основе нескольких технических эффектов, например, на химическом эффекте 22, можно сделать покрышку, об износе которой можно судить по стиранию верхнего цветного слоя до появления сигнального слоя другого цвета. 57. Нейтрализация выхлопных газов холодного двигателя. Фирма SAAB (Швеция) выпустила экспериментальный автомобиль, в котором в течение некоторого времени после пуска двигателя выхлопные газы собираются в емкость, занявшую часть багажника, а в катализатор подаются после достаточного его прогрева. Химический эффект 10 Разделение веществ вместе с приемами 5 Вынесение и 39 Предварительно антидействие. 58. Греющая одежда. Фирма Gateway Technologies (USA) выпустила ткань, включающую микрокапсулы с полиэтиленгликолем. При замерзании это вещество отдает часть тепла, которое было накоплено, когда ткань находилась в теплом помещении. Комплексный стандарт на введение добавок и технические эффекты, связанные с фазовыми переходами веществ, например, физический эффект 4 Стабилизация температуры.
59. Микропинцет. Применение веществ с памятью формы по физическим эффектам 6 и 12. 60. Как живут орлы и грифы? Физический эффект 17 и прием 18 Посредник: в настоящее время это можно сделать достаточно просто и эффективно — установить для наблюдения миниатюрные передающие телевизионные камеры с автономными источниками питания. 61. Белый светодиод. Исследователи Института прикладной физики твердого тела во Фрайбурге (Германия) ввели несколько микрограммов люминисцент-ного красителя в прозрачный линзообразный корпус синего светодиода. Краситель поглотил синее излучение нитрида галлия, и световод стал светиться белым светом. Химический эффект 27 и другие. 62. Зеркало для телескопа. Медленное вращение 45-тонной расплавленной массы в специальной форме приводит к образованию параболического тела вращения. Можно сказать, что на заводе Шотт (Германия) применили несколько геометрических эффектов, включая эффект 8 Повышение управляемости, а также физический эффект 6 Управление перемещением объектов. 63. Заморозка ягод и фруктов. Заморозку ведут в потоке сильно охлажденного (псевдоожиженного) воздуха. Продукты успевают обморозиться до соприкосновения с конвейером и поэтому не смерзаются вместе. В новой установке, созданной в СанктПетербурге (Россия) просматривается применение приема 33 Проскок и физических эффектов из группы 2 Понижение температуры и группы 6 Управление перемещением объектов. 64. Непадающая зубная щетка. См. пример 41 в разделе 9.2 Функциональное идеальное моделирование 65. Тренировка скалолазов. Учеными из Университета Потсдам (Германия) разработан специальный стенд на основе вращающегося диска с укрепленными на нем выступами для зацепления руками и ногами. Ось вращения диска также может менять положение. Приемы 7, 10, 19, 20, 22. 66. Супермаховик. Решение основано на тонком физическом эффекте: Конструкции, имеющие в статике форму «застывшей» динамической поверхности с определенными свойствами, ведут себя в динамике и под нагрузкой подобно эластичным объектам. Так и поверхность опоры центра имеет изгиб по аналогии с линией наибольшего напряжения вращающейся скакалки. Такой центр изобретен в коллективе создателя суперма-ховиков и двигателей на их основе профессора Гулиа в Московском авиационном институте (Россия). 67. Испытания провода. На фирме SIEMENS (Deutschland) кусок контактного провода замкнули в кольцо диаметром 3 метра и закрепили на диске, вращаемом управляемым электродвигателем. На этом стенде испытываются также новые токосъемники и изучаются процессы искрообразования и электромагнитных излучений. Приемы 7, 10, 11, 22 вместе с физическими эффектами 17, 20 и другими.
Практикум к разделам 14—15 Задачи 35—43 на момент выхода книги не имеют контрольных ответов. Практикум к разделам 16—17 44. Закалочная ванна. Завершите решение трех задач для примера 14.1, основываясь на формулировках, полученных в примере 14.1 (продолжение 10 в конце раздела 14.2). Контрольное решение: создание в ванне слоя из углекислого газа. Ответы на другие вопросы и задачи 45—48 нужно искать самостоятельно. Практикум к разделам 18—19 49. «Увидеть» невидимое. На тело проецируется копия будущего потока рентгеновских лучей, но в виде безвредного и видимого светового излучения. Излучаемый свет используется перед включением рентгеновского аппарата. Прием 09 и 10. 50. Допустить «невозможное». Все контрольные идеи имеются, но не приводятся, чтобы не ограничивать Ваших поисков. 51. Понять «непостижимое». Контрольное решение имеется, но — единственный случай в этом учебнике — не приводится. Найдите решение самостоятельно. 52. Достойные цели. Задачи носят учебный характер и предназначены для дискуссий в творческой аудитории. Это — вызов всем изобретателям. Указатель терминов А _________________________________________________________ А-Каталог 182, 393 А-Матрица 182, 389 А-Навигатор 73, 74, 393 АРИЗ — Алгоритм решения изобретательских задач 64, 72 А-Стандарт 64, 72, 102, 387, 404 Б ________________________________________ Базовые трансформации (навигаторы) 71, 81. 165 В _________________________________________________________ Верификация — четвертый заключительный этап Мста-АРИЗ, предназначенный для проверки качества идеи решения 105, 306 д _________________________________________________________
Диагностика — первый этап Мета-АРИЗ, на котором исследуется проблемная ситуация 105, 297 3 _________________________________________________________ Закон роста идеальности 263 И ________________________________________________________ Изобретение 35 ИКР — идеальный конечный результат 134 Инверсное техническое противоречие 165. 1st) Индуктор 107 К _________________________________________________________ Комплексные трансформации (навигаторы) 71. 82, 165, 169 Л _________________________________________________________ Линии системо-технического развития 266 М ________________________________________________________ Макроуровень 265 Максимальная задача 252 Мета-АРИЗ (Мета-алгоритм изобретения) 92. 105 (рис. 7.12) 426 Указатель терминов Микроуровень 265 Минимальная задача 252 ММФ — метод моделирования маленькими фигурками 328 О _________________________________________________________ Открытие 35 П ________________________________________________________ Прием 71, 165, 183 Проблема, проблемная ситуация 89, 297 Противоречие 122 Р _________________________________________________________ Развертывание системы 272 РВС — навигатор «Размер—Время—Стоимость» 324 Редукция — второй этап Мета-АРИЗ, на котором проблема и система моделируются в виде противоречий, ИКР и других моделей 106, 139 Реинвентинг 21 Ресурсы 112 Рецептор 108 С _________________________________________________________ Свертывание системы 272 Сверхэффект 160 Специализированные трансформации (навигаторы, приемы) 71, 165. 393 Стандарт 71, 165, 387, 404 СТР — системо-тсхнические ресурсы 118, 119 СФМ — структурно-функциональная модель 165, 386 Т _________________________________________________________ Техническое противоречие 125 Тип ресурса 118, 119 Трансформация — третий этап Мета-АРИЗ, предназначенный для генерации идеи решения с помошью навигаторов и примеров-аналогов /06, 139 ТРИЗ — Теория решения изобретательских задач 20, 54, 56 ТРИЗ-Законы 263 У _________________________________________________________
Уровень изобретения 36 Ф ________________________________________________________ Физическое противоречие 128 ФИМ — функциональная идеальная модель 134 ФТР — физико-технические ресурсы 118, 119 Фундаментальные трансформации (навигаторы) 71. 81, 165, 210 э _________________________________________________________ Эффект — Модель и навигатор трансформации на основе физических, химических и других явлений 71, 81, 165, 231. 406, 411. 414 В _________________________________________________________ BS — Brainstorming (брейнсторминг) 50 С _________________________________________________________ CICO — Метод Cluster In Cluster Out 200 н HSP - Homo Sapiens Progrcssus (Человек Разумный Развивающийся) 19 м — Method of Focal Object (метол фокального объекта) 48 ММ А — Morphological Analysis (метод морфологического анализа) 52 MP Main Parametr (главный параметр) 257 MPF — Main Positive Function (главная позитивная функция) 36, 254 MFO N NF - негативная функция 254 О OZ - Operative Zone (оперативная зона) 107 р PF — позитивная функция 254 S SYN - - Syneciics (синектика) 51 S-Кривая эволюции главного параметра системы 257 CROST (Constructive Resource-Oriented Strategy of Thinking/Transforming) — Конструктивная Ресурсно-Ориентированная Стратегия Мышления/Трансформации 14. 349 Избранные работы Г. С* Альтшуллера 1. О психологии изобретательского творчества. Журнал «Вопросы психологии» (М, 1956. № 6; с Р. Шапиро). 2. Как научиться изобретать (1961). 3. Основы изобретательства (1964). 4. Алгоритм изобретения (1973). 5. Творчество как точная наука (1979). 6. И тут появился изобретатель (1984, 1987, 1989). 7. Найти идею (1986). 8. Как стать гением: жизненная стратегия творческой личности (1994; с И. Верткиным). 9.
Дополнительные источники информации на русском языке www.altshuller.ru www.ariz.ru www.natm.ru www.trizland.ru www.triz-ri.ru www.triz.org.ru www.trizway.ru на английском языке www.triz-journal.com веб-сайты автора www.modern-triz-academy.ru www.moderntriz-academy.com www.easytriz.com www.handytriz.com Оглавление Презентация книги специалистом ТРИЗ ............................................. 4 Предисловие автора к первому и второму изданиям на русском языке 6 ТРИЗ в начале XXI века. Предисловие автора ................................... 13 ВВЕДЕНИЕ ........................................................................................ 17 1. Изобретение цивилизации .............................................................. 18 2. Реинвентинг — ключевая концепция обучения и самообучения для ТРИЗ ....................................................... 21 МЕТОДЫ ИЗОБРЕТЕНИЯ ................................................................ 33 3. .................................................................................................... Изобретение 34 3.1. Открытие и изобретение .............................................................. 34 3.2. Уровни изобретений..................................................................... 36 4. .................................................................................................... Изобретательское творчество .............................................................................................. 38 4.1. Изобретение теорий изобретения ................................................38 4.2. Традиционные методы изобретения ........................................... 48 5. .................................................................................................... Классическая ТРИЗ 54 5.1. Идеи ТРИЗ .................................................................................... 54 5.2. Становление классической ТРИЗ ................................................56 5.3. Структура классической ТРИЗ ....................................................62 Практикум к разделам 3—5 ................................................................ 67 А-СТУДИЯ: АЛГОРИТМИЧЕСКАЯ НАВИГАЦИЯ МЫШЛЕНИЯ 69 6. ........................................................................................................... От практики к теории ............................................................................................................ 70 6.1. А-Навигация мышления ............................................................... 70 6.2. А-Навигаторы изобретения.......................................................... 74 7. .................................................................................................... Дисциплина творчества 86 7.1. Вдохновение и дисциплина ......................................................... 86 7.2. Мета-Алгоритм Изобретения ......................................................92 8. ...................................................................................................Оперативная зона 107
8.1. Эпицентр проблемы ................................................................... 107 8.2. Ресурсы ....................................................................................... 112 9. ...................................................................................................От существующего возникающему....................................................................................... 122 9.1. Противоречия ............................................................................. 122 9.2. Функциональное идеальное моделирование ............................ 131 9.3. Редукция и трансформации ....................................................... 139 9.4. Классификация А-Моделей трансформации ............................ 162 Практикум к разделам 6—9 ....................................................... 164 к КЛАССИЧЕСКИЕ НАВИГАТОРЫ ИЗОБРЕТЕНИЯ А-СТУДИИ. 167 10. ................................................................................................ Навигаторы стандартных решений ................................................................................................ 169 10.1. Таблица комплексных трансформаций.................................... 169 10.2. Принципы применения стандартных решений ....................... 170 11. ................................................................................................ Навигаторы решения технических противоречий .................................................................. 180 11.1. Интеграция инверсных технических противоречий ................ 180 11.2. А-Каталог и А-Матрица специализированных навигаторов........................................................................................ 182 11.3. Принципы применения специализированных навигаторов........................................................................................ 184 11.4. Интеграция альтернативных противоречий — метод CICO ........................................................................................ 200 12. ................................................................................................ Навигация решения физических противоречий ................................................................... 206 12.1. Интеграция физических противоречий ................................... 206 12.2. Каталоги фундаментальных навигаторов. ............................... 210 12.3. Принципы применения фундаментальных навигаторов......... 214 13. ................................................................................................ Навигаторы поиска нового принципа функционирования.................................................. 231 13.1. Каталоги технических эффектов .............................................. 231 13.2. Принципы применения технических эффектов. ...................... 233 Практикум к разделам 10—13 .......................................................... 245 СТРАТЕГИЯ ИЗОБРЕТЕНИЯ .......................................................... 247 14. ....................................................................................................... Управление развитием систем ........................................................................................ 249 14.1. Развитие систем ........................................................................ 249 14.2. «Идеальная машина» ................................................................ 254 14.3. Кривая роста главного параметра системы ............................. 257 15. ................................................................................................ Классические ТРИЗмодели инновационного развития ....................................................... 263 15.1. ТРИЗ-Законы развития систем ................................................. 263 15.2. Линии системо-технического развития.................................... 266 15.3. Интеграция альтернативных систем ........................................ 282 Практикум к разделам 14—15 .......................................................... 293 ТАКТИКА ИЗОБРЕТЕНИЯ.............................................................. 295 16. ....................................................................................................... Диагностика проблемы ..................................................................................................... 297 16.1. Типы проблемных ситуаций ..................................................... 297
16.2. Алгоритм диагностики проблемной ситуации ........................ 300 17. ................................................................................................ Верификация решения 306 17.1. Эффективность решения .......................................................... 306 17.2. Развитие решения ..................................................................... 308 17.3. Алгоритм верификации решения ............................................. 311 Практикум к разделам 16—17 .......................................................... 314 ИСКУССТВО ИЗОБРЕТЕНИЯ ....................................................... 315 18. ....................................................................................................... Практицизм фантазии ...................................................................................................... 317 18.1. Неалгоритмические ТРИЗ-методы .......................................... 317 18.2. Модели «Фантограмма» и «Было — Стало» ........................... 321 18.3. Моделирование маленькими фигурками ................................. 328 19. ............................................................................................... Интеграция ТРИЗ в профессиональную деятельность. ...................................................... 331 19.1. Мотивация и развитие личности ..............................................331 19.2. Адаптация ТРИЗ-знаний к профессии ..................................... 333 19.3. Десять типичных ошибок ......................................................... 337 19.4. Примеры реинвентинга............................................................. 338 Практикум к разделам 18—19 .......................................................... 349 РАЗВИТИЕ ТРИЗ ............................................................................. 351 20. ....................................................................................................... Выбор стратегии: человек или компьютер?............................................................................. 353 20.1. ТРИЗ-знания: стратегии развития и применения .................... 353 20.2. Homo Inventor: человек изобретательный ............................... 356 20.3. CROST: пять ядер творчества .................................................. 359 21. ................................................................................................ CAI: Computer Aided Innovation/Invention. ............................................................................. 363 21.1. От Invention Machine к Co Brain .............................................. 363 21.2. От Problem Formulator к Innovation Workbench....................... 364 21.3. TRIZ Idea Navigator™: интеграция интеллектов .................... 365 Послесловие автора .......................................................................... 380 ПРИЛОЖЕНИЯ: каталоги навигаторов А-студии .......................... 385 Приложение 1. Каталог Структурно-функциональные модели ...... 386 Приложение 2. Каталог А-Компакт-Стандарты ............................... 387 Приложение 3. А-Матрица для выбора специализированных А-Навигаторов. .................................................................................. 389 Приложение 4. Каталог специализированных А-Навигаторов ....... 393 Приложение 5. Каталог фундаментальных А-Навигаторов ........... 403 Приложение 6. Каталог фундаментальных А-Навигаторов, А-Компакт-Стандартов и классических стандартов ....................... 404 Приложение 7. Каталог фундаментальных трансформаций со специализированными А-Навигаторами .................................... 406 Приложение 8. Каталог физических эффектов ................................ 408 Приложение 9. Каталог химических эффектов ............................... 411 Приложение 10. Каталог геометрических эффектов ...................... 414 Указатель примеров. ........................................................................ 415 Ответы и решения .............................................................................419 Практикум к разделам 3—5 ............................................................. 419 Практикум к разделам 6—7 .............................................................. 420
Практикум к разделам 10—13 .......................................................... 421 Практикум к разделам 14—15 ......................................................... 424 Практикум к разделам 16 —17 ......................................................... 424 Практикум к разделам 18 —19 ........................................................ 424 Указатель терминов.......................................................................... 425 Избранные работы Г. С. Альтшуллера ............................................ 428 Дополнительные источники информации ....................................... 428 Электронная версия данной книги создана исключительно для ознакомления! Реализация данной электронной книги в любых интернетмагазинах, и на CD (DVD) дисках с целью получения прибыли, незаконна и запрещена! По вопросам приобретения печатной или электронной версии данной книги обращайтесь непосредственно к законным издателям, их представителям, либо в соответствующие организации торговли! Михаил Александрович Орлов Основы классической ТРИЗ Практическое руководство для изобретательного мышления Ответственный за выпуск B. Митин Макет и верстка C. Тарасов Обложка Е. Холмский ООО «СОЛОН-ПРЕСС» 123242, г. Москва, а/я 20 Телефоны: (095) 254-44-10, (095) 252-36-96, (095) 252-25-21 www.solon-press.ru. E-mail: SolonAvtor@coba.ru По вопросам приобретения обращаться: ООО «Альянс-книга КТК» Тел: (495) 25891-94, 258-91-95 www.abook.ru ООО «СОЛОН-ПРЕСС» 103050, г. Москва, Дегтярный пер., д. 5, стр. 2 Формат 70x100/16. Объем 27 п. л. Тираж 1500 Отпечатано в ООО «Арт-диал» 143983, МО, г. Железнодорожный, ул. Керамическая, д. 3 Заказ № 139 Самые ценные продукты — принципиально новые идеи. Генрих Альтшуллер, инженер, изобретатель, писатель, педагог, основатель ТРИЗ Теория Решения Изобретательских Задач, рожденная в России, сегодня быстро осваивается ведущими компании мира, например, Mitsubishi, Samsung, Hewlett Packard, General Electric, Siemens. Dr. Georg Kinnemann, Siemens LA Postautomation GmbH, Berlin: В ТРИЗ связаны стратегия и практика технического мышления с моделями интуитивного изобретательского творчества. Становится возможным находить ошеломляющие и экономные решения даже там, где годами выпускается определенный продукт и все верят, что известны все возможные решения на основе новейших исследований. Dr. Andreas Neuer, SRAM Deutschland GmbH, Schweinfurt:
Многие, и я в том числе, были поражены, когда наши собственные творческие находки были нами «переоткрыты» в ТРИЗ, но уже в систематизированной форме. Даже в такой «исхоженной» области с долгой историей исследований, как велосипедная.техника, методы ТРИЗ нашли полезное применение. Dr. Dietmar Zobel, Ingenieurburo fur Systemtechnik, Lutherstadt Wittenberg: Мета-Алгоритм Изобретения профессора Михаила Орлова на самом деле является - в полном смысле слова - навигатором при переработке и решении изобретательских задач. Профессор М.Орлов имеет уже 40-летний опыт применения ТРИЗ. Он известен специалистам как эксперт по управлению развитием сложных систем в таких областях как электроника и компьютерная техника, самолетостроение, космическая индустрия, судостроение, приборостроение. Более 20 лет он преподает в высших учебных заведениях, а также читает лекции и консультирует многие компании в Европе и Америке, имеет более 50 изобретений, патенты в США и Англии, является основателем интернациональной тренинговой и консалтинговой компании Modern TRIZ Academy, Берлин. Германия. Он развивает эффективные структурные представления 1848628�991809 инструментов ТРИЗ и интеграцию ТРИЗ с альтернативными методами. � ISBN 5-98003-191-Х 9 llilllllllilil

УДК 008 ББК 71

066

Орлов М. А.

066

Основы классической ТРИЗ. Практическое руководство для изобрета-

тельного мышления. — 2-е изд., испр. и доп. — М.: СОЛОН-ПРЕСС.

2006. — 432 с: ил.

ISBN 5-98003-191-Х

Рожденная в России, Теория Решения Изобретательских Задач (ТРИЗ) се-

годня быстро распространяется в мире. Все ведущие компании применяют

ТРИЗ, например, Mitsubishi, Samsung, Hewlett Packard, General Electric,

Siemens. Книга профессора Михаила Орлова, впервые выпушенная извест-

ным издательством Springer Verlag на немецком (Берлин,

Германия, 2002)

и английском (Нью Йорк. США. 2003) языках, представляет основные прин-

ципы и модели ТРИЗ. Автор книги обладает не только отечественным опы-

том, но и более чем 10-летним опытом ТРИЗ-консалтинга и чтения лекции

во многих странах. Книга иллюстрирована многочисленными примерами

(более 300) и рисунками (более 200) из российского и зарубежного опыта.

Книга может быть использована для самостоятельного развития система-

тического, направленного, изобретательного мышления

как инженерами,

так и инновативными менеджерами, бизнесменами, аналитиками, экономи-

стами, психологами, преподавателями высших и средних школ в любых чи-

таемых дисциплинах. Книга вполне доступна и несомненно полезна студентам

и старшим школьникам.

УДК 008 ББК 71

По вопросам приобретения обращаться:

ООО «АЛЬЯНС-КНИГА КТК>

Тел: (495) 258-91-94, 258-91-95, www.abook.ru

Сайт издательства СОЛОН-ПРЕСС: www.solon-press.ru. E-mail: solon-avtor@coba.ru

ISBN 5-98003-191-Х

©

Макет и обложка «СОЛОН-ПРЕСС», 2006

©

М. А. Орлов, 2006

Посвящаю моему сыну Алексею с любовью и уважением за его мужество, целеустремленность и великодушие

Методика изобретательского творчества — не рецепт для создания изобретений. Она не заменяет и не подменяет технические знания.

Методика помогает применять знания с предельной эффективностью.

Изучение методики не гарантирует, что изобретатель превзойдет Попова или Эдисона.

Но ведь и изучение университетского курса не гарантирует, что студент со временем превзойдет Ньютона или Эйнштейна.

Генрих Альтшуллер. Крылья для Икара. Петрозаводск, 1980

Там где новое выводится из старого чисто логическим путем, нет изобретения.

Изобретение, от мала до велика, есть неминуемо скачок через логическую пропасть.

И если этот скачок совершается в здравом уме и твердой памяти, то это есть, столько же изобретение, сколько и откровение.

Петр Энгельмейер

1

Когда в 1963 году я познакомился с первой ТРИЗ-книгой | 1 | Генриха Сауловича Альтшуллера, трудно было предположить, что ТРИЗ станет делом моей жизни. Но это произошло. И хотя сегодня моя ТРИЗ-библиотека насчитывает не одну сотню публикаций разных авторов и, разумеется, почти все, что было опубликовано на русском языке за 40 лет, с той книжечкой я не расстаюсь и по сей день.

Мое восхождение к ТРИЗ было не простым, как и всякое восхождение к высокой горной вершине. Иногда казалось, что вершина уже достигнута, но это был всего лишь промежуточный пик. Иногда бездорожье уводило в сторону, где была надежда пройти более легким путем, не вникая в строгие требования ТРИЗ. И тогда не один год проходил без открытия новых перспектив в движении к ТРИЗ.

И все же со временем стало ясно, что восхождение к ТРИЗ стоит и усилий, и времени. Постижение ТРИЗ открывает мир невероятных возможностей, неизбежно выводит в миры эстетики и философии техники, наконец, расширяет ТРИЗ до беспредельных перспектив применения практически во всех сферах творческой активности — будь то научное исследование, техническое прогнозирование, управление развитием коллективов и технических систем, решение проблем обеспечения безопасности или воспитание детей детсадовского возраста.

1 П. К. Энгельмейер (I855—1941) — выдающийся российский философ техники и инже- нер-механик. Цит. по книге «Теория творчества», 1910.

Всередине 1980-х, работая над докторской диссертацией, я нашел достаточно простые математические категории для представления моделей ТРИЗ. И одновременно стало еще более ясно, что ТРИЗ не есть арифметическая или алгебраическая система. Решения по ТРИЗ не вычисляются по формулам. Всегда присутствует мощная интеллектуальная работа для выявления аналогий, создания метафорических и даже фантастических образов, придумывания новых структур и конструкций, не имеющих прямых логических аналогов. Для развития этих аспектов творчества были опробованы десятки альтернативных методов стимуляции воображения и генерации нетривиальных идей.

Витоге сложилось ясное представление о возможностях и ограничениях ТРИЗ.

Возможности ТРИЗ основаны на следующем:

1) ясное формулирование структуры проблемы, редуцирование ее к предельно упрощенной форме в виде бинарного противоречия (или нескольких противоречий) — этим актом ТРИЗ обеспечивает правильную диагностику проблемы, выявление ее действительной сути;

2)определение экторов (взаимодействующих элементов) проблемной ситуации и ресурсов, необходимых и достаточных для решения проблемы, для устранения противоречий во взаимодействиях экторов — это ТРИЗ-иссле- дование позволяет, так сказать, оценить реальные силы «противников» и «союзников»;

3)выдвижение идеальных целей, мысленное идеальное моделирование нужных функций, требующихся от будущего решения — этим ТРИЗ стимулирует уход от стереотипного воздействия привычных решений, существующих в окружающих объектах;

4)использование опыта создания сотен тысяч эффективных изобретений для нахождения решения актуальной проблемы — ТРИЗ дает примеры таких решений в виде моделей перехода от состояния «было» к состоянию «стало» (приемов) и иллюстрирующих их примеров;

5)применение ТРИЗ-законов развития систем для стратегического выбора направления поиска идеи решения;

6)применение строгой дисциплинирующей методики пошагового анализа проблемы и синтеза идеи решения в виде так называемых алгоритмов решения изобретательских задач (АРИЗ).

Этим аспектам поддержки логической составляющей синтеза решения и посвящены основные страницы книги. Эти аспекты и составляют объективную основу классической ТРИЗ.

И все же часть книги посвящена также нашим работам в направлении поддержки интуитивной составляющей творчества. Мы ведем интенсивную разработку и тестирование софтвера для интеграции обеих составляющих реального творческого процесса.

Практическая направленность книги определила как стиль изложения теории — без академических или дидактических формализмов, — так и подбор примеров. Последнему автор уделил наибольшее внимание. Во-первых, примеры призваны убедительно показать надежность опытно-экспериментальной основы теоретических моделей — навигаторов мышления для решении новых задач. Во-вторых, примеры должны объективно отражать возможность и естественную неразрывность алгоритмической навигации мышления и эвристического творчества.

В целом многолетний опыт применения ТРИЗ позволяет сказать следующее.

Процесс создания новых систем и технологий основан на поиске инновационных идей. Создание крупных идей требуется как результат исследования и развития перспективных направлений. Ежедневно требуются большие и малые решения в проектной деятельности. Поиск идей является самым сложным и драматическим актом инновационных процессов. До настоящего времени нет учебных заведений, которые систематически и направленно учили бы ТРИЗ-методам создания новых идей. И ключевой проблемой для организации такого обучения является создание теоретических основ ТРИЗ-образо- вания.

Любая деятельность вырастает из принципов ее организации. Поэтому в этой книге заложено несколько современных теоретических концепций ТРИЗ, принципиально важных для их эффективного практического применения, для самостоятельного изучения и для организации учебных ТРИЗ-курсов в тех или иных образовательных учреждениях.

Наши непрекращающиеся поиски новых выразительных представлений моделей ТРИЗ как бы поощряются известным высказыванием основателя ТРИЗ о том, что решение изобретательских задач требует не столько новых знаний, сколько хорошей организации уже имеющихся знаний.

Место и роль процесса обучения основам современной ТРИЗ (Modern TRIZ) и последующего применения ТРИЗ на практике показаны на схеме, представляющей философию развития ТРИЗ-приложений в виде «3Е-модели»:

Концептуальные основы обучения и применения ТРИЗ кратко могут быть

выражены триадой: реинвентинг, стандартизация и креативная навигация.

Действительно, весь опыт ТРИЗ экстрагируется из практики (experience), из анализа реальных изобретений и высокоэффективных инновационных решений. Именно реинвентинг является процессом исследования и экстрагирования ключевых идей таких решений. ТРИЗ-реинвентинг выполняется так, словно каждое анализируемое изобретение было сделано на основе ТРИЗ. Это помогает понять объективную логику и объективные креативные находки автора изобретения, представить их в форме, несравненно более понятной и доступной всем, кто хотел бы увидеть, как именно было сделано то или иное изобретение.

Реинвентинг опирается на 4 фундаментальных этапа, составляющих вместе разработанный автором Мета-Алгоритм Изобретения (Мета-АРИЗ).

Результаты реинвентинга целесообразно представлять в определенной стандартизованной форме, в которой сохранены все принципиально важные аспекты создания изобретения или инновации, а именно: суть проблемной ситуации, модели противоречий, модели ресурсов, модели трансформаций, с помощью которых удалось решить «неразрешимую проблему» и некоторые другие важные детали. И вновь такой стандартизованной формой оказывается Мета-АРИЗ. Именно в формате Мета-АРИЗ удается создать банки для аккумулирования ТРИЗ-знаний в виде, который делает эти знания доступными как для высококвалифицированного специалиста, так и для студента или даже школьника (education).

Каждый проектировщик и исследователь, изобретатель и инноватор нуждается в простых и эффективных схемах для «навигации мышления». Именно на основе Мета-АРИЗ строятся эффективные «маршруты» мысленной обработки знаний о проблемной ситуации и о цели поиска, по которым можно уверенно двигаться к достижению эффективного решения (evolution). Мета-АРИЗ, каждый этап которого наполнен конкретными навигаторами, становится инструментом для конструирования эффективной идеи. Как было отмечено в референсе TRIZ Journal2: « … замечателен также мета-алгоритм, который помогает не только тем, кто не знаком с ТРИЗ, но и знающим предмет, понимать трансформации от исходной ситуации до верификации при получении решения и устранения противоречий. Автор признает, что переходы от одного блока к другому нелегки, но учит, как думать, с использованием множества простых примеров, иллюстрированных четкими рисунками …»

Поэтому вся программа систематического ТРИЗ-образования — от обучения начинающих до достижения мастерства — может, по нашему опыту, строиться на основе реинвентинга, стандартизации и креативной навигации с помощью алгоритмов изобретения на основе Мета-АРИЗ.

ТРИЗ кардинально улучшает мышление при создании идеи решения проблем, содержащих противоречия, содержащих конфликт элементов проблемы — целей, свойств, ресурсов, структурных компонентов.

2 TRIZ-Journal 11’2003.

ТРИЗ безусловно усиливает природные способности, так как высвобождает сознание для генерации высокоэффективных идей, направляя мышление в эпицентр проблемы и пресекая попытки ненаправленного угадывания хоть каких-нибудь решений, которые, как правило, оказываются слабыми.

Однако достичь ТРИЗ-мастерства решения проблем можно только разумным сочетанием и развитием обеих составляющих творческого мышления — логической и интуитивной. Поэтому изучение и применение алгоритмических методов и моделей ТРИЗ полезно соединять с постоянным поиском гармонии и красоты, целесообразности и экологичности, фантазии и юмора, короче говоря, с чувством времени и реальной жизни.

И не забывайте спрашивать себя: как, в каком направлении изменится Мир, станет ли он безопаснее и гармоничнее, когда Ваша новая идея будет реализована ?

2

Не прошло и года, как разошелся весь тираж первого издания книги на русском языке.

Я благодарен тем читательницам и читателям (далее я применяю традиционное обобщенное обращение — читатель), кто прислал мне электронные письма с желанием пройти дистанционное обучение по программам Модерн ТРИЗ Академии, кто высказал интересные мысли и вопросы, связанные с историей и современным развитием ТРИЗ, кто высказал пожелания по улучшению текста книги, и кто проявил деловой интерес для практической поддержки и развития идей Академии в России.

Особенно важным, хотя и не связанным напрямую с содержанием моей книги, оказался такой вопрос: есть мнение, что ТРИЗ — сложившаяся наука, и что в ней «уже все выбрано», ведь ничего существенного не сделано в ТРИЗ за 20 лет после выхода АРИЗ-1985 и последней ТРИЗ-книги Г. С. Альтшуллера «Найти идею»! Так ли это? И если так, то где учебники по ТРИЗ? Где школы ТРИЗ? Это за целых 20 лет!?

Я думаю, что частично ответ уже содержится в самом вопросе.

Действительно, как можно говорить о сложившемся направлении, когда нет даже современного учебника ТРИЗ? Такого учебника не успел написать основатель ТРИЗ. Не написали его ни первые энтузиасты ТРИЗ, ни общества и ассоциации ТРИЗ в России и за рубежом. Известные немногочисленные российские и зарубежные предложения учебной литературы построены по схемам, вынесенным еще из советского периода выживания идей ТРИЗ. Так что, в том виде, в каком это требуется для современного учебника, его нет и поныне.

Кроме того, для развитой теории будут разные учебники, отражающие эстетические, социальные и философские предпочтения авторов. Но раз уж нет одного учебника, то нет и двух или более.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Укажите регион, чтобы мы точнее рассчитали условия доставки

Начните вводить название города, страны, индекс, а мы подскажем

Например: 
Москва,
Санкт-Петербург,
Новосибирск,
Екатеринбург,
Нижний Новгород,
Краснодар,
Челябинск,
Кемерово,
Тюмень,
Красноярск,
Казань,
Пермь,
Ростов-на-Дону,
Самара,
Омск

Page 1: основы классической триз. м. орлов

Page 2: основы классической триз. м. орлов

УДК 008ББК 71

066

Орлов М. А.066 Основы классической ТРИЗ. Практическое руководство для изобрета-

тельного мышления. — 2-е изд., испр. и доп. — М.: СОЛОН-ПРЕСС.2006. — 432 с: ил.

ISBN 5-98003-191-Х

Рожденная в России, Теория Решения Изобретательских Задач (ТРИЗ) се-годня быстро распространяется в мире. Все ведущие компании применяютТРИЗ, например, Mitsubishi, Samsung, Hewlett Packard, General Electric,Siemens. Книга профессора Михаила Орлова, впервые выпушенная извест-ным издательством Springer Verlag на немецком (Берлин, Германия, 2002)и английском (Нью Йорк. США. 2003) языках, представляет основные прин-ципы и модели ТРИЗ. Автор книги обладает не только отечественным опы-том, но и более чем 10-летним опытом ТРИЗ-консалтинга и чтения лекцииво многих странах. Книга иллюстрирована многочисленными примерами(более 300) и рисунками (более 200) из российского и зарубежного опыта.

Книга может быть использована для самостоятельного развития система-тического, направленного, изобретательного мышления как инженерами,так и инновативными менеджерами, бизнесменами, аналитиками, экономи-стами, психологами, преподавателями высших и средних школ в любых чи-таемых дисциплинах. Книга вполне доступна и несомненно полезна студентами старшим школьникам.

УДК 008ББК 71

По вопросам приобретения обращаться:ООО «АЛЬЯНС-КНИГА КТК>

Тел: (495) 258-91-94, 258-91-95, www.abook.ru

Сайт издательства СОЛОН-ПРЕСС: www.solon-press.ru.E-mail: [email protected]

ISBN 5-98003-191-Х © Макет и обложка «СОЛОН-ПРЕСС», 2006© М. А. Орлов, 2006

Page 3: основы классической триз. м. орлов

Посвящаю моему сыну Алексеюс любовью и уважением за его мужество,

целеустремленность и великодушие

Методика изобретательского творчест-ва — не рецепт для создания изобрете-ний. Она не заменяет и не подменяеттехнические знания.

Методика помогает применять знанияс предельной эффективностью.

Изучение методики не гарантирует,что изобретатель превзойдет Поповаили Эдисона.

Но ведь и изучение университетскогокурса не гарантирует, что студент современем превзойдет Ньютона илиЭйнштейна.

Генрих Альтшуллер.

Крылья для Икара. Петрозаводск, 1980

Page 4: основы классической триз. м. орлов

Page 5: основы классической триз. м. орлов

Page 6: основы классической триз. м. орлов

Там где новое выводится из старого чисто логи-ческим путем, нет изобретения.

Изобретение, от мала до велика, есть неминуемоскачок через логическую пропасть.

И если этот скачок совершается в здравом уме итвердой памяти, то это есть, столько же изобрете-ние, сколько и откровение.

Петр Энгельмейер

1

Когда в 1963 году я познакомился с первой ТРИЗ-книгой | 1 | Генриха Сауло-вича Альтшуллера, трудно было предположить, что ТРИЗ станет делом моейжизни. Но это произошло. И хотя сегодня моя ТРИЗ-библиотека насчитываетне одну сотню публикаций разных авторов и, разумеется, почти все, что былоопубликовано на русском языке за 40 лет, с той книжечкой я не расстаюсь ипо сей день.

Мое восхождение к ТРИЗ было не простым, как и всякое восхождение к вы-сокой горной вершине. Иногда казалось, что вершина уже достигнута, но этобыл всего лишь промежуточный пик. Иногда бездорожье уводило в сторону,где была надежда пройти более легким путем, не вникая в строгие требованияТРИЗ. И тогда не один год проходил без открытия новых перспектив в дви-жении к ТРИЗ.

И все же со временем стало ясно, что восхождение к ТРИЗ стоит и усилий, ивремени. Постижение ТРИЗ открывает мир невероятных возможностей, неиз-бежно выводит в миры эстетики и философии техники, наконец, расширяетТРИЗ до беспредельных перспектив применения практически во всех сферахтворческой активности — будь то научное исследование, техническое прогно-зирование, управление развитием коллективов и технических систем, реше-ние проблем обеспечения безопасности или воспитание детей детсадовскоговозраста.

1 П. К. Энгельмейер (I855—1941) — выдающийся р о с с и й с к и й философ т е х н и к и и инже-нер-механик. Цит. по к н и г е «Теория творчества», 1910.

Page 7: основы классической триз. м. орлов

В середине 1980-х, работая над докторской диссертацией, я нашел достаточнопростые математические категории для представления моделей ТРИЗ. И од-новременно стало еще более ясно, что ТРИЗ не есть арифметическая или ал-гебраическая система. Решения по ТРИЗ не вычисляются по формулам. Все-гда присутствует мощная интеллектуальная работа для выявления аналогий,создания метафорических и даже фантастических образов, придумывания но-вых структур и конструкций, не имеющих прямых логических аналогов. Дляразвития этих аспектов творчества были опробованы десятки альтернативныхметодов стимуляции воображения и генерации нетривиальных идей.

В итоге сложилось ясное представление о возможностях и ограниченияхТРИЗ.

Возможности ТРИЗ основаны на следующем:

1) ясное формулирование структуры проблемы, редуцирование ее к предель-но упрощенной форме в виде бинарного противоречия (или несколькихпротиворечий) — этим актом ТРИЗ обеспечивает правильную диагностикупроблемы, выявление ее действительной сути;

2) определение экторов (взаимодействующих элементов) проблемной ситуа-ции и ресурсов, необходимых и достаточных для решения проблемы, дляустранения противоречий во взаимодействиях экторов — это ТРИЗ-иссле-дование позволяет, так сказать, оценить реальные силы «противников» и«союзников»;

3) выдвижение идеальных целей, мысленное идеальное моделирование нуж-ных функций, требующихся от будущего решения — этим ТРИЗ стимули-рует уход от стереотипного воздействия привычных решений, существую-щих в окружающих объектах;

4) использование опыта создания сотен тысяч эффективных изобретений длянахождения решения актуальной проблемы — ТРИЗ дает примеры такихрешений в виде моделей перехода от состояния «было» к состоянию «ста-ло» (приемов) и иллюстрирующих их примеров;

Page 8: основы классической триз. м. орлов

5) применение ТРИЗ-законов развития систем для стратегического выборанаправления поиска идеи решения;

6) применение строгой дисциплинирующей методики пошагового анализапроблемы и синтеза идеи решения в виде так называемых алгоритмов ре-шения изобретательских задач (АРИЗ).

Этим аспектам поддержки логической составляющей синтеза решения и по-священы основные страницы книги. Эти аспекты и составляют объективнуюоснову классической ТРИЗ.

И все же часть книги посвящена также нашим работам в направлении под-держки интуитивной составляющей творчества. Мы ведем интенсивную раз-работку и тестирование софтвера для интеграции обеих составляющих реаль-ного творческого процесса.

Практическая направленность книги определила как стиль изложения тео-рии — без академических или дидактических формализмов, — так и подборпримеров. Последнему автор уделил наибольшее внимание. Во-первых, при-меры призваны убедительно показать надежность опытно-экспериментальнойосновы теоретических моделей — навигаторов мышления для решении новыхзадач. Во-вторых, примеры должны объективно отражать возможность и есте-ственную неразрывность алгоритмической навигации мышления и эвристиче-ского творчества.

В целом многолетний опыт применения ТРИЗ позволяет сказать следующее.

Процесс создания новых систем и технологий основан на поиске инноваци-онных идей. Создание крупных идей требуется как результат исследования иразвития перспективных направлений. Ежедневно требуются большие и ма-лые решения в проектной деятельности. Поиск идей является самым слож-ным и драматическим актом инновационных процессов. До настоящего вре-мени нет учебных заведений, которые систематически и направленно училибы ТРИЗ-методам создания новых идей. И ключевой проблемой для органи-зации такого обучения является создание теоретических основ ТРИЗ-образо-вания.

Любая деятельность вырастает из принципов ее организации. Поэтому в этойкниге заложено несколько современных теоретических концепций ТРИЗ,принципиально важных для их эффективного практического применения, длясамостоятельного изучения и для организации учебных ТРИЗ-курсов в техили иных образовательных учреждениях.

Наши непрекращающиеся поиски новых выразительных представлений моде-лей ТРИЗ как бы поощряются известным высказыванием основателя ТРИЗ отом, что решение изобретательских задач требует не столько новых знаний,сколько хорошей организации уже имеющихся знаний.

Место и роль процесса обучения основам современной ТРИЗ (Modern TRIZ)и последующего применения ТРИЗ на практике показаны на схеме, представ-ляющей философию развития ТРИЗ-приложений в виде «3Е-модели»:

Page 9: основы классической триз. м. орлов

Концептуальные основы обучения и применения ТРИЗ кратко могут бытьвыражены триадой: реинвентинг, стандартизация и креативная навигация.

Действительно, весь опыт ТРИЗ экстрагируется из практики (experience), изанализа реальных изобретений и высокоэффективных инновационных реше-ний. Именно реинвентинг является процессом исследования и экстрагированияключевых идей таких решений. ТРИЗ-реинвентинг выполняется так, словнокаждое анализируемое изобретение было сделано на основе ТРИЗ. Это помога-ет понять объективную логику и объективные креативные находки автора изо-бретения, представить их в форме, несравненно более понятной и доступнойвсем, кто хотел бы увидеть, как именно было сделано то или иное изобретение.

Реинвентинг опирается на 4 фундаментальных этапа, составляющих вместеразработанный автором Мета-Алгоритм Изобретения (Мета-АРИЗ).

Результаты реинвентинга целесообразно представлять в определенной стан-дартизованной форме, в которой сохранены все принципиально важные ас-пекты создания изобретения или инновации, а именно: суть проблемной си-туации, модели противоречий, модели ресурсов, модели трансформаций, спомощью которых удалось решить «неразрешимую проблему» и некоторыедругие важные детали. И вновь такой стандартизованной формой оказываетсяМета-АРИЗ. Именно в формате Мета-АРИЗ удается создать банки для акку-мулирования ТРИЗ-знаний в виде, который делает эти знания доступнымикак для высококвалифицированного специалиста, так и для студента илидаже школьника (education).

Каждый проектировщик и исследователь, изобретатель и инноватор нуждает-ся в простых и эффективных схемах для «навигации мышления». Именно наоснове Мета-АРИЗ строятся эффективные «маршруты» мысленной обработкизнаний о проблемной ситуации и о цели поиска, по которым можно увереннодвигаться к достижению эффективного решения (evolution). Мета-АРИЗ, каж-дый этап которого наполнен конкретными навигаторами, становится инстру-ментом для конструирования эффективной идеи. Как было отмечено в рефе-ренсе TRIZ Journal2: « … замечателен также мета-алгоритм, который помогаетне только тем, кто не знаком с ТРИЗ, но и знающим предмет, пониматьтрансформации от исходной ситуации до верификации при получении реше-ния и устранения противоречий. Автор признает, что переходы от одного бло-ка к другому нелегки, но учит, как думать, с использованием множества про-стых примеров, иллюстрированных четкими рисунками …»

Поэтому вся программа систематического ТРИЗ-образования — от обученияначинающих до достижения мастерства — может, по нашему опыту, строить-ся на основе реинвентинга, стандартизации и креативной навигации с помо-щью алгоритмов изобретения на основе Мета-АРИЗ.

ТРИЗ кардинально улучшает мышление при создании идеи решения проблем,содержащих противоречия, содержащих конфликт элементов проблемы — це-лей, свойств, ресурсов, структурных компонентов.

2 TRIZ-Journal 1 1′ 2003.

Page 10: основы классической триз. м. орлов

ТРИЗ безусловно усиливает природные способности, так как высвобождаетсознание для генерации высокоэффективных идей, направляя мышление вэпицентр проблемы и пресекая попытки ненаправленного угадывания хотькаких-нибудь решений, которые, как правило, оказываются слабыми.

Однако достичь ТРИЗ-мастерства решения проблем можно только разумнымсочетанием и развитием обеих составляющих творческого мышления — логи-ческой и интуитивной. Поэтому изучение и применение алгоритмических ме-тодов и моделей ТРИЗ полезно соединять с постоянным поиском гармонии икрасоты, целесообразности и экологичности, фантазии и юмора, короче гово-ря, с чувством времени и реальной жизни.

И не забывайте спрашивать себя: как, в каком направлении изменится Мир,станет ли он безопаснее и гармоничнее, когда Ваша новая идея будет реали-зована ?

2

Не прошло и года, как разошелся весь тираж первого издания книги на рус-ском языке.

Я благодарен тем читательницам и читателям (далее я применяю традицион-ное обобщенное обращение — читатель), кто прислал мне электронные пись-ма с желанием пройти дистанционное обучение по программам МодернТРИЗ Академии, кто высказал интересные мысли и вопросы, связанные с ис-торией и современным развитием ТРИЗ, кто высказал пожелания по улучше-нию текста книги, и кто проявил деловой интерес для практической поддерж-ки и развития идей Академии в России.

Особенно важным, хотя и не связанным напрямую с содержанием моей кни-ги, оказался такой вопрос: есть мнение, что ТРИЗ — сложившаяся наука, ичто в ней «уже все выбрано», ведь ничего существенного не сделано в ТРИЗза 20 лет после выхода АРИЗ-1985 и последней ТРИЗ-книги Г. С. Альтшулле-ра «Найти идею»! Так ли это? И если так, то где учебники по ТРИЗ? Где шко-лы ТРИЗ? Это за целых 20 лет!?

Я думаю, что частично ответ уже содержится в самом вопросе.

Действительно, как можно говорить о сложившемся направлении, когда нетдаже современного учебника ТРИЗ? Такого учебника не успел написать ос-нователь ТРИЗ. Не написали его ни первые энтузиасты ТРИЗ, ни общества иассоциации ТРИЗ в России и за рубежом. Известные немногочисленные рос-сийские и зарубежные предложения учебной литературы построены по схе-мам, вынесенным еще из советского периода выживания идей ТРИЗ. Такчто, в том виде, в каком это требуется для современного учебника, его нет ипоныне.

Кроме того, для развитой теории будут разные учебники, отражающие эстети-ческие, социальные и философские предпочтения авторов. Но раз уж нет од-ного учебника, то нет и двух или более.

Page 11: основы классической триз. м. орлов

То же самое приходится констатировать и относительно учебных заведенийдля ТРИЗ (скорее, всего частных, так как до государственных дело еще нескоро дойдет).

Вот поэтому мы и взяли на себя ответственность и инициативу создать учеб-ные материалы и учебное заведение для ТРИЗ в ее современном содержаниии структурировании. Над тем и работаем. И предлагаем наши опыты и разра-ботки для проверки практикой.

Это — часть ответа, причем только на последнюю часть вопроса.

Я отвечаю на подобный вопрос на моих семинарах еще и следующим обра-зом: 20 лет понадобились для того, чтобы проверить ТРИЗ на выживаемость вглобальном масштабе. И ТРИЗ не только выстояла, но и успешно применяет-ся многими крупнейшими концернами. Преимущественно вместе с техноло-гиями управления качеством, например, такими как 6 Сигма (см. TRIZJournal).

И вот теперь после накопления глобального опыта можно надеяться, что поя-вятся и учебники, и школы ТРИЗ.

Наконец, о развитии ТРИЗ.

Раз уж мы говорим о выживании, то на известной S-кривой это фаза «раннеговозраста» системы. И ТРИЗ как система явно находится если уже не на ста-дии «выживания», то не далее как в начале стадии «взросления». Это означа-ет, что еще немало копий будет сломано в «борьбе» за теоретические основа-ния будущей ТРИЗ — за аксиоматику, за формально-теоретические модели,за язык, за примеры, за АРИЗы, за методики преподавания, за … философию,мировоззрение, психологию, педагогику ТРИЗ, за … Короче, за все то, что исоставляет основание любой науки как науки. А в «развитых науках» еще мо-гут быть течения и школы, которые иногда очень даже непримиримы в «борь-бе» за «идейную чистоту» и за право на обладание «истинным знанием» в пер-вой и, само собой, в последней инстанции. Вспомните хотя бы — и не в по-следнюю очередь — «Как стать гением».

Одно можно прогнозировать определенно: знание основ ТРИЗ должно статьобязательным критерием оценки уровня культуры выпускника школы и темболее выпускника высшего учебного заведения. Ни один выпускник совре-менной школы не может считаться в полной мере образованным без знанияоснов ТРИЗ.

Думаю, что первыми в мире это осознали в Южной Корее. С 2006 года навсех вступительных экзаменах в вузы страны в числе 100 вопросов для опенкиуровня интеллектуального развития поступающих в вуз (наподобие IQ-score)введены 4 вопроса по ТРИЗ — с 37-го по 40-й. Автор удовлетворен по край-ней мере тем, что вместе с рядом корейских и российских специалистовТРИЗ принимал и принимает участие в разработке предложений и реализа-ции проектов для программы развития школьного и высшего образования вЮжной Корее.

И еще один вопрос о пользе этой книги для «не-технических» специалистов.

Page 12: основы классической триз. м. орлов

Дело в том, что для понимания основных идей и примеров этой книги не тре-буется специфического высшего образования, а вполне достаточно универ-сальных школьных знаний. Практические примеры книги, почерпнутые изсамых разных источников и представленные на основе ТРИЗ-реинвентинга в«стандартном» формате, полезны специалистам практически любой сферыдеятельности.

В заключение я благодарю моего сына Николая за его вклад в корректуру вто-рого русского издания параллельно с корректурой третьего немецкого изда-ния, за его тонкое понимание ТРИЗ и за веру в будущее ТРИЗ.

И еще я хочу пожелать успеха всем, кто не боится эксперимента, кто будетпытаться внести свой вклад в продвижение ТРИЗ в практику, кто будет пред-лагать «свои» теоретические конструкции для ТРИЗ, авторские или коллек-тивные учебники и учебные курсы.

Практика отберет то, что будет эффективно.

Михаил Орлов.Берлин, Германия. Январь 2005 — июнь 2006 г.

Page 13: основы классической триз. м. орлов

Никогда не рано думать о завтрашнем дне.

Федерико Майор 3

Да, цивилизация восходила по лестнице изобретений4.

Гениальные изобретения быстро поднимали человечество на головокружи-тельные высоты. Миллионы других изобретений укрепляли лестницу и всездание цивилизации. Цивилизация поднималась все быстрее и быстрее.

Но сам процесс создания изобретений тысячи лет оставался неизменным.Мучительные раздумья над проблемой, поиски в случайных направлениях,неисчислимое количество неудачных проб, блуждание по лабиринту, хожде-ние в тумане по замкнутому кругу, и лишь иногда, как вспышка света в пол-ной темноте, как разгадка удивительного сна или исцеление от неизлечимойболезни, — неожиданное появление идеи! Таким представлялось большинствуиз нас изобретательское творчество. На поиски идеи иногда уходила всяжизнь изобретателя.

Множество энтузиастов пыталось открыть тайну рождения изобретения. Ге-ниальные ученые пытались создать теории творчества. Выдающиеся прагма-тики собирали и применяли немало полезных советов для стимуляции появ-ления идей. Но все это по-прежнему оставалось малопрактичным.

Научиться изобретать оставалось невозможным!

Потому что оставалось невозможным объяснить и передать индивидуальныйи исторический опыт создания изобретений. Известные описания изобрета-тельского творчества были представлены лишь метафорами, эмоциями и от-дельными полезными рекомендациями. Все это не было наукой с определен-ными законами и методами. Это не было и искусством, так как искусствутоже во многом можно научить и научиться.

Несмотря на это, цивилизация продолжала восхождение. И восхищение про-грессом в виде автомобиля, телевидения, авиалайнера, космической ракеты,интернета и мобильного телефона стало настолько безмерным, что только не-многие в XX веке оказались способны разглядеть смертельные опасности, сразных сторон устремившиеся к человечеству.

Шокирующая правда о надвигающихся глобальных катастрофах, вызванныхтехногенным разрушением Природы, не стала еще отрезвляющим аргументом

3 Федерико Майор — генеральный секретарь UNESCO (2002).4 По книге: Викентьев И. Л.. Кайков И. К. Лестница идей (1992).

Page 14: основы классической триз. м. орлов

для человечества. Безответственность и эгоизм многих технократическихструктур, отсутствие широкого образования по вопросам глобальной выживае-мости и прогресса, отсутствие глобальных координирующих сил, не говоряуже о проблемах консолидации усилий промышленно развитых стран, — всеэто требует немедленных и кардинальных изменений. Безопасность будущегодолжна стать целью и мотивацией любой прогрессивной деятельности, любойполитики. Инженеры, педагоги и ученые тоже могут взять на себя долю персо-нальной ответственности, индивидуально и через профессиональные ассоциа-ции стремясь найти организационные и технические возможности исключитьнаступление глобальных техногенных (впрочем, и социогенных) катастроф.

В условиях крайне ограниченного времени на изобретение и реализацию кар-динальных решений совершенно недостаточно полагаться только на тот спо-соб поиска идей, который и создал нашу сколь удивительную, столь и несо-вершенную цивилизацию. И, может быть, наша цивилизация потому и несо-вершенна, что был несовершенен способ ее создания.

Действительно, кто управляет развитием цивилизации? Можно ли увереннопрогнозирован) наше путешествие в будущее? Как избежать социогенных,геогенных и космических катастроф? Как обеспечить прогресс и процветаниево имя последующих поколений?

Сегодня нужно строить эффективные решения по этим проблемам, применяяТРИЗ.

ТРИЗ учит создавать изобретения!

ТРИЗ учит конструировать будущее!

ТРИЗ изменяет ваше мышление, а значит, и всю цивилизацию!

Среди всевозможных наук и учений, принимаемых человечеством в наследст-во из II тысячелетия н. э., ТРИЗ Генриха Сауловича Альтшуллера представля-ется поистине бесценной частью. Действительно, что может быть ценнее нау-ки о том, как научиться эффективно мыслить! Стать изобретателем! Илидаже стать гением!

Главные концепты ТРИЗ заключаются в следующем:

1. Все системы (не только технические) создаются для реализации опреде-ленной функции, называемой главной полезной функцией системы, и раз-виваются по определенным законам, которые познаваемы и могут приме-няться для управления развитием систем;

2. Все системы на интервале жизненного цикла стремятся повысить своюэффективность, понимаемую как отношение оценок позитивных факторовот реализации главной полезной функции к оценкам негативных факто-ров, связанных с затратами на создание, эксплуатацию и утилизацию сис-темы и с компенсацией ущерба окружающей среде;

3. Все системы (по сравнению с окружающими системами) и компонентысистем развиваются неравномерно, что служит основной причиной мед-

Page 15: основы классической триз. м. орлов

ленного роста эффективности новых систем и вызывает появление техни-ческих проблем;

4. В основе любой технической проблемы лежит некоторое конфликтноепротиворечие между несовместимыми свойствами и требованиями, необ-ходимыми для реализации главных полезных функций компонентов ивсей системы в целом;

5. Разрешение конфликтного противоречия (техническими средствами) иесть создание изобретения;

6. Количество различных типов конфликтных противоречий ограничено, чтооткрывает возможность их четкого распознавания в реальных проблемах ивозможность применения Относительно небольшого множества адекват-ных методов для разрешения технических проблем;

7. Адекватные методы разрешения противоречий могут быть получены приизучении достаточно большого набора (репрезентативной выборки) реаль-ных изобретений по патентным описаниям и технической литературе;

8. Методы разрешения противоречий могут применяться вместе с приемамиразвития и стимуляции памяти, внимания, ассоциативного мышления, во-ображения и любых других полезных качеств интеллекта и психики:

9. Методы разрешения противоречий могут применяться вместе с другимиметодами управления развитием сложных систем — экономическими, сис-темотехническими, культурно-образовательными и даже политическими.

Многолетний опыт преподавания ТРИЗ и консалтинга на основе ТРИ3 по-зволяет мне рекомендовать этот учебник не только инженерам, но и менедже-рам, и студентам, и вообще всем, кто заинтересован в создании высокоэф-фективных идей для решения творческих проблем.

ТРИЗ-мышление конструктивно и эффективно в любой отрасли техники и нау-ки. В сочетании, разумеется, с Вашими творческими способностями и профес-сиональными знаниями.

На начало XXI века ТРИЗ является единственной конструктивной теорийизобретения и, по сути, теорией инженерного творчества. Конечно, ТРИЗ —не предел. ТРИЗ нуждается в дальнейшем развитии, структурировании и ак-сиоматизации. На ее основе могут быть созданы специализированные иликомбинированные теории и методологии, например, интегрированная теорияCROST™ (Constructive Result & Resource-Oriented Strategy of Thinking &Transforming), развиваемая автором настоящей книги. По образцам ТРИЗдолжно быть продолжено изучение патентных фондов и научно-техническойлитературы. Но главные принципы ТРИЗ уже останутся неизменными (инва-риантными), как это и свойственно любой настоящей теории, и могут бытьпризнаны классическими.

Хотя для изучения основ ТРИЗ требуются определенное время и практика.это оправдает себя во всей Вашей последующей деятельности и в любой про-фессии. Методы ТРИЗ позволяют с меньшими затратами и быстрее находить

Page 16: основы классической триз. м. орлов

решения самого высокого качества. ТРИЗ незаменима при решении экстре-мально сложных проблем. За свою почти 40-летнюю ТРИЗ-практику, никогдане прекращавшуюся после прочтения в 1963 году первой маленькой книжеч-ки Г. Альтшуллера, я не знаю кого-либо, кто отказался от ТРИЗ после изуче-ния ее методов и моделей. Вместе с тем здесь уместно привести высказываниеавтора ТРИЗ о том, что

ТРИЗ служит мышлению, а не заменяет мышление.

Я глубоко признателен многим специалистам, кто поддержал мою работу надэтой книгой по основам классической ТРИЗ. Большую помощь мне оказалибеседы с проф. H.-J. Linde (Fachhochschule Coburg) и докторами R. Thiel,D. Zobel, M. Herrlich. Встречи в 1995—1996 годах с профессорами W. Beitz иG. Seliger (Technische Universitat Berlin) определили мое понимание творче-ских компонентов в высшем образовании Германии. Идеи проф. G. Ropohl(J. W. Goethe-Universitat, Frankfurt am Main) по проблемам развития техниче-ских систем и роли инженеров в создании цивилизации, неотделимой отПрироды и гуманистической этики, и его дружеское письмо укрепили моинамерения. Своевременная и энергичная поддержка проф. М. Mobile(Universitat Bremen) позволила мне продолжить мою деятельность в Германиии подготовить эту книгу.

И конечно, я желаю успехов всем тем, кто не боится поиска новых идей при соз-дании и развитии технических систем, и помнит о том, что каждое наше реше-ние изменяет всю цивилизацию.

Михаил А. Орлов.Берлин, Германия. Сентябрь, 2004 г.

Page 17: основы классической триз. м. орлов

ВВЕДЕНИЕ

Page 18: основы классической триз. м. орлов

NATURA NIHIL ESTCALLIDIUS

Э т о т учебник — для инженерного творчества. И прежде всего, для вершиныинженерного творчества — создания изобретения. Человечество восходило полестнице изобретений. А сегодня открытия и изобретения, как ступени гран-диозного эскалатора, возносят цивилизацию все выше и все быстрее.

Если принять, что в наши дни наиболее продуктивный возраст человека в од-ном поколении достигается к 40 годам, и измерять этим возрастом количествопоколений, живших на каком-то интервале времени, то мы можем оценитьтемпы развития цивилизации.

На интервале последних 40 000 лет из 1000 поколений:

• более 800 поколений существовали без создания искусственных жилищ(в лесах и пещерах);

• лишь 120 поколений знают и используют колесо;• около 55 поколений знают и используют закон Архимеда:• около 40 поколений используют водяные и ветряные мельницы;• около 20 поколений знают и используют часовые механизмы;• около 10 поколений знакомы с печатным словом;

• 5 поколений перемешаются на пароходе и по железной дороге;• 4 поколения используют электрический свет;• 3 поколения перемешаются на автомобиле, используют теле-фон и электропылесос;• 2 поколения перемешаются на самолете, используют радио иэлектрохолодильник;

только современное поколение впервые вышло в Космос, ис-пользует атомную энергию, пользуется настольным и носи-мым компьютером, принимает и передаст аудио-, видео- испециальную информацию по всему земному шару через ис-кусственные спутники.

В XX веке создано 90 % всех знаний и всех материальных ценностей, накоплен-ных за историю человечества!

1 Нет ничего более изобретательного, чем природа. Марк Туллий Цицерон (106—43 гг.до н.э..) — древнеримский оратор, философ, государственный деятель.

Page 19: основы классической триз. м. орлов

Удивительным фактом является то, что за последние несколько десятков идаже сотен тысяч лет (!) мозг человека не изменился как биологическийобъект. Устройство мозга и, по-видимому, принципы его работы сохранилисьтакими же, какими были, скажем, 50 000 лет назад.

Можно предположить, что мозг, как и многие биологические объекты Приро-ды, оказался созданным с огромной «функциональной избыточностью». При-рода чрезмерно щедро использует этот принцип для продления жизни всегоживого, например, через распространение семени живого, через поддержаниечисленности биопопуляций. Однако биологическая избыточность мозга самапо себе не создает качество мышления. Вероятно поэтому, в частности, коли-чество действительно ценных изобретений составляет доли процента от обще-го числа патентуемых предложений!

Качество мышления может изменяться в широком диапазоне и зависит от ка-чества обучения, от его содержания. Современные технологии обучения ин-дивидуумов и содержание обучения не свободны от принципиальных недос-татков. По этой причине и, конечно, под влиянием социальной среды, обще-ство все еще развивается больше по «биологическим» стохастическимзаконам. Сегодня это недопустимо расточительно, так как увеличивает веро-ятность воспроизводства духовной посредственности и уменьшает вероят-ность появления гениев.

Мы видим также, что информационная емкость, масштаб и ответственностьрешаемых проблем кардинально меняются! Способен ли мозг человека и да-лее справляться со стремительно возрастающим объемом знаний? Способенли он распознавать возможные (в том числе скрытые и медленно развиваю-щиеся) катастрофы и надежно предотвращать их или противостоять им? Спо-собен ли человек уверенно строить свое будущее в направлении гармонии ипрогресса? Способно ли человечество изобрести (или переоткрыть?) самикритерии гармонии и прогресса? Нужно ли говорить, что только выработавидеалы прогресса и гармонии, человечество перейдет от современной фазыHomo Sapiens Technologiсus к фазе Homo Sapiens Progressus (лат.: Человек Разум-ный Эволюционирующий, Развивающийся).

Итак, как находит человек идею изобретения? Как люди находят творческиерешения в нетехнических проблемах? Причем, как писал Карл Поппер6, пра-вильнее ставить эти вопросы по-другому:

Как возникают хорошие идеи?!

В XX веке нашелся человек, который посмел сказать всему цивилизованномучеловечеству, что оно не умеет мыслить. Что человечество впустую растрачи-вает свой интеллектуальный потенциал из-за плохой организации нашегомышления! И что оно не учится мыслить! И даже не подозревает, что не умеетэффективно мыслить!

Этот человек сказал по сути следующее: в наши дни, как и тысячи лет назад,в основе мышления лежит метод проб и ошибок, метод случайного угадывания

6 Карл Поппер (1902—1994) — английский философ.

Page 20: основы классической триз. м. орлов

хоть какого-нибудь решения. И каждый учится (если учится, конечно) на сво-их ошибках! По сравнению с успехами — ошибок чрезвычайно много. Этотчеловек сказал: а не логичнее ли учиться на успехах!. Да еще так, чтобы обоб-щить опыт самых лучших решений в виде конкретных правил, методик, гото-вых моделей и даже в виде теории?!

Имя этого человека — Генрих Саулович Альтшуллер (1926—1998). В серединеXX века он предложил в России основы теории изобретения, названной имТРИЗ — Теория Решения Изобретательских Задач (англ.: Theory of InventiveProblem Solving; нем.: Theorie des erfinderschen Problemlosens). ТРИЗ открылапринципиально новые возможности для обучения изобретательскому творче-ству и для практического применения.

Пусть изучение ТРИЗ откроет Вам путь к новым возможностям и успеху!

Для эффективного решения изобрета-тельских задач высших уровней нужнаэвристическая программа, позволяю-щая заменить перебор вариантов целе-направленным продвижением в районрешения.

Генрих Альтшуллер.

Алгоритм изобретения.

Москва. 1973

Page 21: основы классической триз. м. орлов

Экспресс-обучение и самообучение используют следующий методическийприем: прежде, чем изучаются псе необходимые понятия и модели теории.практическое действие теории показывается на небольших упрощенных при-мерах таким образом, как будто основы теории уже известны студентам.

Примеры подбираются и демонстрируются так, чтобы показать движениемысли от простого к сложному, от внешнего — к содержанию, от конкретно-г о — к абстрактному, к модели и теории. Иными словами, при экспресс-обу-чении сразу же как бы проводится эксперимент с объектами теории, и из это-го эксперимента заинтересованные студенты сами выводят ключевые теорети-ческие идеи.

Объектами классической ТРИЗ являются изобретения, технические системыи их компоненты.

Суть начальных учебных экспериментов заключается в следующем:

1) выявление ключевой проблемы, которая была преодолена в конкретномизобретении;

2) определение основного способа, которым была решена проблема в ломизобретении.

Несколько позже применяются следующие методические приемы:

1) обобщение и классификация моделей ключевых проблем и основных спо-собов решения проблем при создании изобретений;

2) выявление закономерностей возникновения проблем, прогнозирование иуправляемое систематическое разрешение проблем.

Процесс изобретения — э т о есть движение мысли «от существующего — к воз-никающему7». Э т о есть построение мысленного м о с т а между т е м , что есть, ит е м , ч т о должно быть.

Всякий «мост» строится на основе определенной теории. Понятно, что и «на-дежность» моста также существенно зависит от теории. Например, на основеклассического брейнсторминга («мозгового штурма»): мало правил, практиче-ски неограниченное пространство поиска, много энтузиазма и шума. На ос-

7 Я интерпретирую — но и применяю в прямом контексте! — известное выражение и названиеодной из книг Лауреата Нобелевской премии, бельгийского биофизика Ильи Пригожинп(1917-2003).

Page 22: основы классической триз. м. орлов

нове классической ТРИЗ: систематическое исследование задачи, управляемоеприменение адекватных процедур для ее разрешения, направленный выход вобласть существования сильных решений.

В основе учебных экспериментов для обучения ТРИЗ лежит методическийприем, который я назвал «реинвентинг».

Реинвентинг — демонстрация процесса создания изобретения таким образом,как будто студентам уже известны принципы и приемы разрешения проблем,преодоленных в этих изобретениях. Позднее, когда основы теории уже дейст-вительно изучены, реинвентинг служит как прием закрепления навыка иссле-дования и решения проблем. Наконец, быстрый реинвентинг становится важ-нейшим навыком при работе с аналогами, предлагаемыми нашим программ-ным обеспечением для решения проблем (см. раздел 21.2).

Этот методический прием стимулирует ассоциативное мышление студентов,обеспечивает надежную эмоциональную акцептацию и последующее воспри-ятие теории. Интуиция студентов сама связывает их уже имеющиеся знания иопыт с ключевыми концептами теории.

ТРИЗ — это не математическая, количественная теория, а качественная тео-рия. Формальные понятия, концепты теории, имеют характер категорий, обра-зов, метафор. Многошаговые процедуры, применяемые для решения задач, на-зываются алгоритмами. Это тоже метафора, хотя можно показать, что это впол-не корректное определение для современной конструктивной математики.

Если кто-то из моих коллег на основе вышесказанного откажет ТРИЗ в стату-се теории, то можно предложить определение ТРИЗ как теории концептуаль-ной, феноменологической, психологической, наконец. В любом случае кон-цепты теории отражают ее аксиоматические и структурные основы (даже еслиони специально не описаны, скажем, в научной статье или монографии, какэто имеет место для ТРИЗ) только в более понятном, неформальном пред-ставлении. В этом все дело. И еще: дело в содержании качественных моделей(метафор). В отличие от всех других подходов, модели ТРИЗ конструктивны,воспроизводимы пользователями и передаваемы в обучении.

Итак, мы будем избегать применения в этом учебнике формализованных кон-струкций. Хотя для разработки нашего софтвера мы создаем такие конструк-ции и опираемся на них. Наша цель — не построение формальных основ тео-рии, а качественное моделирование мышления и практическое применениемоделей теории к реальным задачам.

Тем не менее, термины теории, конечно, остаются. Но к ним нужно отно-ситься не более критично и подозрительно, чем, скажем, к словам задача, ис-ходные данные, решение, результат — в огромном большинстве практическихситуаций нам так же не требуется строго определять, какие аксиомы теории иформальные связи стоят за этими словами. Для нас интуитивно вполне по-нятна качественная, содержательная суть этих слов (а значит, — метафор, об-разов) применительно к каким-то конкретным задачам.

А теперь о фундаментальных концептах теории.

Page 23: основы классической триз. м. орлов

Реинвентинг по определению должен показывать следующий процесс(рис. 2.1).

Стрелка здесь представляет мыслительные операции — «поток мышления»,«генерацию идей» — в соответствии с рекомендациями теории. Реинвентинг встиле брейнсторминга отражает, разумеется, брейнсторминг-процесс решениязадач. ТРИЗ-реинвентинг отражает ТРИЗ-процесс решения задач

Насколько надежными кажутся вам следующие рекомендации одной из вер-сий «теории брейнсторминга», которые показаны, например, на рис. 2.2?

Не кажется ли вам, что эти рекомендации немногим отличаются от того, какесли бы вся теория в военных школах исчерпывалась следующим сверхлако-ничным «методом» Цезаря8:

Считаете ли вы, что этот «метод» учит решать творческие проблемы?

Какие мысли приходят к вам, если вы прочитаете далее, чем заполняет «потокмышления» ТРИЗ-реинвентинг (рис. 2.3)?

Page 24: основы классической триз. м. орлов

Не возникает ли (?) у вас ассоциативного связывания этих концептов в такуюцепочку:

На основе имеющихся или преобразованных ресурсов и с ис-пользованием приемов-аналогов устранить противоречие, ме-шающее достичь идеального результата.

И не выглядит ли эта цепочка более надежным мостом для перехода «от суще-ствующего — к возникающему»?!

Я обычно показываю принцип реинвентинга на простом примере, что назы-вается, «на кончике пера». Впрочем, действительно, на примерах развития ра-бочего органа жидкостных ручек.

Несомненная важность этого примера объясняется моим выдающимся откры-тием, которое я формулирую обычно в виде следующего афоризма: скоростьразвития цивилизации определяется скоростью развития ручки!

Действительно, гусиное перо с чернильницей (рис. 2.4,а) было наиболее рас-пространенным средством для сохранения и передачи знания в течение2,5—3 тысяч лет (!) примерно до конца XVIII века, пока слуга господина Ян-сена, тогдашего бургомистра города Аахена в Германии, не изготовил метал-лический наконечник для гусиного пера своего хозяина. Впоследствии нако-нечники, которые и стали называться перьями, прошли длинную конструкци-онную эволюцию. Но суть способа письма пером оставалась неизменной:нужно было обмакивать наконечник в чернила и потом писать пером на бу-маге, пока чернила на наконечнике не кончатся или не засохнут.

И только 100 лет назад (!) в начале XX века началось быстрое развитие уст-ройств, которые привели к формированию перьевой авторучки (рис. 2.4,b).Еще почти через 50 лет началось быстрое распространение шариковой ручки(рис. 2.4,с), а затем через 25 лет — примерно вдвое быстрее, а это и означаетускорение! — началось массовое распространение капиллярных ручек(рис. 2.4,d).

Теперь продемонстрируем ТРИЗ-реинвентинг на примере эволюции жидкост-ной ручки.

Page 25: основы классической триз. м. орлов

Пример 1. За 3000 лет от гусиного пера — к авторучке (переход 1). Гусиноеперо, даже снабженное металлическим наконечником, обладало главным не-достатком, состоящим в том, что чернила неравномерно переходили на бума-гу, высыхали прямо на наконечнике или, напротив, срывались в виде кляксы.Чернила быстро кончались на кончике пера, и приходилось отвлекаться, ак-куратно обмакивать перо в чернильницу и осторожно подносить к бумаге,чтобы не сорвалась ни одна капля.

Главная полезная функция пера как рабочего органа всей ручки — оставлятьчернильный след на бумаге. Назовем перо инструментом (подходит также —эктор или индуктор, то есть тот, кто инициирует действие). Тогда след — этоизделие пера (подходит также — реэктор или рецептор, то есть тот, кто вос-принимает действие или является продуктом индуктора). Идеальный след —ровный, нужной ширины. А что мы имеем в пере: если чернил мало, то следбыстро становится тонким, и надо часто обмакивать перо; если чернил напере много, то след может стать слишком жирным или может образоватьсяклякса. Явное противоречие между «мало» и «много».

Сформулируем функциональную идеальную модель: на острие пера чернилдолжно быть сколь угодно много, чтобы можно было создать след любой дли-ны, и — на острие пера чернил не должно быть совсем (нуль!), чтобы они невысыхали и не падали в виде клякс!

Требования, предъявленные в такой формулировке, — совершенно несовмес-тимы!

Но так ли это на самом деле?

Чернил должно быть сколько угодно много только во время создания следа!Поскольку в это время перо выполняет свою главную операцию, то и назовемэто время оперативным. Во все предыдущие моменты времени нам не нужноиметь чернила на кончике пера! Не кажется ли вам, что противоречие как бысамо собой куда-то исчезло?! Мы как бы разрешили противоречие во времени.

Теперь логично сформулировать самую сильную версию функциональнойидеальной модели: чернила сами поступают на кончик пера только тогда, ко-гда перо должно создавать след.

Но на острие пера нет места для размещения большого количества чернил икакого-то механизма для регулирования подачи чернил, иными словами, нетдостаточного пространственного ресурса.

Тогда, может быть, есть свободное пространство рядом с кончиком пера? Да,есть. Например, в пустой полости самого гусиного пера, или в специальнойколбе, которую можно прикрепить к ручке. И остается только эту колбу на-полнить чернилами и соединить с кончиком пера какой-то трубочкой с «ма-леньким краником»!

Можно также сказать, что мы разрешили противоречие в пространстве: на ост-рие может не быть чернил, а рядом может быть много чернил! Идею решенияможно представить и как разрешение противоречия в структуре: во всей ручке

Page 26: основы классической триз. м. орлов

как в целостной технической системе есть много чернил, а в маленькой частиручки нет чернил (вне оперативного времени)!

Но как быть с требованием, чтобы чернила сами поступали на кончик ператолько тогда, когда нужно создать след?

Ну, что же, сформулируем уточненную версию функциональной идеальноймодели: перо само регулирует количество поступающих на острие чернил! Таксказать, нам нужно «перо-краник»!!!

А ведь так и произошло на практике: острие пера сделали состоящим из двухчастей благодаря тонкому разрезу (каналу) вдоль пера до того места, где перосоединяется с одной или многими тонкими «трубочками», связанными с кол-бой для хранения чернил (рис. 2.5).

Когда перо не находится в работе, канал закрыт для прохода по нему чернил,так как обе половинки острия плотно соприкасаются друг с другом. Когдаперо прижимается к бумаге, половинки острия расходятся, и чернила вытека-ют в образовавшийся канал. Вот и все, если коротко. Мы получили идеальноерешение, идеальный конечный результат в виде «острия-краника», а энергиядля его работы поступает от руки, нажимающей на ручку. Когда мы начинаемписать, на острие передается давление от руки — «краник» открывается, а ко-гда перестаем писать, то давление прекращается и «краник» закрывается!

Здесь мы видим также разрешение противоречия в веществе: для обеспеченияпребывания разреза острия в двух состояниях (закрытом и открытом) исполь-зованы ресурсы конструкции и внутренней энергии материала пера (пружиня-щие свойства) и энергия от внешнего источника (ресурс руки).

При первом прочтении это объяснение кажется ужасно длинным и неодно-значным. Вы правы и в том, и в другом. В первом — потому, что введено сра-зу много новых понятий. Во втором — потому, что для авторучек существуетмного технических решений и каждое решение может быть представлено раз-ными версиями реинвентинга, отличающимися по глубине анализа. Но прой-дет немного времени, и Вы будете легко, автоматически строить подобныерассуждения не только для учебных, но и для реальных задач.

Пример 2. За 50 лет от авторучки — к шариковой ручке (переход 2). Нетрудновидеть, что при малейшей неточности изготовления или при старении пера

Page 27: основы классической триз. м. орлов

чернила могут самопроизвольно вытекать и образовывать кляксы. Также чер-нила легко вытекают при изменении давления воздуха, а именно, при егоуменьшении. Полностью вытеснить воздух из колбы при наборе чернил неудается, и поэтому остаток воздуха в колбе находится под определенным дав-лением. Если внешнее давление становится меньше давления остатка воздуха,воздух в колбе расширяется и выдавливает чернила из ручки. Это часто про-исходило в самолетах. Понятны последствия протекания ручки для одеждыили документов пассажиров.

Вспомним последнюю функциональную идеальную модель, сформулирован-ную ранее для авторучки: чернила сами поступают на кончик пера только то-гда, когда перо должно создавать след.

Обратимся к анализу ресурсов. Чернила жидкие, как вода, и поэтому легковытекают из колбы через перо. Если бы чернила были более густыми, то онине вытекали бы.

Но тогда возникает новое противоречие: чернила должны быть густыми, что-бы не вытекать, и чернила не должны быть густыми, чтобы свободно прохо-дить через рабочий орган.

Это острое противоречие сначала будем исследовать в первом стратегическомнаправлении: применение «густых чернил», так как до этого в течение почти 50лет не видно было перспективы разрешить это противоречие с обычнымичернилами.

Применение «густых чернил» приводит, в частности, к идее каких-то порш-ней для их выталкивания — но тогда уж никак нельзя сказать, что чернила са-ми поступают на кончик рабочего органа.

Тогда логично поставить вопрос об изменении самого рабочего органа. Намнужен энергетический ресурс, такой, который позволил бы переносить «гус-тые чернила», или пасту, на бумагу. Применение поршня явно означает пре-рывистость операции и порционность подачи пасты. А нам нужна непрерыв-ная и равномерная подача пасты.

Нужны какие-то «маленькие человечки», которые брали бы пасту из колбы инепрерывно наносили бы ее маленькими долями на бумагу. Такие «маленькиечеловечки» могли бы, например, своими «черпачками» брать пасту со сторо-ны колбы и передавать друг другу на сторону бумаги, а потом но той же це-почке возвращать пустые черпачки к колбе. Получается что-то вроде кругово-го движения наполненных черпачков от колбы к бумаге и пустых черпач-ков — от бумаги к колбе. Это похоже на то, как работают типографскиемашины, на валы которых достаточно густая типографская краска попадает содной стороны вала и переносится на бумагу с другой стороны! Кстати, мож-но именно сделать ручку в виде такой миниатюрной типографской машины!В принципе, это вполне конструктивная идея!

Мы не знаем, так ли именно думал в 1938 году изобретатель шариковой ручкивенгерский журналист Laszlo Biro, но в качестве первых «густых чернил» ониспользовал именно типографскую краску! А вместо маленького ролика (как

Page 28: основы классической триз. м. орлов

миниатюрного аналога типографскоговала) он поставил шарик! Действительно,ролик был бы слишком широким, а мыхотим получать тонкие линии. Тогда вме-сто ролика можно взять шарик, «малень-кие человечки» на поверхности которогоделали бы свою работу по переносу крас-ки! Вращающийся шарик обеспечиваетпринцип непрерывного переноса краскиот колбы на бумагу (рис. 2.6). А сам ша-рик будет вращаться от трения о бумагу!

То есть опять-таки источником энергии будет рука, прижимающая кончикручки, снабженный шариком, к бумаге.

Таким образом, ключевая идея была получена изменением состояния домини-рующего ресурса — вещества чернил! То есть, основное противоречие было раз-решено в веществе. После чего осталось лишь разработать подходящую конст-рукцию (новую структуру) для переноса пасты на бумагу!

Итак, противоречие было блестящим образом разрешено в веществе и струк-туре!. И первыми оценили новые ручки военные летчики в Англии, но пона-добилось еще около десяти лет для продвижения шариковой ручки к массово-му покупателю.

Пример 3. За 25 лет от шариковой ручки — к капиллярной ручке (переход 3). Ноне все хорошо и в шариковой ручке. Паста быстро засыхала. Иногда такжевыдавливалась при изменении давления. Обнаружились свои кляксы и у этойручки. Пальцы быстро уставали, так как требовалось намного большее уси-лие, чем при письме чернильной авторучкой.

И вот здесь мы обратимся к исследованию второго стратегического направле-ния, сформулированного для реинвентинга шариковой ручки: чернила недолжны быть густыми, чтобы свободно проходить через рабочий орган.

Обострим противоречие: чернила должны быть очень «быстротекущими» ивсегда присутствовать на острие рабочего органа, но не вытекать и не созда-вать клякс!

Первое, что становится при этом яснее, это то, что колба, содержащая черни-ла, должна быть открыта с обеих сторон для выравнивания воздействия атмо-сферного давления. Кстати, именно так и сделано в шариковой ручке! Мы не-много продвигаемся вперед!

Второе, нужно как-то затруднить продвижение чернил из этой колбы до само-го острия рабочего органа, например, того же пера.

Аналоги! Были ли какие-то похожие аналоги в истории ручки или каких-то по-хожих приспособлений для письма или рисования?!

Оказывается, были! Исследования показывают, что еще 3300 лет назад в древ-нем Египте использовались чернильные ручки с медным корпусом, охваты-

Page 29: основы классической триз. м. орлов

вавшим свинцовую заостренную трубочку, содержавшую внутри себя волок-нистую тростниковую палочку, наполненную чернилами (рис. 2.7).

Чернила медленно просачивались по многочисленным тончайшим капилля-рам тростника и появлялись на заостренном конце свинцовой трубочки. Приписьме на папирусе чернила уходили с острия, и тем самым в ближайших во-локнах создавалась пустота для поступления новых микродоз чернил из воло-кон-капилляров!

Конечно, сегодня мы можем сказать, что для создания капиллярных ручекизобретатели в Японии использовали в 1963 году особый физический эффектдвижения жидкости в тончайших каналах — капиллярный эффект!

И все же справедливо и то, что прообразом современной капиллярной ручкивполне достойно может служить тростниковая ручка из древнего Египта!

Капиллярная ручка — еще одно блестящее разрешение острого противоречия,сформулированного нами ранее, но на другом стратегическом направлении!.

И решение вновь получено на основе ресурсов вещества и структуры и с ис-пользованием особого физико-технического эффекта.

Внимательные и заинтересованные читатели могут далее постоянно упраж-няться в реинвентинге практически любых окружающих их предметов.

Выбирайте те из объектов, которые прошли достаточно длинный эволюцион-ный путь.

Наконец мы обратимся к еще одному эффекту, наблюдаемому в эволюциилюбых технических систем. Когда исчерпывается ресурс развития системыопределенного вида, например, ручки, то появляются изобретения системаналогичного назначения, но либо с совершенно иным принципом действия,либо систем, интегрирующих в себе дополнительные функции, перенесенныеиз двух или более совершенно иных систем.

Дополнительный пример. Эра электронных ручек. Вполне обоснованно мы мог-ли бы начать этот раздел с предварительного рассмотрения нескольких парал-лельных направлений, связанных, например, с развитием типографских ма-шин для создания книг и газет; машин для нанесения рисунка на ткани; «пи-

Page 30: основы классической триз. м. орлов

шущих» машин, начиная с ручных механических и электромеханическихсистем и завершая струйными электростатическими и лазерными системами;копировальных систем, начиная от копировальной бумаги и фотоаппаратов изавершая порошковыми электростатическими ксероксами и лазерными систе-мами.

Но мы рассмотрим только одно направление развития средств регистрациирукописной символьной или графической информации, связанное с появле-нием компьютеров. Речь идет о вводе в компьютер или о передаче на линиюсвязи текста и рисунков, создаваемых, например, на листе бумаги, непосред-ственно в процессе рисования, или как говорят специалисты, в реальном вре-мени. Задача состоит в следующем: во время создания изображения на листебумаги нужно обеспечить считывание линий этого изображения, преобразова-ние линий в цифровой формат, запоминание и передачу цифрового представ-ления изображения в линию связи с компьютером или с другим приемникоминформации.

И все же даже это направление содержит множество различных важных прин-ципов считывания: на основе планшетов с электромагнитным, резистивным,емкостным, акустическим, инфракрасным, оптическим, лазерно-лучевым икомбинированными принципами регистрации локальных и глобальных коор-динат положения пишущего органа ручки относительно листа бумаги.

На рис. 2.8 показаны несколько принципов считывания информации, созда-ваемой специальными электронными ручками.

Электромагнитный принцип (рис. 2.8,а) основан на определении прямоуголь-ных X-Y-координат с помощью системы проводников, уложенных в планшетеи улавливающих электромагнитный импульс, излучаемый ручкой, находящей-ся на пересечении соответствующих проводников. Импульсы излучаются сопределенной частотой, например, 100 раз в секунду, что позволяет предста-вить любую линию набором точек (координат). Такой частоты считываниядостаточно для весьма точного представления линий даже при относительнобыстром письме. Плюс: простота и надежность, возможность смены листов,накладываемых на планшет. Минус: применение специальных ручек, необхо-димость планшета, нельзя сдвигать лист.

Другой вариант использования электромагнитных импульсов показан нарис. 2.8,b. Излучение от ручки принимается антеннами, размешенными, на-пример, на потолке по углам комнаты и образующими глобальную прямо-угольную систему координат. Плюс: возможность работы в любом местекомнаты. Минус: относительно высокая сложность системы, применениеспециальных ручек, влияние крупных металлических предметов, нельзясдвигать лист.

Ультразвуковые волны и/или инфракрасные лучи (рис. 2.8, с) используютсядля измерения косоугольных X-Y-координат как расстояний от рабочего ор-гана ручки до двух или более приемников ульразвукового и/или инфракрас-ного излучений. Плюс: простота и надежность, возможность смены листов,накладываемых на планшет. Минус: применение специальных ручек, необ-

Page 31: основы классической триз. м. орлов

ходимость фиксации считывающих устройств на листе, так как нельзя сдви-гать лист.

Совершенно иной принцип применен в ручке, показанной на рис. 2.8,d. Ком-пактная видеокамера, встроенная в ручку и работающая в ультрафиолетовомдиапазоне, считывает специальную комбинацию заранее нанесенных на бума-гу точек, однозначно задающую координаты положения рабочею органа руч-ки на бумаге в данный момент времени. Плюс: почти все компоненты интег-рированы внутри ручки. Минус: применение специальной бумаги.

Принципы считывания координат на основе резистивных, емкостных, ультра-звуковых или электромагнитных планшетов получили новое развитие в систе-мах рисования непосредственно на экранах телевизоров, компьютерных мо-ниторов, на электронных досках в аудиториях (рис. 2.8,е). Плюс: простота инадежность. Минус: эти устройства не предназначены для регистрации ин-формации на бумаге, хотя в этом случае можно поступить в соответствии сизобретательским приемом «Наоборот» (см. Приложение 4 Каталог специали-зированных А-Навигаторов), вывести информацию на бумажный носитель поокончании рисования, например, с помощью принтера.

На основе принципа виртуальной клавиатуры (рис. 2.8,f) можно вводить бук-вы по одной и таким образом составлять фразы, например, для коротких со-общений по мобильному телефону (SMS). Плюс: простота. Минус: это неввод рукописного текста или рисунка.

Page 32: основы классической триз. м. орлов

Мы видим, что «старая» ручка, прошедшая тысячи лет развития, приобрела но-вое качество: функцию передачи создаваемого изображения в компьютер. Мынаучились вводить в компьютер рукописную информацию, создаваемую налисте бумаги, на школьной доске, на экране телевизора, на экране компьютер-ного монитора, на кредитных карточках и на экранах мобильных телефонов, наспециальных планшетах, добавляемых к клавиатуре или избавляющих нас какот клавиатуры, так и от мыши. При этом за последние 50 лет были изобретеныдесятки принципов работы электронных ручек! И все же всем им был присущеще один принципиальный недостаток: применение специальных ручек!

Да, я забыл доказать определяющую роль ручки в прогрессе цивилизации.Здесь все совершенно очевидно! На примерах мы уже видели, что именно вXX веке человечество оказалось вовлеченным в научно-техническую револю-цию и ускоряющийся технологический прогресс! А почему? Да потому, чтоновые ручки позволяли писать быстрее, не утомляясь и не отвлекаясь на опе-рацию попадания ручкой в чернильницу. Следовательно, изобретатели полу-чили возможность быстро записывать много мыслей и идей! Это и есть бес-спорное доказательство!

При этом с электронными ручками появляется и вовсе невиданная ранее воз-можность немедленно сохранить ваши изобретения для цивилизации и думатьтолько о том, что нужно записать, а не о том, как это можно сделать! Впро-чем, если некоторые читатели со мной не согласятся, то я не буду настаиватьна том, что с юмором у меня все в порядке.

В заключение данного раздела выскажем некоторые ключевые рекомендациидля дальнейшего изучения материала.

Авторская схема преподавания ТРИЗ сложилась на основе многолетнего опы-та. В целом эта схема отражена в оглавлении учебника. Но нужно подчерк-нуть, что следующие три крупные части составляют основу для практическогоосвоения ТРИЗ:

1. Обобщенная модель решения творческих проблем, сформулированная ав-тором и называемая Мета-Алгоритм Изобретения или, кратко, Ме-та-АРИЗ (см. также раздел 7). В зависимости от конкретного наполненияшагов Мета-АРИЗ появляется определяющая схема для решения проблемв соответствии с определенной «теорией».

2. Ключевые структурные модели для приведения исходного описания про-блемы к виду, наиболее подготовленному для применения моделей транс-формации (разделы 6, 8 и 9).

3. Модели трансформации проблемы в направлении создания решения (раз-делы 10-13).

Научиться правильно понимать и применять стратегию и тактику ТРИЗ мож-но только после предварительного освоения ключевых структурных моделей иосновных моделей трансформации. Поэтому разделы 14—17 рекомендуетсяизучать только после освоения указанных разделов 6—13.

Page 33: основы классической триз. м. орлов

МЕТОДЫИЗОБРЕТЕНИЯ

Page 34: основы классической триз. м. орлов

Одним из наиболее потрясающих изобретений в истории цивилизации былосоздание радио (лат. radio — излучать). В 1888 году Генрих Герц10 установилвозможность воспринимать и излучать электромагнитное поле с помощью ку-сочков проводящих материалов различной формы (как теперь мы сказалибы — антенн). Для генерирования поля на антенну подавался электрическийток определенной частоты и силы, а для восприятия электромагнитного полянужно было усилить ток, наведенный в антенне воздействующим на нее по-лем. Однако еще немало лет отделяло эти опыты от появления техническихидей и устройств, которые показали бы какие-то практические перспективыдля открытых физических явлений.

К этому времени уже прошли значительный путь развития такие электротех-нические системы как телеграф и телефон. Еще в 1832 году Сэмьюэль Морзе (11)изобрел способ и устройство для передачи и приема сигналов по проводам(электрический телеграф). В 1851 году первый телеграфный кабель был про-ложен между Англией и Францией, в 1858 году — Трансатлантический кабельмежду Англией и Америкой, а через 10 лет Вернер фон Сименс12 завершилпрокладку Индоевропейской телеграфной линии Лондон—Калькутта. От пер-вого аппарата Иоханна Раиса13, опробованного им в 1861 году, телефон про-шел путь к патентам 1876 года Александра Белла14. Однако провода нельзябыло проложить к морским судам или к автомобилю.

Поскольку электромагнитные волны распространялись в первых опытахГ. Герца так же, как свет от точечного источника, то есть со сферическим

Page 35: основы классической триз. м. орлов

фронтом, то Г. Герц предполагал, что для приема-передачи радиоволн при-дется строить антенны наподобие оптических линз и зеркал, что казалосьочень сложным и неперспективным.

В 1894 году Александр Попов15 заметил влияние длины проволочной антеннына качество приема-передачи и сконструировал первый радиоприемник, а в1895—1897 годах демонстрировал радиотелеграфную беспроводную связь ме-жду кораблями. Не позднее 1883 года Никола Тесла (16) демонстрировал экспе-рименты с передачей и приемом радиосигналов. Аналогичную схему запатен-товал и опубликовал в 1896—1897 годах Гвильермо Маркони17. Уже в 1899году он усовершенствовал свою конструкцию настолько, что смог установитьсвязь между Англией и Францией, а в 1901 году первые радиосигналы былипереданы через Атлантический океан. А. Попов первым обнаружил, что нарадиосвязь влияли корабли, проходившие между приемником и передатчи-ком, и он выдвинул идею о возможности использовать электромагнитныеволны для обнаружения морских судов (предвидение радаров). В начале XXвека Г. Маркони успешно продолжил свои разработки радиоустройств, и в1909 году он и Карл Браун18 создавший важнейшие компоненты будущих ра-даров, стали лауреатами Нобелевской премии по физике.

Так 100 лет назад начиналась радиотехника, на основе которой развились сис-темы региональной, глобальной и космической связи, радиотелемеханика, ра-диометрия и радионавигация, радиолокация и радиотелескопия (применяю-щие, кстати, антенны и таких форм, которые предвидел Г. Герц). Телевидение,интернет и мобильный телефон используют радиосистемы. Даже СВЧ-печьимеет своим главным элементом излучатель, изобретенный первоначально длярадиосистем.

Приведенный исторический экскурс позволяет наглядно показать различиемежду содержанием процессов открытия и изобретения (рис. 3.1).

Изобретения, сделанные на основе открытия, как правило, приводили к кар-динальному изменению цивилизации. Так происходило, например, с откры-тием явлений термодинамики и электротермодинамики — создание электро-

Page 36: основы классической триз. м. орлов

энергетики и электродвигателей; электромагнетизма — вплоть до изобретениялазера и магнитооптики; ядерной физики — создание ядерных электростан-ций; физики твердого тела и полупроводников — включая создание современ-ных вычислительных систем и систем отображения информации. Сотни и ты-сячи изобретений создаются для превращения открытия в высокоэффектив-ные технические системы.

Еше одно принципиальное отличие изобретения по сравнению с открытиемсостоит в следующем: изобретение имеет цель создания, определяющую его на-значение, возможности применения. Эту цель определяет главная позитивная(полезная) функция системы M P F (Main Positive Function).

Например, MPF для радиосистемы можно сформулировать в следующем виде:передавать и принимать электромагнитные сигналы с управляемыми парамет-рами в радиочастотном волновом диапазоне.

А теперь рассмотрим явление, сближающее открытие и изобретение. Это —фантазия, изобретательность ученого и инженера. Открытие не имеет цели исодержит лишь объективное знание. Нужна нередко гениальная фантазияизобретателя, чтобы придумать, увидеть цель и идею технические решения(гипотезу) для практического применения нового знания, содержащегося воткрытии. Но деятельность ученого требует не менее гениальной фантазии.Почти всегда открытию сопутствует предположение, гипотеза о сущности ивзаимодействии наблюдаемых и даже искомых явлений. Гипотеза и есть науч-ное и инженерное изобретение.

Творческая идея есть объект неочевидный, не содержащийся непосредственнов известном знании и создаваемый только мышлением человека.

Именно акт рождения идеи, акт озарения остается одной из важнейших тайнчеловеческого мышления. Изобретение идеи есть видимая вершина, пик про-цесса изобретения. Цель любой теории изобретения должна состоять в том,чтобы предложить практичные пути восхождения на эту вершину, достижениятворческого пика, создания эффективных идей.

3.2. Уровни изобретений

Ступеньки лестницы цивилизации — миллионы изобретений — имеют раз-ную высоту. В таблице на рис. 3.2 приведена классификация изобретений поуровням с учетом различных признаков, из которых обобщающим являетсяуровень новизны.

Новизна здесь связывается с проявлением в изобретении неочевидного пози-тивного свойства, называемого новым позитивным системным эффектом.

Page 37: основы классической триз. м. орлов

Крупнейшее изобретение с системным эффектом кардинального измененияцивилизации приравнено здесь по своему значению к открытию. Это делениевесьма условно. Так, изобретение телеграфа, телефона и радио соответствуетуровню 5. Создание радиотелефонной связи, сначала для военных самолетови кораблей, развившейся через 50 лет в систему персональной связи в видехэнди, по технической сущности можно отнести к уровню 4 или даже 3, а повлиянию на развитие цивилизации — к уровню 5.

Page 38: основы классической триз. м. орлов

Сокращенное изложение этой очень большой и недостаточно исследованнойтемы имеет все же крупную цель — подвести читателя к самостоятельному от-вету на важный вопрос: можно ли так изучать опыт развития цивилизации,чтобы извлечь или изобрести сами методы изобретения, создать теорию изобре-тения?

Как ориентиры для нашего поиска и размышлений можно принять следую-щие мысли Цицерона:

Мы можем выделить две исторические фазы в развитии человечества: при-мерно до начала 1-го тысячелетия до н. э. и от этого рубежа до наших дней.В первой фазе мы видим Homo Faber Technologicus — человека, искусного вприкладных технических орудиях, но еще не овладевшего научной методоло-гией. Во второй фазе, длящейся уже более 3000 лет, мы наблюдаем развитиеHomo Sapiens Technologicus — человека, создающего и применяющего научнуюметодологию и искусного в технических орудиях и системах.

Каким было начало «техноцивилизации»? Увы, ответ недоступно скрыт в глу-бине прошлого. Об этом прекрасно сказано в одной ТРИЗ-работ: лишь каксвет немногих ярких факелов пробились к нам сквозь тьму веков такие именакак, например, Пифагор и Архимед, Сократ или Витрувий.

Как было организовано их мышление? И могла ли древнегреческая или древне-китайская цивилизация изобрести, например, телевидение, компьютер, ау-дио- или видеорекордер? Могли ли алхимики средневековья овладеть техно-логией создания композитных материалов? Или создать искусственного чело-века — Homunculus?

Page 39: основы классической триз. м. орлов

Мы знаем, что первые свои изобретения человек совершил многие сотни ты-сяч лет назад! Понятно, что эмпирический опыт первобытного творчества, еслиможно так выразиться, формировался, утрачивался и закреплялся в эти тыся-чи лет, поэтому определять сегодня находки древнего человека как методыможно только условно.

И все же, интерпретируя и обобщая сведения по истории первобытного обще-ства, можно утверждать, что основными методами изобретательства были:

• аналогия как прямое подражание: игла, скребок, нож, крючки, гарпуны,острая палка — все это аналоги зубов, клювов и когтей животных;

• аналогия как копирование абстрактного образа (!): рисование, скульпту-ра, игрушки, театральные фигуры и действия;

• соединение в целое: копье с наконечником, составной топор или моло-ток, сеть, витая нить из волос;

• разделение на части: разбивание камней для получения режущих или ко-лющих кусков;

• изменение формы (например, рукояток орудий) и параметров: заостре-ние, упрочнение, удлинение и т. п.;

• подбор и комбинирование различных материалов: дерево, кость, камень.шкура, кора (в том числе длинная, позволявшая плести сети и связыватьчасти орудий), растительные волокна, глина, песок и т. п.;

• освоение различных источников энергии: огня — для приготовления пишии для выжигания лодки из ствола дерева, силы животных, упругихсвойств материалов, например, сухожилий животных, согнутой ветки,витой натянутой нити из волос или растительных волокон.

Эти эмпирические методы сохранились и до наших дней, прежде всего в объ-ектах, связанных с физическими действиями человека: при производстве до-машней посуды и украшений — плетеные вазы и кресла, глиняные кувшиныи чашки; во множестве инструментов — ножи, пилы, топоры, вилы, молот-ки и молоты; работа на поле или в саду — лошадь или мул в качестве источ-ника энергии для повозки; в установках для использования энергии воды иветра (других, конечно, по принципу действия); спорт и отдых — метаниекопья и прыжки с шестом, рыбная ловля, прогулка на лодке; художествен-ное творчество.

Выдающимися изобретениями человечества были:

• лук и стрелы, а от них — лира, кифара, арфа (и вообще музыка!);

• колесо (считается изобретенным примерно за 3500 лет до н.э. в Шумер-ском государстве);

• рычажные механизмы (подъемные и метательные);

• освоение высоких температур и получение изделий из металлов и спла-вов путем плавки и ковки, особенно, из золота, бронзы и железа;

Page 40: основы классической триз. м. орлов

• освоение вращательного движения в мельничном жернове, в гончарномкруге, при сверлении, а с середины V века до н.э. и в токарном станке,для подачи воды с помощью колесных черпалок;

• изобретение ткани как особого соединения нитей из каких-либо мате-риалов в искусственную «шкуру» (теперь мы сказали бы: методомобъединения однородных объектов в сетевую, или ретикулярную,структуру!);

• изготовление обуви и одежды, строительство искусственных конструкциидля жилья из камня и песка, из дерева и костей, из коры и шкур жи-вотных;

• создание сложных узлов наподобие зубчатых колес, механизмов с гибки-ми связями на рычаги и/или колеса;

• создание первых автоматических устройств, приводимых в действие спомощью грузиков, прикрепленных к барабанам различного диаметра,например, вращавших или перемещавших театральные куклы с помо-щью гибких тяг!

Перечни эти не полны, и мы не стремимся ни к их расширению, ни к струк-турированию. Мы хотим понять, был ли и каким образом передавался опытсоздания новых искусственных объектов, опыт поиска сильных решений какв обычной жизни людей, так и в экстремальных ситуациях (конфликты, вой-ны, катастрофы, болезни).

К сожалению, до наших дней дошло не так уж много примеров обученияименно изобретательскому творчеству. Но эти примеры все же были! Онинайдены, в основном, в греческих источниках, чудом сохранившихся и вер-нувшихся в Европу в начале 2-го тысячелетия н.э. с арабского Востока, при-чем дополненных как более ранними, так и более поздними египетскими,ближневосточными, среднеазиатскими и китайскими познаниями.

Пифагор19 и его школа создали учение, оказавшее большое влияние на ста-новление философско-гуманитарного и научно-математического мышления обустройстве и развитии мира. Пифагорейцами постулировался взгляд на при-роду вещей, как на гармонию противоположностей. Гармония возможна лишькак «единство разнообразного» и «согласие разногласного». Она определяется(открывается или постулируется) только при наличии конкретной конфигура-ции противоположных качеств (в каком-то соотношении), например: пре-дел — беспредельное, нечетное — четное, единое — множество, хорошее —дурное, правое — левое, мужское — женское, покоящееся — движущееся,свет — тьма.

Одним из первых учителей творчеству считается Сократ20, использовавшийсвой метод обучения и решения проблем под названием «мэйотика», что в до-

Page 41: основы классической триз. м. орлов

словном переводе означает акушерское искусство (помошь в деторождении) иметко характеризует его учение. Любимым изречением Сократа было изрече-ние, написанное на фронтоне храма Аполлона в Дельфах (здесь приводитсяна латыни):

С помощью иронических вопросов Сократ заставлял участников дискуссии со-мневаться в общепринятых суждениях, искать противоречия в определениях,синтезировать идеи, основываясь на строгом определении предмета и следуяцели достижения добра и добродетели, а через них — счастья для самого HSP идля других. Сократ связывал гармонию с принципом полезности. Он учил, чтоHSP способен только собственными усилиями приобрести знание, оно не мо-жет быть получено извне в готовом виде.

Архимед21 в своих сочинениях «Учение о методах механики» и других указы-вал метод получения идей на основе построения механических моделей и экспе-риментирования с ними, что должно было способствовать выдвижению гипотези предположений, которые после этого должны подвергаться обязательной ма-тематической проверке и обоснованию. Архимед разработал для учеников раз-вивающую игрушку (как мы сказали бы сегодня: «набор для конструирования»либо «puzzle»), включавшую 14 пластинок из слоновой кости, с помощьюкомбинирования которых можно было составлять различные фигуры, изобра-жавшие, например, корабль, меч, шлем, храм и так далее.

Архимед, а также его ученик Ктесибий Александрийский22 и, предположи-тельно, ученик последнего Герон Александрийский23 были основателями школискусства изобретательства (ars inveniendi). В своем сочинении «Театр авто-матов» Герон Александрийский описывает познания по конструированию меха-нических храмовых и театральных автоматов. Математик Папп Александрий-ский24 описал поздние свидетельства последователей Герона о том, что изу-чившие хорошо теорию и овладевшие ремеслом становились впоследствиилучшими изобретателями и конструкторами.

Сочинение Витрувия25 «Десять книг об архитектуре» служило руководствомболее полутора тысяч лет. В десятой книге дано, по-видимому, первое в исто-рии техники определение машины: машина есть сочетание соединенных вме-сте… частей, обладающее огромными силами для передвижения тяжестей.

Page 42: основы классической триз. м. орлов

О пользе преподававшихся технических и «свободных» искусств можно судитьхотя бы по выдающейся схеме (рис. 4.1) Квинтиллиана26 для уточнения любойзадачи с помощью 7 вопросов:

При решении изобретательских задач полезны также парные комбинации во-просов, например: 1—5 (Кто — Чем) — кто и какие средства использует длярешения; 2—3 (Объект — Место) — какой объект и где должен быть создан;4—6 (Время — Метод) — каким методом и когда, или за какое время, предпо-лагается решать задачу и так далее. Эти вопросы успешно применяются в ме-тодиках изобретения и в наши дни.

К сожалению, великие исследователи и инженеры прошлого, такие, как на-пример, Леонардо да Винчи27 или Галилей28, Гюйгенс29 или Ньютон30, Агрико-ла31 или Рамелли32 и многие-многие другие вплоть до наших дней, не остави-ли в своих сочинениях своего опыта создания изобретений.

Начало научному изучению методологии творчества положили философыФрэнсис Бэкон и Рене Декарт.

В 1620 году в сочинении «Новый органон» Ф. Бэкон33 выступил как критикстарого и создатель нового эмпирического метода в науке, сформулировал цельсоздания систематической техники изобретения. Он писал: «Те, кто занима-лись науками, были или эмпириками, или догматиками. Эмпирики, подобномуравью, только собирают и пользуются собранным. Догматики, подобно

Page 43: основы классической триз. м. орлов

пауку, из самих себя создают ткань. Пчела же избирает средний способ, онаизвлекает материал из цветов сада и поля, но располагает его собственнымумением… Следует возложить добрую надежду на более тесный и нерушимыйсоюз этих способностей, то есть опыта и рассудка… Наш метод состоит в сле-дующем: мы извлекаем не практику из практики и опыт из опытов (как эмпи-рики), а причины и аксиомы — из практики и опытов, и из причин и акси-ом — снова практику и опыты». Этот союз осуществляется, по мнению Ф. Бэ-кона, в индуктивном методе, в переходе от частных фактов к частнымзаконам (малым аксиомам), а от них — к более общим (средним аксиомам), инаконец — к самым общим.

Декарту34 принадлежит идея создания единого научного подхода, который носиту него название «универсальной математики». В сочинении «Рассуждение ометоде», вышедшем в 1637 году, через 17 лет после «Нового органона», Декартразвивал дедуктивный, рациональный метод, который должен был, по его мне-нию, превратить познание в организованную деятельность, освободить позна-ние от случайности, от таких субъективных факторов, как наблюдательностьили острый ум, удача или счастливое стечение обстоятельств. На основе по-знания общих, неизменных законов с помощью дедуктивного метода стало бывозможным выводить частные суждения по любой конкретной проблеме.

И сегодня удивительно актуальны «четыре правила мышления» Декарта:

Первое: не принимать за истинное что бы то ни было, прежде чем не призналэто несомненно истинным, то есть стараться избегать поспешности и преду-беждения и включать в свои суждения только то, что представляется моемууму так ясно и отчетливо, что никоим образом не сможет дать повод к со-мнению.

Второе: делить каждую из рассматриваемых мною трудностей на столько час-тей, на сколько потребуется, чтобы лучше их разрешить.

Третье: руководить ходом своих мыслей, начиная с предметов простейших илегко познаваемых, и восходить мало-помалу, как по ступеням, до познаниянаиболее сложных, допуская существование порядка даже среди тех, которыев естественном порядке вещей не предшествуют друг другу.

И последнее: делать всюду настолько полные перечни и также общие обзоры,чтобы быть уверенным, что ничего не пропущено.

Г. Штайнбарт35 считал, что каждое изобретение создается на базе известного,существующего путем сопоставления известных данных, предметов, идей ме-тодами их разделения, объединения и комбинирования. В качестве основных ис-точников изобретений он указывал выявление скрытых свойств предметов,определение причин функционирования и изменений вещей, нахождениеаналогий, определение полезности предметов и явлений.

Page 44: основы классической триз. м. орлов

Фундаментальный 5-томный труд И. Бекманна36 «История изобретений» яв-ляется, по-видимому, первым научным исследованием способов созданияизобретений. И. Бекманн писал: «Я имею модель искусства изобретения, та-кую, чтобы из теории видеть практический эффект в прямой пропорции с моиминтересом (целью)».

Одним из фундаментальных трудов является книга Б. Больцано37 «Науковеде-ние», четвертая часть которой называется «Искусство изобретательства». Пер-вым правилом Больцано считает определение цели и отсечение непродуктивныхнаправлений поисков. Далее выясняется основной вопрос задачи, анализирует-ся известное знание и определяются выводы из этого знания. Затем выдвига-ются гипотезы и делаются попытки решить задачу разными методами. Преду-сматривается критическая проверка собственных и чужих суждений, произво-дится отбор наиболее ценных суждений. В качестве специальных правилизобретательства Больцано рассматривал нахождение дополнительных задач,поиск аналогов, выявление и оценку реальности представлений, появившихсяв подсознании, а также логические приемы мышления.

Ждут также достойных исследователей и последователей грандиозные замыслыеще двух творцов цивилизации: Готфрида Лейбница и Иоганна фон Гете38.

Еще в молодости Лейбниц разработал собственную методику изобретательст-ва (Ars inveniendi), преимущественно как методику комбинирования (Arscombinatoria), и поставил цель создать универсальный язык (CharacteristicaUniversalis) как логическую систему для решения творческих, в том числе изо-бретательских, задач. Он указывал на особую роль понимания противоречия вструктуре проблемы: первая среди истин разума — принцип противоречия(Principium contradictionis).

Христиан Вольф39, последователь Лейбница, рассматривал основы методикиизобретательства (Erfinderkunst) как непрерывно развивающееся знание, соедине-ние изобретательской методики с опорными знаниями. Он придавал большоезначение нахождению скрытых аналогий, сходства между объектами, развиваятезис Лейбница:

Гете принадлежит конкретизация принципа и метода выявления сходстваобъектов (морфологии) и определения типа, что является основой любой на-

Page 45: основы классической триз. м. орлов

учной классификации и систематизации знаний: «…морфология делает своимглавным предметом то, что в других науках трактуется при случае и мимохо-дом, собирая то, что там рассеяно, и устанавливая новую точку зрения, позво-ляющую легко и удобно рассматривать объекты Природы». Гете писал, что«общий, основанный на трансформациях, тип», хорошо можно наблюдать как«соединение множества единиц, которые можно считать одинаковыми но идееи похожими в явлении» (курсив мой — М.О.). Эти идеи, как и идеи Лейбница,применительно к систематизации знаний о методах изобретательского творче-ства остаются не реализованными в полной мере и до наших дней.

С XVIII века в период первых промышленных революций творчество началовсе больше ориентироваться на прагматические цели, а прагматический под-ход потребовал и более практичных, более инструментальных методов. И хотяпоявилось больше исследователей, изучавших изобретательское творчество,все же в XVIII—XIX веках такие методы не были созданы. Предваряя после-дующие примеры и используя определение Гете, можно сказать, что практи-чески все исследования относились к наблюдению явлений, сопровождающихпроцесс изобретения, а не к анализу идей и сути изобретений как изменений«от существующего — к возникающему».

Герман Гельмгольц40 многократно отмечал, что догадки относительно реше-ния творческой проблемы приходят в результате всестороннего рассмотренияее, что позволяет мысленно обозревать все ее глубины и узлы. Без продолжи-тельной предварительной работы это большей частью невозможно.

Т. Рибо41 называл основным источником изобретений воображение. Он прин-ципиально отрицал возможность создания методики изобретательства, но в тоже время указывал на огромное значение таких приемов изобретательства, какобъединение-разъединение и аналогии. Последним он придавал особенно боль-шое значение, подчеркивая, что человек изобретает только потому, что спосо-бен составлять новые сочетания из известных идей. По Рибо важнейшими ме-тодами изобретательства на основе воображения являются: олицетворение,одушевление технического объекта; мистическое, символическое воображение;метаморфоза, перенос частных свойств на другой объект.

Анри Пуанкаре42 высказал немало интересных оценок и догадок. По его опре-делению, творчество заключается в создании новых полезных комбинаций, приэтом он настаивал на мнении, что мышление изобретателя имеет явно изби-рательный, направленный характер, так как «бесплодные комбинации даже неприходят в голову изобретателю». В этом отношении он сравнивал изобрета-теля с экзаменатором второй ступени, который спрашивает только кандида-тов, допущенных к экзаменам после первого испытания. Интересно отметитьвысказывания Пуанкаре о том, что творческий процесс состоит из чередованиясознательных и бессознательных усилий нашего мозга, а также о роли эстетичс-

Page 46: основы классической триз. м. орлов

ских критериев в творчестве. Он утверждал, что гармония удовлетворяет на-шим эстетическим потребностям и служит одновременно подспорьем для ума; сдругой стороны, всякая «некрасивость» теории или гипотезы настораживает.

Начало XX века было отмечено ростом усилий по созданию методик изобре-тения.

Вильгельму Оствальду43 принадлежит утверждение, что методике изобрета-тельства можно научиться. Он выражал надежду, что искусство изобретениябудет становиться общим достоянием и в конце концов сделается столь необ-ходимой и обыденной принадлежностью физической и духовной жизни, как,например, пиша, чтение и письмо. Изобретать можно, следуя определеннымпринципам, а в качестве примера он приводил творчество Эдисона44.

Действительно, Эдисона можно считать создателем первого в мире научно-ис-следовательского института, в котором экспериментальная поисковая работаразделялась между большим числом параллельно работающих исследователей.Исследовательская лаборатория была организована им в Менло-Парке в1872 году. За шесть с половиной первых лет работы лаборатории было получе-но более 300 патентов, то есть по 2 патента в неделю.

Поточную систему производства патентов создал А. Белл: с 1879 по 1900 годлаборатории его компании получали в среднем 1 патент в каждые 2,5 дня,а всего за это время более 3000 патентов.

Оствальд отмечал, что в конце XIX и в начале XX века произошли большиеизменения в характере творчества. Если раньше за изобретательскими наход-ками отправлялись, как охотник за добычей в лес или поле, который не знает,что он найдет и найдет ли вообще что-нибудь, то теперь охоту можно заме-нить продуманной облавой (по Эдисону), и нужно быть неумелым охотником,чтобы упустить дичь.

Здесь виден как бы ответ на образное описание творчества по Джозефу При-стли45, сравнивавшему изобретательские поиски с тем, как охотник ищет до-бычу в лесу, в чем большая роль принадлежит случайности. Пристли реко-мендовал осуществлять мысленно неожиданные алогичные эксперименты, счи-тая, что самыми смелыми и самыми оригинальными изобретателямиявляются те, кто предоставляет свободу своему воображению и допускает со-четание самых далеких друг от друга идей. И хотя многие из этих идей впо-следствии окажутся фантастическими, некоторые из них могут привести к ве-личайшим открытиям.

В начале XX века поиски новых теорий изобретения как бы сужаются, а самитеоретические методы становятся конкретнее. Их уже можно отобразить ввиде схем, показывающих определенные фазы творческого процесса.

Page 47: основы классической триз. м. орлов

Схема Уильяма Джеймса46, предложенная им в 1905 году, имеет следую-щий вид:

1. Определение конкретного факта S.2. Выяснение, является ли это S некоторым Р или каким образом из S мож-

но получить Р.3. Поиск в бесконечном множестве аспектов S особого свойства М, которое

приводит к желаемому Р.

Схема «тотального синтеза» Петера Беренса47 (1907 год):

1. Формирование общей концепции объекта.2. Определение основных компонентов объекта.3. Поиск основных способов выполнения каждого компонента.4. Синтез всевозможных сочетаний.

П. Энгельмейер48 в 1910 году в своей книге «Теория творчества» писал:«Взглянув на созидаемое изобретение как на развивающийся организм, мысебя спросим: нет ли в этом эмбриологическом процессе таких стадий, кото-рые повторялись бы во всех изобретениях, независимо от внешних обстоя-тельств и форм самого процесса?»

Свою схему Энгельмейер называл «трехактной»:

Первый а к т : интуиции и желания.Происхождение замысла. Появление идеи, гипотезы, принципаизобретения, цели того, над чем следует работать.

Второй а к т : знания и рассуждения.Выработка плана работы. Ставятся мысленные опыты, проводят-ся эксперименты и логический анализ, определяется новизна.

Третий а к т : умения.Конструкционное выполнение изобретения. Решение задач при-менения, эксплуатации.

Схема Д. Дьюи49 (1910 год):

1. Столкновение с трудностью, попытки вскрыть элементы и связи, приво-дящие к противоречию.

2. Ограничение зоны поиска (локализация проблемы).3. Возникновение возможного решения: движение мысли от того, что дано,

к тому, что отсутствует; образование идеи, гипотезы.4. Рациональная обработка одной идеи, логическое развитие основного по-

ложения.

Page 48: основы классической триз. м. орлов

Схема Г. Уолласа50 (1926 год):

1. Подготовка.2. Созревание (инкубация).3. Вдохновение (озарение).4. Проверка.

Случайны ли были эти51 и другие подобные схемы? По мнению многих иссле-дователей эти схемы не случайны и отражают часто наблюдаемые в творче-ской практике похожие последовательности действий. И все же внимательноерассмотрение этих схем обнаруживает их существенную неодинаковость.

Освобождаясь от подробностей, известные методы и теории можно разделитьна три группы.

Первая группа описывает творчество как исключительно интуитивный про-цесс, схватывает внешние проявления этого процесса (Энгельмейер, Уоллес,Рибо, а ранее — Пристли, Гельмгольц, Пуанкаре и многие другие, в целом —большинство авторов).

Вторая группа существенно опирается на логический подход, включающийпостроение обобщенного образа объекта и систематическое выявление всехвозможных вариантов его построения (Беренс, а ранее Штайнбарт и многиеприверженцы комбинаторики во главе с великим Лейбницем).

В третьей группе основное — разобраться в сути проблемы, выявить элементыи свойства, приводящие к противоречию, поиск способов снять это противо-речие (Дьюи, Джеймс, а ранее — Больцано, Гете, Лейбниц, Декарт и другиевесьма авторитетные исследователи). Именно третье направление оставалосьнеразвитым дольше других.

В середине XX века появилось сразу несколько методов, которые не потерялисвоей популярности вплоть до наших дней.

Метод фокального объекта (MFO) уходит корнями к древнегреческим искусст-вам мышления, но в современном виде был сформулирован в 20-х годахXX века Ф. Кунце52, а в 50-х годах был усовершенствован Ч. Вайтингом53.Суть MFO состоит в том, что усовершенствуемый объект как бы устанавлива-ется в «фокусе», в котором концентрируется внимание, после чего этот объектсопоставляется с любыми другими, случайно выбираемыми из реальногомира. В качестве способа выбора сопоставляемых объектов может быть ис-пользована книга, открытая на случайной странице, на которой выбирается

5 0 G r a h a m Wallas (1858—1932) — а н г л и й с к и й исследователь п с и х о л о г и ч е с к и х ф а к т о р о в в п о л и -т и к е ; а в т о р к н и г и T h e Art of T h o u g h t , Harcourt Brace, New York, 1926.

5 1 Ц и т и р у е т с я , в к л ю ч а я р а з д е л е н и е на группы, с н е б о л ь ш и м и и з м е н е н и я м и по работе А. Куд-рявцева «Методы и н т у и т и в н о г о п о и с к а т е х н и ч е с к и х р е ш е н и й » , 1992.

5 2 Fr iedr ich K u n t z e (1881 — 1929) — и з в е с т н ы й н е м е ц к и й п с и х о л о г .5 3 Whit ing C h . S. Creat ive T h i n k i n g . R e i n h o l d , N e w York, 1958.

Page 49: основы классической триз. м. орлов

случайное слово; могут быть выбраны какие-либо предметы на витрине мага-зина или объекты природы и тому подобное. Соединение свойств двух объек-тов — фокального и случайно выбранного — может приводить к оригиналь-ным идеям для изменения фокального объекта. Основные свойства подходауказаны на рис. 4.2.

Page 50: основы классической триз. м. орлов

Брейнсторминг (BS), предложенный в 40-х годах бывшим морским офицеромАлексом Осборном54, получил чрезвычайно большое распространение. Сле-дующие особенности отличают этот метод от MFO: предварительный анализситуации с помощью списка контрольных вопросов; наличие двух фаз рабо-ты — генерация идей и критика идей. Известно много разновидностей BS.Основные свойства подхода указаны на рис. 4.3.

Page 51: основы классической триз. м. орлов

Синектика (SYN) была разработана У. Гордоном (55) и имеет не менее глубокиекорни, чем MFO, и вполне очевидно связана с идеями Рибо. SYN, как и BS,ориентирована на командную реализацию и мало приспособлена для индиви-дуального применения (рис. 4.4).

Page 52: основы классической триз. м. орлов

Метод морфологического анализа (ММА) Ф. Цвикки56, аналогичный по замыс-лу методу «тотального синтеза» Беренса и методологически восходящий ккомбинаторике Лейбница (рис. 4.5). Этот метод остается весьма полезным ипопулярным для поиска границ системных решений и для систематическогоанализа возможных (перспективных) направлений решения проблем.

Page 53: основы классической триз. м. орлов

Важно заметить, что «центр тяжести» методов все больше смешается в сторо-ну усиления логической составляющей, в сторону увеличения направленностипоиска решений.

Усиление логической составляющей и соединение интуитивных моделей спрактикой инженерного проектирования хорошо видны в работах многих ис-следователей в 70-х и 80-х годах XX века57. И все же в этом объединенииопять-таки почти ничего не меняется по отношению к объекту и к составу опе-раций преобразования, а лишь вносится организационная и системная упоря-доченность уровней и этапов решения сложных инженерных задач. В итогенамеченная направленность подхода размывается, а системотехническая тер-минология лишь слабо прикрывает все ту же «голую интуицию».

Латеральное мышление (LT) психолога и педагога Эдварда де Боно представ-ляет собой подробно разработанную стратегию всестороннего развития твор-ческих способностей личности. Методы поиска идей в LT стимулируют стра-тегическую интуицию, умение увидеть решение в целом, предусматривают ра-циональный тактический анализ вариантов, многоаспектное рассмотрениевозможностей при решении проблем. Работы де Боно намного расширяютпонимание возможностей интуитивного поиска идей по сравнению, напри-мер, с BS. Однако, для LT остаются справедливыми ограничения, отмеченныедля BS (рис. 4.3).

Нейролингвистическое программирование (NLP) можно рассматривать как наи-более глубокую психо-физиологическую стимуляцию творческих способно-стей личности. При тренинге с профессиональным психологом-педагогомвозможно освоение техник вхождения в состояния повышенной концентра-ции памяти и внимания (в частности, помогает обучиться скорочтению и ос-воению иностранных языков), более свободного ассоциативного мышления ивизуализации (метод Mind Mapping), актуализации собственного опыта ус-пешного решения проблем, артистического вхождения в образ других лично-стей, например, художников или изобретателей. NLP не свободно от ограни-чений, свойственных SYN (рис. 4.4).

Page 54: основы классической триз. м. орлов

Краткий итог нижеизложенному о теориях творчества можно подвести сле-дующим выводом, принадлежащим Генриху Альтшуллеру:

После окончания военного училища Г. Альтшуллер работал в патентном бюрои еще в 1945 году обратил внимание на большое число неэффективных и сла-бых предложений. Вскоре он понял, что слабые решения игнорируют ключе-вые свойства проблем и породивших их систем. И даже самые гениальныеизобретения также были, в основном, продуктом случая или длительной из-нурительной «осады». Изучение известных методов изобретения и психологииинженерного творчества укрепило Г. Альтшуллера в сделанном выводе.

Все подходы опирались на метод «проб и ошибок», на интуицию ивоображение. Ни один подход не исходил из исследования законо-мерностей развития систем и из физико-технического противоречия,содержащегося в проблеме.

В то же время в истории философии и в инженерных работах было достаточ-но примеров более эффективного анализа проблем. Наиболее убедительныепримеры Г. Альтшуллер обнаружил в работах К. Маркса58 и Ф. Энгельса59. Импринадлежит выдающаяся роль в определении признаков и фаз исторических

Page 55: основы классической триз. м. орлов

изменений, происходивших в истории человечества, и связанных с изобрете-нием и развитием новых технологий и машин, изменяющих характер труда че-ловека, усиливающих его отдельные функции либо полностью вытесняющихчеловека из производственных операций.

Две фундаментальные идеи пронизывают приводимые ими примеры:

Так, в работе «История винтовки» («Geschichte des gezogenen Gewehrs» /F. Engels, 1860) Энгельс приводит многочисленные примеры техническихпротиворечий, определяющих всю эволюцию винтовки и возникающих какиз-за изменения требований к применению, так и из-за выявления внутрен-них недостатков. В частности, длительное время главное противоречие состоя-ло в том, что для удобства заряжения и увеличения скорострельности требова-лось укорачивать ствол (заряжение производилось насыпанием пороха и за-кладыванием пули через ствол), а для увеличения точности стрельбы идостижения противника с большей дистанции в штыковом бою требовалосьудлинять ствол. Эти противоречивые требования были соединены (!) в винтовке,заряжающейся со стороны казенной части.

Но эти примеры остались неоцененными методологами и практиками творче-ства, и рассматривались лишь как иллюстрации к диалектическому материа-лизму.

В 1956 году Г. Альтшуллер публикует свою первую статью60, в которой ставитпроблему создания теории изобретательского творчества и предлагает основ-ные идеи для ее развития:

В современной редакции первую версию технологии создания изобретатель-ских идей можно представить схемой, приведенной на рис. 5.1.

Page 56: основы классической триз. м. орлов

К 1961 году Г. Альтшуллер исследовал уже около 10 000 изобретений из 43 па-тентных классов! Идея о возможности выявления изобретательских приемовполностью подтвердилась в виде следующего открытия:

Автор будущей ТРИЗ писал: «…конечно, каждая техническая задача по-своемуиндивидуальна. В каждой задаче есть что-то свое неповторимое. С помощьюанализа появляется возможность пробиться к главному — к системному про-тиворечию и его причинам. И положение сразу меняется. Появляется возмож-ность вести творческий поиск по определенной рациональной схеме. Магиче-ской формулы нет, но есть приемы, достаточные для большинства случаев.»

Генрих Альтшуллер часто подчеркивал, что, в сущности, ТРИЗ организуетмышление человека так, как будто в его распоряжении имеется опыт всех,или очень многих, талантливых изобретателей. Обычный, даже очень опыт-ный изобретатель использует свой опыт, основанный на внешних аналогиях: вотэта новая задача похожа на такую-то старую задачу, значит, и решения долж-ны быть похожи. Изобретатель, знающий ТРИЗ, видит намного глубже: вот вэтой новой задаче имеется такое-то противоречие, значит, можно использо-

Page 57: основы классической триз. м. орлов

вать идею решения из старой задачи, которая внешне совсем не похожа нановую, но содержит аналогичное противоречие!

С появлением первой версии АРИЗ (рис. 5.1) началось становление Теориирешения изобретательских задач (ТРИЗ). Автор ТРИЗ показывает различиямежду понятиями прием, метод и теория следующим образом.

Прием — одинарная, элементарная операция. Прием может относиться к дей-ствиям человека, решающего задачу, например, «используй аналогию». Приемможет относиться и к рассматриваемой в задаче технической системе, напри-мер, «дробление системы», «объединение нескольких систем в одну». Приемыкак бы не направлены: неизвестно, когда тот или иной прием хорош, а когдане сработает. В одном случае аналогия может навести на решение задачи, а вдругом — увести от него. Приемы не развиваются, хотя набор приемов можнопополнять и развивать.

Метод — система операций, обычно включающих приемы, предусматриваю-щая определенный порядок их применения. Методы обычно основаны на ка-ком-то одном принципе, постулате. Так, в основе брэйнсторминга лежитпредположение, что решение задачи можно получить, дав «выход из подсоз-нания неуправляемому потоку идей». В основе АРИЗ лежит принцип подобия вмоделях развития, в моделях противоречий и в моделях разрешения противо-речий. Методы развиваются весьма ограниченно, оставаясь в рамках исход-ных принципов.

Теория — система многих методов и приемов, предусматривающая целена-правленное управление процессом решения задач на основе знания законо-мерностей (моделей) развития сложных технических и природных объектов.

Можно сказать также, что прием, метод и теория образуют иерархию типа«кирпич — дом — город» или «клетка — орган — организм».

К 1985 году, году вершины своего становления, классическая ТРИЗ развива-лась уже почти 40 лет. Сам автор ТРИЗ так описывает развитие своей теории.

Этап 1. Работа над АРИЗ была начата в 1946 году. Впрочем, самого понятия«АРИЗ» тогда еще не было. Проблема ставилась иначе:

Почти сразу удалось обнаружить, что решение изобретательской за-дачи оказывается хорошим (сильным!), если оно преодолевает техни-ческое противоречие (ТП), содержащееся в поставленной задаче, инаоборот, плохим, если ТП не выявлено или не преодолено.

Далее выяснилось нечто совершенно неожиданное: оказалось, что даже самыеопытные изобретатели не понимают, не видят, что правильная тактика реше-ния изобретательских задач должна состоять в том, чтобы шаг за шагом выяв-

Page 58: основы классической триз. м. орлов

лять ТП, исследовать его причины и устранять их, тем самым устраняя и ТП.Столкнувшись с открытым, кричащим о себе ТП, и увидев, что задачу удалосьрешить благодаря его устранению, изобретатели не делали никаких выводовна будущее, не меняли тактику и, взявшись за следующую задачу, могли по-тратить годы на перебор вариантов, даже не пытаясь сформулировать содер-жащееся в задаче противоречие.

Рухнули надежды извлечь из опыта больших (великих, крупных, опытных, та-лантливых) изобретателей нечто полезное для начинающих: большие изобре-татели работали тем же примитивным методом проб и ошибок.

Этап 2. На втором этапе проблема была поставлена так:

Первые программы (АРИЗ-1956 или АРИЗ-1961) были весьма далеки отАРИЗ-1985, но с каждой новой модификацией они становились четче инадежнее, постепенно приобретая характер программ алгоритмическоготипа. Были составлены таблицы приемов устранения ТП (см. приложения3. А-Матрица выбора специализированных навигаторов и 4. Каталог специали-зированных А-Навигаторов — в современной редакции автора настоящейкниги). Главным материалом для исследований стала патентная информа-ция, описания изобретений. Начали проводиться первые семинары, накап-ливался опыт обучения АРИЗ.

И снова обнаружилось неожиданное. Оказалось, что при решении задач выс-ших уровней нужны знания, обязательно выходящие за пределы специально-сти, которую имеет изобретатель. Производственный опыт навязывает бесплод-ные пробы в привычном направлении, а применение АРИЗ и его информацион-ного обеспечения (приемы и т. п.) лишь улучшило ход решения задачи.

Обнаружилось, что человек не умеет эффективно решать изобретательские за-дачи высших уровней. Поэтому ошибочны все методики, основанные толькона стремлении активизировать «творческое мышление», поскольку это попыт-ки хорошо организовать плохое мышление (здесь курсив Г. Альтшуллера). Такимобразом, второй этап, начавшийся с мысли о том, что изобретателям надодать вспомогательный инструмент, завершился выводом о необходимости пе-рестройки изобретательского творчества, изменения самой технологии созданияизобретения.

Программа теперь стала рассматриваться как самостоятельная, не зависимаяот человека система решения изобретательских задач. Мышление должно следо-вать этой системе, управляться ею — и тогда оно будет талантливым.

Page 59: основы классической триз. м. орлов

Возникло понимание, что операции, производимые в АРИЗ, должны быть со-поставлены с объективными закономерностями развития технических систем.

Этап 3. Формула третьего этапа была такой:

Как и на втором этапе, основным материалом для работы была патентнаяинформация. Но ее изучение велось теперь не столько для выявления новыхприемов и сведения их в таблицу устранения технических противоречий,сколько для исследования общих закономерностей развития техническихсистем.

Главное открылось в том, что изобретение — это развитие технической систе-мы. Изобретательская задача — только одна из форм, в которой потребностиразвития технической системы обнаруживаются человеком. ТРИЗ изучает изо-бретательское творчество с целью создать эффективные методы решения изо-бретательских задач.

В этом определении присутствует мысль, которая может показаться «еретиче-ской»: что же, все существующие методы плохи и нуждаются в замене? Новедь пользуясь этими «методами», люди сделали величайшие открытия! Наэтих «методах» основана современная индустрия изобретении, лающая еже-годно многие десятки тысяч новых технических идей. Чем же плохи совре-менные «методы»?

Существуют привычные, но неверные суждения об изобретательском творче-стве, например:

1) «Все зависит от случайности», — говорят одни.

2) «Все зависит от знаний и упорства, надо настойчиво пробовать разные ва-рианты», — утверждают другие.

3) «Все зависит от прирожденных способностей», — заявляют третьи.

В этих суждениях есть доля правды, но правды внешней, поверхностной.

Неэффективен сам «метод проб и ошибок». Современная «индустрия изобрете-ний» организована по «методу Эдисона»: чем труднее задача и чем большепроб надо проделать, тем большее количество людей направляется на поискирешения. Эту критику Генрих Альтшуллер подкреплял следующим образом:ясно, что тысяча землекопов могут рыть иные по размерам ямы. чем одинземлекоп, но сам способ рытья остается прежним. С помощью же хорошегометода «одиночка»-изобретатель, словно экскаваторщик, работает намногопродуктивнее «коллектива землекопов»!

Page 60: основы классической триз. м. орлов

При решении задачи без ТРИЗ изобретатель сначала долго перебирает привыч-ные, традиционные варианты, близкие ему по специальности. Иногда ему во-обще не удается уйти от таких вариантов. Идеи направлены в сторону «векторапсихологической инерции» (PIV — Psychological inertia vector). PIV обусловлен са-мыми разными факторами: тут и боязнь выйти за рамки профессии и вторг-нуться в «чужую» область, и опасение выдвинуть идею, которая может пока-заться смешной, и, разумеется, незнание приемов генерирования «диких» идей.

Автор ТРИЗ иллюстрировал «метод проб и ошибок» следующей схемой(рис. 5.2).

От точки «Задача» изобретатель должен попасть в точку «Решение». Где имен-но находится эта точка, заранее неизвестно. Изобретатель создает определен-ную поисковую концепцию (ПК) и начинаются «броски» в выбранном на-правлении (они обозначены тонкими стрелками). А потом становится ясно,что неправильна вся ПК, и что поиски идут совсем не в том направлении.Изобретатель возвращается к исходной постановке задачи, выдвигает новуюПК и начинает новую серию «бросков» типа «А что, если сделать так?».

На схеме стрелки расположены гуще в направлении, не совпадаю-щем и даже противоположном от направления «Решения». Дело втом, что пробы совсем не так хаотичны, как кажется на первыйвзгляд. Они очень даже организованы… в направлении предыдущегоопыта! То есть, в направлении PIV!

Задачи разных уровней существенно отличаются числом проб, необходимыхдля отыскания решения. Но почему одна задача требует 10 проб, другая —100, а третья — 10 000?! В чем качественная разница между ними?

Page 61: основы классической триз. м. орлов

И Генрих Альшуллер приходит к следующим выводам (см. также раздел 3.2Уровни изобретений и рис. 3.2).

1. Задачи могут отличаться по содержанию требуемых знаний. На первомуровне задача и средства ее решения лежат в пределах одной профессии(одного раздела отрасли). На втором уровне — в пределах одной отрасли(например, машиностроительная задача решается способом, уже извест-ным в машиностроении, но в другой его отрасли). На третьем уровне — впределах одной науки (например, механическая задача решается на основезаконов механики). На четвертом уровне — за пределами науки-«задачеда-тельницы» (например, механическая задача решается химически). На выс-ших подуровнях пятого уровня — вообще за пределами современной нау-ки (поэтому сначала нужно получить новые научные знания или сделатьоткрытие, а потом применить их к решению изобретательской задачи).

2. Задачи могут отличаться по структуре взаимодействующих факторов. Этоможно показать на различии «структур», например, задач первого и чет-вертого уровней.

Для задач первого уровня характерно:

1) Небольшое число взаимодействующих элементов.2) Неизвестных факторов нет или они несущественны.3) Легкость анализа:

• элементы, которые могут быть изменены, легко отделяются от элемен-тов, не поддающихся изменениям в условиях задачи;

• взаимное влияние элементов и возможных изменений легко прослежи-вается.

4) Некоторое осложнение состоит в том, что часто решение требуется полу-чить в короткое время.

Для задач четвертого уровня характерно:

1) Большое число учитываемых элементов.2) Значительное число неизвестных факторов.3) Сложность анализа:

• трудно отделить элементы, которые могут быть изменены в условиях за-дачи;

• трудно построить достаточно полную модель взаимного влияния эле-ментов и возможных изменений.

4) Некоторое упрощение состоит в том, что на поиск решения отводится от-носительно большое время.

3. Задачи могут отличаться по степени изменения объекта. В задачах первогоуровня объект (устройство или способ) практически не изменяется, напри-мер, устанавливается новое значение одного параметра. На втором уровнеобъект незначительно изменяется, например, в деталях. На третьем уровнеобъект существенно изменяется (например, в важнейших частях), на чет-вертом — полностью меняется, а на пятом изменяется также и техниче-ская система, в которую входит измененный объект.

Page 62: основы классической триз. м. орлов

Поэтому нужен способ «перевода» изобретательских задач с высшихуровней на низшие и превращения тем самым «трудной» задачи в«легкую», например, с помощью быстрого сокращения поисковогополя.

4. Природа не выработала эвристических приемов высших порядков! На протя-жении всей эволюции мозг человека приспособился лишь к решению за-дач, соответствующих примерно первому уровню.

Возможно, что, сделав в течение жизни одно-два изобретения высших уров-ней, человек просто не успевал накопить и передать «высший эвристическийопыт». Естественным отбором закреплялись только эвристические приемынизших уровней: увеличить—уменьшить, соединить—разъединить, использо-вать аналогию, копировать и некоторые другие (см. раздел 4 Изобретатель-ское творчество). Позднее к ним добавились уже вполне сознательно: «По-ставь себя на место рассматриваемого объекта» (эмпатия), «Помни о психоло-гической инерции» и другие (см также раздел Искусство изобретения).

«Эвристики» такого уровня можно сколько угодно показывать молодым ин-женерам, однако научить применять их нельзя. Дело в том, что никакие при-зывы «помнить о психологической инерции» не срабатывают, если человек незнает, как именно бороться с психологической инерцией. Тщетными остаются ре-комендации использовать аналогии, когда неизвестно заранее, какая из нихподходящая, и особенно, если возможных аналогий слишком много. Так же иэмпатия запутывает дело или прямо вредна, если объект достаточно сложен.

Так что, в процессе эволюции наш мозг научился находить достаточно точныеи приемлемые решения только для простых задач. При этом эвристическиемеханизмы высших уровней, скорее всего, не могут быть открыты — их нет.

Но они могут и должны быть созданы!

Третий этап и середина 1970-х годов — это середина истории классическойТРИЗ во времени. Но это и начало кардинального усовершенствованияТРИЗ — открытие физического противоречия (ФП) и фундаментальных прин-ципов разрешения ФП, формулирование законов развития технических сис-тем, составление первого каталога физических принципов создания сильныхизобретений («эффектов») и первых «стандартов» (комплексных приемов).

При рассмотрении истории развития ТРИЗ можно выделить следующиеэтапы:

1) до 1985 года — развитие классической ТРИЗ, основные идеи которой имеютконцептуальный характер (плюс, конечно, и инструментальный!) и публи-куются Генрихом Альтшуллером и специалистами ТРИЗ-ассоциации;

2) после 1985 года — развитие пост-классической ТРИЗ, основные идеи кото-рой имеют характер «развертывания» теории (т. е. детализации, частичной

Page 63: основы классической триз. м. орлов

формализации, уточнения и особенно накопления фонда примеров) и со-единения с другими методами, особенно с методами функционально-стои-мостного анализа, аналогичными Quality Function Deployment (QFD) иFault Modes and Effects Analysis (FMEA).

Структурно классическую ТРИЗ можно представить схемой, показанной нарис. 5.3.

ТРИЗ — это пример реализации идеи концентрированного представления знаний.

Page 64: основы классической триз. м. орлов

Главное открытие ТРИЗ состоит в том, что миллионы уже зарегистрирован-ных изобретений сделаны на основе относительно небольшого числа правилтрансформации исходной постановки задачи.

При этом в ТРИЗ четко указаны ключевые компоненты организации любойпроблемы и синтеза решения: противоречие, ресурсы, идеальный результат,приемы изобретения, или лучше сказать, модели трансформации.

Более того, в ТРИЗ разработаны не только несколько систем приемов, но иметод решения проблем с помощью пошагового уточнения и трансформацииисходной постановки проблемы. Этот метод называется Алгоритмом решенияизобретательских задач (АРИЗ).

АРИЗ и вся ТРИЗ, по образному определению самого Г. Альтшуллера(Крылья для Икара. Как решать изобретательские задачи. Петрозаводск,1980.), стоит «на трех китах»:

1) по четкой программе, шаг за шагом, ведется обработка задачи, выявляют-ся и исследуются физико-технические противоречия, делающие задачупроблемой;

2) для преодоления противоречий используется сконцентрированная инфор-мация, вобравшая опыт нескольких поколений изобретателей (таблицытиповых моделей решения задач — приемы и стандарты, таблицы приме-нения физических эффектов и т. д.);

3) на протяжении всего хода решения идет управление психологическимифакторами: АРИЗ направляет мысль изобретателя, гасит психологическуюинерцию, настраивает на восприятие необычных, смелых идей.

Вместе с тем, необходимо отметить, что известные книги и статьи о ТРИЗвплоть до настоящего времени (2000 год), во многом повторяя друг друга, тра-диционно показывали только достоинства ТРИЗ как системы решения техни-ческих задач. Это не способствовало правильному пониманию возможностейи границ ТРИЗ.

Прежде всего известные публикации умалчивают о наличии многих нерешен-ных вопросов «функционирования» творческого мышления, например,о принципиальной необходимости и достаточно большом объеме разнообраз-ных актов интуитивного мышления.

Не говорится о том, что решение нельзя «вычислить», несмотря на то, что авто-ры делают особое ударение на терминах «алгоритм изобретения» и «операторпреобразования», как бы придавая им статус математических конструкций.

Page 65: основы классической триз. м. орлов

Поэтому, во-первых, разные люди, используя рекомендуемые методики, дале-ко не обязательно получат одинаковые результаты. А во-вторых, поиск реше-ния на основе АРИЗ имеет хотя и существенно уменьшенную, но все же не-определенную продолжительность, что опять-таки связано с присутствиемпринципиально не алгоритмизируемых актов мышления.

Наконец, если при решении какой-либо проблемы не хватает объективныхзнаний и необходимо проведение научных исследований, то здесь также прохо-дит граница возможностей ТРИЗ. Однако следует добавить, что ТРИЗ полез-на и как инструмент проведения исследования.

Этот учебник отражает более широкий и реалистичный подход авто-ра к теории изобретения, не противопоставляющий, а объединяющийвысокоэффективные модели ТРИЗ с хорошо зарекомендовавшимисебя методами интуитивного поиска.

В заключение этого раздела приведем схему, отражающую основные этапыразвития ТРИЗ (рис. 5.4).

Будучи студентом Минского политехникума и интересуясь изобретательством,я познакомился с ТРИЗ (которая еще не имела этого названия!) в 1963 годупо первой книжечке Генриха Альтшуллера «Как научиться изобретать», из-данной в Тамбове в 1961 году, которую бережно храню как одну из самых до-

Page 66: основы классической триз. м. орлов

рогих моих реликвий. В 1965 году, находясь на преддипломной практике в од-ной из «самых секретных» организаций в Минске, вместе со старшими това-рищами я пробовал применять ТРИЗ для изобретения элементов первыхавтоматов для сборки первых отечественных интегральных схем. Это былосчастливое время творчества и энтузиазма! Это было время, вдохновляемоенедавним полетом Юрия Гагарина и следующими полетами первых людей вкосмос!

С тех пор у меня было достаточно времени убедиться в том, что ТРИЗ помо-гает резко сократить время на диагностику проблемы, создает кардинальнолучшие возможности для понимания проблемы и возможностей ее решения,чем и подготавливает сознание к решающему шагу — нахождению идей ре-шений.

И всё же нужно помнить, что ТРИЗ не заменяет творческого мышления,а только является его инструментом.

А хороший инструмент еще лучше работает в умелых и талантливых руках.

Page 67: основы классической триз. м. орлов

1. Портрет звука

В некоторых пещерах с рисунками определенных животных, сделанных еще100 000 лет назад, можно и сегодня не только видеть эти рисунки, но и одно-временно услышать звук бега этих животных или целого стада! Как прачело-век «записал» для потомков звуковой «портрет»? Кстати, похожим способом вдругих пещерах он мог «поговорить» с изображениями своих предков или ми-фических существ.

2. Александрийский маяк

Второе после Египетских пирамид чудо света — Александрийский маяк. Полегенде, император повелел на выстроенном маяке увековечить его имя, а неимя строителя. Если главный строитель не сделает этого, его казнят. Строи-тель остался жив, но и потомки узнали его имя. Как строитель разрешил про-тиворечивое требование?

3. Загадки пирамид

При строительстве Египетских пирамид:

a) Как древние строители могли получать ровное строго горизонтальное осно-вание пирамиды, особенно если учесть, что площадь некоторых основанийисчислялась гектарами?

b) Как могли измерять высоту строящейся пирамиды?

c) Как обеспечить строгую симметрию пирамиды?

d) Как обеспечивать одинаковые углы наклона ребер пирамид в 42° и, соот-ветственно, наклон катетов сторон пирамид в 51′ 52″?

4. Посол Исмений

Греческий посол Исмений прибыл ко двору персидского царя Артаксиса I.Не хотел гордый посол кланяться, но и не поклониться нельзя, так как тогдапереговоры не состоятся. Что сделал Исмений, приближаясь к креслу царя?

5. Коронация императоров

В 800 году н. э. происходила коронация Карла Великого. По ритуалу возло-жить корону на Карла Великого должен был папа римский, что было необхо-димо для политического укрепления власти. Но император не хотел призна-вать себя ниже папы, так как по сути ритуала получалось, что папа мог возло-жить корону, но мог и отнять. И вот папа торжественно поднимает корону к

Page 68: основы классической триз. м. орлов

голове императора… Как разрешил Карл Великий противоречивую ситуацию?Через 1000 лет (!), когда в декабре 1804 года в соборе Нотр-Дам де Пари папаПий VII приступил к коронации Наполеона Бонапарта, все произошло какпри коронации Карла Великого.

6. Пизанская башня

На конкурс проектов по спасению Пизанской башни за последние 60 летбыло представлено около 9000 предложений со всего земного шара! Через200 лет после начала ее строительства в 1173 году было обнаружено, что баш-ня начала наклоняться. К 1370 году для создания противовеса был надстроен8-й этаж. Высота башни достигла почти 60 м, а вес — 14 453 тонн. За следую-щие 600 лет основание башни ушло в землю почти на 3 метра, а отклонение7-го этажа от вертикали достигло 4,47 м (рис. 3.4). В 1990 году башня была за-крыта для посетителей.

В 1993 году было выполнено моделирование и прогнозирование дальнейшегонаклонения Пизанской башни. Экспертиза показала, что башня не простоитдалее, чем до 2050 года, продолжая наклоняться со скоростью около 1 мм вгод. В 1999 году бургомистр Паоло Фонтанелли открыл последнюю выставкупроектов «Viva la torre!» (Да здравствует башня!). В 2000 году отклонение баш-ни было уменьшено до 4,07 м, то есть на 40 см. Этого достаточно, чтобы баш-ня не достигла критического отклонения еще в течение 300 лет. Возможно,скоро новые посетители пройдут вверх по 293 ступеням ее винтовой лестницы.

Три вопроса:

1) Что Вы могли бы предложить для устранения опасности разрушения баш-ни, не снижая ее исторической и эстетической ценности?

2) Как было устранено критическое наклонение башни?

3) Почему бы не выровнять башню полностью?

Page 69: основы классической триз. м. орлов

А-Студия:алгоритмическая

навигация мышления

Page 70: основы классической триз. м. орлов

Итак, мы начинаем знакомство с основами классической ТРИЗ.

Классическая ТРИЗ стоит на мощном практическом фундаменте. Этим фун-даментом являются патенты, миллионы патентов, аккумулировавших реальныерешения и способы решения поставленных проблем, аккумулировавших опытмиллионов изобретателей. И это было фундаментальным открытием ГенрихаАльтшуллера — обратиться непосредственно к исследованию объективной ин-формации, содержащейся в созданных изобретениях.

Вторым открытием было определение содержания и целей необходимых ис-следований, на которых должна была строиться работоспособная теория:

1. В каждой технической системе, усовершенствованной в патенте, нужновыявить ключевую решенную проблему, выявить причины и структуруэтой проблемы, определить инвариантные элементы (устойчивые призна-ки) реальных проблем.

2. Из каждого патента, особенно из патентов, обладающих большой ценно-стью, нужно извлечь ключевое преобразование, которое и определяет пе-реход в этом патенте от постановки задачи к идее решения. Нужно клас-сифицировать и систематизировать эти преобразования, оценить, как час-то они встречаются и насколько они эффективны.

3. Нужно выявить также, каким образом можно в новых ситуациях находитьподходящее преобразование для того, чтобы использовать его как образец,модель для поиска решения конкретно для каждой новой задачи.

Исследование к настоящему времени более 2,5 миллионов патентов убеди-тельно показало правильность стратегии, избранной основателем ТРИЗ.

В результате в фундамент классической ТРИЗ были положены следующие трипрактических открытия:

Page 71: основы классической триз. м. орлов

1. Все реальные проблемы могут быть редуцированы всего лишь к трем раз-личным видам и представлены только тремя соответствующими структур-ными моделями:

Административная проблема — проблемная ситуация задана в виде указа-ния недостатков, которые нужно устранить, или целей, которые нужнодостичь, при этом причины возникновения недостатков, а также способыих устранения и достижения указанных целей не указаны:

Техническая проблема — проблемная ситуация задана в виде указания не-совместимых функций или функциональных свойств системы, из которыходна функция (или свойство) способствует достижению главной полезнойфункции всей системы (назначению системы), а вторая — противодейст-вует;

Физическая проблема — проблемная ситуация задана в виде указания од-ного физического свойства элемента или всей системы в целом, из кото-рых одно значение этого свойства необходимо для достижения одной оп-ределенной функции системы, а другое значение — для другой, но приэтом оба значения являются несовместимыми и обладают взаимоисклю-чающими противоположно направленными тенденциями к их улучшению.

Для каждой проблемы автором ТРИЗ была найдена точная структур-но-функциональная модель в виде рассматриваемых в последующих разде-лах административного, технического и физического противоречий.

Из этих моделей технические и физические противоречия обладают наи-большей конструктивностью, так как непосредственно поддержаныТРИЗ-инструментами для их разрешения. Административные модели либорешаются методами, не имеющими прямого отношения к ТРИЗ, напри-мер, экономическими или проведением дополнительных научных иссле-дований, либо требуют перевода к двум другим, конструктивным моделям.

2. Все известные решения получены на основе применения трансформаций,относящихся всего лишь к четырем классам:

• прямые модели для разрешения физических противоречий (я называюих фундаментальными трансформациями, в ТРИЗ — «принципы»);

• прямые модели для разрешения технических противоречий (специализи-рованные трансформации, или «приемы»);

• рекомендации для изменения физико-технических моделей в виде взаи-модействий «поле-вещество» (комплексные трансформации, или «стан-дарты»);

• рекомендации по реализации нужной функции на основе примеровстандартного или оригинального применения как известных, так и иновейших физико-технических явлений (базовые трансформации, илиэффекты).

Каждая модель дает пример решения изобретательской проблемы в общемвиде в определенном классе моделей и для определенной ситуации.

Page 72: основы классической триз. м. орлов

3. На основе реинвентинга сотен тысяч изобретений в ТРИЗ была установле-на последоватсльность шагов для рационального исследования исходнойпроблемной ситуации, для построения модели проблемы и выбора подхо-дящей модели трансформации, для проверки правильности предлагаемыхрешений.

Эти многошаговые схемы прошли длинный путь совершенствования ипрактическою применения, и в 1985 году были интегрированы ГенрихомАльтшуллером в схему под названием «Алгоритм решения изобретатель-ских задач — 1985», или, сокращенно, АРИЗ-1985.

АРИЗ-1985 является как бы сжатым конспектом всей ТРИЗ. Он сложен визучении из-за избыточности попутных пояснений, примечаний, отступ-лений. Именно это побудило автора настоящего учебника разработать в1987 году более компактную схему, получившую название «Мета-Алго-ритм изобретения» из-за ее большой общности.

Само понятие «алгоритм изобретения» до сих пор иногда вызывает критиче-ские замечания. Критика аргументируется тем, что в наиболее известном оп-ределении алгоритма, ориентированном на программирование компьютеровпервых поколений, нет места неопределенности. Но это слишком узкое опре-деление даже для современной компьютерной математики, оперирующей по-нятиями размытых, вероятностных, итерационных, рекуррентных или еще бо-лее сложных алгоритмов. А с точки зрения современной конструктивной ма-тематики, а также математической лингвистики, оперирующих моделямикатегорий и функторов, афинными и более сложными отображениями, такоеприменение термина «алгоритм» является уже совершенно корректным.

Опираясь на приведенную аргументацию, мы можем сделать следующий ло-гический шаг: определить основную цель классической ТРИЗ как обеспече-ние «алгоритмической навигации мышления».

За этим понятием целесообразно закрепить название «А-Навигация», отражаяв символе «А» алгоритмический характер поддержки процесса решения слож-ных проблем и отдавая одновременно должное автору классической ТРИЗ —Генриху Альтшуллсру. А-Навигация и производные от этого понятия другиеназвания сохранят память об основателе ТРИЗ.

Что касается понятия «мышление», включенного в определение, то чтобы невызывать недоразумений и споров, его можно понимать суженно, как изобре-тательское мышление, или мышление при решении изобретательских проблем.А изобретательскую проблему здесь же можно упрощенно определить как за-дачу, содержащую несовместимые требования, «неразрешимое» противоречие.

А вот понятие «навигация» представляется нам точным и чрезвычайно важ-ным. Человек мыслит образами, метафорами, и использует определенную мо-дель трансформации как пример, шаблон, аналог для создания решения поассоциации, по аналогии. При этом человек наполняет модель конкретнымсодержанием из новой задачи, и модель направляет его мышление к цели.Обобщенные модели трансформации и иллюстрирующие их примеры играют

Page 73: основы классической триз. м. орлов

роль навигаторов мышления или навигаторов изобретения, или в нашем обо-значении, А-Навигаторов.

Действительно, «навигация» означает как измерение местоположения движу-щегося объекта и, возможно, движущейся цели, т а к и прокладку пути к цели.Именно для этого и предназначены АРИЗ (А-Алгоритм) и А-Навигаторы!А-Алгоритм играет роль самой настоящей навигационной системы, предусмат-ривающей анализ задачи и применение А-Навигаторов (навигационных инст-рументов — «карт», «инструкций», «линеек», «шаблонов», «компасов», «цир-кулей» и т. п.) для построения пути к цели — созданию эффективного реше-ния! Успешность же применения А-Алгоритма и А-Навигаторов зависит ещеи от «капитана», «штурмана» или «лоцмана», управляющих движением, тоесть от конкретных людей, решающих творческую проблему.

Весь теоретический и практический инструментарий классической ТРИЗможно расположить на трех иерархических уровнях (рис. 6.1). Отметим, что.строго говоря, этим уровням соответствуют и три вида проблем: администра-тивная, техническая и физическая. Однако, далее мы будем условно рассмат-ривать все А-Навигаторы как инструменты оперативного уровня. Это оправ-дано тем, что часто эти инструменты используются даже тогда, когда не всееще решено на тактическом и стратегическом уровне. Причем эти попыткипробного оперирования с задачами позволяют лучше понять их свойства длятактического и стратегического управления.

Рекомендуемый по рис. 6.1 порядок изучения инструментария классическойТРИЗ обусловлен следующими преимуществами:

1. Методы оперативного уровня в наибольшей степени опираются на прак-тику, и поэтому их первоочередное освоение позволяет быстрее начатьприменение инструментов ТРИЗ для решения практических задач (снача-ла несложных, конечно).

Page 74: основы классической триз. м. орлов

2. Знание оперативного уровня служит основой для понимания идей и мето-дов высших уровней, так как изучение идет в направлении от более про-стого и практичного к более сложному и абстрактному.

3. При последующем изучении тактического и стратегического уровней напрактических примерах еще больше закрепляется навык применения опе-ративного инструментария.

4. Наконец, оперативный уровень наиболее полно и убедительно разработан,что ускоряет формирование уверенности в конструктивности и эффектив-ности ТРИЗ в целом.

А-Навигаторы позволяют успешно решать не менее 80 % всех встречающихсяна практике задач. Собственно, и сами эти модели были получены экстракци-ей из так называемых «стандартных» задач, которые как раз и составляютпримерно 80 % мирового патентного фонда. Следует отметить, что «стандарт-ный» характер задачи совсем не означает, что эта задача имеет очевидное илегко получаемое решение. Дело здесь только в том, что при исследовании(реинвентинге) установлено, что для решения таких задач достаточно было быприменения одного-двух «классических» приемов ТРИЗ.

Конечно, эти задачи были решены без знания ТРИЗ, и скорее всего, на поискрешений было затрачено немало усилий и времени. Это только при учебномили исследовательском реинвентинге «легко» видеть, каким именно методоммогла бы решаться та или иная «стандартная» задача. «Реконструкция» про-цесса решения при рассмотрении «стандартных» задач облегчается преждевсего потому, что из патентного описания известно конкретное решение идостаточно ясны признаки фактически реализованных трансформаций!

В новой конкретной ситуации не просто распознать, можно ли решить воз-никшую задачу относительно простыми «стандартными» приемами. В то жевремя это не так важно, поскольку в любой ситуации вполне логично сначалапробовать применить более простые «стандартные» трансформации!

Мы еще вернемся к определению сложности задач в разделах, связанных стактическими и стратегическими моделями ТРИЗ.

В этом разделе Вы сможете повторить за 30 минут весь путь, пройденныйТРИЗ за 45 лет. Мы вместе построим несколько А-Навигаторов! Мы выпол-ним реинвентинг 9 примеров технических решений и увидим, каким образомбыли определены А-Навигаторы. Важно отметить, что сами избранные намипримеры могут быть заменены и другими, однако при достаточно большом ихколичестве результат реинветинга был бы тем же, который и получен в ТРИЗ.

Внимание: пока Вы не познакомитесь со всеми нижеследующими примерами,не следует смотреть раздел Классические навигаторы изобретенияА-Студии.

Page 75: основы классической триз. м. орлов

И еще немного задержитесь здесь, чтобы самостоятельно подумать нал сле-дующими вопросами:

Что может быть общего в изобретениях, сделанных для самолета с вертикаль-ным взлетом-посадкой, для сохранения дома у реки в случае наводнения идля ухода за виноградной лозой? Или в таких изобретениях, как автомобиль-ный подъемный кран, конфета-игрушка «Kinder-Сюрприз» и трубопровод дляудаления строительного мусора с верхних этажей ремонтируемого здания?Как связаны между собой способ защиты ценных декоративных пальм отжары, способ транспортировки природного газа в баллонах и способ произ-водства шоколадных бутылочек с ликерным наполнением?

Может ли в каждой из этих групп изобретений присутствовать некаяобщая идея, принципиально одинаковая модель, которую можновыявить, обобщить и применять впоследствии как один из творческихприемов?

Реинвентинг по ТРИЗ положительно отвечает на эти вопросы.

6.2.1. Реинвентинг для построения специализированногоА-Навигатора № 7 (Приложение 4)

Пример 4 (Задача). Самолет с вертикальным взлетом—посадкой. Эти самолетывыгодны тем, что для них не требуется взлетно-посадочная полоса. Однако впервых образцах взлет и посадка осуществлялись при вертикальном положе-нии корпуса самолета (рис. 6.2). Пилот при этом лежал в кресле на спине имог смотреть только вверх. При взлете это было еще допустимо, но посадка«на хвост» была слишком опасной из-за трудности визуального контроля иуправления.

Таким образом, в этой ситуации имеются функции или свойства, которыеконфликтуют между собой при попытке реализовать главную полезную функ-

Page 76: основы классической триз. м. орлов

цию системы. А именно: вертикальное расположение корпуса самолета соот-ветствует направлению старта/посадки, но неудобно для управления.

Можно записать модель ситуации в виде следующего противоречия:

функция: вертикальный взлет/посадка;

требует (Плюс-фактор):

вертикальное расположение корпуса самолета;

при этом ухудшается (Минус-фактор):

визуальный контроль и управление.

Пример 5 (Задача). Дом у реки. Как сохранить дом, расположенный на берегуреки, в случае наводнения? На рис. 6.3,b показана ситуация, когда вода можетнанести дому значительный ущерб. В этом примере присутствуют острокон-фликтующие между собой требования: дом должен быть близко к воде (пожеланию владельца) при нормальных условиях, и дом должен быть далеко отводы (?!) при наводнениях. Второе условие выглядит как бы фантастическим,сказочным, но никак уж не инженерным, однако оно вполне правильно выра-жает физическое содержание условия для безопасности дома при наводнении.

Можно записать модель этой ситуации в виде следующего противоречия:

Объект: дом

должен быть: рядом с рекой (при нормальных условиях);

не должен быть: рядом с рекой (при наводнении).

Кажется, что эти требования взаимно исключают друг друга.

Пример 6 (Задача). Виноградная лоза. Зимой для уменьшения поражения ви-ноградной лозы морозом, лозу снимают с поддерживающей проволоки и при-гибают к земле, удерживая у земли колышками (рис. 6.4). Можно поставитьтакой вопрос: как уменьшить трудоемкость этой работы?

Page 77: основы классической триз. м. орлов

В этом вопросе не содержится противоречия в явном виде. Это как раз и оз-начает, что имеется явное административное противоречие: есть намерениеулучшить систему, но не указано, что мешает достичь поставленную цель.Сформулируем модель задачи в виде следующего варианта противоречия:

функция: укладка лозы на землю;

имеет Плюс-фактор: уменьшаются потери лозы (из-за поражения коры приморозе);

имеет Минус-фактор: растут потери времени и затраты труда на эту операцию.

Можно для той же задачи сформулировать инверсную модель:

функция: оставление лозы на шпалерах;

имеет Плюс-фактор: нет потерь времени и затрат труда на эту операцию;

имеет Минус-фактор: растут потери лозы (поражение коры при морозе).

Можно видеть, что модели в виде противоречия позволяют более точно опре-делить, в каком направлении нужно искать решение, и что может ограничи-вать поиск решения.

А теперь рассмотрим известные запатентованные идеи решений.

Пример 4 (Решение). Самолет с вертикальным взлетом—посадкой. В патентномфонде имеется немало идей для решения поставленной проблемы. Все онидостигали главной цели: сохранить нормальное положение пилота при стартеи посадке и обеспечить тем самым требуемый уровень безопасности. И былонечто общее во всех этих идеях: введение в систему подвижной части — пово-рачивающихся крыльев, поворачивающихся двигателей и т. п.

Например, при старте/посадке двигатели могли быть в вертикальном положе-нии, как указано на рис. 6.5,а. При полете двигатели поворачивались в гори-зонтальное положение (рис. 6.5,b). При этом корпус самолета остается как бынеподвижным, ориентированным горизонтально при старте и посадке, а пи-лот имеет нормальные условия для наблюдения и управления.

Page 78: основы классической триз. м. орлов

Пример 5 (Решение). Дом у реки. Ключевая идея запатентованного в 1994 годуфирмой Winston International, штат Колорадо, США решения (рис. 6.6): домсделан подвижным, перемещающимся! Это решение строго реализует обе частисформулированного противоречия!

Во время наводнения дом всплывает, так как его подземная часть выполненав виде герметичного понтона, заполненного к тому же плавучим веществом,например, пенопластом. При этом, обратите внимание (!), вода сама удаляетот себя дом, поднимая его над опасным уровнем. Дом удерживается такжераздвижными телескопическими сваями. Для долговременного функциониро-вания дом может иметь запасы продуктов и воды и источник энергии в видедизельного двигатель-генератора электроэнергии.

Пример 6 (Решение). Виноградная лоза. Я полагаю, что уважаемые читателиуже догадались применить найденный общий подход из предыдущих двух ре-шений! Перед зимой виноградную лозу вовсе не снимают с поддерживающейпроволоки, а пригибают к земле всю шпалеру, которая снабжена шарнирамиу основания стоек (рис. 6.7). То есть и здесь ключом к решению проблемы по-служило придание всей конструкции динамизма, подвижности.

Таким образом, из совершенно разных проблем и их решений извлечена однаи та же ключевая идея, один и тот же способ решения, который можно опре-делить как особый изобретательский прием. В ТРИЗ этот прием называется«Динамизация» и имеет № 07 в А-Каталоге специализированных приемов.

Page 79: основы классической триз. м. орлов

На основании реинвентинга многих тысяч изобретений сформулированообобщенное краткое описание этого приема в виде набора следующих реко-мендаций:

a) характеристики объекта (или внешней среды) должны меняться так, чтобыбыть оптимальными на каждом шаге работы;

b) объект разделить на части, способные перемещаться относительно другдруга;

c) если объект неподвижен, сделать его подвижным, перемещающимся.

6.2.2. Реинвентинг для построения специализированногоА-Навигатора № 34 (Приложение 4)

Пример 7. Подъемный кран на автомобильной платформе. Мы все видели этиподъемные краны. Но все ли мы, или хотя бы все ли инженеры задумывалисьо том, какой именно изобретательский прием применен в качестве основногопринципа его конструкции?

Основное противоречие, которое нужно было решить при создании такогокрана, может быть сформулировано следующим образом: стрела крана должнабыть длинной в рабочем состоянии и должна быть не намного длиннее всегонесущего автомобиля для транспортировки. Принципиальное решение состо-ит в том, что конструкция стрелы сделана подвижной (применена Динамиза-ция), а главное — состоящей из множества фрагментов, вложенных один в дру-гой (рис. 6.8).

Page 80: основы классической триз. м. орлов

Пример 8. Строительный мусоропровод. В изобретениииспользуются пустотелые конусы, которые полностьювкладываются друг в друга при транспортировке и затемвыдвигаются почти на всю свою высоту, оставаясь час-тично вложенными, для создания «трубы» нужной дли-ны! По этой трубе строительный мусор попадает с верх-них этажей прямо в контейнер для вывоза мусора(рис. 6.9).

Пример 9. Шоколадная конфета «Kinder-Сюрприз». При-знаюсь, что я не отказываю себе в удовольствии прино-сить иногда домой эти конфеты удивления и радости.Действительно, никогда не знаешь, что там обнаружитсявнутри! Это может быть модель автомобиля или самоле-тика, медвежонок или домик и так далее, — фантазия усоздателей этого продукта просто бесконечна! Но глав-ный сюрприз, как правило, состоит в том, что в собран-ном виде любая из этих игрушек не могла бы размес-титься внутри конфеты! И поэтому спрятанные там иг-рушки состоят из нескольких частей, складываемых так,чтобы п у с т о т а внутри одной части заполнялась другойчастью. Это и есть главный принцип этой конфеты,примененный в ней многократно: посмотрите также сэтой точки зрения на саму съедобную часть и даже наобертку (рис. 6.10).

Суммируя результаты реинвентинга, можно прийти к за-ключению, что Вы имеете дело с принципом многократ-ного вложения одного объекта в другой, в соответствии скоторым рационально используется пустота. Благодаряэтому экономится пространство и совмещаются совер-шенно «несовместимые» функциональные свойства.

В классической ТРИЗ этот прием получил образное название «Матрешка» поназванию русской народной игрушки (рис. 6.11), в которой несколько дере-

Page 81: основы классической триз. м. орлов

вянных пустотелых и разъемных кукол вложены последовательно одна в дру-гую (см. прием № 34 в А-Каталоге).

На основе реинвентинга тысяч подобных изобретений было составлено сле-дующее лаконичное описание этого приема:

a) один объект размещен внутри другого объекта, который в свою очередь нахо-дится внутри третьего и т. д.;

b) один объект проходит сквозь полость в другом объекте.

6.2.3. Выявление физико-технического эффекта, определениевсех (!) четырех фундаментальных навигаторов, комплексногонавигатора № S2-4 (Стандарт 5.3.1 — Приложение 2)и специализированных навигаторов № 10 и № 11 (Приложение 4)

Пример 10. Как спасают пальмы на центральном бульваре от жары. Мой млад-ший сын рассказал мне об одном «ТРИЗ-решении», которое он заметил в Ва-ленсии, в Испании, когда проходил там практику по испанскому языку. Дляспасения пальм на центральном бульваре от жары на землю вокруг основанияпальм кладут крупные куски льда. Лед медленно тает и непрерывно снабжаетценные деревья водой, бывает, что в течение нескольких дней, если его при-сыпают сверху корой и листвой. Поскольку мы обмениваемся в семье такимизамеченными нами примерами, то позднее старший сын рассказал нам, чтоувидел этот же способ, будучи на конференции в Сан-Диего в Калифорнии.

Оба моих сына избрали себе профессии, весьма далекие от физики или хи-мии, но их школьных знаний вполне хватило, чтобы точно назвать явление,которое было здесь использовано. Это — фазовый переход, в данном случае,переход воды из твердого состояния (лед) в жидкое. Именно это физическоеявление было использовано в технологическом способе «непрерывного поли-ва» деревьев, то есть получило пример технического применения. Совместноепредставление физического явления с указанием его возможного техническо-го применения и дает описание определенного базового А-Навигатора, илифизико-технического эффекта (по терминологии классической ТРИЗ).

Page 82: основы классической триз. м. орлов

Кстати, а какую структуру имеет проблема, разрешенная этим изобретатель-ным способом?

Сформулируем противоречие в следующем виде:

1) вода должна быть под пальмой, чтобы дерево могло перенести жару;

2) вода не должна быть под пальмой, так как она быстро уходит в землю илииспаряется от жары.

Такое острое противоречие, обусловленное физическими процессами, проте-кающими в физических объектах, как правило, наиболее эффективно решает-ся с помощью фундаментального А-Навигатора № 4: разделение противоречи-вых свойств в веществе. В данном случае такое разделение произошло на ос-нове использования возможности перехода вещества в другое фазовоесостояние. Действительно, вода может долго находиться под пальмой, но всостоянии льда. Точнее, на некотором интервале времени (пока лсд полно-стью не растает) в одной области пространства (на земле вокруг пальмы) воланаходится в двух состояниях: одна часть — в виде льда, а другая — в видежидкости.

Эта рекомендация в конкретном и практичном виде содержится также в ком-плексном А-Навигаторе № S2-4 (Стандарт 5.3.1):

Использовать дробление вещества (поля), применить капиллярно-пористыеструктуры, ввести динамизацию полей и компонентов, использовать фазовыепереходы вещества, применить согласование/рассогласование ритмики и частот.

А-Навигаторы были получены на основании реинвентинга десятков тысячизобретений, которые показали, что именно такими трансформациями былиполучены выдающиеся технические идеи.

В то же время в учебнике не обязательно и даже не желательно объяснять мо-дели трансформаций на сложных технических примерах, понятных сравни-тельно узкому кругу специалистов. Напротив, следует подбирать примеры,понятные как можно более широкому кругу читателей. Этому принципу мыбудем следовать и далее.

Для закрепления только что проведенного реинвентинга рассмотрим еще двеучебные задачи из классической ТРИЗ.

Пример 11. Как обеспечить подачу газа в шахту. Для ряда операций в шахтахиногда целесообразно использовать горение некоторого рабочего вещества,например, природного газа. Возникает следующая проблема: газ должен бытьнепрерывно в зоне проведения технологических операций, и избытка газа недолжно быть для обеспечения пожарной безопасности. Кроме того, системашлангов и труб длиной в несколько километров является сложной и дорогой.

Для обеспечения безопасности всей системы не строят систему шлангов илитруб, а поставляют газ отдельными порциями в баллонах. При этом газ несжимают, а переводят в жидкое состояние, в котором он занимает малый объ-ем. Сменные баллоны хранятся в шахте на достаточно большом расстоянии отместа горения газа.

Page 83: основы классической триз. м. орлов

В этом «простом» технологическом изобретении реализовано сразу несколькоА-Навигаторов!

Во-первых, применены уже знакомые нам фундаментальный А-Навигатор№ 4 и комплексный навигатор № S2-4.

Во-вторых, применен фундаментальный А-Навигатор № 2: разделение проти-воречивых свойств во времени. Действительно, рабочее вещество находится вовремя горения в газообразном состоянии, а для хранения и транспортиров-к и — в жидком. Причем для конкретного баллона эти интервалы временичастично пересекаются, то есть имеют общую часть, длящуюся от начала ис-пользования конкретного баллона до тех пор, пока в нем не закончится газ(обратите внимание на аналогию с тающим льдом под пальмами).

В-третьих, применен фундаментальный А-Навигатор № 3: разделение противо-речивых свойств в структуре. Осуществлен переход от непрерывной системытранспортировки газа к дискретной, порционной, однако, вся система в це-лом по-прежнему обеспечивает непрерывную подачу газа в рабочую зону. Тоесть, части системы имеют одно функциональное состояние, а вся система вцелом — противоположное!

Пример 12. Как делают шоколадные бутылочки с ликером. Такие бутылочкиможно получать, например, таким способом: отливать из горячего жидкогошоколада пустотелые бутылочки, после остывания наполнять их ликером изакрывать бутылочку, снова разогревая верх горлышка до жидкого состоянияи сжимая горлышко до образования сплошной головки вверху бутылочки.При этом каждая бутылочка создается из двух сплавляемых половинок, длячего вдоль линии соединения этих половинок шоколад снова нужно разогре-вать до жидкого состояния. Этот способ был сложен, дорог и низкопроизво-дителен. Это объясняется тем, что сложны и дорогостоящи формы для залив-ки шоколада. Низкая производительность объясняется медленным процессомнаполнения и освобождения форм, медленным процессом соединения поло-винок бутылочки, медленным процессом заливки ликера, необходимостью за-крытия горлышка бутылочки.

Здесь активно используется фундаментальный А-Навигатор № 4 и физи-ко-технический эффект фазового перехода веществ. Однако, вся технологиянедостаточно эффективна. Административная проблема: как можно улучшитьпроцесс в целом?

«Идеальный» технологический процесс должен исключить дорогие формы длязаливки шоколада, должен исключить получение бутылочки из двух полови-нок, должен исключить операцию закрытия горлышка бутылочки! То есть, мытребуем совершенно невозможного! Но, может быть, «невозможного» тольков рамках старой технологии? А почему бы не изобрести новую технологию,именно ту, которая нам нужна, более «идеальную»?! Что нам мешает?

Прежде всего, нам мешает устойчивое стереотипное представление о «неизме-няемой» последовательности операций в известном технологическом процес-се. Нам мешает стереотипное представление о «неизменяемых» состоянияхвеществ в технологических операциях.

Page 84: основы классической триз. м. орлов

Тогда давайте представим себе мысленно «идеальный» технологический про-цесс, не задумываясь вначале о том, как он может быть реализован. То естьпредставим его только как идеальную функциональную модель.

Пусть расплавленный шоколад заливается в некую «невидимую» форму так,что сразу приобретает форму бутылочки, как будто внутрь металлическойформы вложена тоже «невидимая» форма в виде бутылочки. Посмотрите этотпроцесс мысленно еще и еще раз! Обратите внимание, как обтекает шоколадпрозрачные формы. Кстати, не кажется ли вам, что верхняя форма вовсе ненужна, так как шоколад вполне точно обтекает линии внутренней формы?!Давайте откажемся от верхней формы! Уже неплохо! Но что делать с внутрен-ней формой? Как ее извлечь из застывшей на ней шоколадной бутылочки?

Снова наблюдаем, как расплавленный шоколад обтекает нечто невидимое,прозрачное, как стекло или лед. Кстати, «идеальный» технологический про-цесс тот, в котором результат есть, а самого процесса как бы и нет! То жеможно сказать и о некоторой «идеальной» системе: функция есть, а системынет, и она не потребляет энергии и не занимает пространство.

Применим эту «идеальную» функциональную модель к нашей задаче. Пустьвнутреннюю форму вообще не нужно извлекать! Это может означать, напри-мер, что она станет полезной частью готового изделия!? Вы еще не догада-лись? Тогда попробуйте не читать дальше и снова мысленно наблюдайте, какшоколад обтекает некую «внутреннюю форму». Подумайте, как из чего-то«полезного» можно сделать «неизвлекаемую» форму?

Думаю, что Вы уже нашли решение: в качестве «внутренней» формы можноиспользовать предварительно замороженный ликер. Я не привожу поясняю-щего рисунка, чтобы не лишать Вас удовольствия нарисовать этот процесс са-мостоятельно. Попробуйте! Это полезно и интересно.

А наша цель состоит в том, чтобы раскрыть теперь теоретическую, абстракт-ную сторону этого решения.

Во-первых, мы применили фундаментальный А-Навигатор № 4 не только кшоколаду, что имело место в традиционной технологии, но и к ликерному на-полнителю.

Во-вторых, мы дважды применили комплексный А-Навигатор S2-4 в части,касающейся физико-технического эффекта фазового перехода: заморажива-ние ликера с его последующим таянием внутри готовой бутылочки и расплав-ление шоколада с последующим его остыванием на ледяной вначале ликер-ной форме!

В-третьих, здесь работает фундаментальный А-Навигатор № 1: разделение про-тиворечивых свойств в пространстве. Вместо поиска действительно невоз-можного способа извлечения внутренней формы из готовой шоколадной бу-тылочки (если бы форма действительно была металлической) нужно исследо-вать ресурсы самого внутреннего пространства! При этом все противоречияснимаются путем использования пустого пространства внутри бутылочки длязаполнения полезным веществом!

Page 85: основы классической триз. м. орлов

Наконец, мы использовали еще два специализированных А-Навигатора!

Ледяная ликерная форма есть не что иное, как несколько уменьшенная копиявсей шоколадной бутылочки (готового продукта). А это есть реализация частиспециализированного А-Навигатора № 10 «Копирование»:

вместо недоступного, дорогостоящего, неудобного или хрупкого объекта исполь-зовать его упрощенные и дешевые копии.

В новой технологии не ликер «заливается» в бутылочку, а бутылочка «налива-ется» на замороженный ликер! А это есть реализация специализированногоА-Навигатора № 11 «Наоборот»:

a) вместо действия, диктуемого условиями задачи, осуществить обратное дей-ствие (например, не охлаждать объект, а нагревать);

b) сделать движущуюся часть объекта (или внешней среды) неподвижной, а не-подвижную — подвижной;

c) перевернуть объект «вверх ногами», вывернуть его наизнанку.

Мы рассмотрели еще не все модели трансформаций, которые скрыты даже вэтих несложных примерах. Но наша цель была в том, чтобы увидеть их реаль-ное существование в окружающих нас реальных объектах.

Уже теперь Вы можете подойти к анализу интересующих Вас задач более вни-мательно, с более глубоким пониманием скрытых системных связей.

Ваши аналитические и творческие возможности неизмеримо увеличатся, ко-гда Вы тщательно изучите «навигаторы мышления» и А-Алгоритмы, предла-гаемые в этом учебнике. И все же иногда Вы установите, что задача не реша-ется на основе доступных Вам методов и знаний. Вы можете прийти к выводу,что нужно заменить всю систему в целом, может быть даже заменить сампринцип, на котором система основана, и провести дополнительные научныеисследования. Но и в таких случаях Ваше решение не будет отступлением илипоражением, а будет обоснованным стратегическим решением.

Page 86: основы классической триз. м. орлов

В 1996 году я представлял пионерский софтвер «Invention Machine» и его но-вейшую версию «TechOptimizer» фирмы Invention Machine Corp., USA накрупнейшей всемирной индустриальной выставке Industriemеsse в Ганновере,Германия. Оставляя иногда свой стенд на ассистента, я посещал другие стен-ды и предлагал специалистам R&D62 наши методы и софтвер. Софтвер и ме-тоды имели большой успех. Напротив был павильон крупной компаниииз-под Штутгарта, производящей электромоторы в огромном диапазоне раз-меров — от миниатюрных для приборостроения до многометровых для океан-ских судов. На длинной магнитной доске робот-манипулятор непрерывно пе-реставлял магнитные кружочки, сохраняя в целом следующий рекламныйслоган:

КАЧЕСТВО МЫШЛЕНИЯ = КАЧЕСТВО ПРОДУКЦИИ

Я записал этот ударный слоган для применения на семинарах и вскоре встре-тился с профессором, руководителем R&D-отделения этой компании. Егопервая реакция на мое предложение познакомиться с ТРИЗ и софтвером былаочень лаконичной, отразившей позицию многих руководителей компаний идаже отделений R&D. Он ответил холодно и вызывающе: у нас нет проблемыизобрести, а вот может ли ваша «Invention Machine» помочь нам продавать?!

Завершение нашей дискуссии я привожу далее в разделах Стратегия изобре-тения и Тактика изобретения.

А вот для обдумывания записанного слогана появилось гораздо больше осно-ваний. Хотя в целом желание достичь более высокой конкурентоспособностибез инноваций можно было сразу же определить как «бунт на коленях» по об-разному выражению самого Генриха Альшуллера в подобных ситуациях.

После этого в течение 3 лет состоялось еще около 130 встреч с представителя-ми промышленности и исследовательских организаций. В итоге представле-ние о качестве мышления приняло следующий вид (рис. 7.1).

Функциональная полнота означает способность и готовность создавать идеи сучетом комплексных требований к качеству системы (продукта). Решение,ориентированное только на один показатель, часто оказывается непригодным

Page 87: основы классической триз. м. орлов

из-за острого конфликта с другими показателями качества системы или из-законфликта с другими системами, например, с Природой.

Конструктивность означает способность и готовность целенаправленно иобоснованно совершенствовать систему, не отступая от цели, но и не подда-ваясь амбициозным или, наоборот, пораженческим настроениям. Конструк-тивность означает также способность и готовность к прорыву, к лидерству.

Скорость означает способность отвечать на вызов без запаздывания. Скоростьозначает способность уходить в отрыв и предложить вызов.

Устойчивость — мышление должно успешно выдерживать воздействие ме-шающих факторов.

Что снижает качество мышления? Ответ на этот вопрос также сформировалсяна основе еще более продолжительного времени и опыта (рис. 7.2).

Page 88: основы классической триз. м. орлов

Полная компенсация всех указанных на рис. 7.2 негативных факторов былабы возможна при реализации следующих позитивных факторов (рис. 7.3).

Однако пока не приходится рассчитывать на немедленное изменение системывысшего образования, равно как и на повсеместное преподавание ТРИЗ. В тоже время есть возможность самостоятельного изучения ТРИЗ и прохождениятренингов по этой технологии. Все больше и больше фирм предлагают услугив этом направлении.

Далее, в чем конкретно лежат затруднения, с которыми каждый специалистсталкивается в своей работе почти непрерывно? Чем различаются такие, каза-лось бы, одинаковые понятия, как «задача» и «проблема»? Ответы на эти во-просы могут немало прояснить также, в чем разница между творческим и ру-тинным, стандартным решением.

Рекомендации большинства методологов творчества относятся в основном кэтапу генерации решения, к моменту, в котором предшествующий труд иупорное размышление над проблемой соединяются с вдохновением и приво-дят к озарению, инсайту и возникновению идеи. При этом немало полезно-го разработано для развития таких компонентов творчества, как ассоциатив-ное мышление, концентрация внимания, улучшение памяти, преодолениенегативных стереотипов. Наши усилия по созданию эффективных техноло-гий для решения творческих проблем мы также концентрируем именноздесь. Хотя, как будет видно из дальнейшего, ТРИЗ охватывает все этапырешения проблем.

И кроме этого, целью ТРИЗ является сокращение трудоемкости подготовкипроблемы к решению и создание принципиально более благоприятных усло-вий для проявления личных способностей специалиста, для укрепления егоуверенности в правильности и эффективности наших методов. Именно на-дежность и эффективность методов ТРИЗ создают реальную мотивацию, ве-дущую к настоящему вдохновению.

Нередко даже задачи одного типа могут быть решены только различными ме-тодами. Обычно это связано с уровнем сложности задачи. Причем, если задача

Page 89: основы классической триз. м. орлов

становится сложной из-за ее размерности, то можно говорить о сложностикак о большой трудоемкости. Задачу часто называют проблемой именно из-забольшой трудоемкости решения.

Предположим, что для поиска оптимального сочетания параметров како-го-либо объекта Вам надо рассмотреть 10 факторов при 10 значениях каждогоиз них. Если даже Вы будете тратить на анализ одного сочетания 1 секунду, торешение всей задачи потребует более 300 лет! Здесь не обойтись без математи-ческой модели и хорошего компьютера. Более того, многие комбинаторныезадачи не под силу и современным компьютерам.

И все же главным признаком для определения задачи как проблемы являетсянедостаточность или недостоверность информации о задаче или о методе еерешения (рис. 7.4). К особому признаку относится ограничение по каким-ли-бо ресурсам, особенно часто — по ресурсу времени для решения задачи. Ино-гда даже простые задачи превращаются в серьезные проблемы при недостаткевремени для их решения.

Рассмотрим несколько примеров.

Пример . Перемножение в уме двух однозначных чисел, например.5 х 6 = 30, является простой задачей. Более того, это стандартная табличнаязадача, для которой известен и автоматически воспроизводится ответ (реше-ние).

Пример . Перемножение в уме двух трехзначных чисел, например.479 х 528 = ?, да еще при ограничении времени на решение, допустим. 20 се-кундами, мало кому доступно из людей всей планеты. Это — трудно разреши-мая без специальной тренировки проблема. Хотя существует метод перемно-жения с записью «в столбик», который вполне за минуту позволяет решитьэту задачу.

Page 90: основы классической триз. м. орлов

Пример . Всего лишь 2 века назад решение квадратичного уравнения видавыполняли только графически или последовательным подбо-

ром подходящих решений (корней). Сейчас метод решения представлен в из-вестной аналитической формуле: Проблема былапереведена в ранг задачи.

Пример . Злой герой из известной легенды, желая завладеть юной красави-цей, ставит условие, по которому он освободит от долга ее отца и отпустит ее,если она при свидетелях на площади достанет из мешочка белый камешек,а не черный. При этом он тайно кладет в мешочек два черных камешка. ЧтоВы посоветуете девушке для спасения? (Дополнительная информация: девуш-ка достоверно узнала о коварном замысле.)

Пример . Известно, что дорожные пробки на автобанах и на улицах городоввозникают потому, что пропускная способность (основной функциональныйресурс) этих транспортных путей исчерпана, по крайней мере, в часы «пик»либо при малейшем появившемся препятствии в виде неисправного или раз-гружающегося автомобиля, ремонта ближайшего к дороге здания или дороги.В Германии, например, исчерпаны ресурсы земли для строительства парал-лельных путей. Можете ли Вы предложить перспективные технические идеидля модернизации существующих автобанов и улиц? Можете ли Вы предло-жить новые транспортные системы для городов и междугородных коммуника-ций? Можете ли Вы основательно защитить свои идеи?

Вполне очевидно, что решение проблем, приведенных в примерах и , тре-бует изобретательного подхода и незаурядных творческих способностей. Так,для решения проблем, представленных в примере , сегодня (начало III ты-сячелетия!) работают целые исследовательские институты. Но эффективныерешения еще не известны человечеству!

Решение примера , найденного бедной девушкой, казалось бы, в безнадеж-ной ситуации, объясняет нам психолог и педагог Edward de Bono. Девушкадостает один из камешков и выбрасывает его, не показывая никому, послечего просит всех посмотреть на оставшийся камешек. Если он черный, то вы-брошенный камешек был белый, и, следовательно, они с отцом свободны!Злой герой проиграл, так как он не может раскрыть свой замысел, отказыва-ясь достать оставшийся камешек и требуя найти выброшенный.

Полезность этого примера и его объяснения не только в том, что мы не долж-ны сдаваться вообще ни в каких ситуациях, но и в том, что мы должны какминимум рассмотреть ситуацию с разных точек зрения, учесть возможностиизменить ее, найти ресурсы для этого, часто спрятанные совсем рядом.

Действительная проблема нередко заключается в том, что мы либовообще не пытаемся найти не очевидные на первый взгляд ресурсы,либо, надо признать, не умеем это делать.

Ориентировочная оценка количества задач разного уровня сложности, встре-чающихся в патентном фонде, полученная еще Г. Альтшуллером, близка к из-вестной пропорции «80 : 20» (рис. 7.5).

Page 91: основы классической триз. м. орлов

В основе решения любой задачи лежат профессиональные знания. Это условиенеобходимое, но не достаточное.

Для того, чтобы перевести проблему в ранг задачи (рис. 7.4), нужно, как ми-нимум, удовлетворить условиям достаточности, а именно, иметь полную идостоверную информацию о проблемной ситуации, располагать достаточны-ми ресурсами и знать методы, с помощью которых можно всю совокупностьочевидных и скрытых ресурсов трансформировать в идею решения.

Еще раз вспомним, что рекомендуют такие традиционные подходы, как. на-пример, метод фокальных объектов, брейнсторминг, синектика и морфологи-ческий анализ (рис. 2.2—2.5):

• ищите случайные ассоциации;

• фантазируйте;

• почувствуйте себя в роли объекта;

• перебирайте все возможные комбинации.

Эти методы в целом небесполезны и нередко могут привести к решениям не-которых стандартных проблем. Но с ростом сложности проблем эти методыбыстро теряют свою эффективность. Строго говоря, они не способны стиму-лировать вдохновение. Следствием являются длительные и беспомощные по-иски, большие материальные и интеллектуальные затраты, слабые и непри-годные идеи, ошибочный отказ от достижения действительно перспективныхцелей.

Нужны высокоэффективные методы направленного мышления при ре-шении конструкторско-технологических проблем с острыми физи-ко-техническими противоречиями. Нужны конкретные конструктивныенавигаторы для конкретных проблемных ситуаций.

Именно ТРИЗ предоставляет мыслительные навигационные инстру-менты и навигационные системы для решения как стандартных, так инестандартных технических проблем.

ТРИЗ является системой, дисциплинирующей мышление. Специалист, владею-щий ТРИЗ, психологически защищен и вооружен, так как глубоко сознает,что он владеет лучшим инструментарием для изобретательного мышления,

Page 92: основы классической триз. м. орлов

который до настоящего времени выработало человечество. Это дает уверен-ность в своих силах и, как ничто другое, способствует вдохновенному и сме-лому решению проблем.

ТРИЗ является качественной теорией. Модели такой теории представляют со-бой рекомендации, правила, инструкции, рецепты, образцы. Все эти моделислужат инструментами для мышления, являются навигаторами мышления.

ТРИЗ — не единственная качественная теория. Достаточно указать на такие«настоящие» теории, как качественная физика, качественная теория информа-ции, психология или медицина, многие разделы химии. Качественные модели ле-жат в основе теорий живописи и кинематографа, музыки и литературы, спор-та, маркетинга, обучения, теории военной стратегии, тактики и оперативногоискусства и так далее, практически для любой области знаний и деятельностилюдей.

ТРИЗ является конструктивной теорией. Такими же конструктивными явля-ются и другие указанные выше теории.

Конструктивизм имеет здесь двойное основание.

Первым, неформальным, основанием является сугубо прагматическая интер-претация моделей и назначения каждой теории: ориентация на прикладныепроблемы, на получение практических результатов на основе систематизиро-ванного и обобщенного опыта, на основе экспериментального подтвержденияосуществимости и эффективности применяемых моделей теории. Например,психологи часто оправдывают свои модели и теории следующим конструктив-ным тезисом: мы не знаем точно, как работает мозг, но во многих случаях мыточно знаем, как помочь индивидууму принимать правильные решения.

Вторым, формальным, основанием может служить строгое соответствие моде-лей качественных теорий концепциям конструктивной математики. Очень уп-рощенно, но сохраняя корректность, можно сказать, что конструктивная ма-тематика имеет дело с качественными моделями, определяемыми следующимконструктивным способом: 1) фиксируются исходные конструктивные объек-ты, определяемые, в частности, в виде примеров или образцов; 2) фиксируютсяправила (не обязательно аксиоматические), по которым строятся новые объек-ты из уже имеющихся; 3) фиксируются условия, налагаемые на исходные ипостроенные объекты и определяющие их конструктивность (например, осу-ществимость, полезность и эффективность).

Совокупность правил, определяющих построение новых конструктивных объ-ектов, называется алгоритмом. Обобщенные алгоритмы, на основе которыхмогут быть построены специализированные (ориентированные на определен-ное приложение, на определенный класс моделей) или детализированные (бо-лее точные) алгоритмы, называются мета-алгоритмами.

Page 93: основы классической триз. м. орлов

Рассмотрим некоторые вспомогательные примеры.

Пример n6. Вы готовитесь организовать вечеринку. Вы определяете предвари-тельно, сколько ожидается гостей, какие типы коктейлей Вы хотите предло-жить, сколько приготовить готовых коктейлей, какие коктейли можно будетготовить непосредственно во время вечеринки по вкусу гостей, стоимость ве-черинки, наличие запаса нужных для коктейлей компонентов. Затем, не слиш-ком полагаясь на свою память, Вы обращаетесь к справочной книге с рецепта-ми коктейлей и выбираете нужные разделы по типам коктейлей, например, ал-когольные и безалкогольные, с определенным видом напитка, со льдом илибез льда. Затем Вы выбираете известные или новые названия, изучаете каждыйрецепт, уточняете и, возможно, несколько меняете компоненты и пропорции,аранжируя букет коктейля в соответствии с Вашим оригинальным вкусом. На-конец, Вы проверяете, все ли коктейли Вы «спроектировали», и есть ли у Васвсе необходимое, чтобы коктейлей хватило на все время вечеринки.

Это описание можно рассматривать как «мета-алгоритм» подготовки коктей-лей для вечеринки. Заметьте, не конкретного коктейля, а любого одною идинескольких коктейлей! При этом рецепт для приготовления конкретного кок-тейля можно рассматривать как алгоритм для навигации Вашего мышлении сцелью приготовления этого конкретного коктейля.

Выделим в этом «мета-алгоритме» вполне очевидные этапы, на которых реша-ются разные по содержанию задачи. Если организацию вечеринки принять запроблему, то на первом этапе Вы занимались изучением проблемной ситуа-ции: определяли количество гостей, вспоминали их вкусы, придумывали типыкоктейлей и т. д. На втором этапе Вы обратились к справочнику, чтобы про-верить правильность того, что Вы помнили о некоторых коктейлях, или уз-нать о новых рецептах. На третьем этапе Вы работали с моделями — рецепта-ми коктейлей, чтобы воспроизвести их или аранжировать новые. Наконец.Вы проверили свою готовность к проведению вечеринки.

Весь мета-алгоритм уложился в четыре крупных этапа, которые вполне понят-ны и которые на самом деле имеют намного больше деталей для описаниявсех практических действий. Можно дать названия этим этапам, например, вследующем виде: диагностика (проблемной ситуации), редуцирование (приве-дение к известным моделям), трансформация (получение идей на основе на-правляющих правил трансформации) и верификация (проверка потенциальнойдостижимости целей).

В заключение этого примера отметим лишь, что редкий справочник содержитбольше, чем несколько десятков рецептов-«моделей». Так и в ТРИЗ: из не-скольких десятков основных ТРИЗ-моделей можно построить нужный набордля решения конкретной задачи. То есть направленное комбинированиеА-Навигаторов позволяет решать десятки и сотни тысяч самых разных задач.

Пример n7. Для решения практических задач производства, планирования.проектирования, управления, исследований разработаны и разрабатываютсятысячи математических моделей и вычислительных алгоритмов. Для каждогокласса задач существует определенная обобщенная схема решения любой за-

Page 94: основы классической триз. м. орлов

дачи, принадлежащей этому классу. Эта обобщенная схема и есть «мета-алго-ритм». Рассмотрим, например, упрощенный «мета-алгоритм» решения системлинейных алгебраических уравнений (рис. 7.6) для некоторой практическойзадачи. Модели линейной алгебры имеют большое практическое значение длязадач обработки экспериментальных данных по методу наименьших квадра-тов, для приближенного решения линейных интегральных и дифференциаль-ных уравнений методом конечных разностей (например, при компьютерномЗD-моделировании) и т. п.

Выбор практического способа решения систем линейных алгебраических ре-шений зависит от структуры исходных данных, объема системы (количестванеизвестных переменных) и даже от вычислительной мощности компьютера.Например, выбор метода решения хорошо обусловленных систем при достаточ-но большом объеме данных становится нетривиальной проблемой (существуетбольшое количество итерационных методов, методов скорейшего спуска, ми-нимальных неувязок и других, обладающих различной эффективностью); Бо-лее того, для некоторых структур данных задача может не иметь «классическо-го» точного решения {некорректно поставленные и плохо обусловленные задачи).

Для данного класса задач «мета-алгоритм» обладает свойством инвариантно-сти, так как не зависит от содержания конкретных процедур его этапов. Важ-но отметить, что этапы Диагностика и Верификация относятся к области суще-ствования задачи, то есть к определенной области практического применения

Page 95: основы классической триз. м. орлов

линейных уравнений. Этапы Редукция и Трансформация относятся к математи-ческой теории линейной алгебры.

Поэтому переходы 1 и 3 требуют знания и теории моделей, и прикладной об-ласти их применения. Переход 2 требует умения строить и решать модели тео-рии. Даже для применения относительно «простых» упомянутых здесь моде-лей не все выпускники высших заведений успевают получить за время учебыдостаточные практические навыки. Аналогично нужно быть готовым к тому,что ТРИЗ-методы также нужно будет как можно больше совершенствовать напрактике и на тренингах.

Пример . Приведем численное решение для Примера . Пусть в двух цехахзавода работает разное количество станков двух типов. Для точного определе-ния средней мощности, потребляемой станком определенного типа, было ре-шено воспользоваться имеющимися измерениями расхода электроэнергии покаждому цеху за сутки. На этапе диагностики проблемы было установлено ко-личество станков каждого типа и данные по потреблению электроэнергии. Наэтапе редукции была построена система из двух линейных уравнений с двумянеизвестными. На этапе трансформации из двух простейших подходящих ме-тодов (метод исключения переменных и метод замены и подстановки пере-менных) выбрали последний. На этапе верификации путем прямой подстанов-ки полученных значений искомых переменных в исходные уравнения убеди-лись в правильности решения задачи.

Этот пример (рис. 7.7) служит предельно простой практической иллюстраци-ей абстрактной схемы, приведенной на рис. 7.6 и представляется важным длянаработки навыка работы с моделью типа «мета-алгоритм» перед переходом косвоению схемы «Мета-алгоритм изобретения».

Page 96: основы классической триз. м. орлов

Теперь у нас есть все необходимое, чтобы рассмотреть классическиеТРИЗ-примеры, в которых сжато отражается вся классическая ТРИЗ. Но дляупорядочивания процесса реинвентинга мы можем теперь применить движе-ние по основным этапам только что построенного нами мета-алгоритма длярешения системы линейных уравнений или для приготовления коктейлей!

Пример 13. Стрельба по летающим «тарелочкам». На стрельбище (рис. 7.8), гдетренируются спортсмены в стрельбе по летящим мишеням («тарелочкам»),накапливается много мусора в виде осколков от пораженных «тарелочек».Брэйнсторминг обычно дает следующие идеи: делать «тарелочки» неразби-вающимися; применить магнитный материал, чтобы легко было собирать всеосколки с помощью машины; делать «тарелочку» из связанных частей, чтобыони не разлетались далеко; привязать к «тарелочке» нить и после пораженияподтягивать мишень за нить к метательной машине; покрыть стрельбище уби-рающимся ковром; делать «тарелочки» из глины или песка, чтобы потом дос-таточно было разровнять землю и не убирать осколки. И так далее.

Нетрудно видеть здесь очень разные — как неплохие, так и не очень удач-ные — идеи (проанализируйте их и добавьте свои!). Но можете ли вы четкосформулировать главное:

• в чем все же истоки проблемы?

• что именно не удается разрешить здесь ?

• что именно мы хотим получить?

(Здесь также полезно записать свои «модели», чтобы потом сверить их с кон-трольными.)

Page 97: основы классической триз. м. орлов

Попробуем ответить на эти вопросы так, как учит ТРИЗ (внимание: изложениеносит ознакомительный характер и поэтому предельно сжато и упрощено!).

Диагностика. Уточним негативное свойство проблемы, которое нужно устра-нить: осколки отрицательно воздействуют на землю (стрельбище). Предста-вим структуру проблемы (конфликта) в виде следующей логической модели:если осколки убирать, то это очень трудоемко и к тому же мелкие части ми-шеней все равно постепенно сильно засоряют почву стрельбища; если оскол-ки не убирать, то быстро накапливается недопустимо много мусора.

Редукция. Попробуем представить структуру проблемы в еще более упрощен-ном, зато наглядном, виде, например, в виде следующих противоречий.

Теперь, по крайней мере, видно, что есть четкая модель конфликта и могутбыть сформулированы как минимум две стратегии поиска решения. А имен-но, если попытаться устранить негативное свойство в первой модели, то цельбудет — снизить трудоемкость уборки осколков. А если пытаться устранитьнегативное свойство во второй модели, то целью становится — устранить за-грязнение земли.

Вторая стратегия глубже: ее цель совпадает с главным позитивным результа-том, который нас может интересовать, а именно, чтобы земля вообще не за-грязнялась! Поэтому выбираем вторую стратегию.

(Отметим, что уже здесь могут и должны быть применены приемы ТРИЗ израздела 13, но для краткости изложения мы опускаем эти операции в данномпримере.)

Теперь определим (да будет нам позволено так выразиться!) физическую причи-ну конфликта между осколками и землей, то есть физическое противоречие.

Не правда ли, что в этой формулировке проблема выглядит еще более нераз-решимой?!

Рассмотрим развитие физического противоречия во времени:

Page 98: основы классической триз. м. орлов

Сформулируем некий фантастический идеальный результат, осколки самисебя убирают, или еще короче — сами исчезают. Или: земля сама убирает ос-колки. Или: осколки не вредны земле. Или: какой-то волшебник X начистоудаляет куда-то все осколки. Или… Вы можете дать полную свободу своейфантазии!

Что, с этими фантазиями тоже легче не стало? Верно. И все же не кажется лиВам, что что-то неуловимо изменилось? Словно появилась какая-то робкаянадежда!

Попробуем эту надежду привести к физической реальности.

Трансформация. Посмотрим первую версию: могут ли осколки куда-нибудьскатываться или слетаться, то есть собираться вместе? А еще лучше, простоисчезать, как в сказке?

По второй версии: земля пропускает осколки куда-то в глубину и делает ихтем самым безвредными.

Третья версия наводит на размышления о материале мишени: какой материалбезвреден для земли?

(Правда, что эти фантазии напоминают нам синектические операции?)

И все же, какая из этих версий выглядит менее фантастической? Похоже, чтотретья. Хотя и в предыдущих тоже что-то есть.

Итак, материал мишени. Любой материал можно рассматривать состоящим изкакого-то числа частичек, соединенных в одно целое. По-видимому, чтобыматериал не был вреден земле, каждая из его частичек не должна быть вред-ной. Какой это материал? Песок? Нет — будет накапливаться. Что еще?

А что если соединить все эти фантазии: частички этого материала безвредныдля земли, свободно проходят сквозь землю «… сами исчезают?

Что же это в конце концов? Вода? Но вода «летает» только в виде дождя!А впрочем, и в виде… снега или града. СТОП! Град — это лед! Вот и идея ре-шения: делать мишени из льда!

Верификация. Согласны ли Вы, что именно обострение конфликта заставилонас выдвигать… правдоподобные фантазии? Благодаря этому мы поняли, при-чем полно и точно, все элементы конфликта, его протекание во времени и впространстве. Мы точно поняли, что мы хотим получить в результате, развечто выразили это весьма образно, как бы «нетехническим» языком! Наконец,мы просто не смогли пройти мимо изучения материала мишени! При этом пе-ребор подходящих материалов сократился почти сразу до единственного ре-шения! Это и есть ТРИЗ. Но в упрощенном виде. Мы провели экспресс-тре-нинг, сфокусировав всю ТРИЗ в одном примере!

Пример 14. Свая. Иногда при постройке дома или моста в грунт для созданиябудущего фундамента во многих местах предварительно забивают многомет-ровые бетонные столбы (сваи). Проблема заключается в том, что верхняячасть почти всех свай, по которой ударяет молот, часто разрушается (рис. 7.9).

Page 99: основы классической триз. м. орлов

Из-за этого многие сваи не удается забить на нужную глубину. Тогда эти сваиотпиливают, а рядом забивают дополнительные, что снижает производитель-ность работ и повышает их стоимость.

Можете ли Вы предложить новую «неразрушающую» технологию забиваниясвай?

Рассмотрим эту проблему более подробно.

Диагностика. При выполнении полезной функции (забивание сваи) молот как«инструмент» или, в более общем виде, «индуктор», одновременно оказываетна сваю как «изделие» или, в более общем виде, «рецептор», вредное воздейст-вие (разрушает сваю), то есть воспроизводит нежелательную негативнуюфункцию.

Можно указать главную полезную функцию: быстрое забивание неповрежден-ной сваи на нужную глубину.

Приведем несколько стратегий, определяющих направление поиска решений,например:

1) делать всю сваю более прочной и удароустойчивой;

2) воздействовать предварительно на грунт, облегчая продвижение сваи нанужную глубину;

3) создать технологию забивания поврежденных свай;

4) изменить устройство молота, чтобы он меньше повреждал сваю;

5) защитить верхнюю часть сваи от разрушения.

Page 100: основы классической триз. м. орлов

Анализ стратегий определяется многими факторами и в полном объеме выхо-дит за рамки классической ТРИЗ. Упрощая изложение, примем, что три пер-вые стратегии ведут к чрезмерному повышению стоимости изделий и техно-логий. Две последние стратегии выглядят получше, так как можно надеяться,что будут достаточными минимальные изменения, а поэтому на них и сосредо-точимся. При лом можно даже объединить эти стратегии в более обшей фор-мулировке: обеспечить неразрушение верхней части сваи при забивании.

Редукция. Мы уже вполне представляем себе, как формулируется «идеальныйконечный результат». В ТРИЗ отработаны несколько подходов к этому дейст-вию, которое во многом определяет стратегию решения задач и влияет на ско-рость нахождения решения и на его качество. Однако мы рассмотрим этот во-прос позже в основном курсе. А сейчас поступим так же упрощенно, как и впредыдущих примерах. В частности, потребуем, чтобы свая или молот не ста-ли дороже, чтобы были использованы, если нужно, только «ничего не стоя-щие» материалы (ресурсы).

Далее определим то место в свае (рецепторе), которое испытывает на себе са-мое большое по силе негативное воздействие молота (индуктора): голова сваи,то есть верхний торец сваи, и особенно, поверхность, ограничивающая сваюсверху, по которой и ударяет молот. Таким образом, «оперативную зону», гдесосредоточен конфликт, то есть одновременно существуют позитивная и нега-тивная функции, определим в первом приближении как совокупность индук-тора и рецептора и их элементов — соударяющихся поверхностей.

Рассмотрим главные силы и параметры, действующие и определяемые в опера-тивной зоне. Например, чем больше вес и сила удара молота, тем быстрее заби-вается свая, но тем больше проявление внутренних вредных факторов, ведущихк ее повреждению, ниже ее надежность. Если сваю забивать медленно, то можноуменьшить требующиеся для этого вес и силу удара молота и увеличить надеж-ность сваи. На основе подобных физических соображений уже можно постро-ить несколько моделей противоречий (обязательно попробуйте сделать этосами, причем не останавливайтесь на одном варианте, создайте их, например, 3или даже больше). Мы приведем только два «симметричных» варианта, направ-ленных на реализацию главной полезной функции:

Трансформация. Обращение к А-Матрице (Приложение) по первому вариантудает следующий набор приемов, рекомендуемых для применения в первуюочередь:

Что улучшается? — Строка 22: Скорость.

Что ухудшается? — Столбец 14: Вредные факторы самого объекта.

Page 101: основы классической триз. м. орлов

Рекомендуются для применения приемы (приводим сокращенные описания):

05. Вынесение — отделить от объекта мешающую часть или выделить тольконужное свойство;

18. Посредник — использовать промежуточный объект, передающий или пе-реносящий действие, на время присоединить к объекту другой (легкоудаляе-мый) объект;

01. Изменение агрегатного состояния — использовать переходы состояний ве-щества, или изменение гибкости, концентрации и т. п.;

33. Проскок — вести процесс на большой скорости.

Обращение к А-Матрице по второму варианту дает несколько иной наборприемов:

Что улучшается? — Строка 30: Сила.

Что ухудшается? — Столбец 14: Вредные факторы самого объекта.

Рекомендуются для применения приемы (приводим сокращенные описания):

11. Наоборот — отделить от объекта мешающую часть или выделить тольконужное свойство;

12. Местное качество — разные части объекта должны иметь разные функции,или — каждая часть объекта должна находиться в условиях, наиболее соответ-ствующих ее работе;

26. Фазовый переход — использовать явления, возникающие при фазовых пе-реходах вещества, например, выделение или поглощение тепла;

18. Посредник — использовать промежуточный объект, передающий или пе-реносящий действие, на время присоединить к объекту другой (легкоудаляе-мый) объект.

Нетрудно видеть, что приемы 05. Вынесение и 18. Посредник из первого на-бора вместе с приемами 11. Наоборот, 12. Местное качество и 18. Посредник(повторно!) из второго набора явно указывают на необходимость создания воперативной зоне дополнительного объекта в виде посредника между молотоми сваей!

Действительно, при небольшом числе свай иногда на голову забиваемой сваиустанавливают деревянную колодку, по которой и бьет молот до разрушенияколодки. (Другие возможности не будем анализировать из экономии времении места.)

Верификация. Колодка разрушается быстро, причем свая повреждается еще доразрушения колодки из-за неравномерного смятия вещества колодки (дерева).Увы, проблема не нашла полного решения! Но, может быть, теперь оно долж-но быть взято за основу? И нужно рассматривать новую техническую систему,включающую теперь и посредника?

Page 102: основы классической триз. м. орлов

Да, так и нужно действовать. И при этом мы переходим на повторение циклаМета-АРИЗ!

Причем, посредник можно рассматривать как часть сваи, как ее голову, на-пример. Но правильно рассматривать его как часть инструмента! Посмотрите,ведь свая совершенно не меняется! Значит, посредник нужно отнести к до-полнительной части молота!

Позднее мы увидим, что чаше всего изменяют именно индуктор, что это одноиз правил ТРИЗ. Анализируя ход своих решений, Вы наверняка заметили, чтово многих случаях интерпретировать А-Приемы удается далеко не так просто,как это было продемонстрировано мной на специально подготовленных конст-рукциях. Вы правы: для этого нужны и опыт, и хорошее знание физических яв-лений (технических эффектов), и глубокие профессиональные знания. Нако-нец, даже хорошее (а иногда и плохое!) настроение тоже важно. А еще… Пожа-луй, хватит! Тем более, что нам нужно идти дальше! А недостающее «еще» Выобязательно приобретете со временем и с опытом применения ТРИЗ.

Диагностика+. Обратим внимание на то, что посредник теперь тоже являетсяиндуктором, близким к молоту по воздействию на сваю.

Чтобы не повторять предыдущих расуждений из первого цикла, требуется из-менить стратегию дальнейшего поиска в направлении более глубокого анали-за физики процесса!

Можно понять, например, что если материал посредника такой же, как и ма-териал молота, то свая мало выигрывает от этого. Если материал посредникаблизок к материалу сваи (бетон), то он сам разрушается так же, как свая, идаже быстрее из-за меньшей массы. Далее: скорость разрушения посредниказависит от способа его установки на голове сваи — малейший перекос ускоря-

Page 103: основы классической триз. м. орлов

ет разрушение посредника! Это происходит потому, что удар молота и сило-вое взаимодействие основания посредника с поверхностью головы сваи про-исходят не по сплошной поверхности, а по отдельным точкам и линиям, накоторых и концентрируется энергия удара, приводящая к многочисленнымразломам. А как удержать посредника после удара, чтобы он плотно стоял наголове сваи? Это сложная задача. Да и сама поверхность головы сваи далеконе похожа на ровную и полированную крышку рояля.

Редукция+. Строить противоречия наподобие приведенных на этапе 2 вари-антов выглядит малоперспективным, так как похожие модели ведут к про-стому повторению предыдущего цикла и ориентируют на тот же результат.Что это нам даст?! (Мы пропустим здесь тонкую возможность представитьсебе, что мы уже повторили этот цикл многие миллионы раз! — каков ви-дится Вам итог?)

Сформулируем версии идеального конечного результата:

1) Посредник равномерно распределяет энергию удара по всей поверхностиголовы сваи (улучшение режима!).

2) Посредник разрушается и… сам мгновенно восстанавливается после каж-дого удара! Идеал!

3) Посредник… (добавьте, пожалуйста!)

Теперь противоречие приобретает предельно острую форму:

Запишем формулировку идеального результата в строгом соответствии сТРИЗ-рекомендациями:

оперативная зона сама восстанавливает посредника!

Трансформация+. Ну что ж, давайте думать вместе, и вот каким образом.Представим себе, что посредник состоит (а так оно во многом и есть!) из ог-ромного числа маленьких частиц… похожих на маленьких человечков, на-столько маленьких, что мы видим только подобие фигурок. Но они, эти ма-ленькие фигурки, вместе умеют делать все, что нам нужно! Они могут реали-зовать любой идеальный результат! При этом они ничего не стоят. Ихколичество можно легко уменьшать или увеличивать. Они могут моделироватьлюбые энергетические поля, принимать вместе любые формы, быть твердымиили жидкими, иметь или не иметь вес, быть невидимками, издавать звуки итак далее без ограничений! И при этом они остаются всего лишь фигурками,нарисованными нашим воображением. Поэтому эти фигурки не жалко сте-реть или подвергнуть страшному испытанию, например, такому, как удар поним свайным молотом!

Так вот, пусть во время удара эти фигурки заполняют все неровности в по-верхности головы сваи (впрочем, как и в рабочей поверхности молота), и по-

Page 104: основы классической триз. м. орлов

этому энергия удара распределяется по большей площади! Затем, послевстряхнувшего их удара, все фигурки снова соединяются в сплошной слой,плотно покрывающий всю голову сваи и… спокойно ждут следующего удара!

Вы представили уже реальный материальный объект, обладающий описаннымисвойствами?

Песок (всего лишь одно или два недра) насыпается в стакан, надетый на голо-ву сваи. Стакан длинный, и в нем движется молот. Песок практически ничегоне стоит, часто его полно в грунте, в котором вырыт котлован для будущегофундамента. В конце концов, его не так уж много и надо, поэтому недорого ипривезти столько, сколько нужно.

Верификация+. Решение эффективно, так как надежно работает и не требуетбольших пират на реализацию.

Принцип решения — дробление объекта до уровня частиц с определеннымисвойствами — обладает мощным методическим «сверхэффектом»: его можноразвивать и переносить на другие объекты с близкими и не слишком похожи-ми противоречиями!

Наконец, это решение можно развивать! Ведь мы можем расширить оператив-ную зону до размеров, например, всего тела сваи. Мы можем сформулироватьтакой идеальный результат, при котором свая принципиально не может раз-рушиться, потому что ее… нет!

Пусть она… вырастает! Как дерево, например! И поэтому ее… никто не за-бивает.

Но об этом позже.

Page 105: основы классической триз. м. орлов

Теперь мы можем собрать основные концепты вместе и представить обобщен-ную версию «Мета-алгоритма изобретения» или, сокращенно, Мета-АРИЗ(рис. 7.12).

Этот вариант схемы содержит также операции стратегическою уровня, вклю-ченные в этап диагностики, и операции тактического уровня, включенные вэтап редукции, и отражает часто встречающееся на практике совмещение опе-раций разных уровней в едином процессе создания решения.

Нетрудно видеть, что этапы Диагностика и Редукции содержат преимущест-венно процедуры анализа проблемы, а этапы Трансформация и Верификация —синтеза идеи решения.

Page 106: основы классической триз. м. орлов

Все этапы опираются на базы знаний (показаны условно в центре рисунка),основу которых составляют А-Навигаторы, модели стратегического и тактиче-ского управления процессом решения проблем, методы психологической под-держки и другие рекомендации, которые и рассматриваются в последующихразделах учебника.

Интересно обратить внимание на определенное сходство Мета-АРИЗ с четы-рехэтапными «схемами творчества», предложенными М. Беренсом и Г. Уолла-сом (см. раздел 4.1).

Но особенно Мета-АРИЗ близок к четырехэтапной «схеме творчества» поД. Дьюи.

Действительно, действия на этапе Диагностика могут быть интерпретированыкак «столкновение с трудностью, попытки вскрыть элементы и связи, приво-дящие к противоречию».

Действия на этапе Редукция имеют одной из основных целей «ограничениезоны поиска (локализацию проблемы)».

Действия на этапе Трансформация практически точно соответствуют тому, чтопо Д. Дьюи описывается, как «возникновение возможного решения: движениемысли от того, что дано, к тому, что отсутствует; образование идеи, гипотезы».

Наконец, этап Верификация включает «рациональную обработку одной идеи илогическое развитие основного положения».

Конечно, конструктивизм Мета-АРИЗ радикально отличается от указанных«схем творчества», в том числе и от схемы Д.Дьюи. И все же интеллектуаль-ный и духовный «генезис» несомненно присутствуют здесь. Этим и интереснасвязь времен!

Мета-АРИЗ был получен автором как обобщение и упрощение (прояснение,освобождение от избыточности) описаний всех «поколений» АРИЗ. И все жезнатоки ТРИЗ заметят, что Мета-АРИЗ наиболее близок по структуре к са-мым первым и «ясным» АРИЗ Г. Альтшуллера 1956 и 1961 года (см. рис. 5.1).Можно сказать, что Мета-АРИЗ — это те первые АРИЗ, но представленныепочти через полвека в новой редакции и с учетом нового уровня системотех-нических знаний!

И, разумеется, практическое наполнение этапов Мета-АРИЗ кардинально от-личается от наполнения указанных «схем творчества» и базируется на инстру-ментарии ТРИЗ. Именно АРИЗ-происхождение и унаследованный ТРИЗ.-кон-структивизм делают Мета-АРИЗ наиболее удобной структурой как для изуче-ния методологии ТРИЗ, так и для решения практических задач.

Мета-алгоритм изобретения является основной навигационной системой прирешении любой изобретательской проблемы. Все процедуры схемы Мета-ал-горитма (рис. 7.12) постепенно нужно запомнить и при решении новых про-блем применять автоматически в указанной на схеме последовательности.

Page 107: основы классической триз. м. орлов

Перед изучением этого раздела полезно перечитать все 14 предыдущих приме-ров реинвентинга. Но, предположим, что Вы хорошо помните содержаниеэтих примеров. Тогда приступим к изучению одного из центральных понятийклассической ТРИЗ — оперативной зоны.

Оперативная зона (OZ) — совокупность компонентов системы и системного ок-ружения, непосредственно связанных с противоречием.

Образно говоря, оперативная зона является эпицентром проблемы. Влияние жепроблемы может сказываться, как и при всяком конфликте и потрясении, нетолько на конкретных элементах, но и на всей системе, а также и на окруже-нии системы. Равно, как и средства для решения проблемы в конце концовпривлекаются либо из самой системы, либо из системного окружения. Ука-занные связи полезно представить схемой (рис. 8.1).

Системное окружение предъявляет к системе требования, определяющие на-правление ее развития. Эти требования могут вступать в конфликт с возмож-ностями системы, либо вызывать конфликт между частями и элементами сис-темы. Конфликтующие свойства имеют определенных носителей, то есть этоконкретные элементы системы или даже вся система в целом. Иногда участ-никами конфликта могут быть элементы системы и ее окружения.

Экторы — основные элементы OZ, являющиеся носителями конкретных проти-воречивых свойств.

Индуктор — эктор, создающий воздействие на другой эктор (рецептор) в видепередачи энергии, информации или вещества и инициирующий изменение или дей-ствие рецептора.

Page 108: основы классической триз. м. орлов

Рецептор — эктор, воспринимающий воздействие индуктора и изменяющийсяили приходящий в действие под этим воздействием.

Внутри ОZ может не быть в явном виде либо индуктора, либо рецептора,либо может быть более двух индукторов или двух рецепторов. Встречаютсяструктуры, где индуктор и рецептор могут меняться ролями в зависимости отцелей анализа проблемы либо от целей синтеза решения.

Описание OZ стремятся редуцировать к структуре с минимальным количест-вом элементов, то есть к модели из одного индуктора и одного рецептора.Классическим примером является взаимодействие инструмента с изделием(деталью). Более того, ранее в классической ТРИЗ основные элементы OZ ус-ловно назывались инструментом и изделием, хотя их функциональные ролимогли не соответствовать этим названиям. Вводимые здесь названия индуктори рецептор являются более общими и нейтральными к содержанию физиче-ских действий элементов OZ.

Рассмотрим элементы OZ в ранее приведенных примерах.

Из Примера 1. В соответствии с задачей создания пера как элемента, регули-рующего выход чернил из ручки, в состав OZ вошло бы перо как индуктор,воздействующий на чернильную струйку (рецептор), протекающую по проре-зи пера. В состав OZ могла бы войти окружающая атмосфера (системное ок-ружение), если бы мы должны были учесть влияние атмосферного давленияна протекание чернил по прорези пера. Мы могли бы учесть скорость попада-ния чернил из корпуса ручки в прорезь пера, и тогда в состав OZ вошла быостальная часть ручки (система).

Требуемый результат: истечение чернил из кончика пера, регулируемое поскорости силой нажатия на перо.

Противоречие: чернила должны быть «быстротекущими», чтобы легко прохо-дить по прорези пера, и чернила не должны быть «быстротекущими», чтобыне вытекать из ручки самопроизвольно.

Ведущие ресурсы для решения проблемы: форма прорези и пружинящие свой-ства материала пера для функционирования прорези как регулирующего «кла-пана» или «крана»; атмосферное давление, температура и влажность; гигро-скопические свойства бумаги (или другого материала, на котором пишут руч-кой); сила нажатия на перо.

Ведущие трансформации: динамизация (прорезь с переменными размерами);многофазовое состояние вещества (пружинящие свойства); создание энергетиче-ского пути от руки через корпус ручки и перо к бумаге, чтобы силой нажатиявоздействовать на раскрытие прорези пера (этот путь имеет продолжение дозамкнутого контура через стол, пол, стул и корпус пишущего человека доруки).

Учебный вариант 1: для более точного анализа могло понадобиться сужениеOZ и объявление индуктором самой прорези пера. Такая интерпретация былабы полезной для исследования, например, профиля и параметров прорези.Ведь при этом уже не играли бы никакой особой роли такие, например, части

Page 109: основы классической триз. м. орлов

пера, как место крепления к корпусу ручки, общая форма пера и другие ком-поненты. Зато для этой задачи мы могли бы учесть свойства бумаги и вклю-чить бумагу как компонент OZ (скорее всего как второй рецептор, на которомперо оставляет чернильный след). Здесь всё перо является системой для про-рези, а любые другие объекты являются системным окружением для пера.

Учебный вариант 2: может быть рассмотрена задача взаимодействия толькочернил с бумагой, и тогда представляется вполне возможно представление вOZ только чернил как индуктора, а бумаги — как рецептора, с описанием ихсвойств и противоречивого взаимодействия.

Из Примера 4. В соответствии с задачей создания самолета с вертикальнымвзлетом/посадкой в состав OZ могли входить сам самолет (система — рецеп-тор), двигатель самолета (первый индуктор — часть системы) и воздух (второйиндуктор — системное окружение). При старте двигатель должен работать вфорсированном режиме и толкать самолет строго вверх. При пом самолетстартовал и садился как ракета, которая не может опираться на воздух плос-костями крыльев. Поэтому и возникали проблемы с устойчивостью ориента-ции корпуса самолета в воздухе, приводившие к авариям при старте, и осо-бенно, при посадке, когда пилоту очень сложно наблюдать место посадки, таккак он опускается вниз, а вынужден смотреть верх, так как фактически лежитна спине (см. рис. 6.2).

Требуемый результат: новая функция — вертикальный взлет/посадка.

Противоречие: вертикальная ориентация корпуса самолета согласована с на-правлением старта/посадки, но трудна для управления.

Ведущий ресурс для решения проблемы: внутрисистемный, изменение конст-рукции.

Ведущая трансформация: динамизация (поворачивающиеся двигатели иликрылья).

Из Примера 10. В соответствии с начальной постановкой задачи в состав OZдостаточно включить воду (первый индуктор — часть системы полива), почвуу основания пальмы (рецептор — часть системы полива) и воздух (системноеокружение — второй индуктор). Заметьте, не солнце, а именно воздух, темпе-ратура и другие свойства которого непосредственно влияют на состояние поч-вы у основания пальмы. Также не нужно рассматривать в качестве системы иучастника OZ всю пальму, так как непосредственное участие в конфликте онапросто не принимает! Да, на ней сказываются результаты плохой организацииполива, и именно всю пальму призвано защитить новое решение, но она неявляется активным эктором в этой ситуации! Внимательно разберите этотпример.

Идеальный результат: OZ сама обеспечивает длительный полив пальмы!

Противоречие: вода должна быть (под пальмой для полива), и вода не должнабыть (там, так как она быстро уходит и испаряется — в обычных условиях).

Page 110: основы классической триз. м. орлов

Ведущий ресурс для решения проблемы: внутрисистемный и внутри OZ —двухфазовое состояние воды при разных начальной и конечной температурах.

Ведущая трансформация: переход на микроуровень вещества и использованиефизико-технического эффекта — переход воды из твердого в жидкое состояние.

Из Примера 12. В соответствии с общей постановкой задачи в состав OZ дос-таточно включить ликер и бутылочку и рассмотреть только их взаимодействиемежду собой для достижения идеального конечного результата! Это вообще до-вольно редкий случай, когда можно изменять само изделие. Впрочем, не самоизделие, а процесс его изготовления. Но путем трансформации его компонен-тов. В начальной постановке твердая шоколадная бутылочка-индуктор воз-действует на жидкий ликер-рецептор, принимая его внутрь через горлышко.По новой идее, наоборот, замороженная ликерная бутылочка-индуктор слу-жит формой, на которую натекает жидкий шоколад-рецептор.

Идеальный результат: OZ сама обеспечивает образование бутылочки вместе сее содержимым!

Противоречие: ликер должен быть (внутри шоколадной бутылочки), и ликерне должен быть (там, так как весь процесс сложен).

Ведущие ресурсы для решения проблемы: внутри OZ — двухфазовое состояниеликера и шоколада при разных начальной и конечной температурах; систем-ный — изменение порядка операций и замена прежних формующих элемен-тов на «форму-копию» в виде замороженной ликерной массы в виде «буты-лочки»; внесистемные — дополнительная энергия и формы для заморозки ли-кера, дополнительные формы для получения горлышка шоколаднойбутылочки.

Ведущие трансформации: переход на микроуровень вещества и использованиефизико-технического эффекта (применение двухфазового состояния вещест-ва); принцип копирования (см. процесс реинвентинга в примере 12).

Из Примера 14. Правильная ТРИЗ-диагностика первоначальной постановкизадачи требует включить в состав OZ не всю голову сваи, а только верхнююповерхность головы сваи (рецептор) и молот (индуктор). Заметим, что в тра-диционном ТРИЗ-описании было трудно назвать эту часть сваи изделием, таккак под изделием мы могли понимать только всю сваю. Но на самом деле ненужно рассматривать всю сваю! Для понимания физики процесса нужно вес-ти диагностику только в области верхней поверхности головы сваи. Там нахо-дится та OZ, на которой мы сразу сосредоточились (другие возможности бу-дут рассмотрены далее).

Рецептор быстро разрушается под воздействием индуктора из-за неравномер-ного распределения энергии удара по верхней поверхности головы сваи. Ко-нечно, и из-за неустойчивого к ударной нагрузке материала сваи, но материалсваи (изделие!) нельзя менять по условию задачи.

В первой фазе в решении участвовали следующие аспекты.

Page 111: основы классической триз. м. орлов

Идеальный результат: сохранить голову сваи целой и использовать ресурсывне сваи!

Противоречие: удары молота нужны для забивания сваи, но они разрушаютсваю сверху.

Ведущий ресурс: системный и OZ — изменение инструмента.

Ведущие трансформации: принцип посредника (прием № 18) — введение про-кладки между молотом и головой сваи; прием № 13 «Дешевая недолговечностьвзамен дорогой долговечности» — прокладка-посредник сделана из дерева (со-кращая описание примера 14, мы не включили этот прием в рассмотрение, аиспользовали его здесь в качестве важного дополнительного пояснения).

Это решение также со временем было признано недостаточно эффективным(недостаточно дешевым). На второй фазе в решении участвовали следующиеаспекты.

Усиленный идеальный результат: посредник должен быть «вечным» и «ничегоне стоящим»!

Противоречие: посредника не должно быть (так как он разрушается) и посред-ник должен быть (по требованию главной полезной функции технологическо-го процесса).

Ведущий ресурс: внутри OZ — изменение материала инструмента (посредниктоже стал инструментом, непосредственно воздействующим на изделие —сваю!); системный — изменение инструмента; внесистемный — использова-ние дешевого материала (песка) на строительной площадке.

Ведущие трансформации: усиление применения приема № 13 «Дешевая недолго-вечность взамен дорогой долговечности» — поиск еще более дешевого материа-ла для прокладки-посредника; моделирование процесса методом маленьких фи-гурок и выход, фактически, на прием № 3 «Дробление», пункт с) увеличить сте-пень дробления (измельчения) объекта — в итоге, применение слоя песка вкачестве посредника.

Проведенное исследование пяти решений дает нам достаточные основаниядля важнейших обобщений. Процесс решения в классической ТРИЗ направ-лен на трансформацию OZ и опирается на следующие ключевые концепты(рис. 8.2):

• функциональная идеальная модель (ФИМ) — представление о том, какдолжна функционировать система при идеальном решении проблемы;

• противоречие — модель системного конфликта, отражающая несовмес-тимые требования к системе;

• трансформация — модель изменений в системе, необходимых для устра-нения противоречия и достижения ФИМ;

• ресурсы — многоаспектная модель свойств системы, отражающая, на-пример, ее назначение, функции, состав элементов и структуру связеймежду элементами, информационные и энергетические потоки, мате-

Page 112: основы классической триз. м. орлов

риалы, форму и пространственное расположение, временные параметрыфункционирования, эффективность и другие частные показатели каче-ства функционирования.

Эти аспекты аккумулировали объем знаний, которые в классической ТРИЗявляются фундаментальными и которые составляют важнейшее ядро длятворчества, целую познавательную и инструментальную систему, названнуюавтором А-Студия (в соответствии с введенными ранее названиями, напри-мер, А-Навигаторами, и с авторской систематизацией, рассмотренной в раз-деле 20.3 CROST: пять ядер творчества).

Именно эти аспекты классической А-Студии и будут находиться далее в цен-тре нашего внимания.

В центре рис. 8.2 находятся «ресурсы». Традиционное ТРИЗ-понимание ре-сурсов относилось, по-существу, только к технической системе и системномуокружению. При этом подразумевалось, что проблема всегда возникает тогда,когда для достижения требуемого функиионалыюго свойства остро не хватаетопределенного ресурса. В целом так оно и есть.

Но сегодня мы должны смотреть на процесс создания изобретения гораздошире и объективнее, отказываясь от преимущественно техно-центрическойориентации ТРИЗ в пользу человеко-центрической, более естественнонаучнойи интегрированной. Именно в таком направлении ориентирована CROST(см. часть Развитие ТРИЗ). В классической ТРИЗ на первых порах её станов-ления упорно проводилась в практику мысль о том, что по ТРИЗ-моделям ипо АРИЗ, а также с учетом закономерностей развития систем, можно будетсоздавать изобретения примерно так же, как мы решаем математические за-дачи. Но с годами становилось все более и более ясным, что в центре «моде-ли» создания изобретения остается человек — с его индивидуальной органи-

Page 113: основы классической триз. м. орлов

зацисй мышления, мотивацией, эмоциями, свойствами характера и личностив целом. Поэтому изложение идей классической ТРИЗ также должно проис-ходить в современной редакции, с учетом возможности и необходимостипредложения более общих теорий, в которых ТРИЗ может стать фундамен-тальной частью.

Схема по рис. 8.3 отличается от приведенной на рис. 8.1 тем, что здесь явноприсутствует «решатель проблемы» — человек.

Можно уверенно сказать, что успех решения проблемы определяется двумявидами ресурсов: ресурсами проблемы (системы и ее окружения) и ресурсамирешателя проблемы. Разумеется, что трудно и не нужно отделять одно от дру-гого, так как все рекомендации служат единственной цели — повысить эф-фективность и сократить время решения проблемы человеком.

ТРИЗ предложила конструктивные модели для решения проблемы «со сторо-ны технической системы». И именно ТРИЗ открыла также способы реальнойпомощи решателю проблем с учетом позитивных и негативных стереотиповмышления. И все же теория решения проблем с конструктивными моделями«со стороны решателя проблемы» еще ожидает своего создания. Позиция ав-тора учебника как раз и состоит в том, чтобы не ограничиваться односторон-ними концепциями. При этом автор мечтает о будущем времени, когда осно-вы ТРИЗ будут изучаться вместе с основами математики, правописания икомпьютерной грамотности и будут признаны не менее полезными и важны-ми для каждого человека.

А пока посмотрим на ресурсные модели с точки зрения ТРИЗ. Прежде всего,ТРИЗ рекомендует при решении задач помнить о том, что в любой системевсе части прямо или косвенно связаны между собой в единое целое, и что ка-ждая система, подсистема или даже каждый элемент могут быть представленыкак абстрактная машина (рис. 8.4). Любая техническая система имеет обоб-щенную структуру, включающую источник энергии (ИЭ). трансмиссию (ТР),рабочий орган (РО). систему управления (СУ) и конфигуратор (КФ) в видеконструкции, объединяющей все компоненты.

Page 114: основы классической триз. м. орлов

В ТРИЗ постулируются следующие свойства развивающейся системы:

1) техническая система является минимально полной, если в ее реализацииприсутствуют все компоненты абстрактной машины;

2) техническая система является минимально работоспособной, если всекомпоненты ее абстрактной машины минимально-работоспособны по от-дельности и вместе;

3) развитие всякой технической системы начинается от минимально работо-способного ядра;

4) проблемы развития технической системы связаны с неравномерным раз-витием ее компонентов и могут быть устранены временно и локально усо-вершенствованием компонентов и связей между ними, либо постоянно итотально заменой всей системы на другую с такими же функциями.

В ТРИЗ постулируются следующие принципы создания минимально работо-способного ядра:

1) все компоненты должны быть связаны между собой в единое целое, обла-дающее хотя бы одним системным свойством, которого нет у отдельныхсоставляющих систему компонентов;

2) все пути прохода энергии, вещества и информации по связанным компо-нентам системы должен быть непрерывными и замкнутыми в контурылибо внутри системы, либо вне системы через системное окружение.

Так, первый автомобиль родился, когда на телегу (конфигуратор) был уста-новлен бензиновый двигатель (источник энергии) с устройством передачивращательного момента (трансмиссия) на колеса (движители — рабочие орга-ны) и устройством для поворота колес (система управления направлениемдвижения).

Карандаш является технической системой условно, так как для его примене-ния нужен внешний источник энергии (например, рука) и система управле-ния (например, человек). Но он содержит рабочий орган — стержень, заклю-ченный в корпус, который одновременно является конфигуратором для ка-рандаша и трансмиссией для передачи энергии на рабочий орган от рукипишущего человека.

Page 115: основы классической триз. м. орлов

Значительное число ошибок при создании изобретений связано с нарушениемизобретателями указанных выше системных постулатов либо с отсутствиемвозможности их реализации. Например, первые самолеты не могли поднятьсяв воздух, так как мощности их источника энергии не хватало, чтобы создатьдостаточную подъемную силу через опору крыльев на воздух, то есть не былозамыкания энергетического контура через самолет и воздух, чтобы компенси-ровать вес самолета. Затем самолеты прошли сложный путь развития системыуправления полетом, включая создание элеронов, стабилизаторов и рулей по-ворота и выбор количества крыльев и их формы. Причем процесс этот можетциклически повторяться (см. раздел 15. Классические ТРИЗ-модели инноваци-онного развития). Неоднократно возникали проблемы усовершенствованиявсех компонентов, например, создание утолщенной передней кромки крыла ивыпуклости крыла вверх для обеспечения разности скоростей обтекания кры-ла потоком воздуха над и под крылом. И так далее.

В основе развития систем лежит поиск и применение ресурсов, необходимыхи достаточных для решения каждой конкретной проблемы. Соединение имею-щихся и новых (или преобразованных) ресурсов, создающее новый положительныйтехнический эффект, и является изобретением. И наоборот, отсутствие (неред-ко, кажущееся!) необходимых и достаточных ресурсов для реализации требуе-мого свойства системы и создает проблему.

Рассмотрим несколько вспомогательных примеров.

Пример 15. Автомобильная навигационная система. Главная полезная функцияэтой системы: предоставление необходимой информации для построения оп-тимального маршрута в городе или в других местах. Обеспечение этой функ-ции стало возможным после интеграции большого числа других систем в еди-ную систему навигации. В итоге функция оценки пропускной способности исостояния дорог вынесена в локальную надсистему (региональные системынаблюдения и контроля). Функция определения координат транспортногосредства на местности обеспечивается глобальной системой специальных на-вигационных спутников, находящихся на орбитах над Землей. Передача дан-ных обеспечивается системами радиосвязи. Отображение ситуации обеспечи-вается бортовым компьютером (подсистемой), а оценка ситуации и выбормаршрута остаются за человеком (система). Что здесь главное с точки зренияизобретения? Можно сказать, конечно, что это информация. Да, действитель-но, это так, но все же информация является здесь только главным обрабаты-ваемым «продуктом». Но кто обрабатывает этот «продукт»? Ответ: принципи-ально новая организация всей совокупности взаимодействующих систем, соз-дающая новое функциональное свойство, не имеющееся у каждой изсистем-компонентов в отдельности. Или иначе, новое функциональное свой-ство возникло из интеграции ресурсов различных систем благодаря изобрете-нию способа и схемы их взаимодействия. А для каждого отдельного компо-нента это означает использование его системного ресурса, то есть того, чтоименно этот компонент вносит в объединенную систему.

Пример 16. Изобретение… интереса. На многочисленных упаковках давно ста-ли размешать лотерейные номера, анекдоты, смешные рисунки, целые сериа-

Page 116: основы классической триз. м. орлов

лы комиксов, календари, короткие занимательные истории, биографии зна-менитостей, игры, рецепты особенных блюд из данного продукта, не говоряуже об инструкциях и примерах применения изделия. Какой ресурс эксплуа-тируется здесь? С технической точки зрения можно сказать, что ресурс сво-бодного места на упаковке, даже ресурс краски и так далее. Но главное здесьв чисто творческом плане— это информационный pecypc!

Пример 17. На пути к DVD. Первые магнитные накопители были примененыдля построения устройств долговременной памяти в компьютерах после того,как они прошли довольно длительный путь развития как устройства для зву-козаписи. То есть магнитная запись была приспособлена для хранения циф-ровой информации. Но через некоторое время произошел обратный, причем,революционный переход, когда развивающиеся накопители цифровой инфор-мации на лазерных (оптических) компактных дисках (CD) достигли такойплотности записи, что на них стало возможным записывать 600—700 мегабайтданных или 40—60 минут высококачественного звучания музыкальных произ-ведений. Наконец, к концу XX столетия появились диски DVD с объемом ин-формации до 20 гигабайт и с возможностью воспроизведения видеофильмов втечение нескольких часов! То есть плотность цифровой записи/чтения ин-формации являлась тем постоянно развиваемым ресурсом для CD, который ипривел к революционным изменениям в создании компьтерной техники, атакже аудио- и видеотехники. Это приме.ры создания различных изобретенийс применением различных физических явлений, но на основе развития и ис-пользования одного и того же функционального ресурса. Вместе с тем следуетотметить выдающуюся роль информационного ресурса в виде новейших системсжатия данных (сегодня это — Motion Pictures ExperTC Group MPEG-2 дляпередачи видеоизображений и ряд форматов для аудиосопровождения, напри-мер, Dolby Digital Format, Digital Cinema Sound и другие).

Пример 18. Многопроцессорные системы. Немало патентов получено на спе-циализированные вычислительные системы. Такие системы, как правило,многопроцессорные, могут обладать максимальной теоретической производи-тельностью для определенного класса задач или даже для одной задачи. Так-же есть немало патентов на конкретные структуры универсальных многопро-цессорных систем. Высокая производительность таких систем обусловленатем, что в зависимости от решаемой задачи или лаже нескольких одновре-менно решаемых задач происходит динамическое распределение свободныхпроцессоров для обработки данных разных задач или даже одной задачи. Этоозначает, что структура потоков данных постоянно меняется при неизменнойпостоянной физической коммутации процессоров. В любом случае в процес-се создания изобретения доминирует структурный ресурс. Следует указатьтакже на серьезное значение временного ресурса, так как процессоры обслу-живают задачи в режиме разделения времени (синхронного или асинхронно-го, динамического).

Пример 19. Что общего между кино, электролампочкой и дисплеем? После соз-дания возможности фиксации на фотопластину видеоизображений кино ро-дилось не скоро. Это произошло только тогда, когда было установлено, что засчет инерционности нашего зрения последовательность снимков непрерывно-

Page 117: основы классической триз. м. орлов

го движения с частотой не менее 16 кадров в секунду (16 герц) при их после-дующем вопроизведении с той же частотой и воспринимается зрением имен-но как непрерывное движение. Так появилось кино. Кстати, электролампочкив наших домах вспыхивают и гаснут с частотой около 50 герц, так что мы л о -го просто не замечаем (этому способствует и то, что нить накала не успеваетостыть при смене напряжения). В компьютерных мониторах частота сменыкадров сегодня достигла 100 герц, что обеспечивает высокое качество изобра-жения и меньшую утомляемость операторов, работающих за мониторами.Здесь в явном виде эксплуатируется временной ресурс.

Пример 20. Коридор для самолета и спутника. В районах крупных аэропортовдиспетчеры стандартно или ситуативно устанавливают в воздушном простран-стве так называемые «коридоры» для нескольких самолетов, готовящихся кпосадке, а также взлетающих. «Коридор» задается высотой нал местностью,высотой и шириной самого «коридора», и курсом, то есть ориентацией «кори-дора» и направлением полета по нему. Несколько более сложно задаются «ко-ридоры» взлета и посадки. Похожие действия осуществляются при запускеновых спутников или при переводе спутников на орбиты с новыми парамет-рами. Эти операции проводятся для того, чтобы создать в пространстве непе-ресекающиеся траектории и избежать столкновения летательных аппаратов.Понятно, что здесь доминирует пространственный ресурс.

Пример 21. Солнцезащитные очки. Недавно были запатентованы солнцезащит-ные очки со светопропусканием, управляемым пользователем. Для каждогоглаза имеется по два стекла, одно из которых можно вращать. Сами стекла яв-ляются так называемыми поляризационными фильтрами. При определенномвзаимном положении стекол их векторы поляризации совпадают, и очки про-пускают максимальный свет. Но при повороте одного из стекол векторы по-ляризации смешаются, и светопропускание уменьшается. Еще раньше былизапатентованы солнцезащитные очки с хроматическими стеклами, «автомати-чески» меняющими свою прозрачность в зависимости от яркости света. Здесьочевидно используется вещественный ресурс.

Пример 22. Электростанция в каминной трубе. Действительно, в 20-х годахушедшего столетия французский инженер Бернард Дюбо предложил идеюэлектростанции, турбина которой работает в высокой трубе от потока восхо-дящего теплого воздуха. Через 50 лет известный германский инженер ЙоркШляйх из Штутгарта, разработчик ряда оригинальных мостов, градирен икрыши Олимпийского стадиона в Мюнхене, развил и экспериментально под-твердил эту идею 10-летней работой первой такой электростанции в Испании.В основу электростанции положены два хорошо знакомых всем эффекта: пар-никовый и каминный (рис. 8.5).

Огромный «парник» со стеклянной крышей, например, площадью околоквадратного километра, нагревается солнцем. Горячий воздух из «парника»устремляется в трубу высотой в несколько сотен метров, установленную вцентре «парника», и вращает турбину генератора тока, встроенную в эту «ка-минную» трубу. Чтобы станция работала и ночью, в «парнике» размещена

Page 118: основы классической триз. м. орлов

замкнутая теплонакопительная система из труб, заполненных водой. Теплыйвоздух от этих труб и будет вращать турбину генератора ночью.

В этой идее, как и во всяком большом инженерном замысле, работают, ко-нечно, все виды ресурсов. Но первым среди равных является энергетическийресурс системы. Действительно, суть идеи составляет использование энергиисолнечных лучей, падающих на Землю, затем энергии восходящего нагретоговоздуха и. наконец, преобразование механической энергии вращения турбиныв электрическую.

Все упомянутые в примерах ресурсы можно разделить на две группы (рис. 8.6).Система-технические ресурсы являются как бы абстрактными, подразумевае-мыми, как модель. Физико-технические ресурсы присутствуют в системе болеенаглядно в виде временных параметров ее работы, геометрических форм, кон-кретных материалов и применяемых видов энергии. Что бы ни изобреталось сдоминированием того или иного системо-технического ресурса, практическаяреализация идеи всегда осуществляется на основе изменения физико-техниче-ских ресурсов. Идея становится реальностью только в материале.

Несмотря на условность введенного разделения ресурсов на виды и группы,это весьма полезная дифференциация, которая помогает выделить домини-рующие аспекты проблемы и решения. Так, при исследовании проблемынужно стремиться понять, какой именно ресурс является причиной конфлик-та, или какого ресурса, возможно, не хватает в системе и почему. Возможно,что ресурс исчерпан, а может быть, плохо и неэффективно используется. Рас-

Page 119: основы классической триз. м. орлов

смотренные выше виды ресурсов представлены в классификационной таблицена рис. 8.7.

Определенную осторожность и практичность следует проявлять при необхо-димости введения в решение новых ресурсов. Лучшее решение для действую-щих систем состоит в минимальных изменениях. Поэтому в ТРИЗ были выра-ботаны некоторые практические рекомендации, представленные в таблице нарис. 8.8. Всегда предпочтительнее выбирать ресурс со свойством, соответст-вующим первому (крайнему слева) значению.

Page 120: основы классической триз. м. орлов

И в заключение этого раздела приведем небольшие учебные задачи на прямоеприменение ресурсов из архива классической ТРИЗ.

Пример 23. Как увидеть сквозняки в здании. В больших строящихся и постро-енных зданиях (склады, заводские цеха) иногда возникают сильные сквознякииз-за соединения потоков воздуха, проникающих через недостроенные про-емы в стенах или через недостаточные уплотнения в вентиляционных систе-мах, трубопроводах и в других местах. Для того, чтобы точнее и быстрее опре-делить источники и пути сквозняков, предложено использовать… мыльныепузыри, генерируемые специальной несложной установкой. Тысячи летящихшариков делают сквознячные потоки видимыми! Использованы: веществен-ный ресурс — мыльная пленка служит достаточно прочной оболочкой для на-ходящегося в ней воздуха; энергетический ресурс — более теплый воздух вмыльном шарике создает подъемную силу.

Пример 24. Кокосовые пальмы. Для того, чтобы забраться на 20-метровую илиеще более высокую кокосовую пальму, требуются немалая сноровка и опыт.Возиться с веревками и лестницами неудобно. Вот если бы каждая пальма са-ма имела ступеньки наподобие лестницы! Во многих регионах, добывающихкокосовый орех, на растущих новых пальмах делают небольшие зарубки, ко-торые пальме не вредят. Когда пальма вырастает, на ней и получается готоваялестница! Предусмотрительные добытчики использовали ресурс времени (лест-ница сама росла вместе по мере роста пальмы!) и, разумеется, ресурс про-странства (форма ступенек на стволе пальмы).

Пример 25. Лампочка для Лунохода. Рассказывают, что для прожектора перво-го самоходного аппарата на Луне, называемого Луноходом, в конструктор-ском бюро под Москвой никак не могли подобрать прочный материал для за-щитного стекла. Зная, что на Луне практически идеальный вакуум, из фарыпрожектора откачивали воздух, но фара не выдерживала атомосферного дав-ления и взрывалась. Если же в фару вводили инертный газ, тогда фара взры-валась в вакууме. Так продолжалось до тех пор, пока кто-то не обратил вни-мание на то, что нить накала фары не требует защиты на Луне, так как таместь тот самый вакуум, который и требуется для нормального горения нитинакала! А стеклянная оболочка нужна только для защиты нити от механиче-ских повреждений и для фокусировки света. Изобретательный сотрудник ис-пользовал готовый вещественный ресурс космического вакуума на Луне (веще-ство, которого нет!).

Пример 26. Вода в воде. Во многих странах Африки и Аравийского полуостро-ва острой проблемой является добыча и хранение пресной воды, в том числесобираемой во время дождей. Требуемые для этого хранилища могли бы пред-ставлять собой огромные строения, требующие к тому же охлаждения. Швед-ский инженер Карл Дункерс предложил хранить воду… в море! Для этого онпредложил создать в море плавающие хранилища в виде гигантских цилинд-ров без дна и крышки, поддерживаемых на плаву с помощью понтонов. В этипонтоны пресная вода могла бы попадать прямо во время дождя и оставатьсятам до откачки с помощью береговых насосов. Такие хранилища можнотранспортировать на тысячи километров, так как — и это самое главное —

Page 121: основы классической триз. м. орлов

пресная вода, обладая меньшей плотностью, сама будет оставаться над мор-ской водой и не смешиваться с ней! В развитие этой идеи можно добавитьлишь, что такое хранилище, снабженное крышкой, могло бы путешествовать,например, до Антарктиды и обратно. В Антарктиде само хранилище могло бызахватывать небольшой пресноводный айсберг и транспортировать его в жар-кие широты. Во время транспортировки айсберг служил бы указанной вышекрышкой и постепенно таял до полного заполнения хранилища пресной во-дой. В этих идеях доминирующим ресурсом является вещественный и, в зна-чительной мере, энергетический (использование все того же закона Архимеда,по которому пресная вода сама должна плавать поверх морской воды, неопускаясь вниз и не смешиваясь с соленой водой!).

Характерным для создания идей в примерах 15—26 является использованиетех или иных доминирующих ресурсов. Поэтому нередко для решения про-блемы достаточно правильно выделить конфликтующий или недостаточныйресурс, чтобы усилить именно его и уже только за счет этого получить ориги-нальное решение.

Однако более сложные проблемы требуют и более глубокого исследования итрансформаций, сразу существенно затрагивающих несколько ресурсов. Здесьне обойтись без исследования противоречий, без применения ТРИЗ-моделейтрансформации и без знания физико-технических эффектов.

Page 122: основы классической триз. м. орлов

9.1.1. Понятие противоречия. Великий Гете проницательно заметил: говорят,что истина лежит между крайними мнениями… нет, между крайностями ле-ж и т проблема!

Многие философы и многие исследователи методов творчества замечали, чтопротиворечие есть суть проблемы, но никто до Г. Альтшуллера не превратилэто понятие в универсальный ключ для раскрытия и разрешения самой про-блемы! Только в ТРИЗ с 1956 года противоречие начало «работать» как фун-даментальная модель, открывающая весь процесс решения проблемы. Тольков ТРИЗ в дальнейшем противоречие стало конструктивной моделью, осна-щенной инструментами для трансформации этой модели с целью устранениясамого противоречия.

Изобрести означает устранить противоречие!

Существует немало возможностей для определения и представления моделейпротиворечий. Однако здесь мы представим только те определения, которые вбольшей мере соответствуют основам классической ТРИЗ. Хотя в других, рас-ширенных курсах, мы рассматриваем и другие как производные, так и ориги-нальные модели.

Противоречие — модель системного конфликта, отражающая несовместимыетребования к функциональным свойствам конфликтно-взаимодействующих ком-понентов.

Бинарная модель противоречия (упрощенно, бинарная модель или бинарное про-тиворечие — рис. 9.1) моделирует конфликт несовместимости только междудвумя факторами (свойствами).

Композиция бинарных моделей — совокупность взаимосвязанных бинарных про-тиворечий, построенная для описания многофакторного конфликта.

Любые запутанные многофакторные конфликты можно представить в видекомпозиции бинарных моделей. А затем находить главное, ключевое бинар-ное противоречие, решение которого является необходимым условием разре-шения многофакторной модели.

Page 123: основы классической триз. м. орлов

Можно выделить два важнейших случая несовместимости:

1) один из факторов соответствует и содействует главной полезной функциисистемы (позитивный фактор или плюс-фактор), другой фактор не соот-ветствует и противодействует этой функции (негативный фактор или ми-нус-фактор);

2) оба фактора являются позитивными, но мешают реализации друг друга,так как конфликтуют из-за какого-то ресурса, в котором они оба нужда-ются, но не могут одновременно или в нужном объеме использовать этотресурс.

Решение противоречия означает устранение имеющейся несовместимости.

Именно несовместимость, кажущаяся или реальная (физически обусловлен-ная) и ведущая к снижению эффективности функционирования системы пливовсе к невозможности реализации главной полезной функции, отражается впротиворечии.

Если имеющаяся несовместимость не может быть устранена очевидным спо-собом, это делает ситуацию проблемной, сложной для разрешения (см.рис. 7.4 и 7.5). Решение проблемы требует в таких ситуациях реализации не-тривиальных трансформаций, часто поражающих неожиданностью идеи идающих совершенно ошеломляющий эффект.

Действительно, легко ли представить себе дом, всплывающий при наводне-нии? Или замороженную ликерную бутылочку, обтекаемую горячим шокола-дом? Или даже лед, уложенный вокруг основания пальмы?!

Самолеты с вертикальным взлетом прошли через сотни аварий, прежде чемстала ясна неприемлемость (более того — ненужность!) вертикальной ориента-ции корпуса самолета. Впустую растрачены финансовые, материальные и ин-теллектуальные ресурсы. А как оценить гибель людей? Исходное администра-тивно-стратегическое представление об обязательной вертикальной ориента-ции корпуса самолета оказалось примитивной ошибкой! Технически былопроще и эффективнее реализовать самолет с нормальной горизонтальнойориентацией корпуса, но с введением в конструкцию динамизации. Динамиза-ция устраняла исходное противоречие! Это нужно было закладывать в концеп-цию самолета до проектирования! На стратегическом уровне создания поной

Page 124: основы классической триз. м. орлов

технической функции! Это означает, что и административно-стратегическоерешение нужно было принимать на основе перевода проблемы на тактиче-ско-технический и оперативно-физический уровни.

Насчитывается на так уж много видов противоречий, например, технико-эко-номические (техническое свойство — стоимость), технико-технологические(техническая свойство — сложность производства), технические (несовмести-мость функций), физические (несовместимость состояний одного свойства) инекоторые другие или комбинации из указанных. Первые два вида, как пра-вило, имеют характер административных противоречий. Для их решения нуж-но переводить противоречия на уровень технических или физических, на ко-торые и ориентирован инструментарий классической ТРИЗ.

Полезно учитывать некоторые особенности образования противоречий(рис. 9.1). Так, для каждого противоречия могут быть построены инверсная мо-дель или альтернативные варианты, более или менее близкие по значениюфакторов к исходному (прямому) противоречию. Конструктивные альтерна-тивные варианты возникают, когда конфликтуют несколько свойств объекта.Это явление можно использовать для комбинирования приемов, ориентиро-ванных для решения отдельных альтернативных противоречий (см. например,раздел 9.4. Интеграции альтернативных противоречий — метод CICO). Альтер-нативные варианты возникают часто из-за различного описания одних и техже конфликтующих свойств разными специалистами. Это иногда оказываетсяпричиной непонимания и дискуссий в команде, решающей одну и ту же про-блему. Последующее применение А-Матрицы или таблицы фундаментальныхтрансформаций помогает сократить вариабельность моделей.

Модели противоречий могут включать свойства разных системных уровней.Например, оба свойства могут быть одного уровня, или одно свойство можетбыть физико-техническим, а другое — системо-техническим. Для ориентацииможно использовать таблицу видов ресурсов (рис. 8.7).

Мы переходим к более подробному рассмотрению моделей противоречий сучетом следующих двух замечаний:

1) точная формулировка противоречия является непростой операцией и тре-бует немалого опыта и, разумеется, необходимых профессиональных зна-ний. От того, как именно сформулировано противоречие, что оно отража-ет, зависит весь дальнейший ход решения проблемы;

Page 125: основы классической триз. м. орлов

2) противоречия разных видов могут быть представлены иерархически в виде«матрешки противоречий»: в любом административном противоречии содер-жится техническое противоречие, а в техническом — физическое.

9.1.2. Техническое противоречие. Явно сформулированные модели техническихпротиворечий Вы уже встречали при реинвентинге в примерах 4, 6, 13 и 14.Полезно посмотреть их сейчас снова, чтобы более уверенно и с полным пони-манием акцептировать следующее определение:

Техническое противоречие — бинарная модель, отражающая несовместимыетребования к различным функциональным свойствам компонента или несколькихконфликтно-взаимодействующих компонентов.

Пример 4 (дополнение). Действительно, здесь имело место следующее исход-ное противоречие (рис. 9.3):

При создании решения сначала действовала сильнейшая негативная психоло-гическая инерция, не позволившая ввести динамизацию в конструкцию само-лета. Считалось, что самолет нельзя изменять, а вот его ориентацию при стар-те и посадке — можно. И что реактивный самолет с вертикальным стартом ипосадкой и должен взлетать носом вверх, а садиться на хвост! Только спустямного лет были признаны доминирующая значимость хорошего контроля иуправления самолетом и возможность обеспечения горизонтальной ориента-ции корпуса самолета! Продолжая учебный реинвентинг, устанавливаем, чтоцелевым плюс-фактором должно стать удобное управление самолетом (систе-мо-технический ресурс), а ориентация корпуса самолета (физико-техниче-ский ресурс) становится проблемным минус-фактором. То есть мы переходимк инверсному противоречию (рис. 9.4):

Page 126: основы классической триз. м. орлов

Редукция инверсной исходной модели на основании А-Матрицы дает следую-щую модель противоречия (рис. 9.5):

А-Матрица рекомендует рассмотреть следующие приемы: 04 Замена механиче-ской среды; 07 Динамизация; 14 Использование пневмо- и гидроконструкций и15 Отброс и регенерация частей.

Как Вы уже видели, именно прием 07 Динамизация и привел в конце концов крешению проблемы. Следует отметить, что были попытки применения иприема 15 Отброс и регенерация частей — установка сбрасываемых ускоряю-щих двигателей для старта.

Пример 27. Тренажер-стойка в фитнес-центре (начало). Диагностика показыва-ет, что в фитнес-центре находится немало специализированных тренажеров.Каждый из них занимает отдельное место. Особенно, тренажеры для упраж-нений лежа. Тренажеры для упражнений стоя требуют меньше места. В целомплощадь желательно экономить, чтобы больше посетителей могло трениро-ваться. Отдельный тренажер можно рассматривать как главный элемент опе-ративной зоны, а потом, по возможности, идею решения перенести на другиетренажеры. Можно сформулировать исходное техническое противоречие: кон-струкция тренажера должна обеспечивать тренировку нескольких посетителей(плюс-фактор), но при этом значительно увеличивается занимаемая площадь(минус-фактор).

Пример 28. Виброударное забивание сваи (начало). Диагностика показывает,что ударное забивание свай (пример 14 с продолжениями) все же дает боль-шой процент брака и не позволяет достичь более высокой производительно-сти. Предлагается расширить объем оперативной зоны до объема всей сваи ирассмотреть другие возможные способы создания рабочего движения сваи.Здесь явно присутствует конфликт между системными и физическими свойст-вами, который можно представить в виде технического противоречия: движе-ние сваи нужно ускорить, но при этом увеличивается влияние разрушающихвредных факторов и уменьшается надежность операции.

Пример 29. Вывод группы спутников на точные орбиты (начало). На этапе Диаг-ностика было установлено, что вывод группы спутников на точные орбитыили их расстановку на одной орбите на определенных расстояних один за дру-гим трудно обеспечить при ракетной транспортировке. Это отражается в сле-дующем техническом противоречии: вывод группы спутников ракетой с за-

Page 127: основы классической триз. м. орлов

данной точностью требует создания чрезвычайно сложных систем запуска иуправления.

Пример 30. Лекционная доска (начало). Диагностика процесса чтения лекции сприменением традиционной доски с мелом показывает, что этот процессобеспечивает возможность создания произвольных изображений и прост в реа-лизации, но имеет невысокую производительность, особенно, при необходимо-сти показать готовые сложные иллюстрации из каких-либо книг или из базданных CAD. Кроме того, такой подход неудобен для перенесения информа-ции с лекционной доски в компьютер, например, для проведения интер-нет-лекций. Приходится использовать телевизионную считывающую камеру ипередавать изображение с доски, после чего учащиеся перерисовывают картин-ки с экранов телевизоров или компьютерных мониторов. Изображение снима-ется и передается в аналоговой форме, то есть попросту идет аналоговая по-кадровая съемка всей доски.

Учитывая многофакторный характер задачи, можно сформулировать несколь-ко альтернативных технических противоречий, взаимнодополняющих другдруга. Итак, рисование на доске имеет следующие позитивные свойства: про-стота конструкции и возможность изображения любых рисунков. Недостатки:низкая производительность рисования, особенно при вводе сложных рисунков.отсутствие автоматизации рисования, избыточность передачи и сложностьперерисовывания видеоинформации, переданной на основе телевизионной тех-нологии, неудобство эксплуатации (использование мела или фломастеров,пачкающих руки, сложность исправления и невозможность перемещения ри-сунков — только вместе со всей доской или флип-чартами).

Не кажется ли Вам, что после такой диагностики приступать к решению про-блемы усовершенствования лекционной доски еще рано?! Во-первых, слиш-ком много противоречий и они никак не упорядочены, во-вторых, нет цели ввиде главной полезной функции и ожидаемой идеальной функциональноймодели, и в-третьих, не ясны доступные или допустимые ресурсы.

Но все же сами противоречия присутствуют, а значит, есть работа для творче-ского ума.

Пример 31. Купол Рейхстага (начало). А теперь Вы сможете побывать в ролиглавного архитектора сэра Нормана Фостера, предложившею великолепныеидеи для реставрации в Берлине здания парламента Германии (рис. 9.6).

Идея «Номер Один» — и по архитектурно-технической гармонии, и по симво-личности, — это стеклянный купол как элемент системы естественною осве-щения главного внутреннего зала заседаний и как самое достопримечательноеместо в Берлине наподобие Эйфелевой башни в Париже, Биг Бена и Вестмин-стерского аббатства в Лондоне или Статуи Свободы в Нью-Йорке. Впрочем, оболее значительной и глубокой символичности купола я пишу в конце книги.

Итак, первая задача о куполе. По внутренней стороне полусферы купола уст-роен пандус для подъема посетителей на верхнюю смотровую площадку. Какустроить пандус таким образом, чтобы потоки посетителей, идущих вверх ивниз, не встречались?!

Page 128: основы классической триз. м. орлов

Действительно, если бы пандус был устроен так, как показано на рис. 9.7, топотоки посетителей шли бы друг другу навстречу. В таком «проекте» неизбеж-но появилось бы острое техническое противоречие: пандус имеет такую форму,при которой возникают встречные потоки посетителей при подъеме и спуске,что приводит к потерям времени и неудобствам. Нужно найти более оптималь-ную форму пандуса.

На этом мы завершаем примеры построения исходных, ориентировочных тех-нических противоречий в том виде, как это обычно происходит на практикена этапе Диагностика. Настоящее направленное решение задач начинается суточнения моделей противоречий на этапе Редукция, продолжается устране-нием противоречий на этапе Трансформация и завершается на этапе Верифика-ция. Попробуйте получить решения самостоятельно и сравнить с контрольны-ми ответами, приведенными ниже в разделе 9.3. Трансформация.

9.1.3. Физическое противоречие. Явно сформулированные модели физическихпротиворечий Вы уже встречали при реинвентинге в примерах 1, 2, 3, 5, 7, 10,11, 13 и 14. Приведем следующее определение:

Физическое противоречие — бинарная модель, отражающая несовместимые тре-бования к одному и тому же функциональному свойству.

Сложность разрешения этого противоречия часто определяется тем. что обаконфликтующих состояния могут быть необходимы для реализации главнойполезной функции системы.

Феномен непревзойденной полезности бинарного физического противоречиясостоит в следующем:

1) поскольку все решения осуществляются в конечном итоге посредством ре-альных физических трансформаций реальных физических объектов, тоесть изменением их материала, формы, процессов и так далее, постолькуфизическое противоречие выполняет практическую навигационную функ-цию — ориентирует на реализацию в объекте таких трансформаций, прикоторых в центре внимания остаются полезные целевые факторы:

Page 129: основы классической триз. м. орлов

2) поскольку сегодня хорошо известны фундаментальные способы разреше-ния физических противоречий (см. раздел 10. Модели решения физическихпротиворечий), постольку физическое противоречие эффективно выполня-ет ограничивающую функцию при формировании идеи решения, исключаянерациональный поиск вне фундаментальных трансформаций.

Рассмотрим еще раз формулировку и разрешение физического противоречияпри реинвентинге пера автоматической чернильной ручки по примеру 1.В наиболее острой форме физическое противоречие для гусиного пера выгля-дит так: на кончике пера чернил должно быть много и не должно быть совсем!Понятно, что без дополнительного анализа и «анатомирования» противоречиязадачу быстро не решить! Но исследование должно идти строго по четыремфизическим аспектам: пространство, время, структура и вещество. В концеконцов так оно и происходило в истории пера. Но этот опыт до ТРИЗ не былисследован, не был аккумулирован и обобщен. Разрешение физического про-тиворечия произошло по всем аспектам (рис. 9.8).

Пример 32. Разделительный барьер (начало). На рис. 9.9,а показан раздели-тельный барьер для задания направления и ширины прохода для временнойочереди, например, для посетителей выставки. Конструкция этого барьера не-устойчива, и барьер может падать, когда посетители опираются на него. По-этому основание барьера делают более широким, а сам барьер укрепляют на-

Page 130: основы классической триз. м. орлов

клонным раскосом (рис. 9.9,b). Но и эта конструкция имеет существенныйнедостаток — она легко сдвигается в сторону, особенно на каменном или ас-фальтовом покрытии.

Физическое противоречие: барьер должен быть широким в основании, чтобыего трудно было сдвинуть, и должен быть узким (для удобства транспортиров-ки, монтажа и демонтажа).

Пример 33. Реакция водителя автомобиля (начало). Известно, что алкогольснижает скорость реакции автомобилиста на изменение дорожной ситуации.Однако, немало водителей считают, что это не относится к ним. И к сожале-нию, повторяют чужие ошибки, нередко трагические и непоправимые. Какубелить водителя в реальной и большой опасности, ожидающей его при по-пытке управления автомобилем после принятия алкоголя? Мы имеем дело сострым физическим (и кстати, этическим тоже) противоречием: водитель дол-жен быть пьян, чтобы в управлении автомобилем произошли изменения, иводитель не должен быть пьян, чтобы не создавалось реальной опасности длянего и окружающих. Как преодолеть это противоречие?

Пример 34. Свая (начало последнего примера, связанного со сваями). Забиваниесваи все же имеет неустранимый недостаток, являющийся прямым следстви-ем применяемого принципа ударного воздействия на сваю для перемещения вгрунт. Следует отметить также, что процесс забивания свай потребляет многоэнергии. Причем значительная часть этой энергии расходуется на… разруше-ние самой сваи. Процессу присуще острое физическое противоречие: сваюнужно забивать, чтобы она вошла в грунт, и сваю нельзя забивать, чтобы онане разрушалась. Можете ли Вы предложить новую «неразрушающую» техно-логию забивания свай?

Пример 35. Ремонт трубопровода (начало). Лопнула труба водопровода! Нужнопроизвести срочный ремонт, но вода, поступающая под большим напором, нелает закрепить накладку или произвести сварку трещины или разрыва. Пере-крывать воду во всей системе водоснабжения по ряду причин также нецелесо-образно. Острая аварийная ситуация: воду нужно остановить, чтобы произве-сти ремонт трубы, и воду нельзя останавливать по внешним причинам.

Пример 36. Лекционная доска (обострение проблемной ситуации по примеру 30).Технические противоречия, сформулированные выше в примере 30, можнообобщить в виде физического противоречия: доска должна быть, чтобы наней было изображение иллюстраций к лекции, и доски не должно быть, чтобына ней вообще не надо было рисовать. Интересно, Вы увидели решение или,наоборот, окончательно потеряли предчувствие возможности решения? Неспешите, вдумайтесь в «несовместимые» альтернативы этой модели!

Page 131: основы классической триз. м. орлов

Пример 37. Купол Рейхстага (обострение проблемной ситуации по примеру 31).Физическое противоречие, присутствующее в конструкции, показанной нарис. 9.7, может звучать, например, следующим образом: посетители должныспускаться вниз, покидая смотровую площадку, и не должны спускаться, чтобыне мешать поднимающимся посетителям. В такой формулировке присутствует,конечно, доля шутки, хотя задача проектирования конструкции для подъема испуска посетителей купола вполне реальная. Кроме того, я хотел показать, чтона практике могут возникать втом числе и такие «несерьезные» формулировки.Этого не следует ни избегать, ни бояться. Это иногда даже помогает решить зa-дачу проще, именно без «звериной серьезности», как говорил Нильс Бор (63). Чтомы и увидим, я надеюсь, ниже в разделе 9.3. Редукция и трансформации.

Итак, если Вы не были знакомы с ТРИЗ ранее, то будем считать, что Вы при-обрели первый опыт концентрации на моделировании проблемы в виде про-тиворечий — технического и физического. Я надеюсь, что приведенных при-меров достаточно также, чтобы Вы заметили и существенную разницу междутехническими и физическими противоречиями при моделировании одной итой же проблемной ситуации. Для самопроверки Вам будет полезно самостоя-тельно решить все задачи из Практикума 6—9 после раздела 9.3 Редукция итрансформации.

Психологи и нейрофизиологи, действуя на разных уровнях, вместе открылинемало тайн в устройстве и работе мозга. Но никто пока не открыл истоки ге-ниальности в мышлении! Истоки устремленности к созиданию! Доминанты иимперативы веры, любви, надежды и добра! Хотя, к счастью, они существуютв нас сами по себе в соответствии с еще более могущественными принципамиустройства Вселенной.

Поэтому и мы приводим лишь весьма упрошенную схему, поверхностно ото-бражающую не сам процесс изобретения новой идеи, а лишь компоненты, со-действующие процессу мышления по ТРИЗ (рис. 9.10). Эта схема отличаетсяот приведенной ранее на рис. R3 тем, что в ней учтены совершенно необходи-мые индивидуальные аспекты мышления.

Page 132: основы классической триз. м. орлов

Необходимыми условиями для успешного решения проблем являются:

• сильная позитивная мотивация, решительность, настойчивость (воля)при стремлении к цели;

• определенные способности к ассоциативному мышлению, память, вооб-ражение, наблюдательность, объективность, гибкость (способность пре-одолевать инерционность мышления);

• профессиональные знания и владение ТРИЗ/СROSТ-технологией.

В этом Мире все стремятся к идеальному! В том виде, как каждый себе этопредставляет. Но путь к этой цели часто не очевиден и почти всегда не прост!Более того, сами поиски и выбор цели, которая достойна того, чтобы неус-танно стремиться к ней, тоже не простая проблема почти для каждого из нас.Зная это, мы начнем обсуждение темы «идеального моделирования», можетбыть, самой сложной темы в ТРИЗ, именно с простых и почти очевидныхпримеров. Сначала рассмотрим три первые задачи.

Пример 38. Ваза в музее. Часто в музеях ценные предметы устанавливаются вшкафах и нишах вдоль стен. При этом невозможно рассмотреть эти предметысзади или снизу, что снижает познавательную и эстетическую ценность экс-позиции. Что именно нас интересует здесь? Возможность видеть вазу со всехсторон и даже снизу, но не обходя вазу вокруг и не наклоняясь, чтобы загля-нуть под полку! Тем более, что обойти вазу нельзя, так как она стоит у стены,а полка не прозрачная! Но тогда давайте потребуем нереального (пока!): пустьстена и полка сами покажут нам вазу со всех сторон! Именно таким постанов-кам ТРИЗ и рекомендует научиться! Это и есть создание целеориентирующейметафоры в виде «функциональной идеальной модели» — ФИМ. Да, это метафо-ра, образ чего-то, что мы хотим получить. Но образ функциональный, содер-жащий конкретный ожидаемый результат. В классической ТРИЗ этот образназывается еще «идеальный конечный результат» — ИКР. Я почти уверен, чтоесли не ранее, то сейчас, Вы уже нашли контрольное (известное) решение длядостижения ФИМ или ИКР в этой задаче: нужно установить зеркала за вазойи под вазой! (Если Вам эта задача кажется слишком простой, а решение —слишком очевидным, то прошу Вас не быть слишком строгими к этому при-меру. Он ведь учебный. Кстати, маленькое техническое осложнение Вы обна-ружите при размещении зеркала под вазой. Устраните его самостоятельно.При этом можно поупражняться в применении Мета-АРИЗ. А если Вы не об-наружили это осложнение умозрительно, то поставьте какую-нибудь вазу ввашем доме на зеркало и попробуйте увидеть ее нижнюю часть. Вы непремен-но столкнетесь с этим осложнением.)

Пример 39. Киль яхты. Яхта устойчиво идет под парусами благодаря тому, чтопод ее днищем имеется киль — стабилизатор курса. При заходе яхты в мел-ководную гавань киль мешает подходить к причалу, так как задевает за дно.Что именно нас интересует здесь? Возможность свободно заходить на мелко-водье, не задевая килем-стабилизатором за дно. Сформулируем «администра-тивную» ФИМ: яхта свободно заходит на мелководье, глубина которого чутьбольше ее осадки, то есть расстояния от уровня воды до самой нижней точки

Page 133: основы классической триз. м. орлов

днища яхты. Сформулируем «техническую» ФИМ: на мелководье киля у яхтынет. Действительно, не можем же мы потребовать, чтобы неглубокое местостало вдруг глубоким. (Хотя в иных случаях и такие метафоры не исключа-ются!) Но киль есть там, где глубоко и можно идти с большой скоростью.Явное физическое противоречие! Мы уже видели способы его разрешения.И мы видим также явную несовместимость в пространстве (малая глубина —большая глубина) и в структуре (киль есть — киля нет). Следовательно, этиресурсы являются критическими в задаче и будут доминирующими в решении.Вы, скорее всего, уже определили основную идею: киль яхты нужно динами-зировать — он должен быть сделан поднимающимся и опускающимся. Вме-сте с тем, технически осуществить это не так просто. В центре яхте прихо-дится создавать специальный вертикальный проем, иногда открытый(рис. 9.8), что в целом не способствует сохранению прочности всего корпуса,так как килевая нижняя балка служит настоящим «позвоночником» для яхты,а здесь приходится создавать в нем большой продольный разрез. В другом ва-рианте два подъемных киля-стабилизатора устанавливают по бортам яхты,что усложняет управление ими и может сказаться на быстроходности. И хотяяхты прошли большой многовековой путь развития, здесь кроется еще неодна изобретательская тема!

Пример 40. Токосъемник трамвая. Токосъемник трамвая часто имеет формудуги, верхняя часть которой ориентирована поперек провода, по которому ктрамваю подается электроэнергия. Дуга подпружинена и постоянно прижима-ется к проводу. Дуга имеет форму, которая позволяет сохранять надежныйконтакт с проводом на поворотах, однако на прямых участках провод посте-пенно прорезает в дуге углубления. Это может приводить к зацеплению и об-рыву провода. Как уменьшить или даже устранить эту проблему?

Что именно нас интересует здесь? Поскольку мы не можем исключить непо-средственный контакт провода с дугой токосъемника, то хотя бы потребуемреализации ИКР: провод не режет дугу в одном и том же месте. Мы еще незнаем, как мы добъёмся этого ИКР, но так должно быть! Вполне логично пе-реформулировать исходную метафору следующим образом: пусть провод каса-ется дуги не в одном месте, а во многих местах вдоль дуги, примерно так, какэто происходит на повороте! Отсюда уже один небольшой шаг к контрольно-му решению: над прямыми участками трамвайного пути контактный проводдолжен идти зигзагом, размах которого равен длине контактной части дуги(рис. 9.9). Конечно, это удорожает конструкцию подвески провода, но увели-чивает срок службы дуги и исключает возможность обрыва провода дефект-ной дугой по старому варианту.

Во всех рассмотренных случаях решение было получено практически толькона основе точной формулировки функциональной идеальной модели либоидеального конечного результата. Действительно, иногда достаточно правиль-но сформулировать цель решения задачи, как сама эта цель подсказывает идеюрешения. В рассмотренных примерах оказалось достаточным поставить ФИМили ИКР в центр внимания, как необходимые ресурсы открылись практиче-ски сами. В отличие от этих примеров, реальные проблемы совсем на такпросты. Но при решении всех без исключения проблем формирование пра-

Page 134: основы классической триз. м. орлов

вильной функциональной идеальной модели играет исключительно важнуюроль. ФИМ и ИКР мотивируют творческое мышление и направляют его в об-ласть существования эффективных решений.

Более глубокие системо-технические принципы формирования ФИМ и ИКРбудут рассмотрены в главе 14. Управление развитием систем. Здесь же мы бу-дем опираться в основном на интуитивное формирование «идеального» функ-ционирования объекта при решении проблем.

Приведем основные определения в современной редакции.

Идеальный конечный результат ИКР — требуемое или желаемое состояниеобъекта.

Функциональная идеальная модель ФИМ — образ, гипотеза, метафора, содер-жащие представление о том, как должен функционировать объект, чтобы дос-тичь ИКР.

Можно отметить, что чаще формулируют ФИМ, так как она дает больше ин-формации о том, как должен функционировать объект после изменений. Приэтом ИКР оказывается как бы спрятанным в ФИМ, заданным неявно.

В зависимости от того, на что направлен ИКР, различают два типа ФИМ:

ФИМ-минус: описание (цель, требование, условие, процесс) желаемого функ-ционирования минус негативные явления, вызывавшие противоречие;

ФИМ-плюс: описание (цель, требование, условие, процесс) желаемого функ-ционирования плюс действия или ресурсы, ведущие к «самоустранению» про-тиворечия.

Модель ФИМ-минус строят чаще при первых обсуждениях проблемы. Мо-дель ФИМ-плюс более конструктивна и включает в себя ФИМ-минус в неяв-ном виде. Для построения ФИМ-плюс применяются классические формули-ровки. Но все они исходят из того, что решение может быть получено толькона основе изменения имеющихся и/или введения дополнительных ресурсов.

Чем ближе описание ФИМ к реальности, тем лучше. Но дело как раз в том,что мы не можем точно описать, как достичь ФИМ или ИКР, и избегаемформулировать их со свойствами, свободными от психологических ограниче-

Page 135: основы классической триз. м. орлов

ний. Для ослабления психологической инерции при формулировании ФИМ вТРИЗ выработаны и проверены практикой в течение нескольких десятилетийследующие два правила:

1) не думать сначала о том, как именно и за счет чего будет получено решение;

2) неизвестный ресурс или действие, необходимые для получения результа-та, можно заместить временно метафорическим символом, например,Х-ресурс.

Здесь ТРИЗ явно использует ТРИЗ-прием разрешения очевидного и острого«физического» противоречия, возникающего в нашем сознании: ресурс дол-жен быть, чтобы решить проблему, и ресурса не должно быть, так как он про-сто не известен. ТРИЗ предлагает: заместите временно (разрешение несовмес-тимости во времени) неизвестный ресурс его образом, то есть копией, пустьдаже пока неясной (разрешение несовместимости в пространстве—вещест-ве—энергии)!

Здесь также присутствует разрешение противоречия в структуре. Невозмож-ное спряталось в «X»! А в целом ФИМ уже выглядит возможной! Часть ФИМсодержит неизвестное, а вся ФИМ — известна! Наше сознание сделает невоз-можное возможным, и этому будет способствовать то, что вербально уже невыглядит невозможным! Итак, рассмотрим практические модели, точнее гото-вые формы для записи моделей ФИМ-плюс:

1. Макро-ФИМ:

Х-ресурс, не вызывая недопустимых негативных эффектов, обеспечивает име-ете с другими имеющимися ресурсами получение

[ требуемое функционирование ].

2. Микро-ФИМ:

Х-ресурс в виде частиц вещества или энергии находится в оперативной зоне иобеспечивает вместе с другими имеющимися ресурсами получение

[требуемое функционирование].

3. Макси-ФИМ:

Оперативная зона сама обеспечивает получение

[требуемое функционирование].

Здесь уместно привести два высказывания автора ТРИЗ Генриха Альтшуллерао роли функционального идеального моделирования в решении проблем.

Из книги (5): «Идеальный конечный результат можно уподобить веревке, дер-жась за которую альпинист совершает подъем по крутому склону. Веревка нетянет верх, но она дает опору и не позволяет скатиться вниз. Достаточно вы-пустить веревку из рук — падение неизбежно.»

Из книги «Алгоритм изобретения» издания 1973 года: «Представьте себе, чтонекто зашел в тупик. И вот Вам предлагается пройти дальше по этому тупику

Page 136: основы классической триз. м. орлов

(чтобы найти выход — О.М.). Что и говорить — занятие малоцелесообразное!Надо поступить иначе: сначала отойти к исходной точке, а затем пойти в пра-вильном направлении. К сожалению, задачи чаще всего формулируются так,что они настоятельно (хотя и незаметно) толкают в тупик.»

ИКР и ФИМ не дают решателю оставаться в тупике, куда заводит его психо-логическая инерция, и дают верный ориентир для выхода на сильное реше-ние, каким бы невозможным оно ни казалось сначала!

Переходим к примерам.

Пример 41. Вездеход-неваляшка. Вездеходы, перевозящие крупногабаритныеконструкции на больших уклонах и по бездорожью, должны иметь высокиеколеса и большой клиренс (расстояние от нижней точки колеса до самойнижней точки днища). Но тогда центр тяжести вездехода поднимается, и уве-личивается опасность того, что вездеход перевернется на неровной местности.Чтобы препятствовать этому, вездеход должен иметь центр тяжести как мож-но ниже. Сильное физическое противоречие! Сформулируем Макро-ФИМ:

Х-ресурс, не вызывая недопустимых негативных эффектов, обеспечивает вме-сте с другими имеющимися ресурсами максимально низкое расположение цен-тра тяжести вездехода.

Максимальная устойчивость обеспечивается при расположении центра тяже-сти… на земле! Как сделать так, чтобы центр тяжести вездехода стал макси-мально ближе к земле? Это должно быть какое-то Х-изменение в системе,при котором как можно больше веса частей системы находилось бы в самомнизу. Но вездеход — плохо изменяемая конструкция. Самая легкая егочасть — кабина — и так находится наверху, а такие части как двигатель итрансмиссия не могут опуститься ниже клиренса! Ниже клиренса находитсятолько самая нижняя часть колес. Сами колеса очень большие и широкие, ноони никак не влияют на клиренс. Как быть?

Если у Вас пока не возникло идеи, давайте определим оперативную зону.В качестве оперативной зоны целесообразно принять «площадку» касанияземли колесами. Действительно, переворачивание начинается тогда, когда ко-леса с одной стороны вездехода отрываются от земли. Максимальное сниже-ние центра тяжести как бы «прижимает» площадку к земле. Было бы замеча-тельно, если бы передняя часть площадки в оперативной зоне была как бы«прижата» к земле, а давление на заднюю часть площадки уже «ослаблялось»,чтобы эта часть начала подниматься вверх по катящемуся колесу. И все этодолжно происходить непрерывно по ходу колеса!

Сформулируем Микро-ФИМ:

Х-ресурс в виде частиц вещества или энергии находится в оперативной зоне иобеспечивает вместе с другими имеющимися ресурсами максимальное прижа-тие передней части опорной площадки колеса к земле.

Как сделать это снаружи колеса — непонятно. Но мы обязаны рассмотретьресурс оперативной зоны (площадки прижатия) и с внутренней стороны коле-са! Пусть внутри колеса Х-частицы давят на переднюю часть площадки и не

Page 137: основы классической триз. м. орлов

давят на заднюю часть этой площадки! Такая идея ибыла запатентована в США: японский изобретательпредложил насыпать в колеса множество стальныхшариков! При движении шарики все время перека-тываются по внутренней поверхности колес и под-держивают существенно более низкое расположе-ние центра тяжести вездехода (рис. 9.13).

Это чем-то напоминает известную куклу-неваляшку(рис. 9.14), в шаровидном основании которой при-клеен кусочек металла, который полностью уравно-вешивает вес всей куклы. Поэтому она всегда встаетна ровной поверхности в вертикальное положение!

Проведите верификацию полученного решения ипроверьте, насколько идеально реализована ФИМ.Может быть, в реальности пришлось все же несколь-ко отступить от «идеального» (совершенно бесплат-ного и не имеющего побочных негативных эффек-тов) решения и чем-то заплатить за достижение тре-буемого эффекта?

Пример 42. Зимние ботинки. Каким бы ни был рису-нок подошвы или каблука в ботинках, в гололед этомало помогает. Если же подошвы снабдить шипами,то ходить в такой обуви в помещении будет нельзя.Можно, конечно, надевать на подошвы накладки сшипами, что и делают в северных местностях, но этоделает обувь не очень красивой и в больших городах не принято (и напрас-но!). Как быть? Сначала определим, чего мы хотим в оперативной зоне (по-дошва плюс каблук!) и попробуем сформулировать ФИМ для этой ситуации.Мы уже научились быстро формулировать физические противоречия, чтообычно сложнее, чем формулировать технические. Включим физическое про-тиворечие в следующую Макси-ФИМ:

оперативная зона сама обеспечивает появление шипов в гололед и отсутствиешипов при более высокой температуре.

Что может быть идеальнее, чем такое использование вещественного ресурса,как в следующем решении: в подошве и в каблуке встроить вертикальныестержни из металла с эффектом памяти формы?! При температуре ниже нулястержень немного выдвигается и служит шипом против скольжения, а притемпературе выше нуля стержень сжимается, и шип исчезает.

Пример 43. Столик для работы или приема пищи в постели. Обычный подносили другой плоский лист (столик), например, из пластмассы, неудобно ис-пользовать для приема пищи или непродолжительной работы в постели. Сто-лик наклоняется и скользит при малейшем неосторожном движении. В кли-никах для этого чаще применяют специальные выдвижные плоскости илиподкатываемые столики, находящиеся на удобной высоте над постелью. В до-

Page 138: основы классической триз. м. орлов

машних условиях для этого нужно что-то более простое. Техническая причинапроблемы состоит в том, что плоская нижняя поверхность столика плохо со-гласована со сложной поверхностью нижней части тела человека, сидящегоили полулежащею в постели. Запишем Микро-ФИМ:

Х-ресурс в виде частиц вещества в оперативной зоне обеспечивает максималь-ное согласование формы нижней части столика с формой тела человека.

Отсюда следует, чтонижняя часть столика, по крайней мере, должна быть вы-полнена в виде динамизированной поверхности, легко приспосабливающейсяк неровностям. Известное решение: снизу по всей поверхности столика при-креплена матерчатая оболочка, почти заполненная легкими пластмассовымишариками. Достаточно установить такой столик на ноги больного, как обо-лочка плотно и надежно фиксируется.

Пример 44. Лестница мемориала. Архитектурное решение любого мемориалаимеет целью эмоциональное воздействие на посетителей. Многие мемориалыимеют вид скульптурных композиций, установленных на естественных возвы-шенностях или искусственных холмах. Как сделать, чтобы поведение посети-телей, особенно, юных и не всегда хорошо воспитанных, на пути к вершинехолма было, по крайней мерс, сдержанным? Вы уже заметили здесь явное ад-министративное противоречие, не так ли? Требуется ввести новую функцию,а именно, нужно, чтобы мемориал сам создавал «сдержанное» поведение посе-тителей, но как этого достичь, на первый взгляд не ясно.

В виде технического противоречия это может звучать, например, так: потокпосетителей должен быть не быстрым и равномерно движущимся, но он имеетпомехи в виде быстро движущихся посетителей. Оперативная зона: лестница.Макси-ФИМ: лестница сама ограничивает движение посетителей. Эта ФИМнацеливает на решение только за счет внутренних ресурсов оперативнойзоны, за счет конструкции самой лестницы. Нужна необычная лестница! Ле-стница, которая замедляет движение посетителей!

Контрольное решение: лестница имеет ступени разной высоты. Посетителивынуждены часто посматривать себе под ноги, и общее движение становитсянебыстрым, сдержанным.

Пример 45. Бутылочка с опасным веществом. Как сделать сильнодействующеелекарство недоступным для детей и легкодоступным для взрослых, даже еслиглоток лекарства нужно принять срочно и не зажигая света? В первом при-ближении определим оперативную зону как всю бутылку. Тогда Макси-ФИМможно представить в виде следующего физического противоречия: бутылкасама обеспечивает защиту себя от детей и узнаваемость для взрослых!

Заметим, что в исходное требование входила различимость бутылки в темно-те. Следовательно, речь может идти только об узнаваемости на ощупь, так-тильном восприятии. Итак, в соответствии с Макси-ФИМ речь идет о формебутылке. Форма одновременно должна нести позитивную информацию длявзрослых и негативную информацию для детей.

Page 139: основы классической триз. м. орлов

Контрольное решение: на конкурсе в Англии выиграла идея «колючей» бу-тылки. По всей поверхности бутылки имеются достаточно острые шипы, ко-торые не могут поранить, но делают бутылку неприятной для детей, привык-ших играть с округлыми и/или мягкими игрушками.

И в заключение раздела о ФИМ мы можем сказать, что изобретательские за-дачи — это «многоходовки»! Поэтому и решать их надо соответствующимиметодами, с помощью разных ресурсов, то есть разных «фигур» в этой слож-нейшей игре. При этом ФИМ ориентирует на бескомпромиссное достижениежелаемого результата.

9.3. Редукция и трансформации

Устранение имеющейся несовместимости возможно пятью основными спо-собами:

1) устранение негативного фактора или нейтрализация последствий его дей-ствия;

2) построение инверсного противоречия (превращение негативного фактора впозитивный, целевой) и переход к первому способу;

3) интеграция инверсных противоречий с исключением негативных свойств;

4) разделение равноценных, но конфликтующих позитивных действий во време-ни, пространстве или по другим ресурсам, являющимся причиной конфликта;

5) замена задачи с устранением всего конфликта в целом.

В любом случае процесс трансформации по ТРИЗ осуществляется по схеме.которую я называю Мини-алгоритм трансформации или Мини-АРИЗ(рис. 9.15). Два основных шага Мини-АРИЗ под номерами 1 и 3 относятсятолько к этапам Редукция и Трансформация и связаны непосредственно с раз-решением конкретного противоречия и с генерацией идеи решения. Шаг 2отображает переход между этапами Редукция и Трансформация. Стрелка 4 по-казывает возможный возврат к Редукции, например, для дополнительногоуточнения моделей или поиска новых ресурсов.

Вы могли уже заметить, что ранее во многих рассмотренных примерах приво-дилось сокращенное описание процесса решения, содержащее только икниМини-АРИЗ. Этот подход мы применим и в этом разделе, по крайней мередля первых примеров.

Редукция является промежуточным, связывающим этаном между Диагности-кой и Трансформацией. На этом этапе мы концентрируемся на одной конкрет-ной задаче, сосредоточенной в одной оперативной зоне. Редукция проблемывключает подбор приемов и стандартных ТРИЗ-моделей, для которых извест-ны решения в общем виде, формирование функциональной идеальной моде-ли и идеального конечного результата, изыскание потенциально полезныхоперативных ресурсов.

Page 140: основы классической триз. м. орлов

Трансформация является во всех смыслах решающим этапом в Мета-АРИЗ.Именно на этапе Трансформации встречаются дисциплина мышления и вдох-новение, логика и интуиция, опыт и мотивация, устремленность к новойидее. Именно на этом этапе должна принести свой замечательный эффект всяподготовительная работа по ТРИЗ — диагностика проблемной ситуации, за-вершающаяся построением оперативной зоны и определением исходных мо-делей противоречий, и редукция исходных описаний к стандартным. Именноздесь Вы оказываетесь лицом к лицу с последним отчаянным сопротивлениемпроблемы, перед неизвестным будущим, перед Вашим изобретением или се-рией изобретений. Вперед!

Модели ТРИЗ/CROST на этапе Трансформация являются инструментами длямышления и представляют собой приемы-аналоги. Примеры, рассматриваемыениже в этом разделе, предназначены для того, чтобы понять, как именноможно применять ТРИЗ-инструменты, до какого момента в процессе реше-ния можно уверенно двигаться на основе аналога, а с какого момента нужнособственное творческое усилие. Коротко говоря, в ТРИЗ нет готовых ответовна все проблемы! Но в ТРИЗ есть модели и рекомендации, как искать пра-вильные ответы за кратчайшее время. Снижает ли это полезность ТРИЗ? Или,может быть, сводит к нулю Ваши усилия по применению ТРИЗ при решенииконкретной проблемы?

На эти вопросы, естественные для каждого думающего человека, мы должнывместе найти правильные и однозначные ответы. Ну, что ж, следуя навыку.полученному при реинвентинге, а именно, навыку накопления и обобщенияпримеров, давайте зададим себе еще несколько похожих вопросов:

• знаете ли Вы выдающегося шахматиста, который никогда не изучалшахматной теории, сотен и тысяч шахматных этюдов и партий, сыгран-ных другими талантливыми предшественниками и современниками?

Page 141: основы классической триз. м. орлов

• знаете ли Вы гениального пианиста, который никогда не изучал музы-кальной теории, не играл тысячи раз гаммы и этюды, пьесы и трудныефрагменты новых произведений?

• знаете ли Вы знаменитого математика, который не изучал арифметику,геометрию, алгебру и не упражнялся в решении тысяч математическихзадач?

• знаете ли Вы серьезного художника, не изучавшего элементы живописи,композиции и рисунка, не прошедшего школу студийных этюдов и неизучавшего произведения предшественников и современников?

• знаете ли Вы, наконец, популярного чемпиона по боксу или карате, ко-торый стал победителем, прочитав несколько учебных пособий и неимея многолетней тренировочной практики, не разучивая сложных дви-жений через простейшие элементы, не работая над своей психологиче-ской устойчивостью и способностью к концентрации?

Думаю, что вывод давно сложился сам собой, как это и должно происходитьв соответствии с ТРИЗ-концепцией функционального идеального моделиро-вания. ТРИЗ также имеет теоретические принципы и модели, этюды разнойстепени сложности, стратегию, тактику и даже представление о красоте ре-шений!

Но об этом позже, а сейчас — к этюдам! К этюдам А-Студии!

Пример 27. Тренажер-стойка в фитнес-центре (окончание). Редукция показыва-ет, что ресурсы площади крайне ограничены. Нужно искать решение в направ-лении следующего идеального результата: новые тренажеры не занимают до-полнительной площади! Подбор подходящих факторов из А-Матрицы приво-дит к следующей уточненной модели технического противоречия:

Трансформация. А-Матрица предлагает следующие приемы из А-Каталога:01 Изменение агрегатного состояния, 02 Предварительное действие, 19 Переходв другое измерение и 34 Матрешка.

Совместная интерпретация приемов 19 и 34 представляется вполне конструк-тивной. Действительно, в соответствии с приемом 19 можно использовать ре-сурс высоты помещения и либо поднять тренажеры на дополнительный уро-вень, либо стремиться использовать вертикальные компоновки. Прием 34прямо ориентирует на применение либо выдвигаемых/раздвигаемых конст-рукций, либо на реализацию в одной конструкции нескольких тренажеров.

Page 142: основы классической триз. м. орлов

Пример одного из известных решений показан на рис. 9.16: тренажер-стойкапозволяет со всех четырех сторон выполнять различные упражнения, так какподвижные нагрузочные элементы смонтированы на каждой из сторон стой-ки, а тяги выведены через кронштейны с роликами, установленные на разныхуровнях в соответствии с типом упражнения.

Пример 28. Виброударное забивание сваи (окончание). Анализ показывает, чтопридется обратиться все же к ресурсу материала сваи. Сформулируем Мик-ро-ФИМ: Х-ресурс в виде частиц вещества в оперативной зоне обеспечиваетперемещение неповреждаемой сваи! Редуцированная модель в виде двух аль-тернативных технических противоречий:

Трансформация. Из двух ячеек А-Матрицы получаем следующие приемы:01 Изменение агрегатного состояния (дважды), № Дробление, 04 Замена механи-ческой среды (дважды), 13 Дешевая недолговечность взамен дорогой долговечно-сти, 28 Заранее подложенная подушка, 36 Обратная связь. В принципе всеприемы имеют интересные интерпретации! Рассмотрите их самостоятельно(сравните также с решением для примера 7.8). В учебных целях мы сосредото-чимся на одном известном решении (рис. 9.52) по приему 04, который, в ча-стности, рекомендует: b) использовать электрические, магнитные и электро-магнитные поля для взаимодействия с объектом; d) использовать поля в соче-тании с ферромагнитными частицами.

В материал сваи добавляется ферромагнитный порошок. Кроме того, в сваенаходится стальная арматура. Свая опускается в тяжелый цилиндр, включаю-

Page 143: основы классической триз. м. орлов

ший кольцевой электромагнитный индуктор, генерирующий импульсы тока.Возникающее магнитное поле взаимодействует с ферромагнитными и метал-лическими компонентами в свае и создаст механическое усилие, переметаю-щее сваю вниз. Выбор формы импульсов и силы тока позволяет создавать раз-ные режимы движения сваи, воспроизводить как ударные, так и вибрацион-ные воздействия.

Рассматривая ряд трансформаций сваи от самой первой постановки до полу-ченного решения, следует отметить, что непрерывно изменялся характер дей-ствий в оперативной зоне: воздействие в точке (исходный ударный способ за-бивания) — воздействие по поверхности (через посредники) — воздействие пообъему (через посредничество ферромагнитных добавок). Это есть проявлениепринципа динамизации оперативной зоны. Причем изменение в зависимости отконтекста задачи может происходить и в обратном направлении.

Пример 29. Вывод группы спутников на точные орбиты (окончание). На л а п еРедукция можно предложить следующую модель технического противоречия:

Рекомендуемые приемы: 05 Вынесение, 06 Использование механических колеба-ний, 10 Копирование. Одно из известных решений на основе Приема вынесенияв части «выделить единственную нужную часть (нужное свойство): группа

Page 144: основы классической триз. м. орлов

спутников выводится в космос кораблем типа «Шаттл», а затем робот-мани-пулятор (рис. 9.18) выносит спутники из грузового отсека и расставляет их наорбитах с требуемыми параметрами.

Пример 30. Лекционная доска (окончание). Редуцирование исходных противо-речий в этой ситуации само по себе оказывается непростой задачей. Рассмот-рим этот процесс в его развитии. Сначала исходные противоречия могут бытьредуцированы к следующему виду:

Здесь количество негативных факторов превышает количество позитивных.Поэтому представляется полезным перейти к инверсным моделям, добавив кним фактор 02 Универсальность:

Page 145: основы классической триз. м. орлов

Ранжирование приемов приводит к следующей последовательности: 04 (2 —встречается дважды), 07 (2), 18 (2), 19 (2), 37 (2), 02, 09, 14, 27, 29.

Выпишем подряд ключевые рекомендации из первых четырех приемов:

• заменить механическую систему оптической, акустической пли «запа-ховой»;

• характеристики объекта или внешней среды должны меняться так, чтобыбыть оптимальными на каждом шаге работы;

• использовать промежуточный объект, переносящий или передающий дей-ствие;

• возможно улучшение при переходе от движения по плоскости к про-странственному; использовать оптические потоки, падающие на сосед-нюю площадь.

В Германии предложено решение, показанное на рис. 9.19.

На доске 1 обычного размера, например, длиной 3 м и высотой 1,5 м. лекторперемешает штифт 2 так, как будто создает рисунок или пишет текст. В лоскувстроена координатная сетка 3, считывающая положение острия штифта. Ко-ординаты X и Y острия штифта через преобразователь 4 поступают в компью-тер 5, а оттуда — в проектор 6, изображающий на доске все, что было нарисо-вано ранее (7), и проецирующий окончание вновь вводимой линии непосред-ственно в то место, где находится штифт. «Доска» (белого цвета) на самомделе играет роль экрана со встроенной системой считывания положенияштифта. Таким образом, сохраняется универсальность рисования на «доске» иувеличивается степень автоматизации, благодаря возможности сохранения

Page 146: основы классической триз. м. орлов

изображений на любом компьютере, соединенном с передающим компьюте-ром 5 через Интернет. Увеличиваются производительность, удобство эксплуа-тации и вновь степень автоматизации, так как теперь можно демонстриро-вать на доске любые заранее приготовленные сложные рисунки.

Примеры 31 и 37. Купол Рейхстага (окончание). Итак, Вы готовы воспроизве-сти ход мыслей архитектора сэра Нормана Фостера? Если «да», то давайте по-пробуем сделан, э т о . Если «нет», то нужно проработать книгу еще раз с само-го начала!

Мы совместим здесь решения на основе технического и физического проти-воречий, тем более, что после этого примера мы как раз переходим к рассмот-рению трансформаций на основе физических противоречий:

Идеальный результат: потоки посетителей не могут пересекаться!

Техническое противоречие: плюс-фактор 21 Форма и минус-фактор 25 Потеривремени.

Физическое противоречие: встречные потоки посетителей должны быть, таккак посетители должны подниматься на смотровую площадку и спускаться снее, и встречные потоки должны отсутствовать, чтобы посетители не меша-ли друг другу в движении.

Ведущий ресурс: пространственный.

Рекомендации по А-Матрице: приемы 02 Предварительное действие, 15 От-брос и регенерация частей, 19 Переход в другое измерение и 22 Сфероидальность.

Рекомендации из каталога «Фундаментальные трансформации и А-Приемы»:вполне перспективные приемы 05 Вынесение, 10 Копирование, 19 Переход в дру-гое измерение. 22 Сфероидальность, 34 Матрешка.

Суммарные рекомендации и их интерпретации:

• Прием 05: отделить мешающую часть (например, поток спускающихсяпосетителей), выделить нужную часть (аналогично);

• Прием 10: использовать копии (сделать еще один пандус!);

• Прием 19: использовать многоэтажную компоновку (как-то разместитьпандусы один под другим!);

• Прием 22: использовать спирали (уже применяются!);

• Прием 34: разместить объект последовательно один в другом, пропус-тить объект через полости (пустоты) в другом (итак, пандусы надокак-то вложить один в другой!?).

Простое и великолепное решение (рис. 9.20): второй пандус сдвинут по ок-ружности (например, при виде сверху, иначе говоря, в плане) на 180° и сво-бодно входит своими витками между витками первого пандуса. Оба пандусаодинаковы, то есть являются взаимными копиями.

Page 147: основы классической триз. м. орлов

Пример 32. Разделительный барьер (окончание). Сформулируем Макси-ФИМ:оперативная зона сама держит барьер! (Посмотрите, кстати, пример 30!) По-пробуем сформулировать другой вариант физического противоречия: барьердолжен быть тяжелым, чтобы его трудно было сдвинуть, и должен быть лег-ким (для удобства транспортировки, монтажа и демонтажа). Прежде всего,просматривается возможность разрешения противоречия во времени, так как тя-желым (широким) барьер должен быть на одном интервале времени, а легким(узким) — на другом. И эти интервалы не пересекаются! Конечно, вполне по-нятно, что и в конструкции должны быть сделаны какие-то изменения. Здесьнужно рассмотреть все доступные ресурсы! Например, что сдвигает барьер?Давление и собственный вес посетителей, опирающихся на барьер.

А ведь это вполне реальный ресурс массы, появляющейся именно на кон-фликтном интервале. Вред нужно превратить в пользу! Одно из эффективныхрешений задачи: со стороны очереди опора барьера выполняется в виде ре-шетчатой платформы, достаточно широкой, чтобы посетители, опираясь набарьер, обязательно сами стояли на этой платформе. Так оперативная зона (спомощью веса посетителей) сама удерживает барьер от перемещения!

Пример 33. Реакция водителя автомобиля (окончание). Мне известны несколь-ко водительских школ в Германии, где это противоречие решили-таки в сугу-бо натуральном варианте. В школе устраивается вечеринка с небольшой дозойшампанского, а потом на специально оборудованных автомобилях и вместе синструктором веселые водители выполняют на тренировочной площадкевполне обычные задания. Все это снимается на видеокамеры, фиксируетсявремя выполнения заданий, а на следующем занятии показывается участни-кам тренинга. Изумлению обучаемых нет предела! Эффект потрясающий!

Page 148: основы классической триз. м. орлов

Второе решение более соответствует ТРИЗ! Негативное действие нужно пере-дать в окружающую среду, нужно использовать какой-то ресурс внешней сре-ды. И «пьяным» стал компьютерный тренажер! Противоречие разрешено вструктуре и во времени: вся система функционирует нормально, а часть систе-мы — ненормально, а именно: тренажер выполняет действия обучаемого с оп-ределенным запаздыванием. Такое решение применяется в США.

Пример 34. Свая (окончание примера, связанного со сваями). Если даже Вызнаете контрольное решение, или у Вас появились собственные идеи, изучитеэтот пример внимательно. Он только кажется простым. На самом деле здесьесть очень важные тонкости Редукции, открытые именно в ТРИЗ. Построимструктурно-функциональную модель конфликта в оперативной зоне (рис. 9.22.Заметили ли Вы, что это упрощенный вариант! Если «да», то это очень хорошо!Если «нет», то рассмотрите все изложенное ниже более внимательно.

Прежде всего отмстим, что последующий анализ следовало бы делать еще наэтапе Диагностика. Но, допустим, что мы увлеклись и решили, что в этой си-туации только одна оперативная зона и, соответственно, одна «очевидная»конфликтующая пара — молот А и свая В. Как только мы определили исход-ную модель таким образом, так и все наши поиски ограничились только этойоперативной зоной!

Примерно так все и происходит при решении задач теми, кто не знает ТРИЗ!

ТРИЗ-специалист еще на этапе Диагностика проведет более полный анализ.Но, продолжим с того места, на котором мы оказались.

Построим более полную структурно-функцио-нальную модель конфликта в оперативной зоне(рис. 9.23). Все, кто не знакомы с тонкостямиТРИЗ-моделирования, опишут эту модель при-мерно так: молот А воздействует на сваю В, пе-редавая ей энергию для перемещения в грунтС, но при этом повреждает сваю В; свая В со-вершает рабочее воздействие на грунт С, кото-рый также оказывает на сваю негативное воз-действие.

Вот здесь-то ТРИЗ требует определить и зоны, иэкторы более точно и детально, хотя и нетради-ционно.

Page 149: основы классической триз. м. орлов

Во-первых, явно видны две оперативные зоны. Первая — очевидная, вклю-чающая молот А и сваю В. Этой оперативной зоной мы и занимались, впро-чем, как и сотни или тысячи специалистов по свайным конструкциям, не об-ращавших внимания на другие зоны и ресурсы системы.

Вторая оперативная зона включает сваю В и грунт С. Эту зону мы даже непринимали во внимание, считая что весь системный конфликт исчерпываетсяконфликтом между А и В. Эта ошибка исключила саму возможность система-тического исследования всей системы, а следовательно, и возможность на-правленного поиска альтернативных решений.

А теперь укажем на иную, более тонкую и незаметную ошибку, сделаннуюуже при описании полной модели.

В отличие от неподготовленного решателя проблем, ТРИЗ-специалисты ска-зали бы, что на сваю оказывает воздействие не грунт, а… отверстие в грунте.Они сказали бы, что свая не просто «воздействует на грунт», а формируетименно это самое отверстие для себя! Действительно, если бы отверстие име-ло заранее форму сваи, то сваю не надо было бы забивать!

Сделаем в этом месте отступление: не кажется ли Вам, что одна альтернатив-ная идея появляется уже только на основе этих несложных рассуждении’?!Действительно, можно пробить в грунте предварительное отверстие пол сваю,а потом забивать сваю с намного меньшим усилием. А если отверстие доста-точно большое, то можно просто опустить сваю в это отверстие.

Вот теперь пришло время указать еще на одну часто встречающуюся ошибкудиагностики задачи. Эту ошибку я специально оставил в заключительнойфразе общей постановки задачи в примере 14 (начало): «Можете ли Вы пред-ложить новую «неразрушающую» технологию забивания свай?» Через сло-во-термин «забивание» в постановку сразу вводится как неизменяемое понятиеспособ получения свайной опоры. А почему бы не изменить сам способ полу-чения сваи в грунте?

Так вот, на практике такие ошибки встречаются чрезвычайно часто. Причемименно профессионалы в своей области сами оказываются жертвами своихпрофсссиональных стереотипов мышления, закрепленных в терминах и в спо-собах описания проблем. По ТРИЗ в целях снятия психологической инерциинужно заменять термины другими словами, прибегая к метафоре и шутке. На-пример, можно сказать: засунуть или посадить сваю в грунт, вырастить сваю,свая сама залезет в землю. И даже не свая, а например, столб, нога, цилиндр(тоже термин, но другой, схватывающий только общую форму), статуя, бол-ванка и так далее. Главное, уйти от стереотипа.

Теперь продолжим. В предыдущем разделе Вы уже видели, что формированиефункциональной идеальной модели может играть не только важную роль вподготовке генерации идеи, но и непосредственно подсказывать саму решаю-щую идею. Идеальный конечный результат: свая должна занять свое место вгрунте целой и невредимой. И снова необходимо дать точное определение,что означает быть «целой и невредимой», например, форма сваи в грунтедолжна быть такой, какой она получается на заводе при ее изготовлении.

Page 150: основы классической триз. м. орлов

Также можно искать все более точное определение оперативной зоны! Вполнекорректно определить в качестве оперативной зоны стенки отверстия и по-верхность сваи в местах контакта с отверстием. Проверим правильность моде-ли с помощью некоторых вопросов и ответов, способ формирования которыхпокажется Вам вполне понятным. Как именно грунт взаимодействует со сва-ей? — Только через стенки отверстия! А свая как взаимодействует со стенкамиотверстия? — Только своей поверхностью!

Усилим функциональную идеальную модель до предела: оперативная зонасама обеспечивают получение целой сваи! Формально это может пересказатьтолько одним способом: стенки отверстия сами обеспечивают… получениецелой сваи!? Можно ли конструктивно интерпретировать этот образ? Если«да», то запишите свою идею, чтобы вскоре сопоставить ее с контрольнымучебным решением! Впрочем, и при ответе «да» нужно рассмотреть все изло-женное ниже.

Для подготовки еще одного направленного выхода на решение рассмотримоперативное время, отступая последовательно от конечного результата. Итак,свая каким-то образом оказывается в грунте (и это есть конфликтное время).Перед этим свая привозится на стройплощадку. Свая изготавливается на заво-де. Для этого песок и цемент смешиваются с водой и подготавливается метал-лическая арматура. Арматура закладывается в форму. Затем в форму заливает-ся приготовленная бетонная смесь. После застывания смеси в форме из несизвлекается готовая свая.

Увидели ли Вы возможность интерпретировать функциональную идеальнуюмодель? Проверьте свою догадку по контрольному ответу в конце книги.

Пример 35. Ремонт трубопровода (окончание). Итак, в результате Редукции мыимеем дело с острым физическим противоречием: воду нужно остановить иводу нельзя останавливать! И все же начинать надо с уточнения всехТРИЗ-аспектов проблемной ситуации. Первое: оперативная зона. Она вклю-чает дырку в трубе, часть трубы в области дырки и воду. Идеальный резуль-тат: вода остановлена, воды нет в области дырки! Ресурсы: видимые ресурсыотсутствуют. Обратимся к каталогу Фундаментальные трансформации иА-Компакт-Стандарты. Общая интерпретация системного перехода 1-с (по-зиция 5): во всей системе движение воды есть, а в оперативной зоне — нет(?). Интерпретация позиции 7: применить фазовый переход 1 — заменить фа-зовое состояние части системы! Контрольный ответ: осуществить местное за-мораживание воды выше (по направлению течения воды) дырки! Либо ивыше и ниже.

Такое оборудование выпускает, например, немецкая фирма Rothenberger.

Пример 46. Лекционная доска («окончательное окончание» примера 30). Давайтеподумаем вместе над особенностями решения, приведенного в примере 30(окончание). Очень интересное решение! Оно важно еще и тем, что показыва-ет устранение одного из самых устойчивых стереотипов, мешающих создаватьинновации в такой отрасли, как обучение: представление о том, что на лоскеможно рисовать только мелом или фломастером!

Page 151: основы классической триз. м. орлов

Но давайте зададим еще один вопрос: а зачем лектор вообще должен что-либорисовать именно на доске, в масштабе доски?! Не кажется ли Вам, что этотоже сидящий в нас негативный стереотип?!

Попробуем провести экспресс-диагностику ситуации. Изображение на «боль-шой доске» нужно в большой аудитории, в которой находится много студен-тов. Но оно вовсе не обязательно для передачи материалов лекции, то есть,того, что находится на доске, например, через Интернет! Достаточно переда-вать собственно рисунки, текст, формулы. Можно сказать также, что не нуж-но «передавать самого лектора»! Но и в большой традиционной аудиториинужно ли, чтобы лектор непременно стоял у доски и имитировал процесс ри-сования (именно это и происходит по решению, показанному в окончаниипримера 30), сопровождая это рисование речевыми пояснениями?

Итак, сформулируем ориентировочные требования: лектор должен Гнить, ноон не должен быть у доски; изображение должно быть на доске, но его ненадо рисовать на доске! Противоречия явно связаны с ресурсом пространства,и решение, скорее всего, будет опираться на принцип трансформации в про-странстве! Я полагаю, что Вы уже посмотрели на схему, показанную нарис. 9.19, и доработали ее до следующего контрольного решения (рис. 9.24).

Лектор создает рисунок или пишет текст с помощью штифта 2, перемещаемо-го по настольному устройству 3 (дигитайзер или таблетт), имеющему встроен-ную точную координатную сетку, считывающую положение острия штифта.Штифт создает также видимый след, например, чернильный, на бумаге, за-крепленной на устройстве 3. Теперь изображение может проецироваться на

Page 152: основы классической триз. м. орлов

экран 1 любого размера и, разумеется, сохраняться в памяти компьютера 5 илипередаваться в Интернет. Таким образом, удобство эксплуатации увеличивает-ся еще больше.

В заключение этого раздела рассмотрим несколько примеров более полно.

Пример 47. Судно на подводных крыльях. Экспресс-Диагностика показываетследующее. Корабль как техническая система ТС имеет главную полезнуюфункцию MPF «перемещать груз по воде» и главную негативную функциюMNF «отталкивать воду во время движения». Корпус корабля как компонентТС имеет позитивную функцию PF «удерживать груз на воде», являющуюсячастью MPF, и негативную функцию NF, совпадающую с MNF корабля. Опе-ративное время определяется временем движения корабля. Конфликтным этовремя является потому, что корабль во время движения вынужден расходоватьэнергию на преодоление сопротивления воды. Проблема состоит в том, чторост скорости корабля за счет повышения мощности двигателя быстро пре-кращается из-за многократно более быстрого роста сопротивления воды. Какповысить скорость движения при относительно небольшом росте дополни-тельной мощности двигателей?

Переходим к Редукции и рассмотрим, прежде всего, оперативную зону и про-тиворечия. Оперативная зона OZ включает все то, что тормозит движение ко-рабля. Это, прежде всего, вода, и основной элемент OZ — подводная частькорабля, точнее поперечное сечение части корпуса, находящейся ниже ватер-линии. Здесь корпус корабля является индуктором, воздействующим на во-ду-рецептор для обеспечения своего движения. При этом рецептор, наряду спозитивным действием (создание выталкивающей силы по закону Архимедадля удержания корабля на воде) оказывает мощное негативное воздействие наиндуктора — тормозит его движение.

Административное противоречие АС: требуется ускорить движение судов придопустимом росте дополнительной мощности двигателей (явно указана толь-ко цель, а средство предстоит определить).

Техническое противоречие ТП: при увеличении мощности двигателей скоростьдвижения корабля растет, однако сопротивление воды растет быстрее, и вско-ре делает невозможным дальнейшее увеличение мощности двигателей.

Физическое противоречие ФП: корпус корабля должен быть широким для обес-печения устойчивости и должен быть узким для уменьшения сопротивленияводы при движении (см. ниже на рис. 9.25,а).

Представьте эти противоречия в графической форме.

Сформулируем функциональные идеальные модели:

1. Макро-ФИМ:

Х-ресурс, не вызывая недопустимых негативных эффектов, обеспечивает сростом скорости движения отсутствие роста тормозящего действия воды.

Page 153: основы классической триз. м. орлов

2. Микро-ФИМ:

Х-ресурс в виде частиц вещества или энергии находится в оперативной зоне иобеспечивает во время движения отсутствие сопротивления частиц воды.

3. Макси-ФИМ:

Оперативная зона сама обеспечивает рост скорости движения, причем чембольше скорость движения, тем меньше сопротивление воды.

На этапе Трансформации рассмотрим подробнее ФП и заменим специальныетермины более простыми словами. Корабль держится на поверхности воды.то есть на плаву, потому, что его подводная часть выталкивает из-под корабляводу, вес которой равен весу корабля в целом (это и есть закон Архимеда). Тоесть, корабль позитивно взаимодействует с водой, когда не движется. Придвижении именно подводная часть корабля расталкивает частицы волы, чтобысоздать себе пустое пространство для более легкого продвижения. Заметим,пустое пространство! Без воды! Фактически это пространство будет заполненовоздухом, что и происходит на самом деле. Заметим, что ледокол расталкиваетлед и создает себе свободное пространство в воде, а быстроходное судно рас-талкивает воду и создает себе свободное пространство… в воздухе.

А теперь можно применить моделирование по координатам «Размерность -Время — Стоимость» из раздела 18.2 Модели «Фантограмма» и «Было — Ста-ло». Сокращая описание, приведем только один результат моделирования: впределе «узкий корпус» означает «нулевой» или «отсутствующий» корпус!Иными словами, подводная часть корпуса (именно она испытывает тормозя-щее действие воды) должна иметь «нулевую высоту» или, что то же самое, ненаходиться в воде! В таком предельно обостренном виде физическое противо-речие приведено на рис. 9.25,b.

Page 154: основы классической триз. м. орлов

Теперь можно задать вопрос: как сделать так, чтобы корпус корабля… не на-ходился в воде во время движения?! Сделать корабль-самолет? А почему бы инет?! Корпус надо вытащить из воды, поднять над водой! Вспомните, какойкамешек лучше прыгает по воде, если сильно бросить его почти вдоль поверх-ности? Плоский! И пока у камешка хватает скорости, он отталкивается отводы и не тонет! То есть, здесь действует что-то другое, чем закон Архимеда.С одной стороны, действует сила отталкивания, возникающая от удара ка-мешка о воду, но с другой стороны, плоский камешек имеет дополнительно иаэродинамическую подъемную силу, как крыло птицы или самолета. Тогда поче-му бы к корпусу корабля не добавить «крылья»?! Другое дело, где их устано-вить! Если в надводной части, то подъемная сила будет возникать толькоиз-за опоры на воздух, а для этого корабль нужно было бы разогнать до ско-рости самолета. Но корабль ведь тяжелее самолета, и ему нужна намногобольшая подъемная сила.

А что, если установить «крылья» под водой?! Тогда опора на воду создаст на-много большую подъемную силу, гидродинамическую, и вытолкнет немного кор-пус корабля вверх! Чем выше скорость, тем выше корабль будет подниматьсяиз воды, тем меньше будет часть корпуса, остающаяся пока под водой, именьше сопротивление воды (!), и тем легче можно будет разгонять корабльеще и еще. И он будет постепенно подниматься над водой все выше и выше,пока весь корпус не выйдет из воды, в которой останутся только «крылья» идвижители — винты!

Да, именно такова была идея российского изобретателя Ростислава Алексеева,открывшая в начале 1950-х годов направление быстроходных кораблей наподводных крыльях (рис. 9.26).

Для этапа Верификация приведем лишь одно важное пояснение. Посколькуподводные «крылья» являются элементом корпуса, то вполне можно сказать,что мы получили идеальное функциональное решение — OZ сама обеспечива-ет рост скорости корабля при любой его ширине.

Page 155: основы классической триз. м. орлов

А теперь для полноты учебного разбора примера вернемся к ТС и к возмож-ности решения задачи с помощью А-Приемов.

В соответствии с ТС из А-Матрицы можно выбрать плюс-фактор «Улучшает-ся скорость» (строка 22) и минус-фактор «Ухудшается мощность» (стол-бец 36). А-Матрица рекомендует следующие А-Приемы: 01 Изменение агре-гатного состояния объекта, 05 Вынесение, 08 Периодическое действие, 30 При-менение сильных окислителей.

Конструктивной интерпретации легче всего поддается А-Прием 05:

Отделить от объекта «мешающую» часть («мешающее» свойство) или, наобо-рот, выделить единственно нужную часть (нужное свойство).

«Мешающий» корпус корабля вынесен из воды благодаря вынесенным из корпу-са «нужным» элементам — подводным крыльям.

Пример 48. Солнечный дом. Обычно загородный лом строят так, чтобы по-больше солнца попадало в окна большой комнаты для отдыха и сбора всехчленов семьи или гостей. На другие стороны лома солнце может вовсе не по-падать. Попробуйте изобрести решения для того, чтобы солнце могло попа-дать в любую комнату.

Предварительная Диагностика показывает следующее. Дом как техническаясистема ТС имеет главную полезную функцию MPF «защищать внутреннеепространство от внешних воздействий» и главную негативную функцию MNF(в данном случае) «отсутствие солнечного света в некоторых помещениях».Здесь предполагается, что солнечный свет попадает в дом через окна. Если вдоме единственная комната, то солнце обязательно бывает в ней, даже еслидругие окна выходят на несолнечную сторону. Отсюда уже на папе Диагно-стики может появиться несколько очевидных идей (рис. 9.27): можно строитьдом, в котором все комнаты вытянуты вдоль солнечной стороны (а), комнатывторого ряда имеют окна над крышей первого ряда (b), дом имеет формукольца из однокомнатных секций с внутренним двориком (с). Вполне очевид-ны более сложные решения: на несолнечной стороне установить отражатели(d), сделать встроенные зеркальные световоды (е).

Выберем один из этих проектов в качестве прототипа для поиска новых идей.Пусть это будет решение «а». Его недостатком является неудобная одноряднаяпланировка дома.

Редукция. Определим, прежде всего экторы и OZ этой системы (попробуйтеотложить книгу в сторону и определить эти компоненты самостоятельно).

Укажем вначале нужную вспомогательную функцию дома «освещать комнаты(солнечным светом)». Тогда становится более ясно, что комнаты здесь явля-ются рецепторами, а лом является системой-индуктором. Солнечный же светможет быть отнесен к системному окружению или к среде. Тогда OZ можноопределить как совокупность комнат на несолнечной стороне. Но ТРИЗ уста-новлено, что при наличии одинаковых объектов можно строить решение дляодного объекта, а потом распространить это решение на все объекты (если,

Page 156: основы классической триз. м. орлов

конечно, учет свойств всех объектов вместе взятых не создает нового систем-ного качества). Поэтому OZ уточним как комнату на несолнечной стороне.

Здесь имеет место острое физическое противоречие:

дом (через окна) хорошо освещает комнату (на солнечной стороне) и плохоосвещает комнату (на несолнечной стороне)!

Заметим, что в этой OZ оперативное (конфликтное) время ОТ начинается сразупосле фиксации положения дома на строительном участке. Рассмотрим ОТ точ-нее. До окончательной привязки плана дома к плану участка «дом», точнее.его проекцию, можно поворачивать так, чтобы выбрать оптимальную ориен-тацию, обеспечивающую наибольшее присутствие солнца в комнатах. Послеокончательной привязки дома возникает недостаток, который мы сделалицентром внимания.

Внимание! Еще раз: до фиксации положения дома проблема отсутствует, апосле фиксации — присутствует! Но ведь это — ответ в общем виде! Недолжно быть фиксации положения дома! Иными словами, дом нужно дина-мизировать, сделать поворачивающимся, вроде сказочной избушки на курьихножках!

На этап Трансформации остается, правда, немало острых проблем, из которыхпервоочередной является создание механизма вращения дома. Может быть,это будет огромный подшипник, или колеса? А может быть, дом будет пла-вающим, и тогда его и вовсе легко будет «крутить»?! Должен ли он крутитьсякак волчок в любом направлении, или достаточно обеспечить подвижность нанебольшом секторе, например, в диапазоне 60—90°?

Page 157: основы классической триз. м. орлов

Мы не будем развивать решение дальше, тем более, что имеется ряд патентовс этой идеей. Наша учебная цель состояла в том, чтобы показать, что решениеможет появляться на разных этапах Мета-АРИЗ. Именно поэтому так важнопоследовательно и внимательно проходить все этапы один за другим!

Верификация. Возникают новые многочисленные проблемы, в частности, какдолжны быть устроены фундамент, системы подачи электричества и воды,система отвода сточных вод, спутниковая антенна, даже связь дома с гаражом.Но я не хочу лишать Вас удовольствия пофантазировать на эту тему. Она тогостоит! И, может быть, Вы создадите еще несколько неожиданных идей!

Пример 49. Стена. Одна из фирм на Индустриальной Мессе в Ганновере. Гер-мания, создала весьма удивительную стену вокруг своего стенда. Об этой сте-не можно было сказать, как о платье одной сказочной героини, у которой оноодновременно как бы было, и его как бы не было! Так и со стеной: она ибыла, и не была. На эту стену снаружи вполне четко проецировались реклам-но-информацинные фильмы, но входить на стенд лучше было через проход,где этой «стены» не было. Не торопитесь с угадыванием идеи! ИспользуйтеМета-АРИЗ. А если Ваша догадка уже опередила мое предложение, то и вэтом случае сделайте реинвентинг, пройдя достаточно подробно все этапыМета-АРИЗ.

Действительно, проблема! Стена есть, и стены нет! Платье есть, и платья нет!Уж точно, что на такую проблему оптимист и пессимист посмотрят диамет-рально противоположным образом! Как на бутылку, в которой напитком за-нято ровно 50 % объема. Оптимист, как известно, может заявить, что бутылканаполовину полна или даже, что она вообще почти полная, а пессимист ска-жет, что она наполовину пуста или, еще хуже, что она почти пустая! Но ближек делу: у сказочной героини платье было из рыбацкой сети, а на стенде былоиное решение! Стеклянная стена? Нет, так как это все же прочная и вполнетрадиционная конструкция типа витрины магазина. Давайте не будем гадать,а начнем проектировать стену, которой нет!

Диагностика. Сформулируем главную полезную функцию стены для стенда:отделять внутреннее пространство от внешнего. Традиционные вспомогатель-ные функции: стена несущая (потолок или крышу), стена оптически прозрач-ная (стеклянная) или полупрозрачная, например, из переплетенных веток, изживых или искусственных растений и т. д. Это и есть обычные идеи из брейн-сторминга. Идея, о которой Вы узнаете, также вполне доступна брейнстор-мингу, но мы попробуем прийти к ней через реинвентинг. Заладим вспомога-тельную функцию в виде переменной стены, то появляющейся, то исчезающей!Пусть через нее можно пройти, как, например, через неплотные изгороди изживых растений, но это сопряжено с немалыми неудобствами, особенно, еслиВы находитесь на Индустрие Мессе в костюме для торжественных случаев.

Редукция. Построим физическое противоречие, используя несовместимыеидеальные функциональные свойства: стена должна быть, чтобы посетителине попадали на стенд вне специального входа, и стены не должно быть, чтобыбыло видно все, что происходит на стенде, чтобы на стену можно было про-ецировать рекламные клипы, и чтобы она легко появлялась и исчезала.

Page 158: основы классической триз. м. орлов

Трансформация. В разделе 12. Модели для разрешения физических противоречийВы найдете 4 фундаментальных способа: разделение несовместимых свойств впространстве, во времени, в структуре и в веществе. В нашей постановке явноприсутствуют все 4 аспекта — пространственный (стена есть — стены нет),временной (стена появляется, например, только на рабочее время), структур-ный (стена обладает какой-то переменной структурой, чтобы не противоре-чить двум первым аспектам) и вещественный (стена использует какой-то ма-териал, по-видимому, недорогой и несложный в применении). В разделе8.2. Ресурсы Вы найдете такую рекомендацию: использовать в первую очередьлегко доступные и недорогие ресурсы. Это особенно важно для выбора мате-риалов, чтобы они не оказались дорогими и дефицитными.

На выставке, как и во многих других местах, легко доступны воздух и вода.Воздух: надувать, что ли, эту стену? Но она будет непрозрачна, да и конструк-ция не выглядит простой! Вода? Остается только вода. А почему бы и нет?!Можно предложить как минимум две идеи: фонтаны и водопады по контурустенда! На стенде была превосходно в эстетическом отношении реализованаидея водопада: с 4-метровой высоты по контуру стенда, за исключением про-ходов, стекали тысячи тонких струек воды, попадая в узкую приемную щель вполу без брызг и лишнего шума. Рекламные цветные клипы на этой непре-рывно движущейся стене выглядели не слишком ярко, но очень впечатляющеиз-за контраста статики кадров с динамикой «экрана-стены».

Верификация. Может возникнуть вопрос о стоимости этой «стены». И об осо-бенностях конкретной инженерной реализации. Ну что ж, и здесь тоже надопроявить изобретательность. И еще: хорошие идеи стоят того, чтобы за нихплатить! К тому же именно хорошие идеи и экономят немало денег. Об этомкак раз следующий пример.

Пример 50. Градирня. В лаборатории Института тепло-массообмена АкадемииНаук Республики Беларусь в Минске проводились исследования различныхаспектов эффективности, безопасности и экологичности атомных и тепловыхэлектростанций. Градирня (рис. 9.28) служит для полного охлаждения воды,отработавшей в турбинах электростанции. Тепловой коэффициент полезного

Page 159: основы классической триз. м. орлов

действия современных испарительных градирен башенного типа составляет25-40 %.

Повышение эффективности градирен существенно увеличивает коэффициентполезного действия всей электростанции и уменьшает вредное воздействие еевыбросов на окружающую среду.

Диагностика. В известных башнях эффективность снижена из-за того, чтовнутри башни образуются застойные вихревые зоны, являющиеся препятст-виями (размером до 30 % поперечного сечения башни) для движения охлаж-дающего воздуха, поступающего снизу через сплошную воздухозаборную по-лосу по всему периметру основания башни. Причем, сильный ветер, кото-рый, казалось бы должен улучшать работу башни, залетая снизу с большейсилой, напротив, создает еше большие пробки в башне! Как улучшить работуградирни?

Редукция. ФИМ была сформулирована в следующем виде: охлаждающий воз-дух в башне градирни сам создаст устойчивый, оптимальный по всему сече-нию башни, поток — без пробок! Прошу Вас снова обратить внимание на тообстоятельство, что «прицел» для ФИМ устанавливается на инструменте, ра-бочем органе градирни — на воздушном потоке внутри башни! ТРИЗ требуеточень четко определять рабочий орган: не башня градирни охлаждает волу ивыполняет MPF, а движущийся в башне снизу вверх воздух—индуктор!

Трансформация. На этот раз воспользуемся прямым просмотром А-Каталога,что также не слишком сложно. С поставленными целями так или иначе ассо-циируются приемы № № 01, 04, 05, 07,12, 14, 19, 21, 22, 24, 29, 34, 39, 40! Вы-глядит многовато? Ничего, бывает и больше! Далее проводится интерпретацияи ранжирование приемов относительно «близости» к ФИМ — здесь, конечно.требуются определенные навыки. В итоге получилась следующая картина:

1) Анализ цепочки ранжированных приемов начали с приема 21 Обратитьвред в пользу: раз внешняя среда (сильный ветер; теплый во пух, плохо охла-ждающий воду) негативно влияет на работу башни, то пусть этот вред самсебя устранит’. То есть хорошо было бы использовать какие-то бесплатные,даровые ресурсы среды, создающие сам поток охлаждающего воздуха;

2) Вторым приемом был выбран 29 Самообслуживание, воздушный поток дол-жен сам преодолевать возникающие пробки, а еще лучше — препятствоватьих возникновению! (К сожалению, пока не ясно, как это можно сделать, ноот ФИМ — ни шага в сторону!);

3) Следующий подходящий прием — 04 Замена механической среды: перейтиот неподвижных полей к движущимся, от фиксированных к меняющимсяво времени, от неструктурированных к имеющим определенную структу-ру — «поле» воздуха нужно сделать сильным, уничтожающим пробки:

4) Прием 19 Переход в другое измерение: перейти от движения по линии кдвижению по плоскости или по трем координатам — раз поток не можетпредотвратить пробки при прямолинейном движении снизу вверх, то мо-жет быть его как-то закрутить в спираль, как в вентиляторе или в торна

Page 160: основы классической триз. м. орлов

до!? Вот она — ключевая идея!!! Действительно, обычный вихрь в природеочень устойчив именно потому, что закручен! Надо создать закрученныйпоток — торнадо! — внутри башни! Просматривается минус: что это за ог-ромный вентилятор диаметром в десятки метров? Нужно какое-то иное ин-женерное решение.

5) Прием 07 разделить объект на части, способные перемещаться относи-тельно друг друга — здесь следует искать решение относительно измене-ния конструкции башни (???), ведь поток надо как-то сделать в виде ус-тойчивого вихря.

Анализ других приемов опускаем для краткости, тем более, что для специали-стов по тепломассопереносу, в том числе и в газовоздушной среде, уже наэтой стадии анализа конструкционное решение оказалось делом несложнойпрофессиональной техники: в воздухозаборной части по нижней окружностибашни создаются специально рассчитанные воздухозаборные «окна», имею-щие для раскрытия вертикальную ось вращения и раскрываемые на опреде-ленный оптимальный угол (рис. 9.29).

Верификация. Хорошее решение всегда сопровождается сверхэффектом, уси-лилось засасывание внешнего воздуха в башню с гораздо большего расстоя-ния от башни и с большей высоты от основания башни, благодаря чему ис-чезли также небольшие застойные зоны и при входе в башню!

Благодаря этой конструкции внутри башни даже в безветренную погоду воз-никает устойчивый вихрь и отсутствуют пробки! А при сильном ветре эффек-тивность работы башни только повышается!

При малых инвестициях в модернизацию даже действующих башен выигрыш втепловой эффективности в среднем составляет за год 3—7 %, что весьма су-щественно!

Page 161: основы классической триз. м. орлов

Прокомментируем дополнительно решения последних четырех примеров.

В примере 47 после построения обобщенного физического противоречиявыйти на идею подводных крыльев как аналогов самолетных крыльев, но ис-пользующих не аэродинамическую, а гидродинамическую подъемную силу —совсем не просто; это требует не только опоры на серьезные знания физи-ко-технических эффектов аэродинамики и гидродинамики, но и выдающейсяфантазии, свободы от инерции мышления, в которой реальный корабль никакне ассоциируется с самолетом (отметим, что в сказках летающий по воздухукорабль встречается! — и тоже, кстати, в силу психологической инерциимышления, так как эти сказки создавались еще в те времена, когда самолетовне было, а корабли были!).

Почти очевидный ответ появляется в примере 48 уже при анализе оператив-ного времени на этапе Редукции, правда, при очень точном и внимательноманализе, как и рекомендует ТРИЗ, но для окончательного появления идеинужно преодолеть мощный негативный стереотип представления о доме как обезусловно неподвижном объекте, навечно установленном на неподвижныйфундамент; здесь нужно воображение не меньшее, чем для примера 47.

При учебном реинвентинге примера 49 многие просто успевают догадаться обидее решения до подробного рассмотрения проблемы по шагам; но это объяс-няется только тем, что в постановке задачи и в описании требуемых свойствэтой стены содержится слишком много метафорической ориентирующей ин-формации; хотя решение с помощью применения легкодоступных ресурсов нестановится от этого менее полезным; а теперь посмотрите на эту проблему безориентирующих информации и попробуйте изобрести новые «стены» — этоможет оказаться доходным делом!

Процесс решения проблемы в примере 50 требует и знаний, и незауряднойизобретательности, которую и проявили авторы этого изобретения; реальныйсекрет этого решения состоял в том, что авторы много лет занимались, в част-ности, исследованиями атмосферных явлений типа торнадо, и когда к нимобратились специалисты теплоэнергетической промышленности для исследо-вания атмосферных явлений в башне градирни, то здесь особые знания иссле-дователей были применены ими напрямую — они создали торнадо в башне!

И еще несколько слов о примере 50. Это одновременно простое и очень непростое решение! Оно кажется простым потому, что Вам открыли его! Точнотак же становится простой любая головоломка после ее разгадки! А если ответВам подсказали заранее, то головоломка становится еще и неинтересной.А реальную историю создания непростого изобретения я рассказал не длятого, чтобы Вы вздохнули и сделали вывод о том, что только узкие специали-сты способны на изобретения. Изобретайте сами! Но с ТРИЗ! И Вы достигне-те не меньшего! Комплекс из 4 приемов вполне подводил Вас к идее решения,не так ли?! Просмотрите реинвентинг еще раз, и Вы обязательно увидите это.

Да, решатели обладают неодинаковыми способностями и мотивацией, а такжеразличной подготовленностью. Поэтому результативность и эффективностьсинтеза идей оказывается различной. Однако, многолетний опыт преподава-

Page 162: основы классической триз. м. орлов

ния и применения ТРИЗ-инструментов убедительно доказал их безусловнуюполезность для каждого, кто правильно понял и освоил ТРИЗ. В отличие отвсех других подходов, ТРИЗ действительно позволяет научиться изобретатель-но мыслить, научиться изобретать.

ТРИЗ учит конструктивно использовать опыт других изобретателей, аккуму-лированный в ТРИЗ-инструментах. А остальное находится во власти Вашеймотивации, способностей и подготовленности! Полезные рекомендации,улучшающие Ваши личные возможности решения проблем, Вы найдете в раз-деле 19. Интеграция ТРИЗ в профессиональную деятельность.

И все же для полной правды нельзя умолчать еще об одной реальности, все-гда присутствующей в создании отличной идеи. Это что-то трудно уловимоеи трудно выразимое, что обычно относят к случайности, к стечению обстоя-тельств, к удаче. Так пусть удача также сопутствует Вам! Тем и интереснаигра с неизвестным, открытие чего-то, о чем еще никто в Мире, кроме Вас, незнает! До Вас, до Вашего изобретения, этого в Мире не было! Вы приноситеэто в Мир!

При развитии ТРИЗ первыми появились специализированные трансформациидля разрешения технических противоречий — А-Приемы. Сначала это был не-большой список в 10—12 рекомендаций для алгоритма изобретенияАРИЗ-1961, близкий к списку контрольных вопросов из брэйнсторминга.В АРИЗ-1971 список превратился в каталог из 40 приемов, а для выбораприемов была разработана специальная А-Матрица, входами в которую явля-ются 39 факторов, принимающие в модели противоречия позитивные либонегативные значения. В конце 1980-х годов нами внесено принципиально но-вое структурирование в А-Каталог (все приемы были упорядочены по частотеих применения в А-Матрице) и в А-Матрицу (структурирование входов посистемным и физическим признакам), а также был четко сформулирован спе-циальный метод комбинирования приемов — метод CICO (см. раздел 11.4).

В середине 1970-х годов в ТРИЗ были сформулированы первые правила дляразрешения физических противоречий и первые 18 моделей, в которых экто-рами являются физические и «технические» поля и вещества (физико-техни-ческие модели), которые для АРИЗ-1977 выросли в 77 комплексных трансфор-маций, называемых стандарты или, в нашей редакции, — А-Стандарты. В кон-це 1980-х в ТРИЗ был разработан Алгоритм выбора А-Стандартов.

В начале 1980-х в ТРИЗ сформировалась полная таблица фундаментальныхтрансформаций для разрешения именно физических противоречий (была опуб-ликована в АРИЗ-1985). Фундаментальными мы называем эти трансформациипотому, что как минимум одна из них всегда присутствует в любом решении.

В течение многих лет в классической ТРИЗ накапливались каталоги базовыхтрансформаций, более известных под названием технические эффекты. Сами

Page 163: основы классической триз. м. орлов

по себе эти модели не предназначены для непосредственного разрешенияпротиворечий, а представляют собой перечень различных физических, гео-метрических, химических и других явлений (эффектов), применение которыхдало интересные и сильные изобретения. Именно характер этих моделей, ос-нованных на физико-технических эффектах, и дает основание отнести их кбазовым, дающим принцип технической реализации.

Применение моделей трансформации требует немалого навыка и опыта.Необходимые правила и примеры приводятся далее в разделах 10—13. Вы-бор класса моделей трансформации (рис. 9.24) зависит от вида модели про-тиворечия или выбранного вида ресурса, но в целом не вызывает особыхзатруднений.

Общее правило, которое следует знать и помнить относительно моделейтрансформаций, заключается в том, что любая из этих моделей сама по себекак бы совершенно нейтральна по отношению к решаемой Вами проблеме.

Выбранная Вами модель трансформации может стать полезной только приреализации сразу нескольких условий:

1) Вы понимаете суть изменений, которые модель трансформации предусмат-ривает;

2) Вы интерпретируете эту модель (находите сходство, аналогии) примени-тельно к Вашей проблеме;

3) и, самое главное, — Вы создаете изменения и устраняете проблему на основеприменения к ней рекомендуемой трансформации!

И еще одно важнейшее правило заключается в том, что проблема может считать-ся решенной только при безусловном выполнении следующего требования: проти-воречие проблемы должно быть устранено!

Page 164: основы классической триз. м. орлов

7. Кубик льда. До сих пор многие типы холодильников имеют формы для при-готовления пищевого льда, не отвечающие идеальному конечному результатупо извлечению кубиков льда из формы. Рычажные механизмы, которымиснабжается форма, ломают лед, и кубик теряет свою форму. Примените функ-циональное идеальное моделирование для создания такой формы, из которойлед будет извлекаться сам.

8. Агрессивная жидкость. Для проведения испытаний металлического кубикана его взаимодействие с особо агрессивной жидкостью этот кубик опускают вкювету (настольная ванна), после чего наливают туда эту жидкость. Кюветабыстро выходит из строя, иногда за один эксперимент. Сформулируйте иде-альный конечный результат и предложите изменение схемы эксперимента.

9. Колпачок для свечи. В некоторых ресторанах длинную цилиндрическую све-чу прикрывают колпачком, чтобы свет от свечи не попадал прямо в глаза. Нопо мере горения и испарения свечи огонек опускается ниже колпачка. Каксделать, чтобы огонек свечи все время оставался под колпачком?

10. Кремлевские звезды. На высоких башнях Кремля в Москве установлены ог-ромные звезды, диаметр которых достигает 6 метров. Как уменьшить опас-ность того, что звезды будут повреждены при сильном ветре?

11. Заварник для чая. Когда в заварнике остается не много жидкости, чаинкилегко попадают из заварника в чашку. Можно, конечно, опускать чайныелистики в пакетиках или в металлической сетке. Но это не всегда удобно,особенно если есть желание приготовить смесь из разных сортов чая. Пустьзаварник сам не дает чаинкам уноситься жидкостью, когда ее остается немного.

12. Игрушка. Дети растут. А игрушки остаются маленькими. Вот если бы не-которые игрушки тоже «росли»! Предложите такие конструкции.

13. Переход на пляж. Для того, чтобы песок с пляжа не переносился обувьюна прогулочную зону, используется… Продолжите фразу.

14. Тренировка по прыжкам в воду. На тренировке по прыжкам в воду спорт-смены раньше получали ушибы и более серьезные травмы при неудачном ис-полнении прыжка и неправильном входе в воду. Как уменьшить опасностьтравмы при тренировке прыгунов в воду?

15. Поезд метро. В ночное время, а также в субботу и воскресенье расписаниепредусматривает меньшее количество поездов. Но это как раз доставляет не-мало неудобств для пользователей. Какой еще способ экономии применяется

Page 165: основы классической триз. м. орлов

Page 166: основы классической триз. м. орлов

в эти интервалы времени? Можно ли сделать этот способ основным вместоизменения расписания движения?

16. Ги де Мопассан и башня Густава Эйфеля. Известно, что писатель Мопассанбыл в числе многих противников использования башни после окончания все-мирной выставки 1889 года в Париже. Вместе со многими другими знамени-тостями он подписал открытое письмо, в котором высказывал мнение о том,что башня навсегда испортит облик Парижа, так как будучи видимой с самыхотдаленных окраин города, лишит жителей и туристов удовольствия созерцатьтрадиционные городские пейзажи. Сегодня башня является одним из симво-лов Парижа. Зная о нелюбви писателя к башне, один журналист был немалоудивлен, когда встретил писателя в ресторане, устроенном в этой башне. Какобъяснил знаменитый писатель удивленному журналисту свое посещение(частое!) этого ресторана?

17. Направление движения жидкости в трубе. Вернитесь к примеру 35 и пред-ставьте себе, что пробку из замороженной воды нужно создать с той стороны,откуда вода поступает по трубе. Направление течения воды в трубе неизвест-но. Нужно быстро определить его, ведь ситуация аварийная!

18. Полки в обувном магазине. Стеллажи в магазине обуви полностью заставле-ны коробками с разной обувью. Как устроить полки вдоль стеллажей для де-монстрации образцов обуви, если количество типов образцов и количествокоробок на стеллажах часто меняется?

Page 167: основы классической триз. м. орлов

Классическиенавигаторы изобретения

А-Студии

Page 168: основы классической триз. м. орлов

Чаще всего изобретатель применяетдва или три хорошо освоенных приема.У наиболее методичных изобретателейэксплуатируются пять — семь приемов.

ТРИЗ увеличивает творческий арсе-нал, включая в него десятки приемов,составляющих в совокупности рацио-нальную схему решения задач…

При этом направленные поиски отнюдьне исключают интуицию. Напротив,упорядочение мышления создает на-стройку, благоприятную для проявле-ния интуиции.

Генрих Альтшуллер

Page 169: основы классической триз. м. орлов

В каталоги комплексных трансформаций для настоящего учебника пошли ка-талог «Функционально-структурные модели» (Приложение 1) и каталог«А-Компакт-Стандарты» (Приложение 2). Содержащиеся в этих каталогах ре-комендации представлены в весьма общем виде, допускающем разнообразныеинтерпретации и реализации. Например, идея решения может затронуть не-сколько ресурсов или оказаться комбинацией (комплексом) нескольких болееспециализированных трансформаций, таких, например, как А-Приемы илифизико-технические эффекты. Эта особенность и определила название «ком-плексные трансформации».

Каталог «Функционально-структурные модели» предназначен для получениярешения в общем виде для 6 случаев системных конфликтов, которые сводятсяк структурным моделям, представленным в этом каталоге. Решения в общемвиде, предлагаемые для двух групп моделей (по три модели в группе), в основ-ном ориентируют на поиск наиболее экономичного решения в соответствиисо стратегией Минимальная задача (см. раздел 14.1 Развитие систем). Эти мо-дели, а также применяемые для них способы решений, встречаются чрезвы-чайно часто, и поэтому были названы в ТРИЗ «стандартными».

Каталог «А-Компакт-Стандарты» содержит более подробные рекомендациипо реализации стандартных трансформаций для моделей, представленных вкаталоге «Функционально-структурные модели». Эти рекомендации (всего 35)сведены в 5 групп, отражающих основное содержание трансформаций. В це-лом каталог «А-Компакт-Стандарты» представляет собой адаптированный(сжатый) ТРИЗ-Каталог «Стандарты», содержащий 77 стандартных трансфор-маций. Адаптация произведена с целью исключения избыточности из исход-ного полного каталога. Компакт-каталог намного проще, по крайней мере,для первого ознакомления со стандартными моделями.

Общая схема применения комплексных моделей заключается в следующем:

1) на этапе Диагностика или Редукция строится функционально-структурнаямодель конфликта в оперативной зоне;

2) если вид функционально-структурной модели соответствует одному из ти-пов, приведенных в Каталоге «Функционально-структурные модели», то

Page 170: основы классической триз. м. орлов

можно переходить к этапу Трансформация для поиска конкретной идеи наоснове решения в общем виде, выбранного из этого каталога;

3) в соответствии с выбранным направлением поиска решения подобрать бо-лее точные рекомендации из каталога «А-Компакт-Стандарты»;

4) если с учетом особенностей конкретной задачи трудно подобрать подходя-щие точные рекомендации, или они трудно интерпретируются, то перейтик другим моделям, например, на основе противоречий.

Рассмотрим учебно-практические примеры, придерживаясь принятого в этомучебнике правила: от простого — к сложному. Наша цель состоит в том, что-бы продемонстрировать необходимые методические шаги при работе с ката-логами этих и других моделей. Немало технических особенностей просто не-возможно показать в книге такого относительно небольшого объема, как этотучебник. Именно поэтому примеры раскрываются через главные практиче-ские операции, а соответствующие разделы с описанием примеров названы«принципами применения» моделей решений.

Пример 51. Диск штанги. При опускании штанги на пол в тренировочномзале создастся повышенный шум, а пол при этом серьезно повреждается. По-строим функционально-структурную модель этой проблемной ситуации(рис. 10.1).

Пол позитивно действует на диск, останавливая его движение. Диск же ока-зывает на пол негативные воздействия, описанные выше. По каталогу «Функ-ционально-структурные модели» выбираем первую модель, где диск соответ-ствует компоненту В, а пол — компоненту А.

Рекомендации из правой крайней колонки и их интерпретация:

• заменить или изменить вещество одного или обоих компонентов: выпол-нить диск из более мягкого материала (но тогда он станет слишкомбольшим, чтобы весить столько же, сколько и стальной); сделать пол изболее прочного и звукопоглощающего материала (дорого!);

• внести добавки внутрь или на поверхность компонентов или в среду: на-деть на диск толстое резиновое кольцо (контрольное решение I); поло-жить толстый резиновый ковер на пол (контрольное решение 2);

• изменить характер действия: опускать штангу медленно (это мешаеттренировке, но можно создать для этого специальные технические ре-шения, не ограничивающие, конечно, свободы движения штангиста).

Page 171: основы классической триз. м. орлов

Пример 52. Разъем платы. Золотые контакты разъемов некоторых плат облада-ют очень хорошим (минимальным) контактным сопротивлением, но быстроистираются, так как золото относительно мягкий металл. В результате кон-тактное сопротивление постепенно растет до недопустимого значения, и тогдаразъем или плату в целом нужно менять.

Схема, представляющая эту проблему, симметрична относительно контактовштыревой и гнездовой частей разъема (рис. 10.2). Это означает, что обозначе-ния А и В здесь равноправны. Схема соответствует второй модели из таблицы«Функционально-структурные модели»

Рекомендации из правой крайней колонки аналогичны, но их интерпретацияисходит из знания физико-химических процессов в контактных парах и дос-тупна, конечно, специалистам:

• заменить или изменить вещество одного или обоих компонентов: этого де-лать нельзя по условиям эксплуатации плат;

• внести добавки внутрь или на поверхность компонентов или в среду, в ре-зультате исследований было установлено, что включение микродобавокалмаза в золотое покрытие контактов увеличивает контактное сопротив-ление на 5—10 %, зато долговечность контакта возрастает в 3—5 раз!

• изменить характер действия: не вдвигать контакты, чтобы не было исти-рания от трения, а прижимать их в гнездовой части — не даст эффекта ваппаратуре, устанавливаемой на подвижных системах, работающих в ус-ловиях вибрационных и ударных нагрузок.

Пример 53. Медные проводники на микрочипах. Фирма IBM в 1997 году сооб-щила о возможности замены в микросхемах алюминиевых проводников намедные. Медь лучше проводит ток, и поэтому дорожка шириной в 0,2 микро-на заменяет алюминиевую дорожку шириной в 0,35 микрон.

Возникающая экономия места на кристалле позволяет в 3 раза увеличить ко-личество электронных компонентов на чипе, повысить быстродействие и сни-зить потребление энергии. Однако, атомы меди диффундируют в кремний,изменяя его свойства и нарушая работу схемы.

В принципе эта модель может быть приведена к модели, рассмотренной впредыдущем примере. Но мы рассмотрим более подробную модель (рис. 10.3).

Здесь медный проводник А улучшает функциональные показатели всей систе-мы В, но постепенно изменяет свойства кремниевого основания С, что влечетухудшение работы всей схемы В. Ближе всего подходит к этой модели струк-тура 5 из таблицы «Функционально-структурные модели». И вновь интерпре-

Page 172: основы классической триз. м. орлов

тация рекомендаций из правой крайней колонки исходит из знания физи-ко-химических процессов в полупроводниковых материалах. Однако меха-низм решения проблемы универсален и не зависит от отраслевогопроисхождения задачи!

Главным является сходство моделей — реальной и стандартной, взятой из ка-талога! И это главное, что мы стремимся показать в этих примерах. Итак.предложено изменить состав, например, ввести ресурс-посредник: между крем-нием и медным проводником помещают изолирующую прослойку из мате-риала, состав которого является Know how фирмы IBM. Кстати, полезно так-же рисовать результирующие модели. Модель для данного примера показанана рис. 10.4 (D — посредник, прослойка). Линии без стрелок означают ней-тральные взаимодействия.

Пример 54. Гранулы для сбора нефти. Известны пористые плавучие гранулы,хорошо впитывающие нефть. Такие гранулы можно разбрасывать на поверх-ность нефтяных пятен, образовавшихся при утечке нефти из поврежданныхтанкеров. Проблема состоит, однако, в том, что гранулы легко разносятся вет-ром и волнами.

Вполне понятно, что мы имеем здесь дело с моделью 5 — неэффективное илиотсутствующее действие (рис. 10.5). Представим себе идеальный конечный ре-зультат: гранулы А и В сами держатся друг за друга и не разносятся по воде.

Page 173: основы классической триз. м. орлов

Речь может идти о совмещении двух стандартов решения этой проблемы: SI(введение добавок) и S2 (повышение управляемости) — создание нужногодействия за счет введения полей. Просмотр двух компакт-стандартов вполнеясно позволяет получить контрольное решение: в гранулы вводятся намагни-ченные частицы, в результате чего гранулы достаточно прочно притягиваютсядруг к другу. Здесь присутствует сверхэффект: такие гранулы помогают удер-живать нефтяное пятно от рассеивания по большей поверхности.

Пример 55. «Бронированная» бутылка. Стеклянные бутылки не создают ника-ких негативных воздействий на хранимые жидкости. Они могут использо-ваться многократно, несколько десятков раз. Однако, они имеют большойвес и могут разбиваться. Достаточно полная модель свойств стеклянной бу-тылки А содержит (рис. 10.6) позитивное воздействие на хранимую жидкостьВ и потенциальные негативные воздействия на условную транспортную сис-тему С (большой вес для перевозки) и окружающую среду D (если бутылкаразбивается).

Конкурирующие полимерные бутылки могут при длительном хранении ока-зывать негативное воздействие на содержимое, например, на запах хранимойв них воды. Их преимуществом является малый вес и то, что они не разбива-ются. Недостатком является и то, что они не используются повторно. Дляэтой системы можно построить модель (рис. 10.7), которая по всем парамет-рам является альтернативной системой по отношению к стеклянной бутылке.

Для стеклянной бутылки речь может идти о се развитии как системы путемприобретения дополнительной функции — повышения прочности, но с одно-временным снижением веса, что несет в себе острейшее классическое проти-воречие. Более прочная бутылка должна иметь более толстые стенки, а значит

Page 174: основы классической триз. м. орлов

будет иметь еще больший вес. Однако, к постановке проблемы формальноподходит стандарт S4.3 Увеличить функциональную нагрузку на систему и еечасти.

Для полимерной бутылки подходит как этот же стандарт, так и рекомендацияо введении добавок, например, на внутреннюю поверхность полимерной бу-тылки для устранения непосредственного контакта полимерных материалов схранимой жидкостью.

К обеим системам подходит и стандарт S4.1 Использовать объединение объектас другой системой в более сложную би- или полисистему. Такое объединениеособенно выгодно делать именно для альтернативных систем, с которыми мыи встретились в данном примере (подробности см. в разделе 15.3 Интеграцияальтернативных систем).

Такая бисистема и была создана в Дюссельдорфе (Германия): новая стеклян-ная бутылка покрыта «броней» из прозрачной полиуретановой пленки толщи-ной 0,1 мм. При той же прочности толщина стенок бутылки стала намногоменьше (1,4 мм). Упаковка с 6 литровыми бутылками весит на 3,5 кг меньше,чем с прежними стеклянными бутылками! А пивная бутылочка на 0,33 литравдвое легче своего прототипа. Даже если такая бутылка разбивается, осколкиостаются как бы в пластиковом пакете и не разлетаются! Бутылка может ис-пользоваться до 70 раз, а потом поступает на переплавку.

Пример 56. Бритва Жиллет. Бритвы прошли большой путь развития. Однакоостановки в прогрессе не видно. При этом сделать в старых системах что-тоновое и престижно, и выгодно. Ну что, казалось бы, можно придумать новогов станке для бритья? Тем более, что структурная модель оказывается не слиш-ком информативной (рис. 10.8).

Для чистого срезания волос приходится делать многократные движения, чтоувеличивает время бритья. Поэтому основную стрелку можно представитьпрерывистой линией (неэффективное действие). Волос негативно действуетна лезвие, постепенно притупляя его, что также снижает эффективность ос-новного действия.

Здесь мы имеем комбинацию моделей 1 и 6. А в целом речь может идти о раз-витии функциональной нагрузки на режущую часть бритвы. В этом случаенужно начинать с интерпретации стандарта S4, например, с рекомендацииобразования би- или полисистем. Что и было сделано на фирме Жиллет: но-вый станок имеет три параллельно расположенных лезвия, сдвинутых на оп-тимальный шаг также и по высоте, что обеспечивает за один проход срез во-лоса до трех раз на разных уровнях. Сверхэффекты: сокращение числа прохо-

Page 175: основы классической триз. м. орлов

дов, а значит, и времени на бритье, увеличение срока службы бритвы. Этотпример полезно переработать самостоятельно с учетом влияния упругости во-лоса (на разной высоте от его основания) на успешность резания одним лез-вием, а затем двумя или тремя.

Пример 57. Стадион «Франция». Трибуны легкоатлетического и футбольногостадиона «Франция» в Сен-Дени (северный пригород Парижа) сверху защи-щены навесом в виде горизонтального диска с отверстием в центре (рис. 10.9).Диск удерживается вантами на 18 стальных мачтах почти на 50-метровой вы-соте. При проектировании необходимо было принять меры, чтобы шум состадиона не мешал жителям ближайших кварталов. Модель функциональноговзаимодействия компонентов имеет следующий вид (рис. 10.10). Действитель-но, навес А защищает зрителей В от непогоды и солнца, но шум с трибун от-ражается навесом А и распространяется на соседние кварталы С.

Реинвентинг показывает, что модель по рис. 10.10 как бы состоит из моделей1 и 5, поэтому можно начинать со стандарта S1, например, введение добавокпо рекомендациям S1.2 и S1.5. Контрольное решение: для поглощения звуковв отделке внутренней части диска используется минеральная вата.

Пример 58. Бетонные конструкции. Здесь мы рассмотрим несколько различныхизобретений, в основе которых лежат различные способы введения «добавок».Более того, сами «добавки» не имеют между собой ничего общего. Именноэто и показывает универсальный характер моделей ТРИЗ и возможность ихширокого применения практически в любой отрасли. ТРИЗ-модели — этомодели мышления, именно изобретательного мышления, а не модели специ-альных профессиональных знаний или процессов каких-то промышленныхтехнологий. Модели ТРИЗ имеют междисциплинарный и межотраслевой ха-рактер. Это модели, полученные из изобретений, и для создания новых изо-бретений. Это полезные модели для постоянного применения в инженернойпроектной или управленческой практике.

Связь четырех изобретений и их комбинаций будет легче понять из схемы(рис. 10.11). В этих нескольких примерах содержатся те или иные рекоменда-ции из всех пяти компакт-стандартов.

Page 176: основы классической триз. м. орлов

Бетон с диоксидом углерода. Бетонные шпалы на японских сверхскоростныхжелезнодорожных линиях выдерживают лишь около трех лет, после чего ихнужно менять. Понятно, какой значительный экономический эффект способ-но дать удлинение срока службы бетонных изделий.

Прочность бетона в естественных условиях растет со временем из-за реагиро-вания с диоксидом углерода (углекислым газом), содержащимся в воздухе, врезультате чего бетон превращается в известняк. Но этот процесс длится ты-сячелетия! Так что детали под нагрузкой успевают быстро разрушиться. Бетондля шпал имеет очень маленькие поры. Он не набирает быстро своей прочно-сти потому, что образующаяся при реакции с первыми порциями диоксидауглерода вода заполняет поры и закрывает доступ новых порций газа в толщуизделия. Для ускорения этого процесса изделия помещали в камеры с повы-шенным давлением, но это мало помогло.

В 1994 году американский инженер Р.Джонс изобрел способ упрочнения бе-тона с помощью так называемого сверхкритического диоксида углерода, полу-чаемого при давлении выше 73 атмосфер и при температуре свыше 31 °С.В этих условиях диоксид углерода становится жидкостью с высокой прони-кающей способностью и полностью пропитывает изделие. Тысячелетнее уп-рочнение бетона стало возможным за несколько минут!

Прочность такого бетона возрастает вдвое! В новом способе упрочнения бето-на обнаруживаются два сильнейших сверхэффекта. Во-первых, в изделиях,полученных по новому способу, исключается ржавление стальной арматурывнутри изделий, что часто становится причиной недопустимого сниженияпрочности конструкций. Во-вторых, получен замечательный экологическийэффект, настоящее обращение вреда в пользу (см. рис. 8.8 с рекомендациямипо выбору ресурсов). Цемент, входящий в состав бетона, делают из карбонат-ных пород, обжигая их в цементных печах. При этом в атмосферу выбрасыва-ется огромное количество углекислого газа как из обжигаемых горных пород,так и от сжигаемого ископаемого топлива. Новый процесс упрочнения бетонапоглощает много диоксида углерода и тем самым значительно компенсируетвред, наносимый природе.

Реинвентинг показывает, какие стандартные рекомендации и каким образомфактически присутствуют здесь:

S1.4 — дополнительное вещество может быть производным от веществ, ужеимеющихся в системе: изменению подвергался уже применявшийся ранее ди-оксид углерода;

Page 177: основы классической триз. м. орлов

SI.8 — вводят обычную добавку, но располагают ее концентрированно: измене-ние состояло в многократном увеличении концентрации обычной добавки;

S1.11 — вещество получают изменением агрегатного состояния части объектаили внешней среды: увеличение концентрации достигнуто изменением агрегат-ного состояния применявшейся ранее добавки: газ диоксид углерода был пе-реведен в жидкое состояние;

S2.1 — превратить часть объекта в управляемую систему: сверхкритическийдиоксид углерода обладает гораздо более управляемыми свойствами, чем газо-образный;

S2.4 — использован фазовый переход вещества;

S4.2 — ускорить развитие связей между частями системы: увеличена интен-сивность воздействия диоксида углерода на бетон.

Цель этого примера состоит в том, чтобы Вы могли проследить формирова-ние идеи решения и понять принцип, с помощью которого и Вы, будучи спе-циалистом в своей отрасли, можете изучать и подбирать эффективные стан-дартные рекомендации для своих задач. Главное состоит в том, чтобы подборрекомендаций осуществлялся на основании содержания проблемы, а не путемсплошного просмотра стандартов, хотя и это в крайнем случае возможно.В любом варианте полезен следующий совет: просматривать рекомендациинадо так, чтобы было время понять и интерпретировать их применительно кусловиям решаемой задачи.

Пористый бетон. Широкое распространение в строительстве имеет так назы-ваемый пористый бетон с размерами воздушных пор диаметром до 3 мм.Поры могут занимать до 90 % объема материала. Поробетон обладает многи-ми достоинствами: малый вес, отличные теплозащитные свойства с одновре-менной паро- и воздухопроницаемостью (сравнимыми с бревенчатыми конст-рукциями), негорючесть и нетоксичность, возможность свободно забивать внего гвозди, пилить и сверлить. Но производство такого бетона требует доро-гостоящего оборудования (автоклавы, пеногенераторы. помольные агрегаты)и больших энергозатрат. К тому же поры имеют большой разброс размеров инедостаточно равномерно распределяются в объеме изделия.

Институт бетона и железобетона в Москве (Россия) разработал технологию наоснове специальных химических добавок, которые создают поры определен-ного размера, равномерно распределенные в объеме изделия без примененияуказанного сложного и энергоемкого оборудования.

В учебных целях здесь достаточно определить, какие стандарты присутствуютв этом изобретении. Прежде всего отметим, что само по себе введение пор ввещество есть реализация стандарта S1.5. Далее, ключевую роль здесь сыгралстандарт S1.10 — вещество вводят в химическом соединении, из которого оновыделяется в нужное время. Но не менее важно обратить внимание на стандартS5.3 — использовать возможность реализации функций системы на микроуровне(на уровне вещества или/и полей): здесь мы имеем пример мощного свертыва-

Page 178: основы классической триз. м. орлов

ния системы — исключено дорогостоящее, энергоемкое и неэффективноеоборудование!

Гибкий бетон. Тот же институт в Москве разработал технологию производстважелезобетонных… гибких плит! Они пригодны для формирования криволи-нейных поверхностей, в том числе для наружных стен, при лом между гиб-кой плитой и основной стеной может закладываться тепло- и гидроизолирую-щая прослойка.

Обычная железобетонная плита негибкая из-за жесткой арматуры, для кото-рой используются стальные стержни. Фактически, в такой задаче целью явля-ется повышение функциональных возможностей объекта (развертывание постандарту S4.3), использование возможности распределения несовместимыхсвойств между всей системой, наделяемой свойством гибкости, и частью этойсистемы (поверхностью изделия), наделяемой антисвойством — твердостью(свертывание по стандарту S5.2) и превращение части объекта (вещества) вуправляемую систему — введение особой арматуры и способа ее получения(повышение управляемости по стандарту S2.1).

Гибкость плит достигается тем, что в качестве арматуры используются предва-рительно натянутые высокопрочные стальные канаты, а процесс получения го-товой пластины включает дополнительное уплотнение смеси и специальнуюмногочасовую термовлажностную обработку. В итоге по новой технологииполучают легкие и прочные плиты толщиной 3—6 см при ширине до 3 м идлине в 12, 18 и 24 метра (рис. 10.12)!

Бетон с датчиками напряжения. Для испытания строительных конструкцийсоздают специальные образцы железобетонных изделий. Для измерения внут-ренних напряжений в конструкции применяется сеть тензометрических дат-чиков, закладываемых вместе с арматурой в бетонную массу при изготовле-нии опытных образцов. Здесь прямо использован стандарт S3.4 — использо-вать возможность введения добавок в уже имеющиеся вещества (включаявнешюю среду) и/или на поверхность объекта для получения легко обнаруживае-мого (измеряемого) поля, по которому молено судить о состоянии наблюдаемогообъекта. Такое же решение может быть применено в реальных строениях(стены и фундаменты высокоточных производств, строения в сейсмическиопасных регионах, мосты, высотные здания и телерадиокоммуникационныебашни) для постоянного наблюдения за их деформациями

Комбинирование идей. Хорошее решение влечет за собой обычно целую сериюновых идей (см. также раздел 17.2 Развитие решения). Так. например, для раз-

Page 179: основы классической триз. м. орлов

вития идеи обработки бетона сверхтекучим диоксидом углерода были предло-жены следующие продолжения.

Краска плохо проникает в поры плотного бетона и плохо защищает конструк-цию от проникновения влаги. Если же при производстве строительных конст-рукций окрашенное изделие обрабатывается сверхтекучим диоксидом углеро-да, то краска плотно заполняет мельчайшие наружные поры и даже проникаетдостаточно глубоко под поверхность изделия. Последний результат образуетсверхэффект: возрастает долговечность самой краски. Здесь присутствуютстандарты Sl.l, S1.2, S1.8, S2.1, S4.1, S5.3. Рассмотрите их совместно приме-нительно к этому примеру.

Эти же стандарты работают в следующей комбинированной идее: вносить вбетон с помощью сверхтекучего диоксида углерода хорошо растворимые в немвещества, например, полимеры. В результате бетон приобретает свойство уп-ругости, что может быть полезным для создания дорожных покрытий.

Жидкий диоксид углерода достаточно устойчив, что позволяет применять егодля обработки поверхностей уже существующих строений. С его помощьюможно обеспечить высококачественную окраску гибких бетонных пластинбольшого размера. Это сделает строения более устойчивыми к воздействиюкислотных дождей и естественных атмосферных явлений.

В заключение можно сделать некоторые дополнительные выводы. Несмотряна кажущуюся простоту, а иногда и тривиальность рекомендаций, заключен-ных в формулировках стандартов, надо иметь в виду, что они все же являютсямоделями достаточно сильных изобретений, и что их выбор для конкретногоприменения может дать искомый эффект без построения более сложных мо-делей. Еще более сильные результаты могут быть получены при совместномприменении стандартов с законами и линиями системного развития. И по-следнее: модели не заменяют профессиональных знаний, а помогают структу-рировать проблемную ситуацию и наметить направление решения.

Page 180: основы классической триз. м. орлов

На практике встречается немало случаев, когда сама формулировка противо-речия почти прямо подсказывает идею решения. Поскольку инженеры, незнакомые с ТРИЗ, не используют модели противоречий в том виде, в которомэто предлагает ТРИЗ, постольку они заранее лишены возможности быстронаходить простые и эффективные решения во многих таких стандартных си-туациях. Напротив, систематическое применение ТРИЗ-моделей обеспечиваетвысокую направленность и дисциплину решения проблем, умение видеть ре-альные возможности или ограничения на генерирование решений.

Особенно наглядно это можно показать именно на простых примерах, реше-ние которых без ТРИЗ-моделирования также потребовало когда-то немалоговремени или было приятной случайной находкой. К числу таких примеров от-носятся ситуации, в которых совместное рассмотрение инверсных противоре-чий почти прямо подсказывает идею решения. Это особенно свойственно мо-делям, инверсным по способу выполнения основной операции, непосредст-венно ведущей к реализации главной полезной функции объекта.

На основе подобных примеров в 1987 году автором настоящего учебника былсформулирован Метод интеграции инверсных технических противоречий. Сутьего сводится к следующему:

• построить прямое и инверсное технические противоречия;

• построить интегрированную модель, в которой соединены вместе аль-тернативные описания функциональных действий экторов и из взаим-но-инверсных моделей взяты только позитивные свойства (плюс-фак-торы).

Посмотрите еще раз определения противоречий в разделе 9.1 Противоречия, вчастности по рис. 11.1 Обобщенная графическая форма представления бинарныхпротиворечии.

Пример 59. Виноградная лоза (решение с помощью интеграции инверсных техни-ческих противоречий). В этом примере имеется одна интереснейшая возмож-ность решить задачу уже при построении моделей противоречий на этапе Ре-дукция. Рассмотрим эту возможность, начиная с записи инверсных противо-речий (рис. 11.1).

Page 181: основы классической триз. м. орлов

Чтобы выйти на решающую модель-подсказку, достаточно соединить вместе(конъюнктивно) инверсные функции-действия и плюс-факторы из моделей11.1,а и 11.1,b: «укладка лозы на землю» и «оставление лозы на шпалерах» дает«потери лозы (малы)» и «потери времени и затраты труда (отсутствуют)» —низкую трудоемкость укладки.

Так как укладка лозы на землю является обязательной функцией, то цельюмогло быть лишь снижение трудоемкости этой операции. Поэтому и введенадинамизация в конструкцию шпалеры. Обратите внимание, что при помудовлетворено и основное действие по инверсной модели — оставлять лозу нашпалерах, но на лежащих шпалерах!

Пример 60. Нагрев кремниевой пластины. В одной из операций кремниевуюпластину нагревали термоизлучателем, протянутым над пластиной в виде уз-кой прямой планки. В этой планке находился нагревательный элемент в видеплотно навитой спирали. Проблема заключалась в том, что в центральнойчасти под нагревающей планкой температура устанавливалась выше, чем покраям. Это приводило к тепловой деформации пластин. Что и как было и изме-нено позднее в этой системе?

Будем считать, что этап Диагностика описан в постановке задачи. Дополнимисходную информацию рисунком (рис. 11.2). Приступая к Редукции, построиммодели противоречия.

Техническое противоречие: нормальное тепловое поле (спирали-индуктора)нагревает пластину (рецептор), но создает перегрев в центре пластины. Ин-

Page 182: основы классической триз. м. орлов

версное противоречие: слабое тепловое поле (спирали) не перегревает центрпластины, но не нагревает достаточно ее края.

Обратим внимание на два момента: первый — по ТРИЗ нужно изменять ин-дуктор, второй — наличие четкого описания альтернативных процессов. Этонаводит на мысль применить для решения задачи Метод интеграции техниче-ских противоречий. Переходя на этап Трансформация запишем интегрирован-ную модель, заимствовав из обоих противоречий лучшие аспекты: нормальноетепловое поле хорошо нагревает края пластины, а слабое тепловое ноле хорошонагревает центр пластины. Не кажется ли Вам, что от такой «полсказки» оста-ется только один небольшой творческий шаг к идее технического решения?Сделаем этот шаг: чтобы тепловое поле над центром пластины стало слабее,увеличим в этом месте шаг нагревательной спирали! Нарисуйте четкий эскизсамостоятельно.

В качестве контр-примера обратим внимание на то, почему интеграция тех-нических противоречий в примере 13 (и многих подобных) не лает нужногоэффекта. Подсказку идеи решения почти невозможно увидеть из-за того, чтоальтернативные действия не имеют явного функционального описания, непоказывают, как именно убираются (или не убираются!) осколки (рис. 11.3)Здесь присутствует простое отрицание основного действия.

Самыми известными, и, пожалуй, самыми популярными ТРИЗ-инструмента-ми являются «приемы». Расмотренные до этой главы примеры уже дали, не-сомненно, определенное представление об этих инструментах. Теперь нампредстоит закрепить основные правила и уточнить некоторые особенностиприменения приемов.

Page 183: основы классической триз. м. орлов

Разумеется, далеко не все задачи сдаются на этапе Диагностика или Редукция,как это мы видели в предыдущем разделе 11.1. И тогда начинается поиск спо-соба устранения выявленного системного противоречия, точнее, — устране-ния условий, вызывающих это противоречие.

Здесь уже нет «единственной» цепи логических операций. Здесь при-ходится искать. Но можно ли в таком случае говорить о научном ме-тоде? Да, можно.

Во-первых, модели строго направляют поиски: специалист ищет не какую-то«озаряющую» идею, а способ изменения конкретных условий, которые вызвалисистемное противоречие. Специалист знает, что ему нужно, и ищет только,как это сделать.

И моделями искомого решения являются приемы, известные в технике, но неизвестные применительно к данной задаче (или к данной отрасли техники).Магической формулы нет, но есть приемы, достаточные для большинстваслучаев.

Во-вторых, поиски ведутся по определенной рациональной схеме, прежде всегопо Мета-АРИЗ (или Мини-АРИЗ). Каждая техническая задача по-своему ин-дивидуальна. В каждой задаче есть что-то свое неповторимое. Анализ даетвозможность пробиться к главному — к системному противоречию и его причи-нам. И положение сразу меняется.

Повторим еще раз формулировку одного из важнейших открытий ГенрихаАльтшуллера, выделив слова самого автора ТРИЗ:

Однако впервые это открытие было реализовано в полной мере только с по-явлением в 1971 году известной матрицы приемов Генриха Альшуллера (при-ложение 3 А-Матрица выбора приемов). А в Алгоритме изобретения образца1961 года, например, ещё не было деления противоречий на виды и был лишьнебольшой список приемов, напоминающий список контрольных вопросов избрэйнсторминга! Этот список вырос к 1971 году до 40 приемов (приложение 4Каталог А-Приемы)!

В АРИЗ образца 1961 года рекомендовался просмотр всех накопленных к томувремени приемов от «простых», часто употребляемых в реальных изобретени-ях, к «сложным», сравнительно редко встречающимся на практике. В каталогеприемы упорядочены автором учебника по частоте их применения в А-Матри-це. Так, наиболее часто встречается прием 01, затем 02 и так далее. В опреде-ленной степени это является оценкой частоты применения этих приемов на

Page 184: основы классической триз. м. орлов

практике. Вместе с подприемами в каталоге содержится более 100 конструк-тивных рекомендаций! Конечно, для их выбора нужен определенный опыт.

Поэтому А-Матрица выбора приемов оказалась исключительно удобным ин-струментом, особенно для начинающих осваивать ТРИЗ. Типовые приемы —инструменты в творческой мастерской инженера. А в хорошей мастерской ин-струменты никогда не лежат как попало. А-Матрица служит первым навига-тором для перехода от противоречия к приемам на этапе Трансформация.

Переход осуществляется следующим образом:

1) построить техническое противоречие, исходя из условий проблемной си-туации;

2) для позитивного свойства противоречия подобрать из А-Матрицыплюс-фактор, в наибольшей мере соответствующий физико-техническомусодержанию позитивного свойства;

3) подобрать минус-фактор из А-Матрицы по аналогии с пунктом 2;

4) из ячейки А-Матрицы, находящейся на пересечении строки, определяе-мой плюс-фактором, и столбца, определяемого минус-фактором, выпи-сать номера приемов из А-Каталога;

5) рассмотреть возможности интерпретации приемов из А-Каталога приме-нительно к условиям решаемой задачи с целью устранить имеющееся про-тиворечие.

Примечание к пункту 1: избегать при начальном определении конфликтующихфакторов в модели противоречия использовать названия входов А-Матрицы!Это может привести к неверной модели противоречия из-за искажения ее фи-зического содержания.

Примечание к пунктам 2 и 3: при наличии нескольких плюс- и минус-факто-ров (входов в А-Матрицу), близких к позитивному и негативному факторам вмодели технического противоречия, полезно использовать также и эти факто-ры для выбора из А-Каталога дополнительного количества приемов. В этомслучае можно также воспользоваться методом интеграции альтернативныхтехнических противоречий «CICO» (раздел 11.4).

Для квалифицированных специалистов, основательно работающих с ресурса-ми, полезно отметить, что входы А-Матрицы реструктурированы автором вдве группы: системо-технические факторы с 01-го по 14-й и физико-техниче-ские факторы с 15-го по 39-й.

«Чаще всего изобретатель применяет два или три хорошо освоенных приема.У наиболее методичных изобретателей эксплуатируются пять — семь прие-мов. ТРИЗ увеличивает творческий арсенал, включая в него десятки приемов,составляющих в совокупности рациональную схему решения задач…

Page 185: основы классической триз. м. орлов

Необходимо подчеркнуть, что приемы устранения противоречий сформулиро-ваны в обшем виде. Они подобны готовому платью: их надо подгонять, учи-тывая индивидуальные особенности задачи64».

Итак, рассмотрим особенности применения А-Приемов — от «простых» кболее сложным и к группам приемов.

Пример 61. Тушение пожаров на нефтяных и газовых скважинах. Пожар нанефтяной или газовой скважине является огромной экологической катастро-фой. Остановить пожар чрезвычайно сложно. Тушение ведут, расстреливаяустье скважины из танковых орудий и с помощью бомбометания, надеясь нато, что взорванная земля засыпет скважину. Подвести к скважине другую тех-нику не представляется возможным, так как почва в радиусе многих десятковметров раскалена до температуры в несколько сотен градусов. Известны слу-чаи, когда пожары продолжались несколько месяцев и даже более года. За этовремя напрасно сгорают сотни тысяч тонн топлива, что наносит огромныйвред атмосфере. Почвы и подземные воды вокруг скважины насыщаютсянефтепродуктами.

Построим исходное техническое противоречие: чтобы перекрыть выход нефтииз устья скважины, нужно обеспечить подход к скважине техники, но огоньне дает этого сделать. Редуцированная модель: плюс-фактор 10 Удобство экс-плуатации и минус-фактор 13 Внешние вредные факторы. Приемы и их интер-претация:

04 Замена механической среды — по крайней мере ассоциируется с необходи-мостью поиска нового принципа действия, смены структуры и динамики дей-ствующих сил и полей, то есть нового принципа прекращения, остановки го-рения (мы убрали термин «тушения пожара»);

05 Вынесение — отделить от зоны горения кислород (воздух), нефть или газ, недать им поступать в зону горения!

23 Применение инертной среды — по сути дела применение пеногенераторов иесть попытка перекрытия доступа кислорода в зону горения, но эта техноло-гия неэффективна;

29 Самообслуживание — идеальная модель: скважина сама прекращает поступ-ление нефти и газа наверх при пожаре!

Лучше всего выглядит последнее предложение. Вопрос в том, как его реализо-вать? Впрочем, вместе с приемом 05 появляется следующая идея: пробуритьнаклонную вспомогательную скважину, которая встретится на достаточнобезопасной глубине со стволом аварийной скважины, а потом через эту вспо-могательную скважину можно будет подать к аварийному стволу и взрывчат-ку, и специальные растворы, чтобы перекрыть аварийную скважину на глуби-не какой-то «пробкой».

Page 186: основы классической триз. м. орлов

Контрольное решение (рис. 11.4): в России разработан метод, по которому сбезопасного расстояния специальный «подземоход» движется под углом длявыхода к стволу аварийной скважины на определенной глубине. В местевстречи со стволом аварийной скважины «подземоход» может выполнить ра-боту «подземного бульдозера», постепенно сдавливая и сужая ствол до полно-го перекрытия перемещаемой к нему породой.

Следует отметить, что в контрольном решении приему 29 отводится важнаяроль еще и потому, что «подземоход» использует систему самонаведения наствол скважины, ориентируясь под землей на сигналы заранее установленныхв скважине датчиков.

Не напоминает ли Вам это решение фантастическое произведение типа «Пу-тешествие к центру Земли» Жюля Верна? Представленная здесь идея являетсяодной из многих, предлагавшихся в России, начиная с 1920-х годов, в видеразных «подземоходов» для прокладки труб и кабелей, тоннелей и дорог, дляразведки полезных ископаемых, добычи золота или алмазов.

Пример 62. Джинсы… на удобрение. В городе Эль-Пасо (штат Техас, США) не-сколько фабрик обрабатывают сшитые джинсы с помощью стирки в горячейводе вместе с перекатывающимися в стиральной машине булыжниками. Этаобработка делается по заказу известных джинсовых фирм, например, LevyStrauss. Джинсы обрабатывают также пескоструйными машинами. В результа-те такой обработки остается много хлопковых очесов. Только одна из фабрикобрабатывает за неделю около 300 тысяч джинсов, выбрасывая на свалку свы-ше 50 м3 этих отходов. Техническое противоречие: чем выше производитель-ность, тем больше отходов. Редуцируем исходное противоречие к стандарт-ным названиям входов А-Матрицы: производительность как плюс-фактор ивредные факторы самого объекта как минус-фактор. На пересечении первойстроки и 14-го столбца находим клетку со следующими приемами: 01 Измене-ние агрегатного состояния, 06 Использование механических колебании, 21 Обра-тить вред в пользу и 23 Применение инертной среды. Конечно, внимание при-влекает прием 21,а: использовать вредные факторы для получения положи-

Page 187: основы классической триз. м. орлов

тельного эффекта. Контрольное решение: внесение очесов в почву на полях.Верификация: урожай трав повысился в несколько раз, а всхожесть семянхлопка и пшеницы увеличилась на 60 %. Дело в том, что штат Техас имеет за-сушливый климат, а очесы в 4 раза повышают водоудерживающую способ-ность почвы.

Пример 63. Новое — это хорошо забытое старое! Здесь мы проведем и реин-вентинг, и предложим новые идеи. Одной из серьезных проблем на дорогахявляется отсутствие информации о дорожной ситуации, сложившейся впере-ди по направлению движения. Частично, такая информация сообщается полокальному радио полицией, например, о крупных пробках. Но это делаетсятолько на больших автобанах и недостаточно для многих других реальных си-туаций. Иногда важно получить более оперативную информацию, которуюводитель впереди идущего автомобиля мог бы передать по крайней мере сле-дующему за ним автомобилю. Например, сообщить, что впереди находитсявременная зона ограниченной скорости (стройка), которой не было на ломучастке ранее: замечено неожиданное препятствие — велосипедист; на участ-ке дороги появилось повреждение или гололед, и тому подобное. Особеннотакая информация была бы полезна в условиях ограниченной видимости, на-пример, ночью. Полезна была бы также передача информации о техническойили медицинской помощи, предупреждение о том, что на борту дети. При-чем понятно, что чем выше скорость, тем полезнее заранее сделанное ин-формирование.

Последнее заключение можно рассматривать как исходное техническое про-тиворечие и редуцировать его: 22 Скорость как плюс-фактор и 12 Потери ин-формации как минус-фактор. Рекомендуемые приемы: 10 и 11.

Составим обобщенный «портрет» идеи решения:

10,а: вместо недоступного объекта использовать его копии — например, сооб-щение о препятствии есть не что иное, как информационная копия объекта,недоступного для непосредственного наблюдения из следующего автомобиля;

10,b: заменить объект или систему объектов их оптическими копиями — напри-мер, знаками или словами, передаваемыми назад для следующего сзади авто-мобиля;

11: сделать неподвижную часть объекта подвижной — в оперативной зоне накорме впереди идущего автомобиля должно быть устройство для информиро-вания следующего за ним автомобиля, например, оптическим способом.

Еще в конце 1980-х годов фирма Форд испытала на автомобиле «Аэростар»дисплей, устанавливаемый над задним бампером. Такие дисплеи с бегущейстрокой широко применяются в метро, на вокзалах, в рекламных целях.Управление предполагалось с помощью функциональных кнопок, выдавав-ших на дисплей стандартные короткие сообщения.

Один из недостатков этого подхода состоит в неудобстве выбора и включениянужной кнопки. Сегодня мы можем вернуться к «старой» идее с новыми воз-можностями, заимствованными из технологии автомобильного телефона: на

Page 188: основы классической триз. м. орлов

выдачу нужного сообщения можно подавать команду голосом. Вы можетепробовать развить это направление и запатентовать более эффективные идеи.

Пример 64. Спасение в снежной лавине. Ежегодно в горах из-за снежных лавингибнут десятки альпинистов и горнолыжников. При неожиданном сходе лави-ны время на осуществление каких-либо маневров для спасения крайне мало.Этим объясняется низкам надежность различных рекомендаций по спасениюпри появлении лавины.

Таким образом, время и надежность выступают здесь в качестве конфликтую-щих факторов. Требуется повысить надежность операции спасения. Непо-средственное обращение к А-Матрице дает следующий набор рекомендуемыхприемов: 05 Вынесение: 11 Наоборот и 28 Заранее подложенная подушка. Выпи-шем важные рекомендации из этих приемов: выделить в объекте нужнуючасть (спасаемый человек); вместо действия, диктуемого условиями задачи(человек тонет под снегом), выполнить обратное действие (человек всплываетиз-под снега); компенсировать относительно невысокую надежность объектазаранее подготовленными аварийными средствами. Составим обобщеннуюмодель: у человека в горном снаряжении должно быть заранее подготовлен-ное средство, выносящее его на поверхность снега и не дающее ему утонуть вснегу. Идеальный результат: Х-ресурс, абсолютно не усложняя снаряжение,выносит человека в оперативное время на поверхность снега. Нужен «спаса-тельный круг» в лавине! Но не носить же такой «круг» за спиной! Требованияк ресурсам: системный — ресурс не должен быть сложным; пространство —ресурс не должен занимать много места; энергия — ресурс не должен требо-вать больших затрат энергии для приведения его в действие. Это — немало.но все же не хватает для каких-то конструктивных подсказок.

Составим дополнительную пару конфликтующих свойств: сложность устрой-ства как плюс-фактор и затраты энергии подвижным объектом как ми-нус-фактор. То есть один из факторов фиксируем как позитивный и достижи-мый в гипотетической системе, а другой — как негативный, который нужноулучшать. Здесь присутствует жесткая ориентация на Мини-стратегию: без су-щественных усложнений получить высокое качество решения. Получаем до-полнительные рекомендации: 04 Замена механической среды, 05 Вынесение (по-вторно); 13 Дешевая недолговечность вместо дорогой долговечности и 14 Исполь-зование пневмо- и гидроконструкций. Ключевым приемом, непосредственноведущим к решению, является прием 14: вместо твердых частей объекта ис-пользовать газообразные и жидкие — надувные и гидронаполняемые, воздуш-ную подушку.

Контрольное решение (рис. 11.5): германский предприниматель Петер Ашау-эр предложил новое спасательное средство — надувной мешок из ярко-оран-жевого нейлона, укрепляемый в небольшом рюкзаке на спине и надуваемыйсжатым азотом из небольшого баллона, клапан которого открывается челове-ком при опасности.

Можно видеть, что одновременно выполнены и рекомендации приемов 05,11, 13 и, безусловно. 28!

Page 189: основы классической триз. м. орлов

Зная контрольное решение, проведите учебный реинвентинг с этими приема-ми самостоятельно.

Вы заметили, конечно, что вопреки Примечанию к пункту 1 (см. выше в раз-деле 11.2), мы использовали здесь, во-первых, неполное построение моделейпротиворечий, и во-вторых, названия входов А-Матрицы для моделированияконфликтующих свойств. Здесь показана часто встречающаяся на практикеситуация, когда и новички (очень часто!), и опытные знатоки ТРИЗ (для ори-ентировочного экспресс-анализа!) игнорируют упомянутое примечание. Дляновичков это весьма вредно, так как тормозит и искажает освоение и приме-нение принципов ТРИЗ. В таком случае лучше просмотреть приемы всегоА-Каталога!

Зная все же о такой не самой эффективной практике самообразования, мырешили показать здесь, по крайней мере, логичный и адекватный выбор вхо-дов А-Матрицы и примерный ход рассуждений при правильном решении задачи.

Пример 65. Сортировка металлического лома. При переработке дефектных илиизношенных деталей и металлического лома с целью вторичного использова-ния требуется, прежде всего, разделить этот лом по виду металла, например,цветные металлы, черные (различные стали) и так далее. Ручная сортировкадает неплохие результаты, но крайне непроизводительна. Это объясняется не-обходимостью отделять компоненты из лома по одному, перемещать их к мес-ту измерения, проводить анализ и перемещать к месту накопления односорт-ных компонентов. Применение точных автоматических анализаторов также недостигает цели, так как они ненадежно работают в условиях производства, на-пример, окраска многих деталей искажает результаты измерений. Было бы по-лезно, по крайней мере, для предварительной сортировки применить какие-тодругие способы, более пригодные в качестве промышленной технологии.

Техническое противоречие: сортировка требует повышения производительно-сти, но при этом трудно избежать ручной работы из-за негативного действиямногих мешающих факторов (большой вес и размеры изделий, окраска, необ-ходимость доставки по отдельности к месту сортировки и другие). Редукцияисходного описания дает следующие результаты (рис. 11.6).

Page 190: основы классической триз. м. орлов

Выборка приемов из А-Матрицы дает следующие наборы: а) 01, 10, 35, 37; b)01, 05, 06, 13; с’) 01, 11, 18, 21; с») 01, 06, 21, 23. Обращает на себя вниманиевысокая частота присутствия приема 01 Изменение агрегатного состояния. Вы-пишем его основные рекомендации:

01, а: переходы к псевдосостояниям (псевдожидкость);

01,b: изменять концентрацию или консистенцию и др.

В качестве примера № 01.1, иллюстрирующего возможное применение прие-ма 01, приводится «Применение магнитореологических или электрореологи-ческих жидкостей с управляемой степенью вязкости от жидкого состояния дотвердого». Назначение и состав таких жидкостей можно найти в техническихсловарях и энциклопедиях.

Контрольное решение: японская фирма Хитачи применила ванны с магни-тореологической жидкостью, в которую загружается сортируемый лом, ком-поненты которого «сами разделяются» по сорту металла, так как при управ-ляемом изменении плотности магнитной жидкости с помощью мощногоэлектромагнита компоненты поочередно «всплывают» строго в соответствиисо своим удельным весом! Остается «собирать» их с поверхности магнито-реологической жидкости и направлять в накопитель металлов соответствую-щего сорта.

Page 191: основы классической триз. м. орлов

А теперь займемся детскими игрушками! Если Вы думаете, что это несерьезнодля инженера, то подумайте о том, что это может быть очень важно для ваше-го ребенка или для других детей, которым Вы сможете подарить удивительноеизобретение.

Пример 66. Фирма Microsoft патентует… куклу! Универсальным средством ин-теллектуального и эмоционального развития детей являются игры с объемны-ми предметами, например, с различными наборами для конструирования, скуклами и так далее. Но вот проблема: куклы неразговорчивы, не могут бытьсобеседником, рассказывать ему сказки, не могут смотреть вместе с ребенкоминтересную и полезную телевизионную передачу, не могут плакать и смеятьсявместе с ребенком, не могут… Вы вполне можете продолжить этот перечень,чтобы заменить в нем вскоре не могут на могут] А пока проведем поучитель-ный реинвентинг удивительного патента на удивительную куклу фирмыMicrosoft. При этом мы столкнемся с одной неожиданной проблемой и состороны А-Матрицы!

Итак, кукла как универсальное средство развития ребенка. Допустим. Куклане может активно общаться с ребенком, хотя бы в ограниченных сюжетныхситуациях. Понятно: нет информационной связи. Редукция: плюс-фактор02 Универсальность, адаптация против минус-фактора 12 Потери информации.Увы, эта клетка пуста в А-Матрице!

Ну что ж, поработаем с А-Каталогом. Прежде всего привлекает внимание ужезнакомый нам прием 0 Замена механической среды с рекомендациями:

04, а: заменить механическую систему оптической, акустической или… запахо-вой и так далее;

04, b: использовать электромагнитные поля для взаимодействия с объектом;

04, с: перейти от фиксированных полей к меняющимся во времени.

Успешное применение этого приема Вы можете рассмотреть на Примере 46Лекционная доска.

Можно добавить также прием 29 Самообслуживание: объект сам себя долженобслуживать, выполняя вспомогательные операции. Потенциально полезен дляреализации «общения» прием 36 Обратная связь, которая пока неэффективнаили вовсе отсутствует в общении между игрушкой и ребенком.

Контрольное решение: фирма Microsoft запатентовала систему (рис. 11.7),включающую… куклу и телевизор!

Скрытое звуковое сопровождение телепередачи передается маломощным ра-диопередатчиком в приемное устройство в кукле, и кукла начинает «разумно»реагировать на происходящее на экране, «высказывать» свои замечания, «об-суждать» события и демонстрировать эмоции.

Все гениальное — просто! Это в очередной раз подтверждает и кукла фирмыMicrosoft.

Page 192: основы классической триз. м. орлов

Возникает, однако, вопрос: а что же делать в подобных случаях впредь — ведьв матрице около 20 % пустых клеток?

Во-первых, есть возможность поработать с противоречием, чтобы подобратьдругие плюс- и минус-факторы, все еше ассоциируемые с конфликтующимисвойствами.

Во-вторых, можно и нужно поработать непосредственно с А-Каталогом, ис-следуя приемы и подприемы с целью выявления действий и рекомендаций,близких по характеру к требуемым действиям. Это мы вполне продемонстри-ровали как в этом, так и в других примерах.

В-третьих, Вы можете сами заполнить пустую клетку ссылками на приемы,присутствующие в известных Вам изобретениях. Например, софтвер IdeaNavigator (см. раздел 21.3) предоставляет пользователю функцию наполненияА-Каталога и А-Матрицы собственными примерами и ссылками.

Пример 67. Защита автомобиля от несанкционированного доступа. Итак, в авто-мобиль проник злоумышленник и пытается завести двигатель. Как предотвра-тить угон? Построим исходное техническое противоречие в следующем виде:зашита автомобиля должна быть надежной против проникновения посторон-них. Выберем стратегию «самозащиты» автомобиля, не исключая активной за-щиты, то есть с воздействием на постороннего. Если принять посторонних за«внешний вредный фактор», а самозащиту автомобиля отождествить с поня-тием «вредные факторы самого объекта», то вновь обнаружим на пересечениистроки 14 и столбца 13 А-Матрицы отсутствие каких-либо приемов. Мы ужезнаем, что это не так уж страшно. Но теперь мы применим иную стратегиюработы с А-Каталогом. Проведем экспресс-анализ только первых 10 «самыхсильных» приемов. А результативные приемы, примененные для генерациирешения, занесем потом в эту клетку на будущее.

Процесс решения полезно фиксировать в таблице (рис. 1 1.8).

Page 193: основы классической триз. м. орлов

Контрольное решение: одна из фирм в Берлине (Германия) успешно реализу-ет средства безопасности на основе различных газовых смесей для защитыквартир и автомобилей. Так, в квартире после нескольких аудиопредупрежде-ний распыляется сильный слезоточивый газ, не вредящий мебели, стенам ибытовой технике. При запуске автомобиля салон заполняется очень плотнымбелым дымом, не имеющим запаха и безвредным. Достаточно долгое времядым не дает возможности управлять автомобилем и привлекает внимание ок-ружающих, которые могут немедленно вызвать по хэнди полицию.

Page 194: основы классической триз. м. орлов

А теперь проверим возможность подбора других подходящих плюс- и ми-нус-факторов. Например, мы хотели бы получить «универсальное средство»защиты от «внешнего вредного фактора». Плюс-фактор 02 Универсальность,степень адаптации и минус-фактор 13 Внешние вредные факторы дают пере-чень приемов, в котором содержатся уже примененные нами приемы 01 и 09(есть в контрольном решении!), а также дополнительно ориентирующие прие-мы 28 Заранее подложенная подушка (примерно эквивалентный в этой ситуа-ции приему 02) и 31 Применение пористых материалов.

По результатам нашего экспресс-решения мы можем заполнить еше однуклетку А-Матрицы (или даже две смежные по диагонали клетки 13 и 14) таки-ми приемами, как 01, 04, 06 и 09.

Пример 68. Ветровые электростанции. Одним из наиболее экологически чистыхисточников энергии является… ветер! То есть атмосферные потоки. Привыч-ные многим приводы ветроэлектростанций имеют вид самолетных пропелле-ров, установленных на высоте от нескольких десятков до 100 и более метров(рис. 11.9). Однако возможности дальнейшего роста эффективности таких уст-ройств с горизонтальной осью вращения уже почти исчерпаны. Во многихстранах начали испытывать и строить ветроустановки с вертикальной осьювращения — роторные (рис. 11.10). Нетрудно заметить, что такая установка не-критична к направлению ветра. Она обладает и рядом других преимуществ.

Известно также, что с ростом высоты вплоть до 6—8 км можно получить мно-гократный выигрыш в мощности ветроэлектростанций. Однако для этого не-

Page 195: основы классической триз. м. орлов

обходимо решить ряд проблем, особенно связанных с весом станции и кабе-лей, связывающих ее с землей, а также с долговечностью работы станции, таккак трение в движущихся частях усиливаемся низкими температурами набольшой высоте.

Итак, мы имеем дело с комплексом проблем. Первая проблема — вес. Сфор-мулируем техническое противоречие: подъем станции на большую высотудает максимальную мощность станции, но требует решения проблемы достав-ки и удержания станции на большой высоте. Плюс-фактор 36 Мощность на-ходится в конфликте с минус-фактором 32 Вес подвижного объекта. В учебныхцелях из суммарного набора прокомментируем только один прием 32 Анти-вес: компенсировать вес объекта соединением с другими объектами, обладаю-щими подъемной силой; компенсировать вес объекта аэродинамическимвзаимодействием со средой — в контрольном решении российскими специа-листами предложено поднимать ветроэлектростанцию с помощью газонапол-н е н н о г о б а л л о н а , и м е ю щ е г о ф о р м у « в о з д у ш н о г о з м е я » ( р и с . 1 1 . 1 1 ) . П р и э т о мкабель имеет собственную газонаполненную несущую оболочку, компенси-рующую его вес и вес тросов, удерживающих всю конструкцию от самопроиз-вольного перемещения и падения.

На «змее» находятся 3 роторные ветроустановки. Основная проблема — тре-ние в опорных кольцах «вверху» и «внизу» ротора. Сформулируем еще однотехническое противоречие: долговечность и автоматическая работа системыбез обслуживания в условиях воздействия вредных внешних факторов. Здесьвозможно построение нескольких альтернативных моделей.

Рассмотрим некоторые из них. Ближайшими ассоциируемыми плюс-фактора-ми являются: степень автоматизации, надежность, удобство эксплуатации,время действия подвижного объекта, устойчивость состава объекта.

Ближайшими минус-факторами являются сложность устройства, внешниевредные факторы, длина подвижного объекта (по направлению движения ро-торов в опорах), потери вещества (износ), прочность, температура, потериэнергии (на преодоление трения).

Page 196: основы классической триз. м. орлов

Снова обратим Ваше внимание на то, что мы все же выполняем реинвентинг,зная контрольное решение. А теперь представьте себе объем работы, которыйВам предстоит проделать для анализа все попарных конфликтующихсвойств. Достаточно сказать, что здесь возникает 35 пар моделей противоре-чий! Но в этом кроется и упрощение решения за счет того, что постепенновыявляются приемы с высокой повторяемостью. Их и надо пробовать приме-нить в первую очередь. Для работы с такими «системами противоречий» пред-назначен метод CICO, рассматриваемый в следующем разделе I 1.4.

Здесь же мы воспользуемся сокращенным разбором процесса решения на ос-нове одной из физико-технических моделей: плюс-фактор 23 Время действияподвижного объекта против минус-фактора 13 Внешние вредные факторы. На-бор приемов и их интерпретация с учетом ресурсных особенностей работысистемы:

04 Замена механической среды — возможность применить принцип магнитногоподвеса, отдавая для этого незначительную часть вырабатываемой электро-энергии;

07 Динамизация — часть энергии должна тратиться на непрерывное изменениеположения каждой лопасти ротора для оптимизации функционирования всейсистемы, уменьшения тормозящих усилий и нагрузки на опоры;

21 Обратить вред в пользу — высокая скорость потока воздуха на большой вы-соте в сочетании с минусовой температурой может быть использована длясоздания пар скольжения на ледяной и воздушной подушке;

38 Однородность — поверхности, которые могут оказаться в контакте скольже-ния, должны быть сделаны из одного и того же материала.

Контрольное решение российских специалистов: линейный шаговый двига-тель (для первоначального разгона ротора), обратимый для работы в качествеопоры типа магнитный подвес.

Пример 69. Шумящая сеть. В морях ежегодно гибнут многие тысячи дельфи-нов, запутавшихся в рыболовных сетях. Они стремятся к сетям, пытаясь охо-титься на попавшую в сети рыбу, и сами становятся жертвами сетей. Какможно повысить безопасность сетей для дельфинов?

Можно сформулировать две версии функциональной идеальной модели:

дельфины сами не подплывают к сети;

сеть сама отпугивает дельфинов.

Физико-биологический ресурс и противоречие: дельфины обладают акустиче-ским локатором, но сеть остается «невидимой» для их локаторов.

Подбор стандартных факторов для этого примера является нетривиальной за-дачей. Прямых аналогов для описания акустического сигнала или его пара-метров нет. Нет и подходящего описания негативных явлений, связанных сослабым отражением локационных сигналов от сети. В таких случаях можновсе же прибегнуть к весьма метафорическим аналогиям, например, сравнить

Page 197: основы классической триз. м. орлов

звук со световым или тепловым полем. Тогда в качестве плюс-фактора можновзять, например, вход 35 Освещенность. Для минус-фактора, имеющего связьс конструкцией сети, выберем вход 10 Удобство эксплуатации. Действительно,в новой ТРИЗ-формулировке функциональной идеальной модели теперьможно более уверенно записать следующее: Х-ресурс, абсолютно не усложняясеть, обеспечивает хорошую «видимость» сети для акустического локаторадельфина. Посмотрим на приемы из А-Матрицы:

04, а: заменить исходную механическую систему со слабыми отражательнымиакустическими свойствами новой системой с хорошими отражательнымисвойствами;

04,b: перейти от неструктурированных полей к структурированным;

10,b: заменить объект его акустическими (заметьте замену термина «оптиче-скими»!) копиями.

Прием 08 пока не поддается интерпретации. Но и имеющегося достаточно,чтобы прийти к идее встраивания в сеть специальных ячеек в виде пластмас-совых сферических и параболических отражателей. Эти элементы намноголучше отражают локационный сигнал дельфина. Таково контрольное реше-ние немецкого зоолога-изобретателя Свена Кошинского. Экспериментальнаяпроверка показала, что видимость сети повысилась до 50—60 %, что неплохо,но недостаточно.

Однако теперь найден ключевой принцип, вцепившись в который, можно со-вершенствовать систему с помощью ТРИЗ-инструментов. Для сокращенияописания новое техническое противоречие представим сразу в редуцирован-ной форме: плюс-фактор 04 Надежность и минус-фактор 07 Сложность уст-ройства дают набор приемов 08, 10, 18 и 31.

Из них хорошо интерпретируются следующие (в порядке важности):

10 Копирование: прием встречается повторно, что действительно соответству-ет этой ситуации, только теперь решено воспроизводить сигнал тревогидельфинов;

18 Посредник: использовать промежуточный объект, переносящий или пере-дающий действие — на сети дополнительно установлены активные акустиче-ские излучатели мощностью 115 децибел, частотой 2,9 килогерца и обертона-ми до 90 килогерц. Эти звуки выбраны так, чтобы отпугивать дельфинов, ноне промысловую рыбу;

08 Периодическое действие: перейти от непрерывного действия к периодиче-скому — «писк», похожий на дельфиний, издается 70 раз в минуту;

40 Непрерывность полезного действия: вести работу непрерывно с полной на-грузкой — число излучателей должно быть достаточным на поверхности сети,длина которой может составлять несколько сотен метров и более.

И вновь состоялась практическая верификация идеи, показавшая 90 % эф-фективности. Но оставались еще 10 % ! Теперь целью могло быть исключениепривыкания (адаптации) дельфинов к отпугивающему звуку. Редуцированное

Page 198: основы классической триз. м. орлов

техническое противоречие: плюс-фактор 02 Универсальность, адаптация про-тив минус фактора 07 Сложность устройства. Ключевыми приемами являют-ся 04 Замена механической среды (перейти от фиксированных полей к меняю-щимся во времени!) и 07 Динамизация (характеристики объекта должны ме-няться так, чтобы быть оптимальными на каждом шаге работы), совместнаяинтерпретация которых практически однозначно приводит к решению варьи-ровать параметры писка случайным образом.

Этот пример показывает развитие исходной идеи на основе ее практическойпроверки и формулирования новых и новых моделей в зависимости от резуль-татов испытаний. Поскольку мы выполняли все же не генерацию новых идей,а учебный реинвентинг, то можно сказать, что этот пример демонстрирует ди-намический реинвентинг. Однако на аналогичной последовательности действийосновано практическое усовершенствование изделий и продукции с помощьюТРИЗ-инструментов.

Заключительный пример этого раздела демонстрирует не динамику, а статикуреинвентинга какого-нибудь объекта. Для примера выбран не совсем «про-мышленный» объект, скажем, не станок и не самолет (хотя все это еще встре-тится нам впереди!), зато можно рассчитывать на то, что пример будет легковоспринят всеми читающими этот учебник.

Пример 70. Раклетт? А почему бы и нет?! Посмотрим с разных сторон, в томчисле и с «нетехнических», а чисто пользовательских, на такое изделие дляприготовления пищи, как раклетт (рис. 11.12).

Нас будет интересовать раскрытие в таком объекте как можно большего коли-чества присутствующих в нем творческих идей (приемов).

Наш анализ представлен в таблице на рис. 11.13.

Итак. 25 приемов в одном относительно несложном объекте! Цель рассмот-ренного примера — показать широкие возможности корректной интерпрета-

Page 199: основы классической триз. м. орлов

Page 200: основы классической триз. м. орлов

ции приемов, несмотря на их предельно ограниченные и даже обедненныеописания.

На этом мы должны ограничить рассмотрение принципов примененияА-Приемов. Еще раз приведу слова Генриха Альтшуллера: нет магическихформул, но есть приемы, достаточные для большинства случаев! А так какТРИЗ — не догма, то не останавливайтесь перед импровизацией и игрой во-ображения!

11.4. Интеграция альтернативныхпротиворечий — метод CICO

При использовании А-Матрицы и А-Каталога приемов может возникнуть во-прос: неужели в основе каждого конкретного изобретения лежит только одинкакой-то прием? Автор ТРИЗ отвечал на этот вопрос следующим образом: впериодической таблице Менделеева содержится чуть больше 100 химическихэлементов, но реальный мир неизмеримо богаче, так как химические элемен-ты вступают во взаимодействия, образуя сложные вещества и целые классывсе более сложных веществ.

Изучение искусственно составленных комбинаций приемов представляет со-бой сложную задачу. Из 40 приемов А-Каталога можно составить 780 различ-ных пар, 9880 различных «троек», более 90 000 «четверок»… Такова слож-ность комбинаторики «сочетаний»! Такой подход не выглядит слишком при-влекательным. Не проще и изучение реальных изобретений, хотя через нихлегче увидеть реальную пользу от конкретного примененного сочетанияприемов. И все же для предварительного «растряхивания» проблемы и дляэкспресс-анализа опытные специалисты иногда используют А-Каталог безА-Матрицы следующим образом:

1) просматривают весь каталог и выбирают несколько перспективныхприемов;

2) подбирают комбинации приемов по два, три или более (это возможно!).

Более эффективным подходам является направленное формирование группприемов на основе составления нескольких системно-связанных техническихпротиворечий или на основе подбора к выбранной ТПМ нескольких подходя-щих факторов для входа в А-Матрицу.

Метод CICO (Cluster In Cluster Out)

1) Сформулировать техническое противоречие или несколько альтернатив-ных технических противоречий.

2) Для каждой модели выбрать несколько синонимичных входов (это и естьпроцедура Cluster In, т. е. составление целой грозди синонимических вхо-дов как для плюс-фактора, так и для минус-фактора каждого техническогопротиворечия).

Page 201: основы классической триз. м. орлов

3) Выписать все рекомендуемые приемы.

4) Составить ранжированный список, в котором на первом месте будет наи-более часто рекомендуемый прием, на втором — с меньшим рейтингоми т. д. (это и есть процедура Cluster Out, когда мы получаем как бы гроздьприемов на выходе, где «наверху» грозди будет наиболее часто встречаю-щийся прием, «пониже» — менее встречающийся и т. д.).

5) Провести последовательный анализ приемов, начиная с первою.

Рассмотрим один пример на «ретро-тему».

Пример 71. «Крышка» над дымоходом. Чтобы в печные трубы сверху на попа-дали дождь и снег, над трубами сооружают различные навесы, козырьки иликрышки (назовем их закрывалками).

Диагностика. Проблема состоит в том, что закрывалки с часто встречающейсяформой, приведенной на рис. 11.14, неудовлетворительно защищают дымоходот снега и от дождя, особенно при достаточно сильном ветре. Более сложныепо форме закрывалки часто сужают поперечное сечение на выходе дымоходаи затрудняют выход дыма.

Рис. 11.14. Крышка нал дымоходом

Редукция. Как минимум, здесь имеет место двойное физическое противоре-чие: закрывалка должна быть широкой и находиться близко к выходу трубы(чтобы надежно защищать трубу от дождя и снега при любом направленииветра), и закрывалка должна быть узкой (чтобы сильный ветер не срывал за-крывалку) и находиться далеко от выхода трубы (чтобы дым свободно вылетализ трубы). Оперативная зона здесь включает выход дымохода (рецептор) и за-крывалку (индуктор). Менять, понятно, будем закрывалку. Очевидной идеинет. Поэтому можно сформулировать более одной ФИМ.

Макро-ФИМ: Х-ресурс, не вызывая недопустимых негативных эффектов,обеспечивает вместе с другими имеющимися ресурсами надежную защиту вы-хода трубы от осадков при любом направлении ветра и наилучшим образомвыпускает дым.

Макси-ФИМ: оперативная зона сама обеспечивает защиту выхода трубы исвободный выход дыма.

Анализ фундаментальных трансформаций (раздел 12.2) на первый взглядтакже не дает очевидной идеи, хотя можно сказать, что здесь явно являются

Page 202: основы классической триз. м. орлов

«заинтересованными» пространственный, структурный и энергетический ре-сурсы. Нужно предполагать изменения в форме закрывалки и в структуре —возможно появление более сложной конструкции с несколькими функцио-нально-специализированными частями. Нельзя исключать, что потребуетсяисточник энергии для приведения закрывалки в действие. Здесь Вы можетезадать справедливый вопрос: а как же с требованием «абсолютно не услож-няя систему»?! Первая часть ответа: посмотрим в конце решения — напри-мер, может оказаться, что по затратам материалов и стоимости новая конст-рукция будет ненамного превышать имеющуюся закрывалку, которая вообщене соответствует предъявляемым требованиям. Вторую часть ответа дал ещеАльберт Эйнштейн65′: должно быть «Просто, но не проще простого!». То есть,если некая конструкция не решает поставленную задачу, то ее простота илинизкая стоимость не имеют никакого значения.Попробуем построить технические противоречия, чтобы несколько отойти отжесткой формулы физического противоречия — но не от ФИМ! Наоборот,мы должны и будем цепко держаться за ФИМ!

Представим ИКР-1 в самом общем виде как устранение «Вредных факторов,действующих на объект» и используем этот ИКР как плюс-фактор № 13 длясоответствующего входа в А-Матрицу. Вдоль 13-й строки выберем подходя-щие минус-факторы (см. таблицу на рис. 11.15).

Представим ИКР-2 как «Степень автоматизации» и используем этот ИКР какплюс-фактор № 03 для соответствующего входа в А-Матрицу. Вдоль 03-йстроки найдем хотя бы один подходящий минус-фактор (см. таблицу нарис. 11.16). Пусть решением проблемы будет ИКР-3 в виде некой идеальной«Формы». Тогда вдоль 21-й строки А-Матрицы выберем вероятные ми-нус-факторы (см. таблицу на рис. 11.17).

Трансформация. При объединении 17 различных приемов из этих таблицнайден один прием (№ 07) с рейтингом 3, пять приемов с рейтингом 2 и 11приемов с рейтингом 1. В таблице на рис. 11.18 представлены шаги решенияпроблемы, а на рис. 11.19 — результат проведенного реинвентинга решения,которое я впервые увидел в Германии. Я назвал эту закрывалку «шлем»

65 Альберп Эйнштейн (1879—1955) — выдающийся физик XX столетия, создатель обшей и спе-циальной теории относительности.

Page 203: основы классической триз. м. орлов

Page 204: основы классической триз. м. орлов

из-за сходства с рыцарским шлемом по форме, благодаря чему осадки непопадают в трубу и при отсутствии ветра. Позже я встречал его, например, вФинляндии.

Верификация. Получено вполне идеальное решение: закрывалка сама наилуч-шим образом выпускает дым и надежно защищает трубу от осадков при лю-бом направлении ветра!

В этом решении, изобретенном неизвестным мастером, можно увидеть сразубукет изобретательских приемов: динамизация — «шлем» сделан подвижным;локальное качество — «шлем» защищает именно там, где нужно; асиммет-рия — флюгер имеет вынесенный хвост, на который и воздействует ветер;матрешка — ось вращения размешена внутри трубы; вред обратить в пользу исамоорганизация — чем сильнее ветер, тем надежнее «шлем» устанавливается внаилучшее положение.

Полученная конструкция не намного сложнее исходной, а ее преимуществанесравненно выше!

В хорошем решении всегда объективно реализованы несколько творческихидей. Поэтому так важно изучать методом реинвентинга ранее сделанные изо-бретения, чтобы увидеть не зависящие от воли изобретателя объективныеидеи преобразования от «было», то есть «от существующего», к «стало», тоесть «к возникающему»!

Итак, мы можем сказать, что отдельные приемы как бы предлагают нам ис-кать решение задачи «за один ход», как в одноходовой шахматной миниатюре.Однако, сложные задачи — это как минимум трех-, четырех- и пятиходовки!А то и целые блестящие партии! И поэтому «грозди» приемов ориентируют на

Page 205: основы классической триз. м. орлов

разработку многоходовых комбинаций, тем более что в реальной изобретатель-ской задаче никто заранее не знает, за сколько ходов она решается.

Мы видим, что при совместном рассмотрении приемов они как бы усиливаютвозможности друг друга.

Возникает сверхэффект — синергия приемов!

Ранжированная «гроздь» приемов как бы описывает и предсказывает облик бу-дущего решения, связывая идеальный конечный результат с новым, еще иско-мым, принципом действия и с будущей конструкцией.

Page 206: основы классической триз. м. орлов

Ключевая идея метода аналогична интеграции технических противоречий, а

именно, соединить несовместимые требования, исходя из непосредственного

описания модели противоречия. Но для физического противоречия это сде-

лан, сложнее, так как в нем несовместимость выглядит более непримиримо и

остро. Описание физического противоречия часто нефункционально, то есть

содержит не инверсные способы действия, а инверсные и несовместимые свой-

с т в а — с о с т о я н и я . П о э т о м у в М е т о д е интеграции физических противоречий,

предложенном автором учебника в 1989 году, имеются существенные отличия

от М е т о д а интеграции инверсных технических противоречий.

М е т о д интеграции физических противоречий требует я в н о г о р а з р е ш е н и я про-

тиворечия по доминирующему ресурсу. А для этого требуется творческое, ин-

туитивное усилие и профессиональное знание физико-технических эффектов

и конструкций, пригодных потенциально для достижения такого решения.

Шаги метода формулируются следующим образом:

• сформулировать физическое противоречие с двумя несовместимыми

требованиями (факторами);

• редуцировать исходную модель к конструктивной форме, в которой оба

фактора представлены как целевые, позитивные;

• разделить к о н с т р у к т и в н у ю модель на две модели — для о д н о г о ф а к т о р а

и для другого фактора; найти независимые альтернативные технические

решения для каждого из факторов;

• построить интегрированную модель на основе интеграции независимых

альтернативных технических решений для каждого из факторов, в кото-

рой физическое противоречие отутствует и достигаются оба несовмести-

мые ранее свойства.

Примечание 1: физическое противоречие нужно стремиться сразу формулиро-

вать в конструктивном виде, что и рекомендуется в классической Т Р И З . при

этом возможно исключение первого шага метода.

Примечание 2: разделение модели противоречия на две — это только прием

для описания процесса генерации идеи решения, так как при определенном

Page 207: основы классической триз. м. орлов

опыте интегрированное решение находится непосредственно по конструктив-ной модели, при этом возможно исключение третьего шага метода.

Здесь также нет какой-то магической формулы, а дело заключается в разделе-нии конфликтующих свойств во времени, в пространстве, в структуре или ввеществе (энергии) — см. следующий раздел 12.2 Каталоги фундаментальныхтрансформаций. Но интеграция разделенных моделей одного и того же исход-ного физического противоречия позволяет преодолеть психологическую инер-цию отношения к проблеме, строит мост к созданию идеи решения, в кото-рой «несовместимые» до этого свойства прекрасно сосуществуют и работаютдля обеспечения главной полезной функции системы.

Для интеграции разделенных моделей в дальнейшем будет полезно также изу-чение раздела 15.3 Интеграция альтернативных систем.

Рассмотрим примеры в привычном порядке — от «простых» к более сложным.

Пример 72. Нагрев кремниевой пластины (решение на основе интеграции физи-ческих противоречий). В примере 60 мы достаточно легко соединили вместеинверсные процессы нагрева кремниевой пластины. Это произошло соедине-нием инверсных действий по нагреву пластины в центре и на краях. При инте-грации несовместимых физических моделей это сделать несколько сложнее,так как нужно обнаружить и реализовать трансформацию, не очевидную, нележащую на поверхности, — разрешение конфликта в пространстве и в струк-туре. Причем сначала из исходного физического противоречия выделяютсятребуемые, но противоречивые состояния, затем условно устанавливается воз-можность их независимой технической реализации, после чего возможна инте-грация альтернативных технических решений в одной конструкции, напри-мер, за счет изменения структуры индуктора для реализации требуемыхсвойств в непересекающихся зонах в пространстве.

Выполним последовательно шаги Метода интеграции физических противо-речий:

1) построим исходную модель физического противоречия: тепловое поледолжно быть сильным, чтобы нагревать пластину по краям, и не должнобыть сильным, чтобы не перегревать пластину в центре;

2) редуцируем исходную модель к конструктивной форме с позитивными не-совместимыми свойствами: тепловое поле должно быть сильным, чтобы на-гревать пластину по краям, и должно быть слабым, чтобы нагревать пла-стину в центре;

3) технические решения для каждой из раздельных моделей: в индукторе длясильного теплового поля должна быть большая плотность витков нагреваю-щей спирали, а в индукторе для слабого теплового поля должна быть малаяплотность витков нагревающей спирали;

4) интеграция этих альтернативных решений приводит к контрольному ре-шению, которое Вам уже известно из примера 60: количество витков спи-рали в центре нагревательного элемента делается меньше, чем на краях.

Page 208: основы классической триз. м. орлов

В этом решении спираль нового (интегрированного) нагревательного элемен-та приобрела неоднородную структуру, чтобы обеспечить требуемые условиянагрева в разных пространственных зонах.

Пример 73. Две шляпки одним ударом. При производстве некоторых изделийзабитый гвоздь нужно извлечь. Это характерно для тех случаев, когда гвоздьиспользуется как элемент для временного, вспомогательного соединения де-талей, после чего он должен быть удален. Это не просто сделать, не повреж-дая материал, в котором находится гвоздь, особенно шляпка гвоздя. В матери-ал вдавливают острые концы специальных плоскогубцев или какой-нибудьострый и прочный предмет, чтобы зацепиться за шляпку, плотно прижатую кповерхности изделия, а иногда и полностью утопленную в материал.

Выполним реинвентинг одного интересного решения, созданного на Украине.

Построим модель проблемной ситуации в виде исходного физического проти-воречия.

Редуцируем исходную модель к конструктивной форме и разделим сразу надве независимые модели (обратите внимание на почти незаметные, но по-лезные отличия, которые мы показываем здесь в учебных целях).

Теперь мы может видеть два независимых решения: первое — гвоздь забивает-ся как обычно, и его шляпка прижата к поверхности изделия или даже утоп-лена в этой поверхности; второе — гвоздь забит так, что между нижней ча-стью его шляпки и поверхностью изделия есть зазор, достаточный для того,чтобы можно было легко вытащить гвоздь, зацепившись за его шляпку.

Вот теперь требуется преодолеть психологическую инерцию и соединить обарешения в одно, изобрести гвоздь, интегрирующий оба несовместимые со-стояния. Контрольное решение: гвоздь имеет две шляпки (рис. 12.1), располо-женные одна над другой с зазором, достаточным для извлечения гвоздя. Ниж-няя шляпка прижимает изделие, а верхняя служит только для вытаскиваниягвоздя.

Page 209: основы классической триз. м. орлов

Доминирующий ресурс — функционально-структурный, так как изменено ко-личество элементов объекта, при этом каждый элемент выполняет свою спе-циализированную функцию. Вспомогательные ресурсы — пространственный,так как изменена форма объекта; временной — новые части объекта исполь-зуются на различных непересекающихся интервалах времени; вещество —увеличилось количество материала в конструкции гвоздя.

При наличии интереса Вы можете провести более детальную верификациюидеи решения, оценив в учебных, а может быть и в профессиональных, целяхпреимущества и недостатки такого решения.

Пример 74. Сейф с двойным дном на пляже. Для того, чтобы ветер или зло-умышленник на пляже не унес Ваши вещи и ценности, нужно найти ка-кое-то техническое решение, опираясь на легко доступные ресурсы. Здесьприведем решение по сокращенному варианту с учетом примечаний 1 и 2 кшагам метода.

Предположим, что Вы приходите на пляж с некоей конструкцией, назовем еечемодан, сейф или холодильник, как Вам понравится. Оттуда Вы извлекаетенадувной матрац и тент, туда Вы укладываете снятую одежду, деньги и доку-менты, а заодно, возможно, там находятся принесенные Вами напитки, кни-ги и игры.

Выполним только два шага метода для этой конструкции (я выбираю назва-ние «сейф»):

2) сейф должен быть легким (для транспортировки) и должен быть тяжелым(чтобы его не мог унести ветер или злоумышленник) — представьте себе одинлегкий сейф для транспортировки Ваших вещей и другой тяжелый, стоящийна пляже, в который Вы вставляете принесенный легкий сейф, и получаетсякак бы двойной сейф, по крайней мере с двойными стенками;

4) теперь нужно из двух конструкций сделать одну: пусть теперь единствен-ный носимый интегрированный сейф сам имеет двойные стенки, например,двойное дно, пространство между которыми Вы заполняете песком, галькойили даже водой, легко доступными на пляже. Именно такова идея «песчаногосейфа», запатентованная изобретателем из Великобритании.

Доминирующий ресурс — вещество, изменение веса сейфа путем присоедине-ния к нему внешнего материала. Использованные или принимаемые во вни-мание вспомогательные ресурсы: структура и пространство — сейф имеетдвойные стенки и запирающийся на замок вход (выход) для заполнения про-странства между стенками нагрузкой; временной — сейф имеет разный вес нанепересекающихся интервалах времени.

Этот объект может иметь интересное развитие.

Page 210: основы классической триз. м. орлов

Исключительная роль, которую играют модели физических противоречий прирешении изобретательских задач, объясняется их «положением» в оператив-ной зоне. Физическое противоречие — это предельно острое выражение сутипроблемы, это центральная точка любой оперативной зоны.

В то же время Вы уже могли убедиться, в том числе и на вышеприведенныхпримерах, что и для физических противоречий есть подходы и модели транс-формации, облегчающие генерацию новых идей. Этому же служат и А-Ката-логи № № 5—7 с приемами и стандартами на решение физических противо-речий.

Основной, хотя и совсем небольшой, Каталог 5 Фундаментальные трансфор-мации иллюстрируется ниже рисунками 12.2—12.5. Здесь необходимо сделатьнебольшие пояснения к некоторым из этих иллюстраций.

Большинство примеров иллюстрируют определенный доминирующий ресурс,например, пространственный или временной, соответствующий основнойтрансформации. Но при реализации трансформации оказываются задейство-ваны и другие ресурсы, причем нередко не менее кардинально. Поэтому не-которые примеры могут одновременно хорошо иллюстрировать и другиетрансформации.

Рассмотрим иллюстрации к фундаментальным трансформациям в качествепримеров и упражнений на формулирование физических противоречий.а также на анализ примененных ресурсов.

Пример 75. Фундаментальные трансформации в пространстве. Примеры моде-лей и решений физических противоречий к рисункам 12.2:

а) Автомобили, выезжающие на перекресток дорог, пересекающихся в одномуровне, могут сталкиваться, и они не должны сталкиваться во избежаниежертв и материального ущерба.

Решение: разнесение дорог на разных уровнях с помощью мостов или тон-нелей (доминирующий ресурс — пространственный).

Page 211: основы классической триз. м. орлов

b) Большая толпа людей должна быть упорядочена для избежания неудобствдвижения и травм от столкновений или давки в узких проходах, и недолжна быть упорядочена вне этих проходов.

Доминирующим ресурсом является пространственный в двух аспектах: от-деление оперативной зоны и задание определенной траектории движениявнутри оперативной зоны. Решение использует также структурный ресурс,так как в зависимости от ширины установленного прохода задает структу-ру очереди — по одному, по два и так далее. Для ограничения поступлениялюдей в оперативную зону может использоваться также пространствен-но-временной ресурс — пропуск к разделительным барьерам небольшихгрупп людей через определенные интервалы времени.

c) Топлива на борту должно быть как можно больше и не должно быть много,чтобы облегчить балансировку самолета по мере использования топлива.

Используются: пространственный ресурс (заполняются пустоты в фезюля-же и крыльях), структурный ресурс (топливо разделяется на многочислен-ные части) и структурно-временной ресурс (топливо сначала выбираетсяот самых крайних емкостей вдоль фезюляжа и крыльев).

Пример 76. Фундаментальные трансформации во времени. Примеры моделей ирешений физических противоречий к рисункам 12.3:

a) то же, что и в пункте а) Примера 75;

Решение: поочередное пересечение перекрестка конфликтующими пото-ками (доминирующий ресурс — временной).

b) Лодка должна иметь мачту (для удержания паруса — на открытой воде) ине должна иметь мачту (чтобы свободно проходить под мостами).

Лодка в оперативном времени обладает также переменной формой (про-странственный ресурс), для чего в структуре мачты содержится динамиче-ский элемент (шарнир). В оперативном (конфликтном) времени мачта невыполняет своей главной полезной функции, а вне оперативного време-

Page 212: основы классической триз. м. орлов

ни — выполняет. Все это в сумме и позволило разрешить конфликт вовремени.

с) Луч лазера должен проходить по соседним линиям для создания сплошногорисунка и не должен проходить по соседним линиям, чтобы пластина не пе-регревалась и чтобы не уменьшалась точность нанесения рисунка.

Запаздывание, с которым луч лазера попадает на соседнюю линию, позво-ляет избежать перегрева обрабатываемого материала — здесь в разрешениипротиворечия участвуют также пространственный ресурс (траектория дви-жения луча) и вещественный ресурс (теплопроводность и теплоотдача ма-териала).

Пример 77. Фундаментальные трансформации в структуре. Примеры моделей ирешений физических противоречий к рисункам 12.4:

a) Велосипедная цепь должна быть гибкой, чтобы точно огибать звездочкипередачи, и должна быть жесткой и твердой, чтобы передавать значитель-ные усилия между звездочками.

Структурное решение: части системы (звенья) твердые и негибкие, а всясистема в целом (цепь) — гибкая. Проанализируйте роль и других ре-сурсов.

b) Вне оперативного (аварийного) интервала времени спасательный трап дол-жен иметь форму, не занимающую много места, а в оперативное время дол-жен иметь оптимальную форму трапа.

В этом примере сделан акцент на контрасте «мягкие» элементы — «жест-кая» система в целом. Но для работы спасательного трапа в оперативномвремени используются также энергия и объемный ресурс сжатого воздуха(вещество) и, конечно, изменение формы (ресурс пространства).

c) Деталь сложной формы должна быть прочно и надежно зажата для обработ-ки и не должна быть сильно зажата, чтобы не повредить ее поверхность.

Доминирует пространственно-структурный ресурс — между прижимаю-щими поверхностями тисков на специальной подставке располагаются

Page 213: основы классической триз. м. орлов

подвижные цилиндрические элементы, которые по мере сближения при-жимающих поверхностей плотно охватывают деталь сложной формы, рас-пределяя прижимное усилие по большей площади. Это обеспечиваетпрочное удержание деталей сложной формы в процессе обработки.

Пример 78. Фундаментальные трансформации в веществе. Примеры моделей ирешений физических противоречий к рисункам 12.5:

a) Вещества должно быть мало, чтобы иметь экономный двигатель, и вещест-ва должно быть много, чтобы разность в объеме до и после горения быладостаточной для выполнения работы.

Пример разрешения проблемы в веществе (в бензиновом двигателе): впроцессе сгорания смеси небольшого количества бензина с воздухом про-дукты сгорания в виде высокотемпературного газа стремятся расширитьсяи с большой силой давят на поршень, скользящий в рабочем цилиндре.Выделившейся энергии достаточно, чтобы выполнить работу по переме-щению поршня, движение которого через трансмиссию передастся на ко-леса автомобиля, отталкивающиеся от земли и толкающие в итоге автомо-биль вперед. Проанализируйте роль и других ресурсов.

b) Солнцезащитные очки должны менять свою прозрачность в зависимости отосвещенности и не должны требовать для изменения прозрачности ка-ких-либо действий пользователя.

Идеальное решение в веществе: хроматические стекла сами меняют своюпрозрачность в зависимости от освещенности!

c) При фотосъемке вспышка должна быть, чтобы получить высокое качествоснимка, и вспышка не должна быть, чтобы на фотоснимке зрачки глаз че-ловека не были красного цвета (негативный эффект «красные глаза»).

Для предупреждения появления на фотографии так называемых «красныхглаз» при съемке со вспышкой кроме биофизического эффекта реагированияглаза на вспышку света использован, по крайней мере, временной ресурс, аименно вспышка меньшей силы, создаваемая с небольшим упреждением пе-ред основной вспышкой.

Page 214: основы классической триз. м. орлов

Итак, по существу мы провели блиц-реинвентинг 12 технических решений, изкоторых не меньше половины являются настоящими изобретениями. Этикомментарии являются маленьким уроком понимания и выявления ресурсовв системах и в процессах.

Каталоги 6 и 7 инструментируют фундаментальные трансформации с помо-щью А-Стандартов и А-Приемов. Действительно, многие стандарты и прие-мы хорошо согласуются по направленности рекомендаций с определеннымифундаментальными трансформациями. Именно эти стандарты и приемывключены в каталоги в качестве более детальных и практичных моделейтрансформаций.

А теперь поработаем с более сложными задачами.

Пример 79. Тренировка по прыжкам в воду. Это одна из самых известных вТРИЗ задач. Проблемная ситуация заключается в следующем. На тренировкахпо прыжкам в воду случаются неудачные попытки. При неправильном вхож-дении в воду спортсмен может получить травму из-за удара о полную поверх-ность. Как повысить безопасность тренировок?

Административное противоречие, заложенное в заданном вопросе, превратимв более конструктивную модель в виде физического противоречия:

Вполне очевидно, что в решении заинтересованы вещественный и струк-турный ресурсы: нужно сделать какое-то изменение вещества (воды), воз-можно только в ограниченной части системы (то есть не во всем бассей-не). Ресурс времени играет вспомогательную роль и допускает, что решениезадачи может применяться только на участке оперативного времени, аименно, если кто-то, например, тренер, видит, что прыжок может завер-шиться неудачно.

Обратимся к каталогу 6 Фундаментальные трансформации и Компакт-Стан-дарты. Просмотр каталога показывает, что несколько позиций представляютинтерес. Воспроизведем их здесь (рис. 12.6) с интерпретацией применительнок условиям решаемой задачи.

Запишем функциональную идеальную модель па микроуровне: Х-ресурс, ввиде частиц вещества или энергии находится в оперативной зоне и обеспечи-вает вместе с другими имеющимися ресурсами получение «мягкой воды».

Page 215: основы классической триз. м. орлов

Имея конкретную цель изменения состояния вещества (воды), например, спомощью соединения воды с каким-то другим ресурсом, обратимся к поискуресурсов в системе и в окружении. Наиболее доступным ресурсом являетсявоздух. Контрольное решение: подавать в воду воздух! Действительно, в опе-ративной зоне на дне бассейна устроен выход системы нагнетания воздуха сдиффузором, разбивающим большие пузыри воздуха, которые плохо сохраня-ются в воде, на маленькие, насыщающие весь столб воды в оперативной зоне.Получаемая временная воздушно-водная смесь имеет значительно меньшуюплотность, чем вода. Прыжки становятся безопасными.

Рассмотрите самостоятельно возможность решения этой задачи с помощьюстандартных трансформаций (раздел 10.2).

Пример 80. Для тех, кто любит газоны, но не очень любит их стричь. «Пробле-му», спрятанную в названии примера, можно сформулировать в виде админи-стративного вопроса-противоречия: как реже стричь траву?

Превратим административное противоречие в физическое противоречие:

Вполне очевидно, что в решении должен быть задействован ресурс вещества,какое-то изменение этого вещества. Можно отметить причастность к решению

Page 216: основы классической триз. м. орлов

пространственного и временного ресурсов, однако, не как «решающих», а какцелевых через идеальный конечный результат: грана растет до какой-то опреде-ленной длины, а далее прекращает свой рост. Не очевидна роль структурноюресурса. Однако обращение к каталогу дает по крайней мере три интересныхспособа, два из которых как раз относятся к структурному ресурсу (рис. 12.8).

Действительно, реализация идеального результата вполне созвучна первымдвум трансформациям, а вторая трансформация тесно связана с третьей. Во-прос только в том, чтобы найти и применить, если он известен, или создать ме-ханизм такого идеального процесса.

Контрольное решение: в университете города Канберра (Австралия) найденовещество, которое тормозит рост травы. Работая с гормонами роста растений,исследователи обнаружили возможность получать вещество с противополож-ными свойствами, которое замедляет рост газонной травы в три раза. Поливгазонов водой, содержащей анти-стимулятор (замедлитель) роста травы, уве-личивает время между стрижками газона в несколько раз.

Сверхэффект: применение нового вещества может оказаться перспективнымдля уменьшения длины соломины злаков, что уменьшит опасность их полега-ния под воздействием ветра, дождя и тяжести колоса.

Пример 81. Кто победит — вертолет или самолет? Мы уже проводили учебный ре-инвентинг самолета с вертикальным взлетом и посадкой (см. пример 4). Ключе-вая идея состояла в применении приема 07 Динамизация. Для этого в конструк-циях самолетов испытывались самые разные идеи и их комбинации: раздельныедвигатели — отдельно для создания подъемной силы при взлете и посадке и от-дельно для горизонтального полета; поворотное крыло (вместе с двигателями):поворотные двигатели; поворотные сопла реактивных двигателей; поворотныевинты с подвижным приводом от неподвижных двигателей; поворотные лопат-ки на крыльях для отклонения газовой или воздушной струи и другие.

Что движет разработчиками таких самолетов? Ведь сегодня, казалось бы, внебе безраздельно доминирует вертолет! Как это происходило и во многихдругих областях техники, изобретение вертолета в первую очередь преследова-ло военные цели. В гонке идей только в принципе предусматривалось невоен-ное применение таких машин. И это применение состоялось, причем практи-чески в полном диапазоне возможностей машин с вертикальным взлетом ипосадкой: спасательные служба и медицинская помощь, полицейское патру-лирование и научные наблюдения, туризм и даже такси. И все же вертолетпредставляет собой еще один пример массовой психологической инерции —он уже есть, а другие технические идеи и возможности все еще остаются

Page 217: основы классической триз. м. орлов

«фантазиями». А то. что этот вид технических систем унаследовал из поеннойпрактики расточительный расход ограниченного общепланетарного запасанефтепродуктов, просто не принимается во внимание и не является до на-стоящего времени глобальным критерием качества и эффективности. Однако,специалистам известно, что по сравнению с вертолетом самолет в 5 раз эко-номичнее и значительно безопаснее. Безопасность связана с возможностьюсовершить посадку в режиме обычного самолета с помощью планирования.

И только в последние годы мы видим примеры построения альтернативныхсистем невоенного назначения (хотя, безусловно, на базе машин первоначаль-но военного назначения), например, фирмой Bell Helicopter TEXTRON, USAсовместно с фирмой Boeing. USA — машина Bell/Agusta 609 на базе военныхмашины Bell Helicopter (от тяжелой машины Bell Boeing V-22 Osprey до легкойBell/Agusta HV 609). Кстати, фирма Bell Helicopter является одним из пионеровпостроения самолетов с вертикальным взлетом и посадкой еще с начала 1950-хгодов. В основном, это машины с поворачивающимися двигателями.

И все же известные конструкции самолетов с поворотными двигателями(крыльями и так далее) явно унаследовали от вертолетов сам «вертолетныйпринцип» вертикального старта и посадки, а именно, с помощью огромныхвинтов с вертикальной осью вращения. Можно ли радикально повысить эко-номичность и безопасность самолетов с вертикальным взлетом и посадкой(по крайней мере, с небольшой полезной нагрузкой, например, до одной тон-ны), чтобы они могли составить серьезную конкуренцию вертолетам и «гиб-ридам» вертолетов с самолетами?

Упрошая предельно модель, как это и рекомендует ТРИЗ, можно сказать, чтовинты гибридного самолета создают поток воздуха, направленный вертикаль-но для взлета и посадки. Винты отталкиваются от этого потока и поднимаютвесь самолет. Можно также сказать, что вертолет хорошо толкает воздух внизи плохо — по горизонтали. А самолет хорошо толкает воздух по горизонтали,но вовсе не может толкать воздух вниз.

Управлять поворотом винтов сложно и небезопасно. Идеально, если бы ониоставались неподвижными, как у обычного самолета, и были ориентированыдля горизонтального полета. Иными словами, можно ли построить гибридныйсамолет, но отправляясь не от вертолета, а от самолета?

Тогда, принимая за прототип обычный самолет, нужно научить его хорошоотталкивать воздух вниз. Примем эту идею за идеальный конечный результат.Превратим административное противоречие в физическое противоречие:

Page 218: основы классической триз. м. орлов

Доминирующие ресурсы: временной, пространственный и структурный. Вре-менной ресурс участвует потому, что острый конфликт связан с двумя времен-ными фазами полета — по горизонтали и по вертикали. Пространственный ре-сурс: нужно поворачивать поток воздуха в пространстве. Структурный ресурс:нужно, по крайне мере, использовать принцип «наоборот», а именно, отка-заться от вертолетного старта и посадки, а найти иной способ поднятия иопускания самолета по вертикали.

Сложный характер участия ресурсов подсказывает целесообразность обраще-ния к Каталогу Фундаментальные трансформации и А-Приемы (Приложение 7):

Контрольное решение: Московский авиационный институт (Москва, Россия)запатентовал новое техническое решение, аккумулирующее лучшие идеи изпрактики создания самолетов с вертикальным взлетом и посадкой (рис. 12.11)с ключевой идеей управления струями воздуха с помощью гибких поворотныхпластин-решеток.

Page 219: основы классической триз. м. орлов

Машина имеет три винта, приводимые в движение двумя газотурбиннымидвигателями (рис. 12.11,а). Носовой винт работает только при взлете и посад-ке. Подъемно-маршевые винты работают постоянно. Направление и режимдвижения зависят от положения управляемых пластин (рис. 12.11,b), которыеменее инерционны и поэтому обеспечивают лучшую управляемость при взле-те и посадке по сравнению с поворотными винтами. В горизонтальном полетепередние воздухозаборные жалюзи и пластины управления закрыты.

Пример 82. Протезирование сосудов. Ряд операций на кровеносных сосудах, настенках пищевода, на желчных протоках и на некоторых других сосудах про-водится с установкой поддерживающего протеза (трубки, спирали и т. п.)внутрь или снаружи сосуда. Протез придает сосуду требуемую форму, либорасширяя сосуд, либо сжимая его. В обоих случаях возникает острое противо-речие: рабочий диаметр (сечение) протеза не соответствует размеру (сечению)поврежденного сосуда. Так, в узкий сосуд надо вставить более широкий про-тез, а на расширенный сосуд надеть узкий протез. Применение протезов спружинящими свойствами сложно при большой длине протеза, так как еготрудно удерживать в предварительно сжатом состоянии при установке внутрьсосуда или, наоборот, в растянутом состоянии при установке поверх сосуда.Нужен протез, который мог бы сам устанавливаться в нужное рабочее состоя-ние при исходном состоянии, удобном для проведения операции.

Первая модель физического противоречия: протез должен быть во время опе-рации небольшим для установки внутрь сосуда и должен быть большим дляпостоянного пребывания внутри сосуда после операции.

Вторая модель физического противоречия: протез должен быть во время опе-рации большим для установки снаружи сосуда и должен быть небольшим дляпостоянного пребывания снаружи сосуда после операции.

Важно отметить, что даже сами модели противоречий находятся в остромконфликте друг с другом, требуя прямо противоположных свойств от мате-риала протеза! Итак, можно ли совместить «абсолютно несовместимое»?

Page 220: основы классической триз. м. орлов

Очевидно, что прежде всего нужно учитывать следующие три ресурса: про-странственный — увеличение-уменьшение размеров; временной — интервалвремени на операцию и послеоперационное функционирование протеза; ве-щественный — нужен материал с особыми свойствами, в идеале имеющий дваустойчивых состояния, переход между которыми был бы управляемым.

В Каталоге Фундаментальные трансформации и А-Компакт-Стандарты (При-ложение 6) имеется интересный пример в позиции 4.2, связанный с примене-нием вещества с памятью формы. Если Вы не знакомы с такими материала-ми, то может быть, Вам будет интересно найти описания таких материалов втехнических справочниках и энциклопедиях.

Контрольное решение: Научный центр хирургии Российской Академии меди-цинских наук, Московский институт сплавов и стали, Российский государст-венный медицинский университет и другие институты разработали серию раз-личных протезов для сосудов на основе металлов с памятью формы. Напри-мер, спираль из никелида титана, скрученную до небольшого диаметра притемпературе около 0 С, вводят через минимальный разрез в сосуд, где этаспираль постепенно нагревается до температуры тела, увеличивается в диа-метре до рабочего размера и расправляет сосуд.

Операция занимает меньше часа и идет без общего наркоза под наблюдениемс помощью рентгенотелевидения. В другом случае каркас, состоящий из мно-жества полуколец, при нулевой температуре разжимается так, чтобы ширина«разреза» полуколец стала больше размера оперируемого сосуда, и свободнонадевается на сосуд. После нагрева металла до температуры тела края «разре-за» сами соединяются, замыкая кольца, и протез надежно охватывает сосуд,не давая ему расширяться.

Пример 83. Естественный свет в зале парламента. Из центра смотровой пло-щадки на куполе здания Рейхстага (см. также пример 31) вниз вершиной ви-сит огромный конус 3, оснащенный 360 зеркалами, отражающими дневнойсвет прямо в зал парламента (рис. 12.13).

Физическое противоречие: свет должен быть (постоянно, так как зеркала не-подвижны) и не должен быть (в яркий солнечный день, чтобы не слепить си-дящих в зале).

Page 221: основы классической триз. м. орлов

Явно доминируют пространственный и структурный ресурсы. Обращение кПриложению 7 дает целый ряд подходящих приемов, действие которых мырассмотрим при описании контрольного решения:

для отделения избыточного солнечного света от зеркал (05 Вынесение: отделитьмешающую часть — свет; 12 Местное качество: каждая часть должна работатьв наилучших условиях — зеркала) заранее установлен козырек (18 Посредник:присоединить на время другой объект; 28 Заранее подложенная подушка и39 Предварительное антидействие: аварийные средства и противодействиенужно подготовить заранее), который подобен по форме верхней части купола(22 Сфероидальность: перейти от плоских поверхностей к сферическим) и пе-ремещается вокруг конуса с зеркалами от исходного положения 1 в конечное по-ложение 2 по направлению движения солнца (07 Динамизация: характеристикиобъекта должны быть оптимальными на каждом шаге работы, сделать объектподвижным; 22 Сфероидальность: перейти к вращательному движению; 39 Пе-реход в другое измерение: переход к пространственному движению).

Описание приемов специально встроено в описание решения, чтобы детальнорассмотреть работу приемов в контексте всего решения. Для этого нужновнимательно прочитать все описание решения несколько раз, останавливаясьдля обдумывания на каждом выделенном фрагменте, пока все описание нестанет легко восприниматься за один проход.

Пример 84. Газовая турбина концерна СИМЕНС. Краткое описание проблем-ной ситуации заключается в следующем. В любой энциклопедии можно про-читать, что для всех турбин, применяемых на теплоэлектростанциях, важней-шим показателем эффективности является коэффициент полезного действия(КПД). Этот показатель относительно выше у крупногабаритных турбин. Од-

Page 222: основы классической триз. м. орлов

нако с ростом размеров турбин растут проблемы обеспечения их надежностии долговечности. В первую очередь это связано с относительно небольшойдолговечностью турбинных лопаток — главного элемента, воспринимающеготемпературную и механическую нагрузку от струй горячего газа.

В 1995 году в прессе были опубликованы сообщения о новой газовой турбинеконцерна СИМЕНС с рекордным КПД для турбин своего класса. Приводилсяи снимок турбины на сборочном участке. За счет чего был получен лучший вмире КПД, в публикациях не сообщалось. Но указывались, что были во мно-гом решены проблемы, о которых я написал выше. Ранее мне не приходилосьиметь дело с турбинами. Но я готовился к одному из первых своих семинаровв Германии и поэтому подбирал примеры технических решений германскихфирм. Основываясь только на приведенной информации, в течение одноговечера я провел реинвентинг и получил результаты, которые и привожу ниже.Как позднее выяснилось при встречах с разработчиками этой турбины, ходмоих рассуждений почти точно повторил ход их поисков, но как бы ускорен-ный в сотни раз.

Этап 1. Диагностика. Причина недолговечности турбинных лопаток заклю-чается в том, что каждая лопатка испытывает экстремальные механическиеи термические нагрузки. При этом нагрузки носят ударный циклическийхарактер. Ударные нагрузки могут вызывать разрушающие резонансные ко-лебания. Термоциклические нагрузки ведут к ускоренному развитию устало-стных явлений в материале лопаток. Поэтому турбину иногда приходитсяостанавливать для ремонта лопаток, что также снижает полезную отдачу оттурбины.

Page 223: основы классической триз. м. орлов

В известных конструкциях имелись две симметрично установленные камерысгорания, содержащие по несколько горелок (например, по 8). При выходе изстроя двух или трех горелок турбину также надо останавливать для ремонта какиз-за снижения КПД, так и из-за опасности возникновения вредных вибраций.

При работе камер сгорания продукты горения давят на лопатки и тем самымподдерживают вращение турбины. Ясно, что лопатка испытывает максималь-ный механический и тепловой удар сразу за камерой сгорания. Затем давле-ние на лопатку и ее температура уменьшаются до попадания в зону другой ка-меры сгорания. И так дважды за один оборот турбины.

Как можно улучшить конструкцию турбины?

Этап 2. Редукция. В качестве нулевой оперативной зоны примем рабочую по-верхность лопатки. Сформулируем физическое противоречие и представим ввиде ФПМ (рис. 12.15). Из анализа обеих версий ФПМ видно, что идеальнымконечным результатом было бы непрерывное давление продуктов горения на ло-патку при постоянной температуре!

Далее, из анализа ресурсов нетрудно видеть, что энергетический поток (давле-ние продуктов горения) не является непрерывным, что не соответствует иде-альной функциональной модели. Следовательно, решение можно искать в на-правлении согласования устройства турбины с требованиями идеального ко-нечного результата.

Однако, для этого необходимо искать ресурсы вне поверхности лопатки в бо-лее широкой оперативной зоне, например, в объеме рабочего пространства, вкотором перемещаются лопатки. К важнейшим ресурсам относятся: простран-ственный — весь объем вокруг турбины, включая некоторый объем корпусатурбины, который непосредственно граничит с рабочим пространством, (егоможно заполнить какими-то устройствами); временной — время перемещениялопаток между камерами сгорания (это время должно быть минимальным).

Этап 3. Трансформация. Составим «портрет» решения в общем виде, опираясьна «пространственные» рекомендации таблицы 7 (см. приложения):

Прием 19 «Переход в другое измерение»: использовать многоэтажную компо-новку, использовать боковые и другие поверхности.

Page 224: основы классической триз. м. орлов

Прием 34 «Матрешка»: пропустить объект через полости (пустоты) в другом.

Прием 02 «Предварительное действие»: расставить объекты так, чтобы они бы-стрее вступили в действие.

Прием 40 «Непрерывность полезного действия»: устранить холостые и проме-жуточные ходы, все части объекта должны непрерывно работать с полной на-грузкой.

Прием 03 «Дробление»: разделить объект на части.

Прием 12 «Местное качество»: каждая часть должна выполнять свою функциюи в наилучших условиях.

Идея решения (рис. 12.16): камеры сгорания, дающие концентрированныйудар, нужно разделить (по принципу 03) и применить много отдельных горе-лок, расположенных по окружности рабочего пространства турбины (попринципам 19 и 34); это сократит время перемещения лопатки между горел-ками (по принципам 02 и 40), уменьшит перепад температур и ослабит силумеханического удара (по принципу 12).

Пример 85. Самолет XXI века? Воздух не только поддерживает самолет, но итормозит его движение. Причем сопротивление воздуха растет в большей сте-пени, чем скорость самолета. Энергия сожженного топлива расходуется в ос-новном на работу по расталкиванию молекул сопротивляющегося воздуха(для сравнения посмотрите еще раз пример Пример 47. Судно на подводныхкрыльях). При этом атмосферный воздух разогревает носовую часть аппаратадо недопустимой температуры.

Page 225: основы классической триз. м. орлов

Поэтому для полета с гиперзвуковыми скоростями, например, более 10 М(число Маха показывает, во сколько раз превышается скорость звука), аппа-рат должен выходить в высокие разреженные слои атмосферы и даже в ближ-ний космос. Однако на этом пути возникают фундаментальные проблемысоздания гиперзвуковой машины:

1) конструкция гиперскоростного двигателя;

2) энергоснабжение бортовых систем;

3) топливо для двигателей;

4) перегрев носовой части аппарата;

Решение этих проблем мы рассмотрим на примере реинвентинга гиперзвуко-вого самолета Нева, концепция которою разработана в Санкт-Петербурге(Россия) группой инженеров под руководством Владимира Фрайштадта.

Для полетов с гиперзвуковыми скоростями используется прямоточный воз-душно-реактивный двигатель (рис. 12.17). Его рабочим телом является воз-дух 1, попадающий в двигатель во время движения через воздухозаборник ивыходящий через сопло в виде раскаленного газа 2. В двигателе сжигаетсятопливо 3, что приводит к разогреву рабочего тела. Разогретый воздух рас-ширяется и вместе с продуктами сгорания вырывается через сопло, толкаясамолет вперед.

Проблема: достижение гиперзвуковых скоростей истечения рабочего тела издвигателя. Ее решение обычно связывалось с дожиганием 4 выходной смеси.Но это неперспективно для скоростей в 10 М и более. Кроме того, перед каме-рой сгорания 5 воздух должен иметь значительную плотность, что обеспечи-вается специальной формой воздухозаборника 6 двигателя (диффузора). Ноуплотнение воздуха за счет создания механического препятствия ведет, по-су-ществу, к торможению самолета.

Итак, модели физических противоречий:

1) сжатие воздуха перед камерой сгорания двигателя должно быть, чтобыобеспечить работу двигателя, и сжатия воздуха не должно быть, чтобы нетормозился самолет;

2) ускорение истечения газов из сопла должно быть, чтобы достигать гипер-звуковых скоростей, и ускорения не должно быть, так как это противоре-чит способу получения ускорения (дожигание смеси).

Page 226: основы классической триз. м. орлов

Присутствие взаимно-обратных процессов на «входе» и «выходе» двигателяявно указывает на целесообразность разработки структурного направления 3.2из Каталога Фундаментальные трансформации и А-Компакт-Стандарты, атакже направлений 3.4 и 4.5, так как здесь явно задействованы веществен-но-энергетические ресурсы. Оба невыполнимых требования (сжатие входящеговоздуха и ускорение смеси) показывают, что нужна смена принципа работыдвигателя. Здесь мы впервые обратимся к ещё одному инструменту ТРИЗ — кфизико-техническим эффектам (см. следующий раздел 13). В позициях 5, 6,12, 17 и 28 Приложения 8 находим сходные указания о возможности приме-нения к газам магнитных полей.

Дополнительный просмотр технических энциклопедий вскоре мог бы вывестинас на магнитогидродинамические генераторы — МГД-генераторы. Однакоони используются для получения электротока (рис. 12.18).

Предположим, что на входе в двигатель воздух ионизирован.

Частицы ионизированного воздуха 1, пролетая через магнитное поле МГД-ге-нератора, наводят в его катушках электрический ток. Но при этом ионизиро-ванные частицы тормозятся! Если такой МГД-генератор поставить на входе визвестный прямоточный воздушно-реактивный двигатель, то можно осущест-вить замедление входного потока воздуха без замедления движения самолета,да еще попутно получить бортовую электростанцию! Вот пример успешногоиспользования приема 21 Обратить вред в пользу: использовать вредные фак-торы, в частности, вредное воздействие среды, для получения положительногоэффекта.

МГД-генератор нужен для замедления воздуха, а получили бортовую элктро-станцию! Решена проблема № 2.

Но как ускорить выходной поток газа? И вот здесь конструкторы явно посту-пили по приему 11 Наоборот: они подали достаточный ток в катушки МГД-ге-нератора, и образовавшееся мощное магнитное поле многократно ускорилодвижение вылетающего из камеры сгорания ионизированного газа. МГД-гсне-ратор стал МГД-ускорителем, или, в данном случае, МГД-двигателем!

Контрольное решение: предложен новый двигатель для гиперзвуковых аппа-ратов, дважды использующий принцип МГД-генератора — прямой и обра-

Page 227: основы классической триз. м. орлов

щенный (рис. 12.19). В качестве исходною рабочего тела должен быть исполь-зован ионизированный воздух 1, и тогда расширяющийся ионизированныйгаз 2 (продукты сгорания) может дополнительно ускоряться в магнитном полеМГД-генератора 3 вплоть до 25М, то есть до первой космической скорости!

Таким образом, применение МГД-генератора и МГД-двигателя образует в од-ном техническом решении высокоэффективную пару — систему и антисисте-му. Решена проблема № 1.

Вы, конечно, заметили, что остался вопрос: а где взять ионизированный воз-дух для такого двигателя? То есть снова имеет место определенное физическоепротиворечие: ионизированный воздух должен быть (для работы двигателя) иего не должно быть (так как молекулы воздуха в нормальном состоянии ней-тральны). Явно нужно продолжить разработку рекомендации 4.5 из Приложе-ния 6: применить физико-химический переход, связанный с ионизацией (воз-духа). Обратимся к справочникам и найдем, что одним из весьма подходящихтехнических решений для ионизации воздуха может быть применение ударалазерного луча.

Контрольное решение: предложено создавать ионизированный поток воздухавоздействием лазера перед воздухозаборником двигателя (рис. 12.20). Излуче-ние лазера 1 превращает нейтральные молекулы 2 воздуха в отрицательно за-ряженные ионы 3. Ионизированный поток воздуха 2 поступает в первыйМГД-генератор для торможения и для наведения в генераторе электрическоготока. Относительно небольшая часть тока от МГД-генератора снова использу-ется для питания лазера.

Page 228: основы классической триз. м. орлов

А теперь рассмотрим проблему № 3 — топливо. Основным топливом для ре-активных двигателей является керосин. В камере сгорания керосин нагревает-ся, испаряется и начинается активный процесс окисления кислородом (горе-ние). Мы видим, что часть энергии уходит на нагрев топлива. Сформулируемфизическое противоречие: топливо должно быть предварительно нагрето, что-бы испаряться для последующего горения, и топливо не должно быть нагрето,чтобы на нагрев не тратилась энергия в камере сгорания, а значит и была бывыше температура продуктов горения.

Системный анализ условий работы и структуры всей машины показывает, чтоснова нужно обратиться к только что примененным рекомендациям 3.2 и 4.5:объедить систему и анти-систему с управлением процессами на микроуровне!

Итак, на самолете должен быть источник энергии для предварительного на-грева топлива. Просмотрите еще раз начальное описание проблем созданиятакого аппарата и Вы найдете бесплатный источник тепловой энергии! Нужноиспользовать керосин для охлаждения перегретой носовой части летательногоаппарата! Заметьте, что мы снова имеем дело с замечательным применениемприема 21 Обратить вред в пользу.

Контрольное решение: корпус самолета в носовой части делается с двойнымистенками, между которыми циркулирует керосин 1, отбирая тепло от внешнейстенки (рис. 12.21).

Одновременно решены проблемы № 3 и № 4.

Высокоэффективное решение всегда несет с собой сверхэффекты, то есть не-ожиданные, не планировавшиеся положительные явления!

1. Кинетическая энергия набегающего воздуха стала из вредного положи-тельным фактором, обеспечивая работу бортовой электростанции мощно-стью до 100 Мегаватт! Такой энергии достаточно для снабжения неболь-шого города. При этом часть энергии потребляет лазер, а часть идет на ра-боту МГД-ускорителя. Остальная энергия может быть использована дляобеспечения других функций жизнедеятельности самолета, а также длявыполнения полезной работы: сжигание космического мусора, затягива-ние озонных дыр и т. п.

2. Применение для создания ионизации и ускорения рабочего тела не меха-нических систем, а особой структуры электромагнитных систем, состоя-щей из системы и анти-системы, позволяет достичь первой космической

Page 229: основы классической триз. м. орлов

скорости полета! Энергия извлекается из ионизированного потока и на-правляется на ионизацию и ускорение этого (нагретого) потока.

3. Проблема охлаждения корпуса самолета решена идеально — без созданияспециальной системы! То есть и проблемы нет, и затрат на ее решениетоже нет! Действительно, корпус охлаждается циркулирующим керосином,предварительный нагрев которого повышает эффективность работы двига-теля!

4. Совершенно новый сверхэффект: ионизированный воздух не только попа-дает в двигатель, но и обтекает самолет, что можно использовать для соз-дания дополнительной подъемной силы, увеличивая с помощью электро-магнитов сопротивление движению воздуха под самолетом и уменьшая со-противление воздуха над самолетом!

5. Наконец, еше один исключительный эффект: поскольку в состав топливакроме керосина входит и вода, то при термохимическом разложении вприсутствии катализатора из нее выделяется свободный водород, что при-водит к ускорению сгорания топлива по сравнению с двигателями на жид-ком водороде в 5 раз!

На рис. 12.22 приведен общий вид гиперзвукового летательного аппарата Не-ва, как он представляется его создателям, а на рис. 12.23 приведена схема ивремя полетов аппарата Нева между отдаленными пунктами земного шара.

В заключение этого раздела вновь нужно обратить внимание на то, что приве-денные примеры были упрощены и адаптированы автором с целью понима-

Page 230: основы классической триз. м. орлов

ния возможно более широкой читательской аудиторией и использованы ис-ключительно в учебных целях, то есть только как иллюстрации ТРИЗ-инстру-ментария. И еще вот о чем: в ТРИЗ рекомендуется использовать примеры изразных областей знания — это помогает преодолевать психологическую инер-цию, обусловленную ограниченными профессиональными знаниями, интере-сами и традициями. Этой рекомендации автор также старался следовать.

Наконец, последнее, но не менее важное: ТРИЗ-инструментарий хорошо ра-ботает только на основе профессиональных знаний и при достаточно большой!практике его применения. Это положение нужно помнить и не смущаться,если Ваши первые самостоятельные попытки применения ТРИЗ-инструмен-тов покажутся Вам не столь впечатляющими, как некоторые из приведенныхздесь примеров. Эта книга уже изменила Ваше мышление, усилила его интел-лектуальную вооруженность! Просто задачи, которые Вы теперь поставили пе-ред собой, намного сложнее, чем это могло бы произойти раньше или без зна-ния Вами инструментов ТРИЗ. И эти задачи в разумное время и с отличнымрезультатом могут быть решены только с ТРИЗ!

Page 231: основы классической триз. м. орлов

В самом общем виде эффектом можно назвать функциональную зависимостьмежду двумя процессами. Это означает, что изменение одного процесса, назы-ваемое причиной, ведет к изменению другого процесса, называемому следстви-ем. Собственно функциональную связь называют эффектом. Процесс обычнопредставляется каким-то параметром, например, давление, температура, ско-рость, ускорение и т.д. Тогда изменение значения параметра и есть реализацияпроцесса. Крайним случаем является также сохранение параметра неизменным.

В технике часто пользуются моделью, связывающей эффект с определеннойтехнической системой (элементом), реализующей этот эффект. Например,пропускание тока через металлическую спираль ведет к нагреву спирали и кизлучению тепловой энергии (для простоты мы не рассматриваем здесь дру-гие эффекты, присутствующие в этой простой системе). То есть ток являетсяпричиной появления теплового излучения (следствия). В технической системепроцесс-причину часто называют входным процессом, а процесс-следствие —выходным. Соответственно, совокупность элементов системы, непосредствен-но взаимодействующих с входным процессом, называют входом системы, авзаимодействующих с выходным процесом — выходом системы. Эффект назы-вают действием, функцией, функционированием, преобразованием и другими тер-минами. Так что, в приведенном примере на вход нагревательного элементаподается электрический ток, а с выхода снимается тепловое поле, при этомнагревательный элемент осуществляет преобразование тока в тепловую энер-гию. В самих названиях систем (элементов) обычно закрепляется главное фи-зическое действие, осуществляемое этой системой (элементом). Для приве-денного примера мы могли бы услышать такое его название «электрическийнагревательный элемент». Главное в этом названии, это закрепление принципадействия элемента. Могло быть применено и название «электрическая нагре-вательная спираль», если бы кроме принципа действия нужно было подчерк-нуть еще и устройство (форму или конструкцию) элемента.

Теперь можно в общем виде определить технический эффект как любое дей-ствие, преобразование, явление или функционирование, используемое в каче-стве принципа действия технической системы для создания самой системы.Например, можно сказать, что принцип действия рассмотренного нагрева-тельного элемента основан на преобразовании энергии электрического тока втепловую энергию с помощью пропускания тока через металлическую спи-

Page 232: основы классической триз. м. орлов

раль. Дополнительно к этому могут указываться параметры преобразования,материалы и т. д., то есть условия работы такой системы.

Различают однофункциональные эффекты и сложные, составные (многопро-цессные и многопараметрические). Функционирование технических системпредставляет собой сложное взаимодействие множества различных эффектов.Для ориентировочной классификации и применения составляются каталогифизико-технических эффектов (то есть физических явлений, примененных втехнике), химико-технических, биотехнических и других. Для сокращения на-званий эффектов и каталогов часто опускают добавку «технический» и говорят,например, «каталог физических эффектов», «геометрические эффекты» и т. д.

Как правило, основой выдающихся изобретений было первое использованиеранее неизвестного эффекта, обычно называемого открытием, или неожидан-ное, новое использование известного эффекта (комбинации нескольких эф-фектов). Достаточно напомнить о создании радиотехники, образно говоря, наоснове эффекта электромагнитного излучения куска металлического проводапри прохождении по нему электрического тока (см. раздел 1 Изобретение ци-вилизации). Сам Генрих Герц не сумел предвидеть, что его открытие не толькоможно будет практически использовать (что он полагал нереальным из-за тех-нических проблем, казавшихся непреодолимыми), но и совершит вскореграндиозную революцию в развитии цивилизации,

В ТРИЗ на основе анализа сотен тысяч изобретений были составлены катало-ги технического применения нескольких сотен эффектов. Для каждого при-менения были описаны вместе содержание эффекта и его техническая реали-зация примерно в следующем виде (приводится в сокращении — рис. 13.1).

Широкое применение модели технических эффектов получили только с появ-лением пионерского софтвера Invention Machine, а позднее крупнейшая базазнаний технических эффектов была создана и постоянно пополняется в соф-твере Tech Optimizer (см. раздел 21.1).

Page 233: основы классической триз. м. орлов

Практическое применение нашли также сокращенные каталоги (Приложения8—10), в которых для часто встречающихся технических действий указаныфизические, химические или геометрические эффекты (в соответствии с на-значением каталога), имевшие примеры эффективных технических реализа-ций. Сами примеры не приводятся, так как предполагается, что пользовательобратится к доступным ему техническим энциклопедиям и справочникам,зная названия эффектов, которые он выбрал в качестве возможного принципадействия. Этот простой и практичный подход реализован также в софтвереPentaCORE (см. раздел 21.3), в котором автоматизирована функция обраще-ния к поисковым системам ряда специализированных и универсальных эн-циклопедий, доступных в Интернет.

Следует указать также на связь эффектов с другими трансформациями. Так,совершенно очевидно, что физические эффекты являются базой для такихприемов как 01 Изменение агрегатного состояния, 04 Замена механической сре-ды, 06 Использование механических колебаний и многих других. Химические эф-фекты присутствуют как базовые в приемах 15 Отброс и регенерация частей,23 Применение инертной среды, 26 Использование фазовых переходов и в других.На геометрические эффекты опираются приемы 10 Копирование, 11 Наоборот,19 Переход в другое измерение, 22 Сфероидальность, 34 Матрешка и другие.В качестве очень полезного, хотя и трудоемкого, упражнения Вы сами можетеустановить связь базовых технических эффектов с комплексными и фунда-ментальными трансформациями.

Завершим этот раздел замечанием о том, что базовые технические эффектыдолжны отражать в идеале всю сумму научно-технических знаний, выработан-ных человечеством. Такие системы как Tech Optimizer, CoBrain и Knowledgist(см. раздел 21.1) развиваются именно на этом стратегическом направлении.Каждый из нас овладевает только частью этих знаний. Сюда входят универ-сальные знания, полученные в школе, специализированные знания, получен-ные в высшей школе, и знания, которые мы постоянно накапливаем при са-мостоятельной работе с источниками научно-технической информации. Разу-меется, что мы используем относительно малую часть этих общих знаний, аименно ту, которая имеет непосредственное отношение к нашей отрасли. В тоже время мы уже отмечали, что немало выдающихся изобретений возникалопри привлечении для их создания знаний из других областей. Поэтому полез-но усиливать свой творческий потенциал по крайней мерс ознакомлением симеющимися базами знаний технических эффектов и изучением ключевыхидей, на которых основаны решения в других областях науки и техники.

Трансформации с помощью технических эффектов основаны на принципе ана-логии или на прямой реализации требуемой функции известным техническимрешением (с поправкой на конкретные условия нового применения). Вместе стем, все технические системы есть не что иное, как некоторые комбинациитехнических эффектов, реализованных в определенных конструкциях. При

Page 234: основы классической триз. м. орлов

этом комбинации, обладающие признаками полезности и абсолютной новиз-ны, признаются изобретениями.

Охватить всё разнообразие и тонкости работы с техническими эффектамиочень не просто лаже при наличии софтверной поддержки. Поэтому далее мыпокажем только несколько примеров, которые могут служить лишь иллюстра-цией и введением в чрезвычайно разнообразный инструментарий техническихэффектов.

Пример 86. Все ли гвозди цилиндрические? Обычный «цилиндрический» гвоздьхорошо входит в дерево, но со временем под действием изменений температу-ры и механических колебаний может расшатываться. Можно сказать, чтосамо дерево легко «управляет» перемещением гвоздя. Обратимся к каталогуГеометрические эффекты (Приложение 10) с целью поиска подходящих реко-мендаций для возможного изменения «принципа действия» гвоздя. В пункте 9Снижение управляемости находим рекомендацию Замена круглых объектов намногоугольные. Контрольное решение: в Польше выпускается гвоздь с тре-угольным сечением, который лучше «сидит» в дереве, чем обычный гвоздь скруглым сечением.

Пункт 10 того же каталога Повышение срока службы, надежности содержит ре-комендации Изменение площади контакта и Специальный выбор формы. Кон-трольное решение: в Германии выпускается гвоздь с четырехугольным сече-нием, но закрученным относительно оси симметрии по длине гвоздя так, чтополучается подобие шурупа с «шагом витка», равным длине шурупа (иначе: нагвозде образуется один «виток» с четырьмя нитками по количеству углов мно-гоугольника первоначального сечения). Такой «гвоздь» является промежуточ-ной конструкцией между гладким гвоздем и шурупом, но проще в производ-стве, чем шуруп, а держится в дереве намного лучше, чем гладкий гвоздь.

Пример 87. Приятный… шум улицы. Громкий, непрерывный и относительномонотонный шум с улицы от сплошного потока машин утомляет и мешает ра-боте. Обычная штора несколько снижает общий уровень шума, но его моно-тонность остается. Монотонность объясняется равномерным спектром (струк-турой) частот акустических колебаний, генерируемых транспортным потоком.Обратимся к каталогу Физические эффекты (Приложение 8) и в пункте 24 Соз-дание заданной структуры, стабилизация структуры объекта выберем эффектМеханические и акустические колебания.

Из курса физики известно, что изменение структуры спектра каких либосложных колебательных процессов (в том числе и акустических) может бытьобеспечено применением так называемых частотных фильтров, посредни-ков-преобразователей, которые хорошо пропускают колебания с определен-ной частотой и не пропускают (или ослабляют) колебания с другими частота-ми. Контрольное решение: в Англии предложена штора, конструкция которойсодержит норы разных размеров и реализует идею механической фильтрациизвуковых колебаний таким образом, чтобы полосы пропускания композициифильтров примерно соответствовали спектру морского прибоя. Такой шум невызывает негативных явлений утомляемости, потери внимания и т. п.

Page 235: основы классической триз. м. орлов

Пример 88. Контроль износа двигателя. При износе двигателя увеличиваетсяколичество микрочастиц металла, попадающих в масло, смазывающее и охла-ждающее движущиеся части. Следовательно, оценивая количество металличе-ских частиц в масле, можно оценить степень износа двигателя. Проблема: какзаметить присутствие металлических частиц в масле и оценить их количество?

При просмотре каталога Физические эффекты (Приложение 8) обращают насебя внимание пункты 5 Индикация положения и перемещения объекта и22 Контроль состояния и свойств в объеме. Зная уже принципы применения доба-вок по комплексным трансформациям, мы можем предположить, что это вы-глядит перспективно и не сложно по сравнению с другими рекомендациями.Поэтому, можно остановиться на рекомендации Введение «меток» — веществ,преобразующих внешние поля (люминофоры) или создающих свои поля (ферромаг-нетики) и потому легко обнаруживаемых. В справочниках можно более под-робно рассмотреть применение люминисценции и попытаться интерпретиро-вать найденные примеры применительно к решаемой проблеме. В данномслучае, мы обратимся к приведенному выше паспорту физического эффектаЛюминисценция, а затем продолжим поиск по справочникам более детальнойинформации для пункта 4, чтобы уточнить, каким именно образом яркость испектр свечения люминофоров зависят от параметров веществ и полей — хи-мического состава, температуры, давления и т. д. Мы обнаружим, что метал-лические частицы уменьшают яркость люминисцентного свечения. Отсюда воз-никает идея принципа действия будущей измерительной системы: если в мас-ло добавить люминофор, то с увеличением количества металлических частицв масле яркость свечения люминофора будет уменьшаться. Это и будет свиде-тельствовать об увеличении износа двигателя.

Пример 89. Распустится ли роза, срезанная еще бутоном? Чтобы иметь макси-мально возможный срок до продажи роз после срезания, их можно срезатьнераспустившимися. Это позволяет доставить розы отдаленным продавцам.Как гарантировать, что бутоны распустятся?

Мы можем вести поиск какого-то подходящего химического эффекта (Прило-жение 9) из пунктов 22 Контроль состояния и свойств в объеме (в частности.реакции с применением цветореагирующих веществ или веществ-индикаторов) и23 Изменение объемных свойств объекта (плотность, концентрация и т. д.). По-нятно, что для выяснения этого вопроса нужно было проводить предваритель-ные исследования и найти какой-то индикатор, вещество или поле, присутст-вие которых в розах помогло бы надежно оценивать своевременность среза-ния роз. И результаты подобных исследований достаточно известны. Так. мымогли бы выяснить, что крахмал при взаимодействии с йодом дает интенсив-ное синее окрашивание. А крахмал является основным ресурсным углеводомрастений. Тогда, действуя по аналогии, мы могли бы предложить применитьпробу на окрашивание срезанных бутонов под воздействием пола. Контроль-ное решение: исследователи из Wageningen Agriculture University (Голландия)установили, что при содержании крахмала в бутоне менее 10% сухой массыцветка роза не распустится. Для этого бутону не хватит энергетических ресур-сов, запасенных в крахмале.

Page 236: основы классической триз. м. орлов

Пример 90. Можно ли изобрести новый «принцип действия» футбольного мяча?Обратимся, например, к пункту 5 Интенсификация процесса каталога Геомет-рические эффекты (Приложение 10). Из эффектов этого пункта вполне при-влекательно выглядят рекомендации Переход от обработки по линии к обра-ботке по поверхности и Эксцентриситет (смещение оси вращения тела от «осисимметрии»).

Первая рекомендация ассоциируется, в частности, с физическим эффектомМагнуса из пункта 6 Управление перемещением объекта из каталога Физическиеэфекты (Приложение 8). Действительно, многие ли знают, что именно этотэффект строго научно объясняет и описывает поведение футбольного мяча.летящего по кривой траектории? В соответствии с эффектом Магнуса, тело.вращающееся в набегающем потоке газа (жидкости), испытывает воздействиепоперечной силы. А именно, тело получает дополнительное смещение в тусторону, на которой направление его вращения совпадает с направлением от-носительного движения набегающего потока газа (жидкости). Теперь Вы мо-жете вспомнить и легко проанализировать, в какую сторону был закрученфутбольный мяч при великолепном голе, когда мяч по крутой траектории об-летел «стенку» защитников и, неожиданно повернув, влетел в ворота. Этотэффект (может быть не зная его названия) хорошо знают и теннисисты.

А вот волейболисты хорошо знают другой эффект: в момент улара по волей-больному мячу на подаче при определенной ориентации мяча, учитывающейположение на покрышке ниппельного отверстия для накачивания, мяч черезнесколько метров полета вдруг несколько меняет свою траекторию, как быпрыгая в сторону. Этот эффект объясняется тем, что сначала (при ударе) нип-пельное отверстие находится под рукой подающего, а потом во время полетанесколько смешается из-за небольшой закрутки мяча под воздействием набе-гающего потока воздуха, из-за чего происходит дополнительное смещениецентра тяжести мяча и еще большее отклонение (неожиданный прыжок в сто-рону) от первоначальной «прямой» траектории полета.

Контрольное решение на основе соединения эффектов: внутри мяча на эла-стичных подвесах (или иным способом) закрепляется небольшой груз, кото-рый во время полета мяча меняет свое положение внутри мяча и смещает егоцентр тяжести. Мяч будет летать по причудливым траекториям с неожидан-ными случайными отклонениями от общего направления движения. Такоймяч можно использовать для развлекательных игр или для тренировки скоро-сти реакции спортсменов. А при «закручивающем ударе» по такому мячу кэффекту случайного смещения центра тяжести, являющемуся одновременно ицентром вращения, добавится действие эффекта Магнуса, и можно будет на-блюдать еще более неожиданные перемещения мяча.

Пример 91. Мощная звуковая колонка… на ладони. Самая громоздкая частьлюбой аудиоаппаратуры — звуковые колонки, особенно низкочастотные.Причем, чем качественнее аппаратура, тем большие размеры имеют низкочас-тотные колонки. Это связано с тем, что для воспроизведения низких частотнужен излучательный элемент (динамик) большого диаметра. В примере 86мы уже видели необычное применение физического эффекта фильтрации ко-

Page 237: основы классической триз. м. орлов

лебаний. Развивая здесь направление, связанное с созданием колебаний, об-ратимся к эффекту амплитудной модуляции. В принципе этот подход соответ-ствует в каталоге Физические эффекты пункту 16 Передача энергии: механиче-ской, тепловой и др. В соответствии с Законом роста идеальности (см. раздел15.1 ТРИЗ-Законы развития систем) идеальный конечный результат в данномслучае был бы такой: качественный низкочастотный звук есть, а колонки дляего излучения нет.

Казалось бы, разрешить столь невероятное противоречие невозможно. Одна-ко на американской фирме АТС думали иначе и предложили следующуюидею: модулировать низкочастотными звуковыми колебаниями (речь, музы-ка) в диапазоне 20—20 000 герц высокочастотные колебания в диапазоне200 020—220 000 герц и генерировать такие высокочастотные, не слышимыечеловеком, колебания с помощью маленьких пьезоэлектрических излучателейультразвука (рис. 13.2).

При этом с помощью других таких же излучателей, строго синхронно, но впротивофазе излучающих основную несущую ультразвуковую частоту в200 000 герц, «вычитают» из первого высокочастотного колебания основнуюсоставляющую в 200 000 герц.

И снова мы видим совместную работу системы (ультразвук с определеннойчастотой) с антисистемой (ультразвук с той же частотой колебаний, но излу-чаемый в противофазе), что приводит к «совмещению несовместимого» в од-ном техническом решении и безусловному преодолению противоречия!

Пример 92. Идеальная салфетка для очистки поверхностей от грязи. Сухая,а чаще смоченная водой, салфетка из обычной ткани при чистке керамиче-ской плитки, полированной мебели или поверхностей автомобиля не дает ка-чественного результата. Тогда прибегают к примению химических средств.В соответствии с каталогом Химические эффекты (Приложение 9) это соответ-ствует пункту 6 Управление перемещением объектов, пункту 20 Контроль со-стояния и свойств поверхностей и пункту 21 Изменение поверхностных свойств,а именно, рекомендациям Использование гидрофильных и гидрофобных веществ

Page 238: основы классической триз. м. орлов

и Применение поверхностно-активных веществ. Однако, применение химиче-ских моющих средств экологически не безупречно, а иногда может приводитьк изменению цвета окрашенной поверхности, или могут появиться другие де-фекты. Сами салфетки быстро загрязняются и также попадают в мусор, уве-личивая количество бытовых или промышленных отходов. Идеальный требуе-мый результат: салфетка полностью снимает (собирает, поглощает, впитываети т. д.) грязь с очищаемой поверхности и легко отдаст грязь, например, можеточищаться водой (без применения химических средств). По сути дела мы име-ем пока не идеальный результат, а противоречие на функциональном уровне.

Вернемся к самому началу. Вода на салфетке играет роль «микроадсорбента»,механически притягивающего и удержи мающего частички грязи, а ткань сал-фетки играет роль «макроадсорбента» и даже абсорбента (объяснение терми-нов нужно посмотреть в справочнике!), удерживающего воду в своих порахмежду нитями вместе с грязью. Проблема заключается в том, что грязь вместес водой проникает в микропоры нитей, и уже не может быть удалена оттудамеханически, простым смыванием при полоскании.

Теперь исходное противоречие попробуем представить на «микроуровне», на-пример, в таком виде: нити (салфетки) должны собирать воду вместе с грязьюи не должны задерживать грязь. Однако эта модель просто неверна! По ТРИЗнужно точно определять инструменты. Поэтому, внимательное рассмотрение(если нужно, то с применением «мысленного увеличителя» в виде модели Раз-мер—Время—Стоимость — см. раздел 18.2) даст следующую формулировкуточного физического противоречия: поры между нитями хорошо задерживаютводу вместе с грязью, а нити не задерживают грязь. Здесь четко видно, чтопротиворечие как бы само собой разрешено в пространстве, так как «несо-вместимые» требования относятся к разным объектам! А это означает, что извсех проблемных требований осталось одно — нити не должны задерживатьгрязь. Теперь требуемое свойство можно определить как отсутствие развитойпористой поверхности нити, или иными словами, как высокую гидрофоб-ность нити в соответствии с химическим (точнее, физико-химическим) эф-фектом, указанным выше. Такому свойству в высокой степени удовлетворяетнить из стопроцентной целлюлозы. Таково контрольное решение, разработан-ное и примененное фирмой H2O-Aktiv Vertricbsgesellschaft RcinigungsproduktembH, Германия.

Наконец, следует обратить внимание также на эффективное участие структур-ного ресурса в разрешении присутствующих здесь системных физическихпротиворечий: высокую степень гидрофильности салфетки создает плотноепереплетение тончайших нитей целлюлозы, что служит как бы активаторомводы, снижая ее поверхностное натяжение для впитывания частиц грязи. Тоесть каждая нить салфетки (часть системы) гидрофобна, а салфетка в целом(вся система) — гидрофильна! При прополаскивании салфетки она легко от-дает вместе с промывающей водой частицы грязи и становится пригодной кповторному многократному использованию. Благодаря высокой гидрофиль-ности салфетка удаляет (по сути дела водой!) даже такие загрязнения, как пят-на машинного масла или свежей масляной краски!

Page 239: основы классической триз. м. орлов

Пример 93. Сказочная реальность. Кто не читал в детстве сказку о волшебномгоршке, из которого безостановочно выползала каша? И нужно было знатьодно волшебное слово, чтобы каша начала расти, но знать и другое слово, мо-жет быть еще более важное, чтобы каша остановилась. Иначе она могла бызаполнить весь мир. По сказке.

Сегодня такие ужасные картины не исключаются из опасении, высказывае-мых оппонентами генных и нанотехнологий. Только вместо каши смертель-ным оружием против человечества могут стать вирусы, бактерии и какие-ни-будь видимые или невидимые искусственные существа, может быть даже«мыслящие».

Но здесь мы рассмотрим более простые и безопасные примеры.

Как сделать, чтобы кроссовки (или другая обувь) точно облегали ногу? Все женоги у всех разные, а обувь выпускается с небольшим разнообразием по дли-не и полноте. Нужен какой-то способ, по которому купленные кроссовкисами станут точной копией, или формой, для Вашей ноги! Обратимся к ката-логу Химические эффекты (Приложение 9) и изучим пункты 22 Контроль со-стояния и свойств в объеме и 23 Изменение объемных свойств объекта. Гели!Вот что нужно искать. И действительно, работая со справочной литературой,Вы достаточно быстро обнаружите, что эти синтетические желеобразные ве-щества способны мгновенно или постепенно уменьшать или увеличивать спойобъем до тысячи раз и более! Причем для запуска процесса изменения доста-точно малейшей добавки вещества-активизатора, изменения температуры илидругих факторов. Целый класс таких веществ, созданных в Японии, был даженазван «умные гели». Первое изделие, в котором они были применены, оказа-лось именно кроссовками, которые при нагреве от ноги расширяются и плот-но, но в то же время мягко, охватывают ногу. Так на уровне вещества и с при-менением химического эффекта разрешено «неразрешимое» физическое про-тиворечие: кроссовки должны выпускаться без учета индивидуальныхособенностей ног потребителя, и кроссовки должны абсолютно точно подхо-дить каждому конкретному потребителю.

А вот другое решение аналогичной проблемы: создание «умной упаковки».которая сама прочно и одновременно бережно прижмет в посылочной короб-ке любые посылаемые изделия, любой сложной формы и из самого хрупкогоматериала, например, из тонкого стекла. К рассмотренным химическим эф-фектам можно добавить Использование эластичных и пластичных веществ изпункта 19 Изменение размеров и формы объекта этого же каталога. ФирмаSealed Air Corporation (USA) разработала высокоэластичные полиэтиленовыемешки любых требуемых размеров, в которых при механическом или темпе-ратурном стартовом воздействии запускается процесс образования полимер-ной пены, равномерно распределяющейся по всему объему (рис. 13.3). Роступлотняющей упаковки останавливается самой посылаемой коробкой! Так чтонекоторые сказочные «изобретения» вполне могут рассматриваться сегоднякак прототипы для совершенно реальных вещей!

Цель этого примера не только в том, чтобы продемонстрировать действиетого или иного химического эффекта, но и в том. чтобы показать их результа-

Page 240: основы классической триз. м. орлов

ты — новые технологии и объекты, которые можно применять, даже не зная,каким способом они получены.

Однако найти такие объекты можно, обращаясь к известным универсальнымэнциклопедиям или специализированным техническим справочникам для по-иска примеров реализации того или иного эффекта, или для поиска примеровполучения в технике требуемых свойств так, как мы это делали, обращаясь кочень ограниченному числу «входов» в рассмотренные каталоги.

Что еще важно отметить для последного примера, это эффективное примене-ние пены, а по сути, пустоты в каком-то веществе, например, в уплотняющейупаковке. Действительно, здесь пустота выступает как идеальное вещество,которого нет, и которое есть, так как оно заполняет почти весь объем упако-вочного материала, выдавливая полиэтиленовую пленку во всех направлени-ях, где нет препятствий!

Пример 94. Неподвижный флюгер! В любом справочнике мы прочитаем при-мерно следующее: флюгер — метеорологический прибор для определения на-правления и скорости ветра (рис. 13.4), имеющий две подвижные части —

Page 241: основы классической триз. м. орлов

флюгарку 1, устанавливающуюся по направлению ветра благодаря наличиюхвостовой лопасти 2, на которую воздействует ветер, и металлическую пласти-ну 6, отклоняющуюся при большей силе ветра на больший угол.

При своем вращении вместе со штоком 5 флюгарка устанавливает металличе-скую пластину навстречу ветру. Противовес 3, уравновешивающий вес лопа-сти флюгарки, указывает направление ветра относительно неподвижных шты-рей 4, ориентированных на стороны света, а угол отклонения металлическойпластины относительно неподвижной дуги 7 с угловыми измерительными от-метками указывает силу ветра.

Этот старинный прибор не отличается большой точностью, так как флюгаркане поворачивается при малом ветре, а пластина не поднимается при маломветре и неустойчиво ведет себя при большом ветре.

Можно сформулировать два одинаковых физических противоречия:

1) флюгарка должна быть большой и легкой, чтобы работать при малом вет-ре, и должна быть небольшой и тяжелой, чтобы устойчиво работать и неломаться при большом ветре;

2) пластина должна быть большой и легкой, чтобы работал, при малом ветре,и должна быть небольшой и тяжелой, чтобы устойчиво работам, и не ло-маться при большом ветре.

В идеале по ТРИЗ характеристику «малый», применительно к свойствам раз-мер, вес или к каким-то негативным факторам, нужно стремиться предста-вить как «нулевой вес» или «нулевой размер» и т. п. Но нулевая флюгарка инулевая пластина вовсе не могут перемещаться! А это противоречит их прин-ципу действия. Сделаем поправку: прежнему принципу действия, которомубыли присущи неразрешимые противоречия! А что. если попытаться создатьфлюгер с нулевыми размерами и весом флюгарки и пластины?! Это звучиткак полный парадокс — «неподвижный флюгер».

Практически же это означает, что нужен новый принцип действия устройствас прежними функциями, но с лучшими показателями качества функциониро-вания. Оставим за ним традиционное название — флюгер, может быть, с до-бавкой дополнительного определения по новому принципу действия.

Новый принцип действия должен основываться на общем принципе всех из-мерительных приборов — выявлении и оценке абсолютного различия междукакой-то неизменной эталонной величиной (направления сторон света) иизмеряемой переменной величиной (положение флюгарки, а точнее, уголотклонения флюгарки от базового направления, например, на Север и подвижению часовой стрелки) либо различия между изменениями двух сопос-тавляемых величин, одна из которых изменяется быстрее, чем другая (разно-стные измерения).

Принимая последний подход, можно предположить, что набор потенциальноподходящих эффектов может оказаться весьма большим. Попробуйте само-стоятельно создать неподвижные флюгеры на иных принципах по сравнениюс тем. который будет рассмотрен в качестве контрольного решения. А само

Page 242: основы классической триз. м. орлов

контрольное решение покажет общий способ преодоления стереотипов наше-го мышления, что и будет главным полезным результатом этого примера.

Рассматривая каталоги технических эффектов, мы могли придти к выводу,что скорость ветра можно измерить, например, по степени охлаждения како-го-то нагретого тела, находящегося на ветру (пункт 1 Измерение температурыкаталога Физические эффекты и группа эффектов под общим названием Тер-моэлектрические явления). Но как измерить таким способом направление вет-ра? Может быть, прикрыть одну часть нагретого тела от ветра, а другую оста-вить на ветру, и поворачивая это тело, найти положение, при котором оно ох-лаждается быстрее всего — это и будет означать, что найдено направление,откуда дует ветер. Возможно, но сложно и. по-видимому, медленно. Нужноуйти от механических перемещений.

Контрольное решение: сотрудниками DIMES Delft Institute of Microelectronicsana Submicron-technology при Delft University of Technology (Голландия) раз-работан флюгер (рис. 13.5), представляющий собой кремниевую микросхемупримерно 5 x 5 мм2, с каждой стороны которой размешена миниатурная тер-мопара.

Снизу микросхема равномерно подогревается. С той стороны, откуда дует ве-тер, микросхема несколько охлаждается, что сразу же замечает высокочувст-вительная термопара. Если ветер имеет промежуточное положение, по-разно-му срабатывают две термопары, фиксируя разное охлаждение сторон микро-схемы, на которых они закреплены.

Чем больше скорость ветра, тем больше охлаждение. Направление ветра вы-числяет сама микросхема по разности токов, вырабатываемых термопарами.

Этот пример демонстрирует также великолепное решение по свертываниюсистемы — исключению лишних, неэффективно работающих или ненадеж-ных элементов (см. раздел 15.2.4 Мета-модель «Волна эволюции»). Новыйпринцип позволил создать компактную систему без подвижных частей, рабо-тающую точно в более широком диапазоне — при силе ветра от К) сантимет-ров до 60 метров в секунду.

Пример 95. Perpetuum Mobile для человечества?! Еще более впечатляющий при-мер свертывания появляется перед нами при рассмотрении идей созданиядвигателя на водородном топливе. Инерция мышления тут же рисует нам ра-боту нового двигателя внутреннего сгорания, в котором в качестве топлива

Page 243: основы классической триз. м. орлов

вместо бензина сгорает водород, соединяясь с кислородом с образованиемводы как отхода. Мы воображаем, что такой двигатель абсолютно идеаленэкологически, и одно это уже выглядит совершенно замечательно! Однако наэтот раз в реальности дело обстоит еще лучше — и намного!

Дело в том, что в новых водородных двигателях фирмы DaimlerChrycler,Deutschland ничего не сгорает, так как они… вовсе не являются двигателямивнутреннего сгорания! И это изобретение несет в себе новую техническую ре-волюцию, значение которой может оказаться и не оцененным в полной мере,и вновь из-за инерции мышления. Да, автомобиль будущего будет безупреченэкологически, будет иметь высокий коэффициент полезного действия и высо-кую надежность двигательной установки на основе электромотора. Но! Но за-правляться он будет внешне так же, как и раньше — на автозаправочныхстанциях, из шланга. И именно сохранение всех привычных действий по об-служиванию и управлению автомобилем не позволит заметить пришедшей ре-волюции! Ну что ж, пусть так и будет! Это будет реальный пример того, чтодействительно в цивилизации могут незаметно происходить грандиозные помасштабам революционные изменения! Остается только надеяться, что всеони будут такими же позитивными, как приход новых автомобилей, которые,возможно, получат общее название NECAR (от New Electric Car) — так назы-вается сегодня одна из испытательных серий такого автомобиля концернаDaimlerChrycler.

Этот пример я привожу не как пример реинвентинга, а как пример выдаю-щейся реализации комплекса физико-химических эффектов, лежащих в осно-ве принципа действия прежде всего нового источника электроэнергии, а за-тем уже и новой двигательной и энергетической системы автомобиля. Хотяприменение новой идеи этим далеко не ограничивается. А выводы для попол-нения своих изобретательских знаний, не меньшие по значению, чем при ре-инвентинге, я надеюсь, Вы успешно сделаете сами.

На рис. 13.6 показаны сразу два варианта одной ячейки нового источникаэлектроэнергии некара: 1 — на основе заранее заготовленного водорода и II —на основе водорода, получаемого непосредственно на борту автомобиля.

Page 244: основы классической триз. м. орлов

По схеме 1 водород пропускается через пористый анод 1, и его протоны вприсутствии катализаторов 3 проникают через мембрану 4 (РЕМ — ProtonExchange Membrane) в катод 2, при этом на аноде 1 образуется отрицательныйэлектрический заряд, а на катоде 2 — положительный. При соединении в по-ристом катоде 2 водорода с кислородом действительно образуется вода, какотход. Первичные энергетические ячейки соединяются последовательно вбольшие батареи, к полюсам которой может быть подключена нагрузка, на-пример, электродвигатель постоянного тока и система электропитания авто-мобиля.

Схема II, разрабатываемая фирмой XCELLSIS, дочерней фирмой концернаDaimlerChrycler, отличается от схемы 1 только тем, что водород образуетсяпрямо на борту автомобиля из смеси метанола с водой. При этой реакции,сопровождающейся выделением тепла, образуется также углекислый газ, од-нако в три раза меньше (!), чем в современных самых «чистых» двигателяхвнутреннего сгорания. По этой причине создатели некара назвали его«нуль-эмиссионным» автомобилем. Для заправки «некара» метанолом могутбыть переоборудованы обычные бензиновые заправочные станции. Но и пер-вая схема представляет интерес для крупных автотранспортных предприятий,которые могут иметь централизованные хранилища емкостей с водородом иобеспечить безопасную смену этих емкостей для грузовых автомобилей илиавтобусов.

Создание некара означает окончание почти полуторавековой эры автомобиляна основе двигателя внутреннего сгорания — одного из выдающихся изобре-тений цивилизации и одновременно одного из главных загрязнителей атмо-сферы (см. пример 112 и весь раздел 15.3 Интеграция альтернативных сис-тем). Но это может означать и нечто большее, так как по мнению специали-стов новые энергетические источники смогут конкурировать с солнечными,ветровыми или водными источниками электроэнергии! Они предполагаюттакже, что источники с новым принципом действия могут стать настолькоэффективными и разнообразными, что найдут применение от мопедов и газо-нокосилок до лэптопов и хэнди.

В заключение этого примера и раздела в целом следует отметить еще раз, чтонаиболее радикальные изменения несут, конечно, изобретения, основанныена новых принципах действия технических систем. А в основе таких изобрете-ний лежат новые знания и открытия, полученные в результате научных иссле-дований. Эти знания и есть интеллектуальная база для пополнения банка тех-нических эффектов, база для изобретения технических систем на новых прин-ципах функционирования.

Page 245: основы классической триз. м. орлов

19. Рекламный плакат (1). Рекламные плакаты, в том числе, огромных разме-ров, можно видеть сейчас везде — на боках автобусов и трамваев, на стенахдомов и в холлах зданий. Плакат имеет на обратной стороне клеевой слой, ипоэтому его наклейка требует тщательной примерки, так как после предвари-тельного приклеивания хотя бы небольшого куска плаката исправить его ори-ентацию очень сложно, можно повредить материал плаката. Противоречие:плакат должен легко переметаться при наклейке и должен надежно фиксиро-ваться при правильном размещении. Что можно предложить?

20. Рекламный плакат (2). Как сделать плакат, которым можно полностью за-клеить всю внешнюю поверхность и все окна автобуса? Ведь должны же пас-сажиры что-то видеть из автобуса?!

21. Любая сковородка — тефлоновая! Как сделать любую сковородку или, на-пример, гусятницу, уже имеющиеся у Вас дома, непригорающими?

22. Дверной звонок. Как сделать, чтобы в любом месте Вашей квартиры плибольшого дома Вы могли услышать звонок в дверь?

23. Износ шин. Каким образом шина может сама сообщи п. о степени своегоизноса?

24. Нейтрализация выхлопных газов холодного двигателя. Особенно вредныевыхлопные газы холодного, только что запущенного, двигателя. Каким обра-зом можно устранить уровень загрязнения атмосферы самыми опасными пер-выми выхлопами?

25. Греющая одежда. Обычная одежда не греет. Она является пассивной систе-мой, сохраняющей тепло, исходящее от тела. Предложите возможные прин-ципы действия активной обогревающей одежды.

26. Микропинцет. Каким пинцетом можно плотно, но безвредно, работать насосудах головного мозга, если размер закрытого рабочего острим пинцета чутьболее 0,5 мм?

27. Как живут орлы и грифы? Каким образом можно обеспечить многомесяч-ное непрерывнеое наблюдение за гнездом, ведь ни один наблюдатель не про-сидит, скажем, на соседней скале все это время?

28. Белый светодиод. Известно, что полупроводниковые светодиоды излсвет в синем, красном и зеленом диапазоне. Каким образом можно от миниа-тюрного светодиода получить, например, белый свет?

Page 246: основы классической триз. м. орлов

29. Зеркало для телескопа. Как изготовить зеркало идеальной вогнутой пара-болической формы из расплавленной стеклокерамики для телескопа диамет-ром 8 метров?

30. Заморозка ягод и фруктов. В известных установках быстрого заморажива-ния свежих ягод и фруктов на подающем конвейере идет предварительная за-морозка, чтобы продукты не смерзались вместе при последующей глубокойзаморозке. Для окончательной заморозки продукты отделяются от конвейера,но при этом могут повреждаться. Каким образом можно улучшить весь про-цесс заморозки и исключить повреждение продуктов?

31. Непадающая зубная щетка. Зубную щетку, чтобы она высыхала, а также ине падала иногда с полочки в ванной, ставят в стакан или подвешивают, про-пуская ручку в отверстие полочки. Вопрос: можно ли. опираясь на школьныезнания по физике, сделать шетку с новым принципом функционирования, та-кую, чтобы, например, она сама стояла на полочке?

32. Тренировка скалолазов. Каким образом можно обеспечить тренировкиспортсменов в обычном спортивном зале так, чтобы условия тренировкибыли максимально похожи на реальные и не было привыкания к одним и темже «скальным поверхностям»?

33. Супермаховик. Супермаховик представляет собой диск, полученный навив-кой обода 1 из высокопрочной ленты (проволоки, волокон) на несущий центр2, также имеющий форму диска и отливаемый, например, из дюралюминия.Такие маховики могут служить, например, источниками энергии на несколь-

ко часов движения автомобиля, для создания робо-тотехнических подвижных систем с механическимипринципами работы во взрывоопасных средах, недопускающих появления электрических искр.

Проблема состоит в том, что ни один центр не вы-держивает деформации расширения, когда при ги-гантских ускорениях в сотни тысяч g (g — ускорениесвободного падения) охватывающий обод перестаетсдавливать центр. Место начала разрушения дискаприходится на держатель обода.

Известно также, что компенсаторы зазора между обо-дом и диском также не выдерживают и ломаются.после чего ломается и центр.

Нет ли у Вас подходящей идеи для создания надежного центра и всего супер-маховика?

34. Испытания провода. Каким образом можно провести испытания контакт-ного провода и токосъемного устройства для высокоскоростных поездов, есличерез провод должен проходить ток до 1000 ампер, а скорость поезда можетдостигать 500 км/час? По техническим условиям провод должен выдерживатьне менее 2 миллионов проходов по нему токосъемника!

Page 247: основы классической триз. м. орлов

Стратегия изобретения

Page 248: основы классической триз. м. орлов

Проектирование технических систем,сто лет назад бывшее искусством, ста-ло точной наукой и превращается в на-уку о развитии систем.

Появление ТРИЗ, ее быстрое разви-тие — не случайность, а необходи-мость, продиктованная современнойнаучно-технической революцией.

Работа «по ТРИЗ» неизбежно вытес-нит работу «наугад».

Но человеческий ум не останется бездела: люди будут думать над еще болеесложными задачами.

Генрих Альтшуллер

Page 249: основы классической триз. м. орлов

ТРИЗ не предсказывает будущее, но с помощью ТРИЗ Вы сможете прогнози-ровать развитие любой технической системы.

Основу для прогнозирования дают наиболее общие закономерности (мета-мо-дели) развития систем, выявленные при исследовании сотен тысяч изобрете-ний, многие из которых были направлены на усовершенствование одного итого же типа систем на протяжении нескольких десятков лет.

Мета-модели развития включают так называемые «ТРИЗ-Законы», «Линиисистемного развития», «Законы развертывания и свертывания систем», моде-ли «Полиэкран» и «Системные переходы», метод «Интеграции альтернатив-ных систем» и другие модели.

Техника и наука стремительно усложняются. Стремительно происходит даль-нейшая специализация и дифференциация знаний. Негативной сторонойэтих процессов является опасность искажения и подмены позитивных гло-бальных целей развития систем, разрушение самих критериев оценки про-грессивности или регрессивности создаваемых систем в угоду эгоистическими корыстным интересам тех или иных производителей продукции или поли-тическим амбициям.

Нужно и можно противостоять этим опасным тенденциям. Этому в немалойстепени должно способствовать понимание инженерами и учеными стратеги-ческих закономерностей развития систем, использование этих закономерно-стей для целенаправленной разработки систем, отвечающих критериям гло-бальной полезности.

Прохождение жизненного цикла каждой технической системы (ТС) от изо-бретения до прекращения выпуска и утилизации определяется сложным взаи-модействием большого числа факторов. Наиболее крупные группы (66) «влия-ния» представлены на рис. 14.1.

Системы обслуживания обеспечивают защиту действующих образцов ТС отразрушающего влияния окружающей среды. При этом следует отметить, чтовсе ТС непрерывно «стареют» под воздействием среды.

Page 250: основы классической триз. м. орлов

Системы модернизации обеспечивают модификацию ТС применительно кновым условиям эксплуатации. При этом противодействующие системы (на-пример, деталь для обрабатывающего инструмента) неуклонно увеличиваютизнос ТС, сокращают продолжительность жизни конкретного образца ТС илиразрушают его.

Системы эксплуатации (например, автоводитель) могут использовать ТС бе-режно, т. е. со знаком (+) около соответствующей связи-стрелки, а могут —на экстремальных режимах, т. е. со знаком (—). В конце концов каждый кон-кретный экземпляр ТС подвергается воздействию системы утилизации, приэтом последняя оказывает на ТС сугубо негативное, разрушительное физиче-ское воздействие, т. е. со знаком (—).

Творческие системы, включающие обширный круг изобретателей, конструк-торов, изготовителей, продавцов (!) и т. д., в соответствии с «Законом ростаидеальности» (см. след. раздел) обеспечивают непрерывное усовершенствова-ние ТС. При этом для действующих образцов ТС одинаково гибельно замещениеих как продукцией конкурентов, т а к и новыми образцами одного изготовителя.

Эволюция искусственных систем содержит исключительно драматиче-ское противоречие. С точки зрения получения максимальной инте-гральной эффективности от действующего образца ТС следовало быстремиться к его максимальной долговечности. Однако, намногораньше изготовитель вынужден создавать новые образцы как по ре-зультатам эксплуатации, так и с учетом возможного появления конку-рирующей продукции. Изготовителю и его «сфере влияния» нужна не-заурядная изобретательность для управления развитием производи-мого вида ТС, то есть, для рациональной модернизации, смены типови поколений.

Page 251: основы классической триз. м. орлов

Здесь следует ответить отрицательно на вопрос о том, можно ли, последова-тельно применяя изобретательские технологии к каждому очередному реше-нию, изобрести либо некий самый лучший продукт, либо ряд будущих безус-ловных лидеров на рынке, например, на десятилетия вперед? Дело в том, чтотолько испытание практикой по циклу, приведенному на рис. 14.2. дает ре-альные критерии для управления развитием систем.

Реальные оценки необходимы для построения и корректировки эффективныхсценариев развития. И чем раньше, тем лучше. А для этого приходится риско-вать и выпускать новые образцы. И осуществлять параллельно непрерывныйпоиск новых идей. При этом можно и нужно применять методику изобрета-тельского творчества для непрерывного прогнозирования на достаточно боль-шие интервалы времени вперед. Ключевые аспекты и альтернативы развитиясистем показаны на рис. 14.3.

Page 252: основы классической триз. м. орлов

Одним из практических результатов системного анализа должно быть реше-ние о выборе стратегического направления предстоящих изменений в сущест-вующей системе или в создании новой системы. В классической ТРИЗ дляэтого были сформулированы концепции «Минимальной задачи» и «Максималь-ной задачи». Важнейшей является первая концепция, задающая стратегиюдостижения наилучшего результата с «нулевыми» затратами. Эта постановкарасходится с известными принципами математической оптимизации, котораяв самом экстремальном случае предусматривает готовность к минимальнымзатратам при достижении максимального эффекта (минимаксные модели).Полому концепция «Минимальной задачи» имеет психологическое значение,гак как создает полезную установку на получение «идеального результата» итем самым обеспечивает мобилизацию творческих ресурсов для достижениянаилучших реальных результатов.

Следует также отметить, что задачи могут быть как сложными, так и просты-ми при любой стратегии (рис. 14.4).

В соответствии с этой таблицей все задачи можно разбить на 3 категории:

«Исправительные задачи» — на устранение негативной функции, разумеется,без снижения качества реализации главной позитивной функции;

«Альтернативные задачи» — на поиск другою способа (принципа) выполненияпозитивной функции с попутным устранением имеющейся негативной функ-ции или для более высокого уровня реализации полезной функции;

«Отказные задачи» — на поиск способа отказаться от выполнения полезногодействия.

А теперь я приведу завершение истории, о которой начал рассказывать в раз-лете 7.1. На следующий день мой стенд посетили два инженера, направлен-ные моим вчерашним собеседником и оппонентом, шефом отделения R&Dмашиностроительного предприятия. Через 30 минут демонстрации «InventionMachine» их восторг подавляло лишь собственное упоминание о том, что наих фирме не удастся убедить руководство приобрести этот софтвер! Конечно,я уже имел определенный опыт оценки размера фирм по размерам их стендовна выставках, но здесь я ошибся. Да, стенд этой фирмы впечатлял, но то, что

Page 253: основы классической триз. м. орлов

я случайно узнал в беседе с инженерами, поразило еще больше. Оказалось,что только на перспективных разработках в отделении R&D занято почти100 специалистов! Я еще раз передал свою визитку с посетившими меня ин-женерами. Вскоре поступило приглашение, и при второй встрече состоялсяпримерно следующий диалог:

— Почему Вы не можете продавать успешнее других?

— На рынке много производителей аналогичной продукции.

— У вашей продукции есть преимущества?

— Да, но не большие. Отрасль консервативна, с историей и традициями,трудно что-то необычное предложить.

— Но можете ли Вы предложить свои изделия по более низкой цене?

— Нет. Очень высокая себестоимость. Много металла. Высокая трудоемкость.

— Но что, в таком случае, делают 100 ваших R&D-специалистов?

?!

— Ваши инженеры не виноваты в том, что я смог оценить численность вашихR&D-специалистов. Но их цели мне не понятны. Если имеются спрос и ры-нок, тем более традиционный и консервативный, то есть только два пути ус-пешно продавать: предложить более высокое качество и новые функции илипри том же качестве снизить цену.

— Очень трудно перестроить производство.

— Да, если это не спланировано заранее.

— Все внимательно наблюдают за изменениями у других.

— Снижение себестоимости может быть незаметным для других. Тогда дажепри неизменной позиции на рынке Вы можете несколько лет получать при-быль, не видимую для других.

— Все же качество ценится больше.

— Хорошо. Обучайте своих людей. За тот же срок подготовьте такие измене-ния, которые Вы выведете на рынок первыми. Тот, кто попробует потом Васдогонять, все еще будет в том положении, в котором он и Вы находитесьсейчас.

Через месяц пришел заполненный бланк заказа на софтвер «InventionMachine».

И все же начальная позиция слишком многих руководителей в промышлен-ности остается сходной с той, которую Вы могли видеть у моего собеседника.

И все же это еще не все. По ежегодной традиции я провел два дня в Ганнове-ре на выставке lndustriemesse ‘ 2001. И снова записал потрясающий текст, отра-жающий, несомненно, непревзойденный талант самовыражения, сравнимыйразве только с американским! В огромном холле железнодорожного портала,

Page 254: основы классической триз. м. орлов

служащего наподобие парадного вестибюля выставки, на огромном плакатеможно было прочитать следующее:

Я полагаю, что Вы не только по достоинству оценили смелый юмор создате-лей этого плаката, но и, по-видимому, вспомнили о пионерских техническихдостижениях этого региона. Предприятие, о котором я рассказал, тоже изземли Баден-Вюртемберг (главный город — Штуттгарт), так что может бытьнужно относиться к рассказанной истории с большим юмором и маркетинго-вым оптимизмом.

Искусственные (технические) системы, подсистемы, узлы, детали, элементы,материалы создаются для выполнения полезных (позитивных) функций (PF —positive function). Одна из них может быть названа главной (MPF — main positivefunction), определяющей назначение всей системы (подсистемы, узла, детали,элемента, материала). Другие PF являются дополнительными и вспомогатель-ными. В системе имеются нежелательные (негативные) функции (NF —negative function) и, соответственно, главная негативная функция (MNF — mainnegative function), являющаяся основным препятствием на пути развития сис-темы. Негативные функции NF ухудшают степень выполнения системой сво-их позитивных функций PF или создают другие нежелательные эффекты, на-пример, для окружающих систем.

Один из главных показателей в развитии технических систем — изменение ихразмеров. Это развитие может идти в обоих направлениях: как в сторону уве-личения, так и в сторону уменьшения. Например, для многих транспортных иобрабатывающих машин характерно увеличение размеров (шагающий экска-ватор, танкер-сухогруз или перевозчик нефти, пассажирский или грузовой са-молет). Контрольно-измерительные приборы, средства связи, компьютеры,напротив, имеют тенденцию к миниатюризации. Это явление было замеченои проанализировано в ТРИЗ, и привело к весьма конструктивной концепции«идеальной машины».

Концепция «Идеальной Машины» (IM — ideal machine) является в ТРИЗ та-кой же полезной метафорой, как и понятия «функциональная идеальнаямодель» и «идеальный конечный результат», и как бы конкретизирует по-следнее. Эта метафора имеет, однако, весьма фундаментальное обоснова-ние, впервые четко сформулированное и конструктивно примененноеименно в ТРИЗ.

Page 255: основы классической триз. м. орлов

В наиболее обостренном и метафорическом виде определение звучит так:

Или:

Имеется в виду следующее: машина должна иметь нулевой вес, нулевые разме-ры, нулевую стоимость, нулевое потребление энергии, нулевые вредные отходыи т. п.

Конечно, под идеальным конечным результатом в ТРИЗ понимается не ка-кой-то произвольный волшебный результат, а вполне четкое и жесткое требо-вание получить требуемую модель эффективного функционирования без не-оправданного использования дополнительных, дорогих или трудно получае-мых ресурсов.

Здесь следует отметить, что само понятие эффективности является далеко нетривиальным. Более того, эффективность — это сложная эволюционирую-щая система понятий. Но независимо от способа оценки эффективностирост «идеальности» ТС осуществляется по следующим стратегическим на-правлениям:

1. Увеличение количества функций, выполняемых системой.

2. Увеличение качества выполняемых функций, представляемое часто в фор-ме роста главного «параметра», например, скорости, мощности, произво-дительности и т. п.

3. Снижение всех видов затрат на создание, применение и ликвидацию сис-темы по окончании срока службы, то есть на интервале жизненного цик-ла ТС.

4. Снижение негативного воздействия на окружающие системы и среду.

Теперь рассмотрим принятое в системотехнике и в ТРИЗ формальное выра-жение для оценки эффективности:

К позитивным эффектам (факторам) относятся любые оценки целевого на-значения системы на интервале их жизненного цикла.

К негативным эффектам (факторам) относятся все издержки на получениепозитивных эффектов, а также вред, причиняемый окружающей среде илидругим системам.

Page 256: основы классической триз. м. орлов

Если цель достигается с большими затратами, решение малоэффективно.

Решение, достигающее цели с допустимыми затратами, признается эффектив-ным, или по крайней мере, удовлетворительным.

Если решение при достижении цели дает дополнительные, не предусмотрен-ные заранее, преимущества, оно считается высокоэффективным. Дополни-тельное преимущество называется в ТРИЗ «сверхэффектом».

Именно такие решения и называются изобретательскими. И именно такие ре-шения будут интересовать нас в первую очередь.

В большинстве случаев эффективность стремятся оценивать на основе специ-ально составляемых формальных математических функционалов. Так как иде-ал для этого выражения достигается, если Е стремится к бесконечности, чтоматематически возможно в случаях, когда либо числитель стремится к «беско-нечности», либо знаменатель стремится к нулю — а это в реальности можетбыть принято только условно! Поэтому мы будем применять приведенноездесь выражение лишь как качественную модель, напоминающую нам о том,что нужно стремиться делать знаменатель как можно меньше, а числитель —как можно больше! И именно качественная интерпретация имеется в виду,когда мы говорим о стремлении систем к идеальности.

Разные линии развития системы данного типа в конечном счете сходятся водну точку — подобно тому, как сходятся меридианы к полюсу! Полюсом длявсех линий развития является «идеальная машина»! К «своим» полюсам схо-дятся обтекаемые формы современных скоростных автомобилей. Не отличимыс первою взгляда российский «ТУ-144» и европейский «Конкорд», российскиймногоразовый космический корабль «Буран» и американский «Шаттл». Чита-телю будет полезно продолжить вспоминать подобные примеры.

Обычно, когда задача решается методом «проб и ошибок», поиски идут либо внаправлении вектора психологической инерции либо, в лучшем случае, во всестороны. Между тем, приступая к решению задачи, изобретатель может резкосузить сектор поисков. Искомое решение должно приближать его к IM. Это ибудет перспективное направление поиска.

Разумеется, в каждом конкретном случае нужно суметь определить IM. Так.грузовой автомобиль, перевозящий 3 тонны груза, весит примерно 1,5 т. При-мерно 30% мощности двигателя в этом случае тратится, чтобы перемешатьсаму конструкцию этого грузовика. Грузовик, рассчитанный на 15 т, веситпримерно 5 т. Доля полезной нагрузки на единицу мощности двигателя явностала выше, а это и приближает машину к «идеальной». Карьерный 140-тон-ный самосвал разгружается за 15 секунд! Это намного меньше времени, необ-ходимого для разгрузки 28 пятитонных машин.

Идеальный вертолет или самолет — это как бы одна летающая кабина. Хотясамолетные двигатели и без того поражают своими относительно малыми раз-

Page 257: основы классической триз. м. орлов

мерами и большой мощностью, позволяющей достигать высоких скоростейполета и большой грузоподъемности самолетов.

Технические системы проходят функциональное развитие и характеризуютсябольшим числом функций. Каждая функция характеризуется показателями,например, скорость, вес, производительность. Два первых показателя являют-ся простыми, а вот производительность является комплексным показателем иможет потребовать достаточно сложного определения. Три показателя для ТСявляются особыми и основными: эффективность, безопасность и надежность(для военных систем добавляется еще один — живучесть). Эффективность,например, может быть отношением такого параметра как «расход топлива надистанции в 100 км» к параметру «заданная скорость движения на этой дис-танции», т. е. мы получим оценку экономичности автомобиля на единицу за-данной скорости.

Один из показателей (параметров) может быть принят в качестве главного(МР — main parameter) — и это не обязательно будет эффективность, напри-мер, если речь идет о гоночной машине для установления абсолютного рекор-да скорости. Наблюдение за эволюцией систем можно вести по изменению ихпоказателей, т. е. по параметрическому развитию, иногда заменяемому наблю-дением только за одним МР. Так, для компьютера — это его скорость вычис-лений тестовых задач (или рабочая частота при прочих равных условиях —разрядности представления данных, объемах запоминающих устройств, опе-рационной системы и т. п.). Для истребителя — максимальная развиваемаяскорость.

Уровень развития ТС часто характеризуют значением МР, график роста кото-рого имеет вид S-кривой (рис. 14.5). Пологий участок 1 означает достижениеданным видом ТС пределов своего развития. Кривые 3 характеризуют разви-тие типов ТС.

Кривые 3 огибают и сглаживают субкривые 2, характеризующие развитие по-колений (видов) ТС. С точками (участками) 5 и 4 связывают появление изо-бретений, создающих (5) или кардинально улучшающих (4) область техники.То есть на S-кривых на рис. 14.5 можно увидеть «расположение» изобретенийсоответствующих уровней.

Следует отметить, что экономическая эффективность может быть очень вели-ка для изобретений любого уровня. Например, даже небольшие усовершенст-вования уровня 1 могут быть очень выгодны при массовом производстве. Од-нако, исключительные преимущества получает владелец изобретений уровней4 и 5, если сможет реализовать стратегию «новый продукт — первый на рынке».

В качестве примера на рис. 14.6 приведено семейство огибающих S-кривыхдля роста скоростей транспортных систем.

Page 258: основы классической триз. м. орлов

Машины рождаются слабыми и крепнут постепенно, вбирая в себя многиеизобретения. На рис. 14.7 показана двухсотлетняя история функциональногоразвития гребного винта (Г. Альтшуллер). Изобретательская мысль шла тремяразными путями — в качестве прототипов были взяты крылья ветряной мель-ницы, водоподъемный винт Архимеда и водяное мельничное колесо. Каждыйиз прототипов развивался усилиями многих изобретателей в разных странах.Однако, три цепи изобретений постепенно сближались и привели наконец ксозданию современных гребных винтов.

За любой совершенной технической системой стоят десятки и тысячи после-довательно создаваемых изобретений. Даже по такой «системе» как карандашвыдано более 20 000 патентов и авторских свидетельств!!

Каждое изобретение подталкивает развитие системы. В промежутках междутолчками система остается неизменной. Нетрудно заметить, что раньше про-межутки были длительными, машины совершенствовались медленно (см.рис. 14.7). Путь от идеи и первых экспериментальных образцов до практиче-ски применяемого изделия занимал десятки лет.

Page 259: основы классической триз. м. орлов

Page 260: основы классической триз. м. орлов

Page 261: основы классической триз. м. орлов

Еще пример: идея электрической лампы накаливания возникла еще в началеXIX века. Первый опыт освещения раскаленным проводником был поставленв 1840 году. А первая лампа, пригодная для массового использования, появи-лась лишь 39 лет спустя!

Пример из середины XX века: идея оптического квантового генератора былавысказана в 1952 году67, через 2 года уже проводились испытания первого та-кого прибора, а еще через 6 лет был налажен промышленный выпуск разно-образных лазеров. Причем процесс развития конструкций и применений лазе-ров продолжается. Размеры лазеров занимают диапазон от долей миллиметрадо нескольких метров, а излучаемая мощность экспериментальных лазеровможет перекрыть в очень коротком импульсе, например, суммарную мощ-ность всех электростанций США! Лазер записывает и считывает информациюв факсимильном аппарате и на компактных дисках, лечит человека и зонди-рует атмосферу, измеряет расстояние до Луны и режет металл, «рисует» накристалле размером в 1—2 см2 будущий микропроцессор с несколькими мил-лионами (!) элементарных переключающихся ячеек и создает грандиозное цве-томузыкальное шоу, видимое на много километров, передает в световолокнотысячи наших телефонных разговоров и телевизионные программы, создает«в воздухе» трехмерные «живые» голографические изображения… Вот за чтоприсуждаются Нобелевские премии!

Впрочем, лазер — это и «лучи смерти» не только в фантастике по ГербертуУэллсу (68) или по Алексею Толстому69: реальный лазер может поражать спутни-ки как из космоса, так и с земли, прожигать и взрывать ракеты и самолеты,может убивать людей. Но это уже зависит от людей, а не от технической сис-темы. Так же как и атомную энергию можно использовать как оружие, а мож-но как источник электроэнергии для человечества. Тому много примеров. Бо-лее того, в истории человечества одной из главных движущих сил развитиятехнических систем было и все еще остается их военное применение.

И все же, что происходит с системами, когда они достигают своего наивыс-шего развития (см. этап 1 на S-кривой на рис. 14.5)? Неизбежность заменысистемы становится очевидной, но предел развития данной системы воспри-нимается как предел развития вообще. Кажущаяся невозможность отказатьсяот привычной системы пугает и гипнотизирует. Смена системы может вызы-вать мощное сопротивление производителей, которые часто продолжают вы-пускать системы, например, экологически вредные (сверхкрупные авиалайне-ры, сверхкрупные танкеры) либо вошедшие в противоречие с возможностямидругих систем (автомобиль или железная дорога). Так, бывший вице-прези-дент «Дженерал Моторс» Джон де Лориан однажды сказал, что если бы не-большая часть тех средств, которые тратятся на совершенствование двигате-лей внутреннего сгорания, была направлена на развитие аккумуляторов, то

Page 262: основы классической триз. м. орлов

мы давно имели бы экономичный электромобиль. Причем возможно, чтоздесь наибольшее сопротивление исходит не от производителей автомобилейи двигателей внутреннего сгорания, а от поставщиков нефтепродуктов. С техпор прошло 25 лет! Нужно ли это комментировать?

Переход к новой системе далеко не всегда означает полное прекращение при-менения системы предыдущего поколения. Так, например, сосуществуют па-русные суда и современные дизельэлектроходы, реактивные и винтомоторныесамолеты, кино и телевидение, морозильные фабрики и домашние холодиль-ники, велосипеды и автомобили, рестораны и домашние кухни, стационарныеи переносные радио- и телеприемники и так далее.

В 1930-е годы быстро росло число кинотеатров. Теоретический предел долженбыл достигаться задолго до того, как на каждого человека придется по одномукинотеатру. И что-то похожее все же произошло: появились телевизоры — ки-нозал на одного человека!. Казалось, что телевидение стало следующей ступе-нью после кино, вобрав его в себя в качестве подсистемы. Во многом так онои произошло, особенно с развитием компьютерного оснащения телевизион-ных систем. Однако, сегодня мы наблюдаем параллельное существование икино, и телевидения. Причем, тот же компьютер в кино создал аудио- и ви-деоэффекты, недостижимые пока для восприятия в пространстве квартиры,для этого нужны большие объемы.

И все же телевидение можно рассматривать как «надсистему», то есть системувышестоящего уровня для кино. Телевидение — это еще и оперативный выпускновостей, это конференц-зал, это, наконец, показ событий в реальном времени.

Так же на смену автомобилю, возможно, придет не столько электромобиль, апринципиально иная транспортная надсистема, в которой автомобиль (илиэквивалентное ему транспортное средство) станет лишь подсистемой. Этотпрогноз принадлежит Генриху Альтшуллеру. Любопытно, что в Беларуси, вгороде Гомеле одновременно с этим предположением в 1982 году еще одинизобретатель высказал такую же гипотезу, ставшую для него в дальнейшем це-лью жизни — это был молодой инженер Анатолий Юницкий (см. следующийраздел 15.3 Интеграция альтернативных систем).

Раздел Стратегия и тактика изобретения кратко представляет основныеТРИЗ-принципы и модели для учета объективных закономерностей развитиясистем. Сами по себе эти модели нейтральны к понятиям прогресса или рег-ресса. Их позитивное или негативное проявление зависит только от мораль-ных ценностей, исповедуемых для себя теми, кто применяет эти законы.

Но позволим себе выразить надежду, что объективно в системе этих моделейвсе же проявляется нечто глобально позитивное, что и движет прогресс, не-смотря на войны и болезни, на стихийные бедствия природного и техноген-ного характера. Это глобально позитивное можно попытаться выразить, вос-пользовавшись названием одного из интереснейших рассказов Джека Лондо-на70 — Любовь к жизни (Love of Life, 1905).

Page 263: основы классической триз. м. орлов

А теперь на основе изложенного можно определить главный ТРИЗ-Закон,представляющий обобщенную цель создания изобретений:

Иными словами, развитие есть эволюция в направлении увеличения эффек-тивности.

Главным в изобретении является то, что техническая система перехо-дит из одного состояния в другое, причем этот переход отражаетпроцесс развития технической системы и осуществляется по объек-тивным законам.

Рассмотрим классические ТРИЗ-Законы, установленные еще к середине1970-х годов. Эти законы были разделены в ТРИЗ на три группы, условно на-званные по аналогии с законами механики соответственно «статикой», «кине-матикой» и «динамикой» (распределение законов по группам и рис. 15.1 да-ются в редакции автора — О.М.).

Группу «статики» представляют законы, определяющие начало жизненногоцикла технических систем.

1. 1. Закон полноты частей системы.

Необходимым условием принципиальной жизнеспособности технической сис-темы является наличие и минимальная работоспособность основных частейсистемы.

Каждая техническая система должна включать четыре основные части: двига-тель, трансмиссию, рабочий орган и орган управления. К этому можно доба-вить лишь объединяющую все эти части пятую часть — конструкцию (см. раз-дел 8.2 Ресурсы и рис. 8.4 Абстрактная машина).

Page 264: основы классической триз. м. орлов

Достаточное условие жизнеспособности технической системы можно предста-вить как развитие этого закона следующим образом (что особенно полезно дляначинающих изобретателей): техническая система жизнеспособна лишь в томслучае, когда минимально работоспособна каждая из ее частей, но и обеспечи-вается минимальная работоспособность всех частей как единой системы. Дляпрактики весьма важно одно из следствий из этого закона: чтобы система былауправляемой, необходимо, чтобы хотя бы одна из частей была управляемой.

1.2. Закон «энергетической проводимости» системы.

Необходимым условием принципиальной жизнеспособности технической сис-темы является сквозной проход энергии по всем частям системы.

Каждая техническая система является преобразователем энергии, передавае-мой от двигателя через трансмиссию к рабочему органу.

Одно важное следствие из этого закона: чтобы часть технической системыбыла управляемой, необходимо обеспечить энергетическую проводимость меж-ду этой частью и органом управления.

Можно говорить также об информационной проводимости, особенно, в зада-чах на измерение или обнаружение, хотя часто она сводится к энергетиче-ской, что может приводить к неправильному пониманию задачи.

К «кинематике» в ТРИЗ относятся законы, определяющие развитие техниче-ских систем независимо от конкретных технических и физических факторов,обусловливающих это развитие.

Page 265: основы классической триз. м. орлов

2. 1. Закон неравномерности развития частей системы.

Развитие частей систем идет неравномерно, и чем сложнее система, тем не-равномернее развитие ее частей.

Неравномерность развития частей системы является причиной возникнове-ния острых физико-технических противоречий, и следовательно, изобрета-тельских задач. Например, рост численности автомобилей в центральной Ев-ропе вошел в противоречие с ограниченными возможностями строительствановых дорог. При этом имеющиеся дороги постоянно находятся в ремонте.Крупные города катастрофически страдают от трех проблем: загрязнение воз-духа, отсутствие мест для парковки и низкая скорость движения, обусловлен-ная постоянными заторами.

2.2. Закон перехода в надсистему.

Исчерпав возможности развития, система включается в надсистему и развива-ется далее в качестве одной из частей.

Приведем здесь только один пример: велосипед, оснащенный двигателемвнутреннего сгорания, превратился в мопед и в мотоцикл! Но и остался вело-сипедом — как мы уже отмечали, возможно параллельное сосуществованиепредшествующих и последующих систем одного назначения.

2.3. Закон перехода с макроуровня на микроуровень.

Развитие рабочих органов технической системы идет сначала на макроуровне, ав развитой системе — на микроуровне.

В большинстве современных механических систем рабочими органами явля-ются макродетали, например, винт самолета или резец токарного станка. Од-нако, в реактивном самолете рабочим органом является струя газа. Резцомможет служить струя плазмы. Вместо макродеталей работа осуществляется науровне частиц вещества, молекул, ионов, атомов. Перспективным и неисчер-паемым источником энергии остается энергия атомного ядра, извлекаемаялибо при его делении, либо при его синтезе.

Переход с развития на макроуровне к развитию на микроуровне есть сущностькомпьютерной революции!

Законы «динамики» в ТРИЗ недостаточно полны и имеют более специализиро-ванный характер. Они определяют развитие современных технических системкак раз в зависимости от конкретных технических и физических факторов.

3.1. Закон согласования ритмики частей системы.

Необходимым условием принципиальной жизнеспособности технической сис-темы является согласование ритмики (частот механических или электромаг-нитных колебаний, периодичности функционирования и взаимодействия)всех частей системы.

Page 266: основы классической триз. м. орлов

3.2. Закон перехода к управляемым ресурсам.

Развитие технических систем идет в направлении применения ресурсов с болеевысоким уровнем организации, например, более управляемых веществ и полей.

Этот закон хорошо коррелирует с законами энергетической проводимостисистем и главным законом о росте идеальности. Так, в линейном шаговомдаигателе рабочим органом является электромагнитное поле. Информацион-ные системы от первых телеграфных электромеханических конструкций раз-вились в современные радио- и оптические системы с более высокоорганизо-ванными полями — носителями информационных сигналов. Электронныймикроскоп кардинально расширил возможности исследования строения ве-ществ по сравнению с оптическим микроскопом.

Нагревающее устройство на сверхвысокочастотном излучении совершило рево-люцию на кухне современной квартиры!

Выделение изолированных друг от друга законов является, конечно, упроще-нием. Законы действуют в совокупности, проявляясь в реальном развитиисистем.

Знание ТРИЗ-Законов вместе с оценкой параметров 5-кривойдля данного типа систем позволяет прогнозировать тенденцииразвития практически любой технической системы.

ТРИЗ-Законы дополняются и инструментируются так называемыми «Линиямисистема-технического развития». Это очень крупные мета-модели, схватываю-щие основные тенденции в развитии технических систем. Их применение длярешения Ваших задач требует, как правило, проведения достаточно большогообъема прадварительных исследований. Это объясняется тем, что практическивсе Линии развития опираются на историю и прогнозы развития усовершенст-вуемого объекта и его системного окружения.

В настоящем учебнике мы дадим краткую характеристику следующих ме-та-моделей:

1) Линия роста степени «идеальности»;

2) Полиэкран;

3) Линия замещения человека в функционировании ТС;

4) «Волна эволюции»;

5) Длинные экономические волны (циклы) Кондратьева;

6) Переходы в надсистему — подсистему;

7) Линии «Моно — Би / Поли — Моно»;

8) Линии развития ресурсов.

Page 267: основы классической триз. м. орлов

15.2.1. Мета-модель Линия р о с т а степени «идеальности». В истории человече-ства было не так уж много открытий и изобретений, потрясших основы чело-веческой популяции и давших мощный толчок развитию цивилизации. На-пример, распространение книгопечатания, открытие и применение электро-магнитных полей в широком диапазоне частот и проявлений, выход в космос,создание компьютера как машины для переработки информации, биотехноло-гия и генная инженерия.

Историко-технический анализ показывает, что таким революционным изме-нениям предшествовали периоды более или менее длительного замедленияили остановки роста каких-то жизненно важных функций для человечества.Так, можно привести примеры из настоящего времени, относящиеся, в част-ности, к странам Западной Европы:

• расписания движения поездов не меняются десятилетиями, так как ре-альные (не рекордные!) скорости и пропускная способность железныхдорог давно достигли технических пределов, причем замена существую-щих железных дорог на линии с магнитным подвесом ничего не можетизменить кардинально и является на сегодня тупиковым направлением,опоздавшим в своем вхождении в цивилизацию;

• скорости движения и пропускная способность автомагистралей ограни-чены и имеют нарастающую тенденцию к образованию заторов, дли-тельность которых достигает десятков километров — ущерб от потеривремени автомобильным транспортом только в Германии оцениваетсягигантскими величинами во многие десятки миллиардов марок в год!

• остановился на уровне чуть выше 30 % рост коэффициента полезногодействия атомных и тепловых электростанций — нужны новые источни-ки энергии;

• близка к предельному уровню урожайность зерновых культур — однойиз основ питания человечества;

• жесткие ограничения на возможности интенсификации в животновод-стве поставлены Природой — нарушение этих ограничений немедленноведет к вспышкам опаснейших болезней.

Эти и многие другие признаки замедления указывают также на то, что именнопо таким направлениям можно ожидать появления крупнейших изобретений.По каждому новому направлению будет происходить рост его MPF, а такжерост связанных с этим направлением MPF других отраслей техники. Далеерост MPF этого направления замедлится (см. рис. 14.3: направление выйдет навершину S-кривой в область 1). Интересно проследить изменение количества1 и качества (уровня) 2 изобретений на разных участках S-кривой рис. 15.2).

В самом начале, после создания пионерского изобретения с самым высокимуровнем (4 или 5) происходит некоторое запаздывание изобретений в этомнаправлении. Настоящий прорыв начинается в области (а), когда создаютсявспомогательные изобретения, иногда высокого уровня (3 или 4), обеспечи-вающие достаточные условия для промышленного производства продукта.

Page 268: основы классической триз. м. орлов

В начале производства между областями (а) и (b) количество изобретенийуменьшается, так как осторожные производители ждут первых испытаний ипродаж. При успехе начинается бум изобретений, направленных на усовер-шенствование и продукта, и технологий. В области (с) надежным признакомполностью развернутого производства является уменьшение числа патентов иявная направленность их на мелкие технологические усовершенствования.

В области (с), и нередко еще раньше, могут начинаться серьезные измененияс системой данного типа, направленные на ее выживание в случае, если поя-вились альтернативные системы 3 того же назначения. В целом эта ситуацияхарактеризуется линией роста степени идеальности системы данного типа,представленной на рис. 15.3.

15.2.2. Мета-модель Полиэкран. Изобретатели, не знающие законов развитиятехнических систем, генерируют множество различных вариантов решения.Жизнеспособными оказываются только те мутации, которые действуют в на-правлении, совпадающем с объективно существующими законами развития.Такое мышление несистемно. Но в технике существует возможность накопитьопыт мутаций, выявить правила удачных изменений и использовать их созна-тельно и направленно. И тогда талантливое мышление может приобрести дру-гую структуру.

Генрих Альшуллер дает следующее образное описание возможности новой ор-ганизации системного мышления изобретателей. Обычно, если в задаче сказа-но «дерево», то человек видит именно некоторое дерево. То есть, воображениесоздает определенный образ задачи. Прочитал человек условия (обозначеныкак ?), и сразу же вспыхивает мысленный экран с высвеченной на нем кар-тинкой-решением 1 (рис. 15.4).

Page 269: основы классической триз. м. орлов

Ненаправленный перебор вариантов приводит к тому, что таких картинок мо-жет быть очень много. Дерево становится то больше, то меньше, но ничегопринципиально не меняется. Часто на этом все и кончается: ответ не найден,задача признана неразрешимой.

Это — обычное мышление. Талантливое воображение одновременно зажигаеттри экрана (рис. 15.5).

Видны надсистема 2 (группа деревьев), система 1 (дерево) и подсистема 3(лист).

Это, конечно, минимальная схема. Часто включаются и другие (верхние илинижние) экраны: наднадсистема (лес) и подподсистема (клетка листа).

Но еще важнее видеть все это в развитии. И тогда нужно включить еще «бо-ковые» экраны, показывающие прошлое и будущее на каждом уровне(рис. 15.6). Минимум девять (!) экранов системно и динамично о т р а ж а ю т сис-темный и динамичный мир.

Page 270: основы классической триз. м. орлов

Пример 96. Финиковая пальма. За сезон финиковая пальма может дать до240 литров сладкого сока, идущего на изготовление пальмового сахара. Но длясбора сока надо сделать надрез на стволе под самой кроной. А это 20 метроввысоты! Задачу предложили фирме, выпускающей сельскохозяйственные ма-шины и механизмы. Специалисты попробовали альпинистский способ — че-ловек поднимается, вырубая ступеньки на стволе. Но способ оказался непри-годным: много ступенек — дерево погибает, мало ступенек — трудно подни-маться. Начали проектировать нечто вроде пожарной машины с раздвижнойлестницей. Каково же было удивление специалистов, когда они узнали, что вБангладеш крестьяне обладают секретом, позволяющим подниматься на паль-му без всяких машин…

Эта задача не решается, если включен только экран 1. Но стоит только совме-стно рассмотреть хотя бы экраны 1 и 4, как решение становится очевидным.На экране 4 — маленькая пальма. Сока она еше не дает, но на ней легко мож-но сделать зарубку — будущую ступеньку. От одной-двух ступенек в год дере-во не погибнет. На следующий год — еще несколько зарубок. И к тому време-ни, когда дерево вырастет и будет способно давать сок, на стволе окажется го-товая лестница.

Другое решение просматривается при включении экрана 2. К одному деревунадо приставлять лестницу. Но если рядом растут два дерева, то их стволы —почти готовая лестница, не хватает только веревочных перекладин.

Генрих Альшуллер, приводя этот пример, подчеркивал: это не самый слож-ный случай — девять экранов. Гениальное мышление заставляет работатьмного больше экранов, например, 27! Когда параллельно первым 9 экранамрассматривается эволюция содействующих и противодействующих систем с ихнадсистемами и подсистемами. В ТРИЗ ставилась цель: дать правила органи-зации мышления по многоэкранной схеме на основе изучения закономерно-стей развития систем.

Многоэкранное мышление позволяет избежать многих драматических оши-бок. Изобретатель обычно нетерпелив — найдя первое же решение задачи, онсклонен считать свою миссию законченной. В результате новая техническаяидея используется только частично, не в полную меру.

15.2.3. Мета-модель Линия замещения человека в функционировании ТС. Однойиз главных линий системо-тсхнического развития ТС является замещение че-ловека в функционировании самой ТС (рис. 15.7).

Так, на исполнительном уровне происходило замещение рук, ног и мускуль-ной силы человека искусственными инструментами, механизмами и инымиисточниками энергии.

Page 271: основы классической триз. м. орлов

На уровне управления замещение шло в направлении создания автоматиче-ских регуляторов, копировально-обрабатываюших станков, автопилотов и ав-тонавигаторов и т. д.

На информационном уровне замещение началось с инструментов полученияинформации — различных датчиков и измерительных устройств, чувствитель-ность, точность и скорость работы которых намного превосходит возможно-сти челевечских органов чувств. Далее человек замещается в подсистемах по-лучения и обработки информации, подготовки и принятия решений.

Парадоксальной негативной тенденцией развития ТС (негативнымсверх-сверх-эффектом!) является замещение человека… в природе! Техносфе-ра, развиваемая человеком, оказывает негативное воздействие на природу иможет уничтожить ее, а значит, уничтожить и само человечество.

По современным представлениям, жизнь на Земле зародилась около четырехмиллиардов лет назад. Развиваясь, приспосабливаясь к существовавшим тогдана планете условиям, живые организмы начали преобразовывать окружаю-щую среду. Эти преобразования привели к появлению кислородсодержащейатмосферы, почвы, озонного слоя, современного ландшафта с его лесами, ре-ками, озерами, болотами, тундрой, тайгой и джунглями. Так появилась био-сфера, в которой миллионы видов живых организмов и преобразованная имипланета идеально подогнаны друг к другу. Здесь нет ничего лишнего.

Но вот появился человек, который, благодаря разуму, стал усиливать мощьсвоих мускулов, органов чувств, интеллект, начал создавать технику и техно-логические процессы.

Современная индустриальная мощь земной цивилизации — лишь логическоеразвитие технократического направления. Однако, экспансивное развитиетехнических систем оказывает негативное воздействие на Природу.

Техносфере не нужна почва. Поэтому на планете все меньше и меньше плодо-родной земли, а все больше шлака, мертвых пустынь и терриконов.

Техносфере не нужна кислородсодержащая атмосфера. Поэтому, например, ужесегодня промышленность США потребляет больше кислорода, чем его выра-батывают зеленые растения на территории США. США живут за счет кисло-рода, вырабатываемого российской тайгой и амазонскими джунглями. А есливсе страны достигнут такого уровня потребления кислорода?

Техносфере не нужен озоновый слой в атмосфере. Хотя на озон приходитсятолько одна десятимиллионная часть всей атмосферы, он поглощает околочетырех процентов солнечной энергии, падающей на Землю, что в сотни разпревышает количество тепла, выбрасываемого в атмосферу всей современнойиндустрией. Поэтому влияние состояния озонного слоя на погоду и климатна планете значительно сильнее техногенного воздействия на приземные слоивоздуха, а также сильнее парникового эффекта.

Техносфере не нужна живая Природа. Интенсивно растет число заболеванийраком, аллергией, легочных и сердечно-сосудистых заболеваний, генетиче-ских и наследственных болезней, обусловленных заражением воды, воздуха.

Page 272: основы классической триз. м. орлов

почвы. Это относится и к появлению опасных заболеваний промышленноразводимых животных, употребляемых для питания людей. Чрезвычайнуюопасность представляет СПИД, особенно в случае появления аналогов сосвойствами вирусного распространения.

Происходят необратимые изменения ландшафта, эрозия почв, исчезновениелесов, загрязнение морей и океанов, отравление питьевой воды.

Техносфера занимает ту же экологическую нишу, что и биосфера вцелом: машины, механизмы, технические устройства размещены наземле и в толще земли, воды, воздуха и активно обмениваются сними веществом и энергией.

Кардинальный выход из сложившейся ситуации только один: необходимопредоставить техносфере, особенно, ее индустриальной и энергетической час-ти, экологическую нишу вне биосферы! Это обеспечит сохранение и развитиебиосферы по тем законам и направлениям, которые были сформированы втечение миллиардов лет эволюции, а также гармоничное взаимодействиеобщности людей, как биологических объектов, с биосферой.

Такой экологической ниши на Земле нет. Но она есть в космосе, где длябольшинства технологических процессов идеальные условия: невесомость, ва-куум, сверхвысокие и криогенные температуры, неограниченные энергетиче-ские, пространственные и даже сырьевые ресурсы. Для широкомасштабногоосвоения космоса у человечества не так уж много времени, так как по целомуряду прогнозов из-за технократической агрессии против биосферы через од-но-два поколения (максимум в течение 50—80 лет!) начнется необратимая де-градация биосферы, а значит и вымирание человеческого рода. Освоениеближнего космоса — это не причуды фантастов. Уже сегодня это становитсяделом спасения жизни на Земле.

15.2.4. Мета-модель «Волна эволюции». Повышение «идеальности» сложныхсистем обеспечивается двумя противонаправленными процессами:

• развертывание — увеличение количества и качества выполняемых функ-ций за счет усложнения системы;

• свертывание — увеличение (сохранение) количества и качества функ-ций, выполняемых при одновременном относительном упрощениисистемы.

Относительным упрощение системы является только потому, что, как прави-ло, количество элементов становится меньшим. Однако при этом сложностьуходит в более высокую (а значит, более сложную!) организацию вещества иэнергии в элементах.

Процессы развертывания-свертывания могут чередоваться для разных видовсистемы одного и того же типа, и могут идти параллельными путями, то естьмогут сосуществовать в своих нишах техносфере разные по сложности систе-мы одного типа.

Page 273: основы классической триз. м. орлов

В целом в ТРИЗ совокупное действие процессов развертывания-свертыванияпредставляется так называемой «Волной эволюции» систем71 (рис. 15.8). Тра-пециями показаны процессы, существенные для соответствующего периода.

Линии развертывания (а) и свертывания (b) представлены на рис. 15.9.

Пример 97. Электроника и компьютеры. Потрясающим примером разнообразияи прогресса, в котором полностью реализована закономерность развертыва-ния—свертывания систем, являются компьютеры. Вы можете посмотреть лю-бую книгу по истории компьютеров от первых машин середины 1940-х годовдо середины 2006 года, чтобы самостоятельно увидеть подтверждение этой за-кономерности. Кратко можно указать на следующие примеры: первые компь-

Page 274: основы классической триз. м. орлов

ютеры на электронных лампах были менее мощными в вычислительных воз-можностях, чем любой современный многофункциональный карманный каль-кулятор, а их конструкции состояли из многих металлических шкафов изанимали целые комнаты; за последние 8 лет (с 1998 года) произошел неверо-ятный рост тактовой частоты работы, а значит, и почти такой же рост произво-дительности, персональных настольных и носимых компьютеров с начальногосреднего уровня около 200 Мегагерц до более чем 3000 Мегагерц (3 Гигагерц)при тех же размерах конструкции; ведущие фирмы продолжают создавать вы-числительные комплексы, состоящие из тысяч и десятков тысяч процессоров(развертывание!). Примеров здесь очень много, особенно с учетом роста функ-циональных возможностей и интеграции с системами управления.

Такие же примеры Вы легко обнаружите, если проследите мысленно измене-ние радиоприемников и телевизионных приемников, а также аудио- и видео-записываюших устройств в вашем доме, изменение телефонных устройств.

Пример 98. Микропроцессоры и микросхемы памяти. Пример частичного свер-тывания; оперативная память RAM персонального компьютера сегодня состо-ит из нескольких конструктивных микроплат. Полное свертывание: микро-процессор на одном кристалле или в виде одного конструкционного элемента(микросхема).

15.2.5. Мета-модель Длинные экономические волны (циклы) Кондратьева. Эко-номисты хорошо знают модель циклического развития экономики, характери-зующуюся волнами, имеющими стадии подъема, процветания, снижения идепрессии. Основу каждого цикла составляют крупнейшие открытия и изо-бретения, сделанные как правило на интервалах депрессии и полагающие на-чало очередной технической реконструкции цивилизации, а следовательно, иподъему экономики. Модель была предложена в 1925 году в России экономи-стом Н. Кондратьевым и вскоре признана во всем мире.

Для стран, отличающихся уровнем развития, эти волны имеют расхожденияво времени и в специфических особенностях, однако в целом во всех эконо-мических системах этот закон проявляется вполне отчетливо. Более того, этипроцессы свойственны и мировой экономике из-за все более растущего миро-вого рынка. Эти волны следует прогнозировать и учитывать в стратегическомпланировании разработки новых технических систем.

Так, в основе развития XVIII века лежали такие изобретения как паровойдвигатель и ткацкий станок. Второй цикл, приходящийся на XIX век, связан сразвитием металлургии и железнодорожного транспорта. На XX век приходят-ся третий цикл, обусловленный развитием электротехники, химии и авто-транспорта, и четвертый цикл, обусловленный развитием авиастроения, высо-комолекулярной нефтехимии и электроники.

В ряде прогнозов указывается, что начало XXI века совпадает с началом но-вого экономического подъема. Прогнозируемый пятый цикл связывается сразвитием целого комплекса направлений: биотехнологии, лазерная техника,микроэлектроника и нанотехнологии, системы коммуникации типа интернет,

Page 275: основы классической триз. м. орлов

искусственный интеллект, космическая индустрия. Назрела также потреб-ность в кардинальном изменении автомобильного и железнодорожноготранспорта.

15.2.6. Мета-модель Переходы в надсистему — подсистему. Эта мета-модельхорошо коррелирует с моделями развертывания—свертывания, но имеет не-которые специфические особенности, когда исходная система «исчезает», афункция ее остается, но передается либо в надсистему, либо в развившуюсячасть самой этой системы.

Надо помнить, впрочем, что многие типы систем сходного назначения про-должают длительное время сосуществовать совместно, параллельно во време-ни, занимая свои ниши в техносфере. Этот прием позволяет новой системе Впреодолеть функциональное сопротивление со стороны «старой» системы А иблокирующее влияние инерции интересов производителей системы А (см.схему 14.1). Это означает, что конкуренция нового со старым может быть нестоль драматичной. Более того, в принципе можно представить себе такуюидеальную картину, когда крупные производители технических систем отка-жутся от преследования сугубо экономических корыстых целей, а всегда будутинициаторами и создателями прогрессивных крупномасштабных инноваций.

Формула перехода в надсистему: новая система В приходит на смену системеА, включая систему А как одну из подсистем.

Пример 99. Удаленное считывание данных. Считывание показаний квартир-ных датчиков расхода воды, газа и электроэнергии производится без посе-щения квартиры служащими соответствующих компаний, а с помощью дис-танционного опроса этих приборов прямо с автомобиля, движущегося поулице, при этом в приборах содержится передающий радиопередатчик —функция считывания вынесена в надсистему сбора информации. Легко про-должить этот пример, подключив приборы к интернет. Таким образом, при-бор стал частью надсистемы, так как одна из его важнейших функций —«передача» показаний — технически включена в надсистему, которой этипоказания и нужны. Здесь инновация означает развертывание надсистемы исвертывание подсистемы.

Формула перехода в подсистему: новая система В приходит на смену системеА, как одна из ее бывших подсистем, забирая при этом все функции системы А.

Пример 100. Электрическое мотор-колесо. Первые большие карьерные само-свалы строились по традиционной схеме «дизельный двигатель — электроге-нератор — электродвигатель — трансмиссия на каждое колесо — колеса».Вскоре был изобретен самосвал со следующей схемой: «дизельный двига-тель — электрогенератор — электродвигатели-колеса», в которой электродви-гатель встроен в каждое колесо. Это резко упростило всю систему, так как ре-гулирование мощности и числа оборотов электродвигателя намного проще,чем в механической трансмиссии. Таким образом, механическая трансмиссияполностью исключена, а ее функции перешли к двигатель-колесу, в котороми двигатель стал частью колеса! Сверхэффектом такого свертывания стало

Page 276: основы классической триз. м. орлов

улучшение управляемости самосвалом. Здесь, фактически, произошло свер-тывание прежней системы привода на колеса и развертывание самого колеса.

15.2.7. Мета-модель Линии «Моно — Би / Поли — Моно». Эту модель частопутают с рассмотренной выше. Они действительно похожи по механизму об-разования новых систем. Однако, в модели перехода в надсистему-подсисте-му система А сохраняется соответственно, либо как часть в структуре систе-мы более высокого ранга (надсистема сбора информации включает первич-ные измерительные прибоы как датчики), либо как часть системы болеенизкого ранга.

Линии «Моно — Би / Поли — Моно» (рис. 15.10) показывают возможностьформирования систем одного и того же ранга, но с разной степенью сложно-сти и функциональности. А теперь, после сделанного уточнения, можно ска-зать, что эта же модель может применяться и как механизм перехода в над-систему или в подсистему. Просто это не главное ее назначение.

Исходная техническая система (моно-система) удваивается с образованиемби-системы, и многократно увеличивается при обединении нескольких сис-тем с образованием полисистемы. Как видно из рис. 15.10, могут объединять-ся системы с одинаковыми функциями, с функциями, имеющими отличия впараметрах (со смещенными свойствами), разнородными и инверсными (про-тивоположными) функциями.

Во всех этих случаях главным признаком изобретения является возникнове-ние нового системного качества, отсутствующего по отдельности у ранее су-ществовавших систем.

Page 277: основы классической триз. м. орлов

Пример 101. Коллекция ножей. Если нож как моно-систему соединить с дру-гим ножом, то получатся ножницы, имеющие иные свойства. Если металли-ческую пластину с определенным коэффициентом линейного расширения со-единить параллельно с пластиной, имеющей другой коэффициент линейногорасширения (то есть ту же функцию, но со сдвинутым параметром), то полу-чим биметаллическую пластину с новым свойством — изгибание при нагрева-нии (охлаждении). Если последовательно соединить пластины с одинаковымкоэффициентом линейного расширения, но с инверсным направлением рас-ширения (положительным и отрицательным), то получим би-систему с нуле-вым коэффициентом расширения!

Пример 102. Крылья летательных аппаратов. Реинвентинг по мета-модели«Моно — Би / Поли — Моно» приведен на рис. 15.11. Исторически парал-лельно начали развиваться все виды самолетных крыльев: моноплан, биплани полипланы. Вскоре более высокие показатели эффективности были дос-тигнуты для бипланов, однако стремление получить как можно более высо-кую скорость полета привело к преимущественному развитию монопланов.Бипланы, неприхотливые к обустройству взлетно-посадочной площадки, по-степенно были все же вытеснены быстрыми монопланами. Полипланы вконце 1930-х годов и вовсе были забыты. Это направление считалось непер-спективным. Теория развивалась преимущественно для моноплана и, час-тично, для биплана. Монопланы достигли гиперзвуковых скоростей в 5, 7 и10 скоростей звука, и рекордных высот более 100 км (исключительно воен-ные машины)! Однако, некоторые качества моноплана оставались дорогими.Например, крыло-моноплан сложно в изготовлении и в управлении, имеетвысокий вес.

В середине 1950-х годов в Московском авиационном институте под руково-дством С. Белоцерковского сложился коллектив энтузиастов, разработавшийвпоследствии теорию и практические конструкции для полипланов. Возрож-дение забытого привело за минувшие годы к открытию выдающихся свойствполиплана и к созданию действительно нового направления для развития са-молетов будущего. При одинаковой подъемной силе вес полиплана в 4—6 разменьше веса крыла со сплошным сечением и в 2—3 раза меньше веса крыла сполым сечением. С помощью динамизации шага между планами достигнутапрактически постоянная степень устойчивости во всем диапазоне скоростейот самых малых до гиперзвуковых! Сборка полипланов намного проще, чемкрыла-моноплана.

В этом примере Вы можете увидеть своеобразное обращение времени и воз-врат в прошлое, или, еще лучше — воспоминание о будущем, как подобное яв-ление назвал бы известный исследователь удивительных загадок ушедшихземных цивилизаций фон Деникен72!

Практически же мы можем сделать вывод о том, что приемы, собранные вэтой мета-модели, показывают, что переходы могут идти не только строго

Page 278: основы классической триз. м. орлов

Page 279: основы классической триз. м. орлов

линиям «Моно — Би / Поли — Моно», но и по линиям «Би / Поли —Моно — Би / Поли» или «Моно — Би / Поли». То есть, мы снова видимсвойственную почти всем приемам ТРИЗ возможность версификации или об-ращения направления действия.

15.2.8. Мета-модель Линии развития ресурсов. Развитие систем в направлениироста идеальности связано с достижением таких свойств, как повышение сте-пении координации ресурсов и применения хорошо управляемых ресурсов.

Управляемость системы является свидетельством ее высокого развития. Ноуправляемость возможна только в том случае, когда управляемые компонентысистемы используют динамизированные ресурсы, управляемый параметр ко-торых изменяется в нужном диапазоне.

Эти тенденции отражены в линиях развития ресурсов. Наиболее важные ме-та-модели представлены ниже.

Переход к высокоэффективным полям приведен на рис. 15.12.

Здесь следует иметь в виду, что некоторые из этих «полей» нужно рассматри-вать как физико-математические понятия. Например, если расмотреть всемножество механических сил, приложенных к объекту, как множество векто-ров, то это множество и образует пространственное поле действия этих сил,или механическое поле.

Далее, к механическим полям здесь отнесены также акустическое и гравита-ционное. Гравитация сообщает вес всем телам на Земле. Хотя само по себегравитационное поле имеет далеко не полностью раскрытые свойства.

Page 280: основы классической триз. м. орлов

Пример 103. Забивание свай. В течение одного десятилетия в 1970-х годах от-мечено развитие способов забивания строительных свай по всей приведеннойлинии: падающий молот (гравитационный «механизм») — гидравлическиймолот — электрогидравлический удар (на основе эффекта Юткина) — элек-тромагнитный молот (разгоняется в соленоиде) — «электромагнитная свая»:свернутая би-система «свая—молот», в которой поверхностный слой головкибетонной сваи пропитывается электролитом, бетон становится проводником,а вместо молота разгоняется сама свая. Следует отметить, что параллельно сэтими инновациями были признаны изобретениями и несколько пневматиче-ских молотов, обладающих простой конструкцией.

Следующие три линии также связаны с динамизацией систем.

Примеры для иллюстрации дробления инструмента (по рис. 15.13):

Пример 104. Линия дробления хирургического инструмента: металличе-ский скальпель — ультразвуковой скальпель — вода под давлением — ла-зерный луч.

Пример 105. Линия дробления режущего инструмента газонокосилки: цельныеметаллические вращающиеся ножи — вращающаяся металлическая цепь —вращающаяся леска — вращающаяся струя воды под давлением.

Примеры для иллюстрации дробления вещества (по рис. 15.14):

Пример 106. Уменьшение трения скольжения в парах вращения «вал — опо-ра»: непосредствеенный контакт трущихся металлических поверхностей вала

Page 281: основы классической триз. м. орлов

и опоры скольжения — бесконтактная гидростатическая опора (жидкая смаз-ка) — бесконтактная газостатическая опора (газ подается под давлением черезпористые втулки) — магнитная сверхточная опора.

Пример 107. Повышение долговечности и надежности контактов скольжения(щеток) для передачи тока на электродвигатели и от электрогенераторов:угольные щетки — щетки из спеченных углеродных волокон — ферромагнит-ный порошок с постоянным магнитным полем — магнитная жидкость — ио-низированный газ — разряд в вакууме.

Примеры для иллюстрации введения пустоты (по рис. 15.15):

Пример 108. Применение пористых материалов в подшипниках скольжения(см. Пример 106).

Пример 109. Автомобильная шина: сплошная — с воздушной полостью (ка-мерная и бескамерная) — шина с перегородками (многокамерная) — шины изпористого материала — шины из капиллярно-пористого материала с охлади-телем — шины с заполнением пористыми полимерными частицами и гелеоб-разным веществом.

В заключение этого раздела приведем одну более сложную мета-модель ростауправляемости полей (рис. 15.16). Можно без преувеличения сказать, что про-гресс современной радиотехники, электронной оптики, компьютерной вычис-лительной техники, компьютерной томографии, лазерной техники и микро-электроники полностью опирается на эту линию развития.

Page 282: основы классической триз. м. орлов

Конкурирующими системами называют в ТРИЗ такие системы, которые имеютодно и то же назначение, одинаковую главную полезную функцию, но раз-личную техническую реализацию и, следовательно, различную эффектив-ность. Так, по этому определению, конкурирующими являются обычные же-лезнодорожные поезда и поезда на магнитном подвесе.

В принципе, конкуренцию систем можно рассматривать и в более широкомконтексте, и в более узком. В более широком смысле можно рассматриватьконкурирующие системы разных классов (неоднородные системы), например,автомобильный и железнодорожный транспорт. В более узком — рассматри-вать конкуренцию близких (однотипных) систем, например, среди несколькихмарок автомобилей с близкими характеристиками.

В любом случае для интеграции выбираются так называемые альтернативныесистемы — имеющие прямо противоположные пары позитивных и негатив-ных свойств.

Пример 110 (начало). Колесо велосипеда. В известном ТРИЗ-примере рассмат-риваются спицевое колесо, которое имеет малый вес и высокую прочность, носложно в сборке, и сплошное дисковое металлическое колесо (рис. 15.17,b), ко-торое при простой сборке имеет повышенный вес либо пониженную прочность.

Метод интеграции альтернативных систем позволяет направленно конструи-ровать новые системы путем объединения альтернативных систем таким обра-зом, чтобы их позитивные свойства перешли в новую систему, а негативныеисчезли или были значительно ослаблены. Тем самым достигается повышениестепени идеальности (эффективности) новой системы.

В частности, этот метод позволяет продлить жизнь существующих альтерна-тивных систем, одна из которых (или обе) достигла пределов своего развитияи исчерпала видимые ресурсы для дальнейшего прогресса. Действительно,эффективность систем оценивается как отношение показателей, принадлежа-щих к группам позитивных и негативных факторов, то есть к числителю и кзнаменателю соответствующей формулы (см. раздел 14.2):

I) числитель: скорость, грузоподъемность, точность и так далее;

Page 283: основы классической триз. м. орлов

2) знаменатель: расход электроэнергии, расход топлива, затраты на обслужи-вание, сложность производства, экологический ущерб и его компенсацияи т. д.

При этом объединяемые системы должны иметь альтернативные пары свойств,например, одна система является высокопроизводительной, но дорогой исложной, а другая — менее производительной, зато простой и недорогой. Важ-но, чтобы при объединении произошло свертывание (вытеснение) за пределыновой системы недостатков альтернативных систем и развертывание (возмож-но, с усилением) полезной функции, по которой происходит интеграция.

Рассмотрим примеры интеграции однородных альтернативных систем.

Пример ПО (окончание). Достоинство спицевого колеса обеспечивается пред-варительной напряженностью конструкции. Именно это свойство и нужноперенести на дисковое колесо. Для этого диск выполнен из двух тонких диа-фрагм 2 (рис. 15.18,а), устанавливаемых в обод колеса и растягиваемых в об-ласти осевой втулки 1 таким образом, чтобы возникло предварительное на-пряжение конструкции. Такое колесо (рис. 15.18,b), намного проще в изго-товлении и регулировке и при одинаковой прочности обладает меньшимвесом по сравнению со спицевым колесом! Дополнительные возможности дляснижения веса практически без потери прочности состоят в создании на диа-фрагмах вырезов или отверстий (рис. 15.18,с). Процесс изготовления диа-фрагм при этом не усложняется, так как они получаются одним ударом штам-па. Штамп, разумеется, становится более сложным, но это практически несказывается на стоимости производства при достаточно большой серии.

Пример 111. Подшипник скольжения? Такой подшипник прост в изготовлении,выдерживает большие радиальные нагрузки и тихо работает. Однако он имеетбольшой недостаток — требует приложения больших усилий для старта, таккак в статичном состоянии смазка выдавливается между валом и опорой, ипоэтому при старте фактически имеет место сухое трение. Подшипник каче-ния является альтернативной системой, так как имеет малый пусковой мо-мент, однако намного сложнее в изготовлении, дорог, плохо выдерживает ра-диальные нагрузки и работает с большим шумом.

Page 284: основы классической триз. м. орлов

В качестве базовой системы обычно выбирают более простую и недорогую, вданном случае, подшипник скольжения. Как сделать, чтобы его пусковой мо-мент был почти таким же, как у подшипника качения? Нужно объединить обесистемы. Например, следующим образом: добавить в смазку микрошарики!Тогда при старте потребуется значительно меньший пусковой момент, а принормальной работе будет обеспечен режим скольжения.

В качестве примера интеграции неоднородных систем рассмотрим идеюСтрунной Транспортной Системы (СТС) А. Юницкого (73).

Пример 112. Струнная Транспортная Система А. Юницкого. С каким транспор-том человечество входит в новое тысячелетие? Будет ли цивилизация медленностагнировать, оставаясь в плену психологической инерции — безальтернатив-ного поклонения автомобилю и самолету? Будет ли железная дорога и далеепоглощать ресурсы на поддержание своей морально устаревшей технострукту-ры? Наконец, наступит ли понимание того, что наша планета сейчас не болеенадежна, чем «Титаник», на котором тоже не было надежного прогнозирова-ния и управления и не хватало спасательных средств?!

Автомобиль:

1. Появился в конце XIX века. Построено за прошедший век свыше 10 млн.км дорог, выпущено около 1 млрд. автомобилей. Автомобиль среднегокласса стоит 15…20 тысяч долларов США.

2. Современный автобан стоит 5… 10 млн долларов США/км, изымает изземлепользования около 5 га/км земли, а с инфраструктурой — до10 га/км. Объем земляных работ превышает 50 тыс. м3/км. Автомобильныедороги и их инфраструктура отняли у человечества свыше 50 миллионовгектаров земли, причем отнюдь не худшей земли. Такова суммарная тер-ритория таких стран, как Германия и Великобритания. Резерва для строи-тельства дополнительных автодорог в Германии практически нет.

3. Ежегодно простои автотранспорта в пробках наносят ущерб экономикеГермании, исчисляемый многими десятками миллиардов долларов.

4. В последние десятилетия автомобиль стал основным рукотворным оруди-ем убийства человека. По данным Всемирной организации здравоохране-ния на автомобильных дорогах мира ежегодно гибнет (в том числе и отпослеаварийных травм) свыше 900 тыс. человек, несколько миллионовстановятся калеками, а свыше 10 млн. человек — получает травмы.

5. Средневзвешенная скорость движения на дорогах 60…80 км/ч; автомобильпростаивает не менее 90 % времени своего жизненного цикла; среднеерасстояние поездок — 10…20 км; ездить в течение одного дня более400 км — утомительно и опасно даже по автобанам Германии.

6. Автомобиль стал основным источником шума и загрязнения воздуха в го-родах. Выхлоп автомобиля содержит около 20 канцерогенных веществ и

Page 285: основы классической триз. м. орлов

более 120 токсичных соединений. Автомобили расходуют суммарнуюмощность, превышающую мощность всех электростанций мира!

7. Негативное воздействие на Природу оказывают системы, которые обслу-живают автотранспорт: нефтяные скважины и нефтепроводы, нефтепере-рабатывающие и асфальтобетонные заводы и т. д.

Железнодорожный транспорт:

1. В его современном понимании зародился в начале XIX века, хотя первыеколейные дороги существовали еще в Древнем Риме. Во всем мире по-строено более миллиона километров железных дорог.

2. В современных условиях километр двухпутной дороги с инфраструктуройстоит 3…5 млн долларов США, пассажирский вагон — около 1 млн дол-ларов США, электровоз — около 10 млн долларов США. Требует пристроительстве много ресурсов: металла (стали, меди), железобетона, щеб-ня. Объем земляных работ в среднем около 50 тыс. м3/км. Отнимает уземлепользователя много земли — около 5 га/км, а с инфраструктурой —до 10 га/км.

3. В сложных географических условиях требует строительства уникальныхсооружений — мостов, виадуков, эстакад, тоннелей, что значительно удо-рожает систему и усиливает негативное воздействие на Природу. Средне-взвешенная скорость движения — 100…120 км/ч.

4. Шум, вибрация, тепловые и электромагнитные излучения от движущихсяпоездов влияют на среду обитания живых организмов и жителей приле-гающих к дорогам населенных пунктов. Пассажирские поезда в течениегода выбрасывают на 1 км полотна и полосы отвода до 12 тонн мусора и250 кг фекалий.

5. Поезда на магнитном подвесе не могут кардинально изменить ситуациюна железнодорожном транспорте (по крайней мере, в Европе) и требуютнедопустимых для экономики любого европейского государства затратна строительство новых дорог и снос или реконструкцию существующихдорог.

Авиация:

1. Самый экологически опасный и энергоемкий вид транспорта. У современ-ных самолетов суммарный выброс вредных веществ в атмосферу достигает30…40 кг/100 пассажиро-километров. Основная масса выбросов самолетовконцентрируется в районах аэропортов, т. е. около крупных городов — вовремя прохода самолетов на низких высотах и при форсаже двигателей. Намалых и средних высотах (до 5000…6000 м) загрязнение атмосферы окис-лами азота и углерода удерживается несколько дней, а затем вымываетсявлагой в виде кислотных дождей. На больших высотах авиация являетсяединственным источником загрязнения. Продолжительность пребываниявредных веществ в стратосфере много дольше — около года. По своей ток-сичности современный реактивный лайнер эквивалентен 5…8 тысячамлегковых автомобилей и расходует столько кислорода на сжигание топли-

Page 286: основы классической триз. м. орлов

ва, сколько необходимо его для дыхания более 200 000 человек. На восста-новление содержания такого количества кислорода в атмосфере необходи-мо несколько тысяч гектаров соснового леса или еще большая площадьпланктона океана.

2. Каждый пассажир во время многочасового полета за счет космическогоестественного гамма-излучения получает дополнительную дозу облученияв несколько тысяч микрорентген (доза облучения в салоне самолета дости-гает 300…400 мкР/ч при норме 20 мкР/ч).

3. Под аэропорты необходимо отводить земли, по площади сопоставимые сполосой отвода под железные и автомобильные дороги, но расположенныев непосредственной близости от городов, а значит, более ценных.

4. Авиация оказывает очень сильное шумовое воздействие, особенно в рай-онах аэропортов, а также — значительные электромагнитные загрязненияот радиолокационных станций.

5. Воздушный транспорт — самый дорогой. Стоимость современных аэробу-сов достигает 100 млн долларов США, затраты на строительство крупногомеждународного аэропорта превышают 10 млрд долларов США.

Этот краткий анализ не оставляет сомнений в необходимости искать возмож-ности для кардинального изменения транспортных коммуникаций. К однойиз таких возможностей относится и изобретение инженера из Республики Бе-ларусь Анатолия Юницкого. Впервые идея была опубликована им в 1982 годув бывшем СССР и, разумеется, не нашла официальной поддержки. Ее автореще до этого события уже был занесен в списки неблагонадежных. Попыткидискредитации А. Юницкого предпринимались с конца 1970-х годов за егоидею о геокосмической индустриализации (см. раздел 18.2), резко контрасти-ровавшей с официальной триумфальной политикой ракетного освоения око-лоземного космоса.

А теперь выполним реинвентинг изобретения А. Юницкого на основе Методаинтеграции альтернативных систем.

Альтернативная система 1 — высокая скорость, но малая маневренность (же-лезнодорожный состав), система 2 — невысокая скорость, но большая манев-ренность (автомобиль).

При междугородных коммуникациях нельзя игнорировать требование безо-пасности и достаточно большой скорости движения. Поэтому в данном случаеза базовую принимается железная дорога. С другой стороны, в случае авариипо причине одиночного схода с путевой структуры автомобиль представляетменьшую опасность, так как несет меньшее количество пассажиров. То есть.технические преимущества автомобиля существенно обусловлены его модуль-ностью и малыми габаритами по сравнению с поездом.

Эти рассуждения приводят к первому положению: транспорт должен статьвысокоскоростным на основе модулей с небольшим числом пассажиров.

Page 287: основы классической триз. м. орлов

Далее, проблемы отчуждения земли и стоимость строительства новых трасс.Высокая скорость требует высокой ровности и прямолинейности путевойструктуры. Именно этим требованиям в большей мере удовлетворяют желез-нодорожные пути. Однако, из-за огромного веса железнодорожных составовпутевая структура требует обустройства мощных фундаментов, экологическивредных и дорогостоящих. Переход к модульной концепции транспорта при-водит ко второму положению: путевая структура рельсового типа можетпредставлять собой достаточно легкие сооружения, поднятые над землей и от-личающиеся особой ровностью и прямолинейностью, относительно не зависящейот рельефа местности.

Модульный транспорт безальтернативно должен быть только электродвижи-мым (см. далее Практикум 14—15). Отсюда третье положение: если автомо-биль претендует на место в будущем, то он должен стать электромобилем, ибыть интегрированным с новой путевой структурой.

Идея СТС заключается в следующем.

Основой СТС являются два специальных токонесущих рельса-струны (изоли-рованные друг от друга и опор), по которым на высоте 10…20 м (или более,при необходимости) движется четырехколесный высокоскоростной модуль —электромобиль. Благодаря высокой ровности и жесткости струнной путевойструктуры на СТС легко достижимы скорости движения в 250…350 км/час(в перспективе до 500…600 км/час и даже до 1000 км/час в вакууммированнойтрубе). Струнные элементы натянуты до суммарного усилия 300…500 тонн ижестко закреплены в анкерных опорах, установленных с шагом 1…3 км. Под-держивающие опоры установлены с шагом 20… 100 м.

Электромодули имеют грузоподъемность до 5000 кг и вместимость до 20 пас-сажиров (рис. 15.19 и 15.20). Запитка электрической энергией осуществляетсячерез колеса, которые контактируют с токонесущими головками специальныхрельсов.

Page 288: основы классической триз. м. орлов

При использовании автономного энергообеспечения модуля, головка рельсаи, соответственно, вся путевая структура, будут обесточенными.

Трассы СТС легко совмещается с линиями электропередач, с ветряными исолнечными электростанциями, с линиями связи, в том числе оптико-воло-конными.

Струны СТС выполняются из высокопрочной стальной проволоки диаметром1…5 мм каждая. Струны собираются в пучок и размещаются с минимальновозможным провесом внутри пустотелого рельса (рис. 15.21).

Рельс монтируется таким образом, чтобы после фиксации струн путем запол-нения полости рельса твердеющим заполнителем, например, на основе це-мента или эпоксидной смолы, головка рельса оставалась идеально ровной.Поэтому головка, по которой и будет двигаться колесо транспортного модуля,не имеет провесов и стыков по всей своей длине.

Page 289: основы классической триз. м. орлов

Наибольшее количество в СТС будет промежуточных опор, которые устанав-ливаются через 25… 100 м. СТС спроектирована таким образом, чтобы проме-жуточные опоры испытывали преимущественно только вертикальную нагруз-ку, причем незначительную — 25 тонн при пролете 50 м.

Примерно такую же нагрузку испытывают опоры высоковольтных линийэлектропередач, поэтому они конструктивно и по материалоемкости близкидруг к другу. Максимальные горизонтальные нагрузки на всей трассе испыты-вают только две концевые анкерные опоры (на них действует односторонняянагрузка): 1000 тонн для двухпутной и 500 тонн для однопутной трассы.

СТС спроектирована с очень жесткой путевой структурой. Например, припролете 50 м абсолютный статический прогиб пути от сосредоточенной на-грузки в 5000 кгс, размешенной в середине пролета, составит всего 12,5 ммили 1/4000 от длины пролета. Для сравнения: современные мосты, в том чис-ле и для скоростных железных дорог, проектируют с допустимым относитель-ным прогибом, в десять раз большим — 1/400. Динамический прогиб путиСТС под действием подвижной нагрузки будет еще ниже — до 5 мм, или1/10 000 пролета. Такой путь будет для колеса транспортного модуля болееровным, чем, например, дно соляного озера, где, как известно, в концеXX века автомобиль впервые преодолел скорость звука — 1200 км/час.

Предельную скорость в СТС будет ограничивать не ровность и динамика ко-лебаний пути, не проблемы во фрикционном контакте «колесо — рельс»,а аэродинамика. Поэтому вопросам аэродинамики в СТС уделено особопристальное внимание. Получены уникальные результаты, не имеющие ана-логов в современном высокоскоростном транспорте, в том числе и в авиа-ции. Коэффициент аэродинамического сопротивления модели пассажирско-го экипажа, измеренный при продувке в аэродинамической трубе, составилвеличину Сх = 0,075. Намечены меры по уменьшению этого коэффициентадо Сх = 0,05…0,06. Благодаря низкому аэродинамическому сопротивлениюдвигатель мощностью 80 кВт обеспечит скорость движения двадцати местно-го экипажа в 300…350 км/час, 200 кВт — 400…450 км/час, 400 кВт —500…550 км/час. При этом механические и электромеханические потери вСТС будут невелики, так как КПД стального колеса составит 99 %, мо-тор-колеса в целом — 92 %.

Надежность путевой структуры и опор СТС как строительной конструкциибудет на уровне надежности висячих и вантовых мостов, так как они конст-руктивно очень близки друг к другу, при этом струны в СТС значительно луч-ше защищены от климатических и механических воздействий, чем канатымостов.

В экономическом плане можно отметить, что при серийном производствестоимость обустроенной двухпутной трассы СТС с инфраструктурой (вокза-лы, станции, грузовые терминалы, депо и т. д.) составит, млн. USD/KM:

1,0…1,5 — на равнине, 1,5…2,5 — в горах, 1,5…2,5 — на морских участках приразмещении трассы над водой и 5…8 при размещении в подводной или под-земной трубе-тоннеле.

Page 290: основы классической триз. м. орлов

Транспортный модуль конструктивно проще легкового автомобиля, поэтомупри серийном производстве его стоимость будет на уровне стоимости микро-автобуса — 20…40 тыс. долларов США, или на одно посадочное место —I…2 тыс. долларов США/место (для двадцати местного электромодуля). Длясравнения приводим относительную стоимость подвижного состава в другихскоростных системах: самолет — 100…200 тыс. долларов США/место, поезд намагнитном подвесе — 100…200 тыс. долларов США/место, высокоскоростнаяжелезная дорога — 20…30 тыс. долларов США/место.

Таким образом, технико-экономические и экологические характеристикипредлагаемого вида транспорта чрезвычайно привлекательны:

1. Для прокладки струнных трасс потребуется незначительное отчуждениеземли (в 150…200 раз меньше, чем для автомобильных и железных дорог).Отпадает необходимость в устройстве насыпей, выемок, тоннелей, в вы-рубке лесов, сносе строений, поэтому СТС легко внедряема в городскуюинфрасреду и реализуема в сложных природных условиях: в зоне вечноймерзлоты, в горах, болотистой местности, пустыне, в зоне водных препят-ствий (реки, озера, морские проливы, шельф океана и др.).

2. Повышается устойчивость коммуникационной системы к стихийным бед-ствиям (землетрясения, оползни, наводнения, ураганы), неблагоприятнымклиматическим условиям (туман, дождь, гололед, снежные заносы, пыль-ные бури, сильные жара и холод и т. п.).

3. СТС экологически чище, экономичнее, технологичнее, безопаснее любойдругой известной скоростной транспортной системы.

4. Благодаря низкой материалоемкости и высокой технологичности трассыСТС будут дешевле обычных (в 2…3 раза) и скоростных (в 8… 10 раз) же-лезных дорог и автобанов (в 3…4 раза), монорельсовых дорог (в 2…3 раза),поездов на магнитном подвесе (в 15…20 раз), поэтому проезд по СТС бу-дет самым дешевым — 5…8 долларов США/1000 пасс. км и до 2…5 долла-ров США/1000 тонно • км.

5. СТС может строиться как технологические и специализированные трассы,грузовые, пассажирские и грузопассажирские транспортные линии; низко-скоростные (до 150 км/час), среднескоростные (150…300 км/час) и высо-коскоростные (свыше 300 км/час) магистрали. Пропускная способностьдвухпутной трассы до 500 тыс. пасс/сутки и до 1 млн тонн грузов/сутки.По пропускной способности заменит современный нефтепровод, причемтрасса СТС будет дешевле, а себестоимость транспортировки нефти будетв 1,5…2 раза ниже, чем по нефтепроводу. СТС могут обеспечить вывоз му-сора за пределы мегаполисов; доставку руды из карьеров на обогатитель-ную фабрику; транспортировку угля к тепловой электростанции; транс-портировку нефти от месторождения к нефтеперерабатывающему заводу;поставку в большом объеме — порядка 100 миллионов тонн в год — высо-кокачественной природной питьевой воды в густонаселенные регионымира на расстояние 5… 10 тысяч километров и т. п.

Page 291: основы классической триз. м. орлов

6. Например, общий объем затрат для трассы СТС Париж (Лондон) — Моск-ва составит 5,7 млрд долларов США (протяженность трассы 3110 км), изних 5,2 млрд долларов США — на трассу и инфраструктуру, а 0,5 милли-арда долларов США — на подвижной состав. Через 5—7 лет трасса, вне-денная в строй, начнет окупаться. Себестоимость проезда из Москвы вПариж при этом составит 32 долларов США/пасс, время в пути — 7 час10 мин (расстояние 2770 км, расчетная скорость движения 400 км/час).Через 10 лет эта струнная магистраль будет давать в среднем около 2 млрддолларов США в год чистой прибыли.

Могут быть предложены десятки вариантов прокладки струнных трасс (см.например, рис. 15.22 и рис. 15.23), важных практически для всех континентови стран мира.

Page 292: основы классической триз. м. орлов

В СТС реализованы следующие принципы ТРИЗ (рис. 15.24).

Применение СТС позволит: кардинально сократить число авиационных мар-шрутов на расстояния до 2000 км, сохранив самолеты только для трансокеан-ских перелетов и на расстояния свыше 2000 км; кардинально изменить на-грузку на автомобильные дороги и снять проблему пробок на автобанах;принципиально реконструировать (сократить) и реструктурировать системужелезных дорог, сохранив их только для крупных грузовых артерий.

Наше повышенное внимание к развитию транспорта обусловлено тем, чтотранспорт является одной из фундаментальных назревших проблем, требую-щих немедленных и решительных изменений.

Коммуникации или транспорт как обмен (перевозка) материальных и человече-ских ресурсов является неотъемлемым условием личного и общественного блага;это средство человеческого общения в территориальном и интеллектуальномпространстве; это образ жизни и одна из фундаментальных ценностей культу-ры, показатель уровня цивилизованности страны.

Неудовлетворительное состояние транспортной сети ведет к нарушению нор-мального функционирования экономики, спаду производства в смежных отрасляхнародного хозяйства, неоправданным потерям времени и метериальных ресурсов,сокращению рабочих мест, повышению стоимости товаров и услуг, снижениюуровня жизни населения и возможностей для развития образования и культуры,сдерживанию внешней торговли и туризма, ухудшению экологической ситуации,затруднениям в ликвидации последствий чрезвычайных ситуаций, повышениюсмертности населения.

Page 293: основы классической триз. м. орлов

35. Автомобиль. Примените мета-модели «Полиэкран» и «Моно — Би /Поли — Моно», «Метод интеграции альтернативных систем» и «Линии систе-мо-технического развития».

35.1. Знаете ли Вы альтернативные источники энергии для автомобиля? На-пример, маховики профессора Гулия, двигатели на сжатом воздухе, водород-ные двигатели… Продолжите этот список.

35.2. Можете ли Вы предложить более экономичный двигатель с использова-нием иных физико-технических эффектов, например, пьезо-электрического.

35.3. Альтернативы развития модуля (модулей) СТС А. Юницкого:

• кабина для перенесения людей или грузов;

• платформа для перенесения легкового автомобиля вместе с пассажи-рами;

• интегрированный модуль-автомобиль, который сам въезжает на рельсыСТС, движется по СТС, а затем съезжает и перемещается как обычныйавтономный автомобиль;

• предложите собственные решения!

Каким может быть идеальный автомобиль, если при использовании СТС от-падет необходимость ездить на автомобиле на расстояния, например, более100 км со скоростью свыше 50 км/час?

36. Железная дорога и автобаны. Что может измениться в работе этих транс-портных магистралей при развитии СТС? Не останутся ли они только длягрузового транспорта? Примените мета-модели «Полиэкран» и «Метод инте-грации альтернативных систем».

37. Воздушный транспорт. Безопасность! Экологичность! Экономичность! Гдеальтернативы? Действительно ли нужны гиперзвуковые авиалайнеры для пе-релета Москва — Сан-Франциско или Париж — Сидней на высоте 30 км соскоростью 10 000—12 000 км/час за 2 часа? Или «Цеппелины» больше подхо-дят для будущего?

38. Транспорт в городе. Что лучше — вагоны на 100—200 человек или индиви-дуальные транспортные устройства? Самодвижущиеся тротуары и дороги илииндивидуальные легкие летательные аппараты? Дороги в городе: под землей,на земле, на уровне 10—20 метров, над домами на уровнях 20—100 метров?Не забудьте о возможности параллельного сосуществования старых и новыхсистем.

Page 294: основы классической триз. м. орлов

39. Транспортировка нефти. Катастрофы с нефтеналивными танкерами. Ката-строфы с трубонефтепроводами. Известны танкеры с модулями для перевозкигрузов — это решение проблемы безопасности и экологичности? Является лиидея СТС идеальным решением для полного отказа от наземных трубонефте-проводов? Можно ли рассмотреть совместно идеи модульных танкеров и мо-дульности СТС?

40. Вода. Где взять неограниченно много чистой и полезной воды?

41. Леса. Пришествие компьютера не уменьшило, а увеличило расход бумагии уничтожение лесов — легких планеты. Ограничивать объемы газет и коли-чество издаваемых газет? Перестать печатать книги? Не применять бумагу дляупаковки? Или… Продолжите изобретать в более конструктивном духе.

42. Электроэнергетика. Над Землей так много солнечной энергии! И так мно-го энергии содержится в ядерном синтезе! Так много электрической, тепловойи кинетической энергии в атмосфере и океанах Земли! А на Земле все еще нехватает энергетических ресурсов. И атмосфера Земли продолжает загрязнятьсяи перегреваться от сжигания полезных ископаемых, и прежде всего, нефти,только для получения энергии!

43. Жилище в городе. Недопустимый шум. Пыль. Транспортные проблемы. От-сутствие связи с живой Природой. Зависимость от соседей. Где и как можетобустраивать свое жилище человек ближайшего будущего? В частности, до-пустите, что перемещение в центр метрополии и из него в радиусе 100 км бу-дет занимать не более одного часа. Еще одно небольшое допущение — жизньвместе с природой!

Page 295: основы классической триз. м. орлов

Тактика изобретения

Page 296: основы классической триз. м. орлов

Машины развиваются постоянно, ипотому в изобретательских задачах ни-когда нет недостатка.

Суть ТРИЗ в том, что она принципиа-льно меняет технологию производствановых технических идей.

Вместо перебора вариантов ТРИЗпредлагает мыслительные действия,опирающиеся на знание законов разви-тия технических систем74.

Генрих Альтшуллер

Page 297: основы классической триз. м. орлов

Выявление и решение конструкторско-технологических проблем с острымифизико-технологическими противоречиями всегда происходит при наличииопределенной стратегической цели. Это могут быть цели устранения дефектовпри производстве продукции, цели модернизации самой продукции, цели соз-дания переспективнх конкурентоспособных идей и т. д.

Практика поставляет инженеру непрерывный поток более или менее сложныхзадач, требующих как немедленного решения, так и осторожного продумыва-ния на будущее.

Поэтому при появлении некоторой проблемы следует, по крайней мере, опре-делить ее значимость, необходимый срок для решения, допустимые инвести-ции на поиск решения и ряд других вопросов.

Мы можем исходить из того (рис. 16.1), что на каждом предприятии применя-ются определенные методы и модели анализа качества продукции (и техноло-гий), например, на базе методологии Total Quality Management (TQM). Такжемы исходим из того, что создание изменений поддерживается определеннымисредствами автоматизации проектирования, моделирования и испытаний,входящими в состав средств Computer Aided Engineering (CAE) и использующи-ми определенные методы системы Innovation Design Management (IDM), допол-ненной методами TRIZ/ CROST — Technologie. В этом случае улучшение про-дукции (производства) осуществляется путем непрерывного создания иннова-ций на основе цикла: TQM показывает, что нужно улучшить, a IDMпоказывает, как это сделать.

Page 298: основы классической триз. м. орлов

Краткий анализ проблемной ситуации должен включать тактические вопросыпо оценке сложности проблемы и выбору способа ее решения.

Если на предприятии не проводится постоянный анализ качества продукции(производства), то постановки задач часто даются в расплывчатой форме, не-точно и неполно. Поэтому необходимо правильно определять хотя бы степеньполноты исходного описания и характер проблемной ситуации.

В школе ТРИЗ были сформулированы признаки для ориентировочного опре-деления типа проблемной ситуации. Все проблемные ситуации были разделе-ны на 6 типов (рис. 16.2) в зависимости от состава и полноты описания при-знаков ситуации на основе «матрицы Квинтиллиона» (рис. 4.1).

Описание ситуации социального типа (с) включает в себя проблемы экономи-ки, планирования, управления, рекламы, маркетинга, образования и так далеебез упоминания конкретной технической системы. В формулировках проблемприсутствуют в основном субъекты ситуации, а проблемные противоречия от-носятся к отдельным людям или к группам людей. Например: Предложитемероприятия по повышению творческой активности работников предприятия.Часто такие задачи пытаются решать экономико-социальными методами, хотяв основе могут лежать технические проблемы, связанные, например, с техни-ческой оснащенностью рабочих мест.

Ситуация социально-производственного типа (сп) дополняется указаниемместа конфликта и включает проблемы качества продукции, вопросы эколо-гии и безопасности труда и так далее. Рассмотрим исходные ситуации и ихразрешение на «старинном» ТРИЗ-примере.

Пример 113 (начало). Закалочная ванна. Предложите способ очистки воздуха вцехе термообработки. Основной признак — конфликт между человеком и

Page 299: основы классической триз. м. орлов

производственной системой. В этой постановке также отсутствует указание напричину проблемы в виде технической системы.

Описание производственно-технологического типа (пт) уже включает техни-ческие объекты и проблемы их функционирования, связанные с несоответст-вием технологических, эксплуатационных и физико-химических параметровсистемы требуемым значениям (дефекты, аварии, высокий расход энергии иматериалов, появление вредных факторов).

Пример 113 (продолжение 1). В цехе термообработки на участке закалки приопускании в масляную ванну крупногабаритной детали выделяется много вредно-го дыма; предложите способ очистки атмосферы цеха. Основным недостаткомтаких постановок является ошибочное принятие следствия за причину. Здесьявно присутствует только административное противоречие, в то время как дляпрактического решения проблемы нужно получить техническое или физиче-ское противоречие.

Ситуация конструкторско-технологического типа (кт) включает постановкупроблемы развития существующей технической системы. Характерным при-знаком такой ситуации является наличие явной формулировки техническогопротиворечия.

Пример 113 (продолжение 2). При ускоренном опускании крупногабаритной де-тали в масляную закалочную ванну выделяется меньше дыма, но нарушается ре-жим закалки. Вполне четко указано, где, что и когда происходит, но не ясно,как решить проблему. Конечно, такой информации может быть также недос-таточно для решения задачи, но сама постановка уже вполне конструктивна иможет служить основой для попыток решить проблему на уровне техническо-го противоречия, а также для дальнейшего изучения условий возникновенияпроблемы, то есть для выяснения физических причин проблемы.

Ситуация конструкторско-исследовательского типа (ки) возникает при поста-новке проблемы синтеза новой системы или при необходимости понять иизучить физические процессы в оперативной зоне проблемы. То есть здесьдалеко не ясно, с помощью каких средств (ресурсов) и как можно решить по-ставленную проблему.

Пример 113 (продолжение 3). В закалочной ванне во время погружения крупно-габаритной детали происходит возгорание масла; как устранить это явление?Здесь сразу присутствует физическое противоречие, например, в таком виде:масло должно соприкасаться с раскаленной деталью (что требуется для закал-ки) и масло не должно соприкасаться с раскаленной деталью (чтобы темпе-ратура масла не достигла температуры возгорания). Или в таком виде: маслоне должно соприкасаться с кислородом воздуха (чтобы на загораться) и мас-ло должно соприкасаться с кислородом воздуха (так как масляная ванна от-крыта, чтобы в нее можно было опускать деталь). Теперь для решения про-блемы могут быть применены приемы, стандарты и фонд научно-техниче-ских эффектов.

Наконец, если проблема для своего решения требует приобретения новыхзнаний о природе физико-химических процессов в технической системе, то

Page 300: основы классической триз. м. орлов

имеет место ситуация научно-исследовательского типа (ни). Основной при-знак: несоответствие между известными (ожидаемыми) и получаемыми (ре-альными) результатами при реализации в технической системе какого-либофизико-химического процесса. Например: Предложите способ закалки крупно-габаритных деталей без охлаждения в масляной ванне. Ко всем вопросам здесьдобавляется необходимость узнать причины, истоки тех или иных явлений, оп-ределить возможные цели их использования. Характерно также, что часто по-становки проблем в таких ситуациях снова сближаются с проблемными ситуа-циями социального типа, так как отсутствие специального знания обнаружи-вается в социальной системе — в системах научных исследований или всистеме образования.

Треугольником в таблице на рис. 16.2 показана область преимущественногоприменения методов классической ТРИЗ.

Для правильного анализа проблемной ситуации необходимо ответитьна вопросы, которые приведут к формированию технического или фи-зического противоречия. Это поможет избежать нерациональных за-трат времени и других ресурсов на разрешение проблемной ситуа-ции, тем более, что это открывает возможность полного использова-ния инструментария ТРИЗ.

Главной целью диагностики является определение оперативной зоны и поста-новка связанной с ней конкретной задачи. Этап диагностики должен предше-ствовать всякой постановке задачи, однако как раз это простое правило дале-ко не всегда выполняется или выполняется неверно. Наиболее часты ошибки,когда к решению проблемы приступают, не получив точной формулировкипротиворечия. Также нередки случаи неверного определения причин пробле-мы. И еще одна типичная ошибка состоит в попытках решить задачу, котораяна самом деле включает в себя несколько взаимносвязанных задач.

Перед диагностикой полезно применить процедуры неалгоритмического «рас-тряхивания» проблемной ситуации (см. разделы 18 и 19). Это помогает осла-бить привычные (неточные, неполные, недостоверные) представления о про-блеме и подготовить мышление к выдвижению нетривиальных функциональ-ных идеальных моделей, к определению достоверных причин проблемы,моделей противоречий и ресурсов в оперативной зоне.

Для правильной диагностики проблемной ситуации полезно придерживатьсяопределенной схемы, называемой здесь Алгоритмом диагностики проблемнойситуации. Эта схема (рис. 16.3) включает ряд процедур, выполнение которых всовокупности существенно повышает качество анализа исходной ситуации иподготавливает мышление к дальнейшим конструктивным действиям с помо-щью инструментов ТРИЗ. Опытные специалисты могут пропускать какие-топроцедуры, но в целом схема соответствует оптимальной организации диагно-стики проблемы.

Page 301: основы классической триз. м. орлов

На шаге 1 проводится общая диагностика системы с целью определения ком-понентов системы, подлежащих усовершенствованию или устранению — наосновании функционально-стоимостного анализа, либо на основании сопос-тавления уровня развития технической системы и ее компонентов с законамии линиями развития систем, либо на основании иных способов оценки эф-фективности компонентов.

Пример 113 (продолжение 4). Ранее для устранения возгорания масла пыта-лись закрывать ванну крышкой с отверстием точно по габаритам детали. Од-нако, для деталей разных размеров приходилось изготавливать новые крыш-ки. Здесь видно, что решение опиралось на нединамизированную часть(крышку) в противоречии с законом 3.1. Согласование ритмики частей систе-мы, а также на самую низкую позицию на линиях развития инструмента(рис. 15.13) и вещества (рис. 15.14).

На шаге 2 для сложных узлов и, разумеется, для всей системы в целом, могутстроиться так называемые системно-функциональные модели конфликта.

Целью такого моделирования является определение компонентов (или функ-ций и действий), которые одновременно участвуют в создании позитивных инегативных функций. Такие компоненты называются оперативными и будутвключены в состав соответствующих оперативных зон.

Пример 113 (продолжение 5). В состав компонентов, принимаемых во внима-ние в данной конфликтной ситуации, входят: изделие, масло, дым, воздух.Всю схему взаимодействия этих компонентов полезно представлять графиче-ски (рис. 16.4).

Page 302: основы классической триз. м. орлов

Здесь масло, воздействуя на поверхность изделия, постепенно охлаждает его.Однако под воздействием высокой температуры на поверхности изделия и вприсутствии кислорода воздуха масло загорается и выделяет дым. Дым загряз-няет воздух.

Для целей диагностики могут строиться и более подробные схемы, например,с учетом того, что масло состоит из двух частей — общая масса и узкий погра-ничный слой, непосредственно контактирующий с высокотемпературной по-верхностью изделия. Именно этот пограничный слой быстро нагревается, азатем загорается в присутствии кислорода воздуха, выделяя продукты сгора-ния в виде дыма.

На шаге 3 нужно сформулировать противоречия взаимодействия компонен-тов, включенных в системно-функциональную модель, и сформулироватьописания оперативных зон, связанных с полученными противоречиями.

Пример 113 (продолжение 6). В зависимости от уровня физико-химическогоисследования компонентов могут быть рассмотрены разные процессы и в со-ответствии с этим построены разные модели противоречий. Мы будем при-держиваться макро-уровня, представленного на рис. 16.4. Для этой схемы мо-гут быть сформулированы, например, следующие версии противоречий.

Техническое противоречие (вариант 1): закалка изделия в масле улучшает каче-ство изделия, но загрязняет воздух из-за появления дыма.

Техническое противоречие (вариант 2): погружение раскаленного изделия вмасло нужно для закалки изделия, но приводит к возгоранию масла, что име-ет следствием загрязнение воздуха продуктами горения.

Для одной и той же системно-функциональной схемы модели противоречиямогут быть представлены отличающимися описаниями. Нужно стремиться от-разить в моделях противоречий главные позитивные и негативные функцио-нальные свойства: раскаленное изделие, качество (закалка) изделия, возгораниемасла. Поэтому второй вариант предпочтительнее.

Физическое противоречие (вариант 1): масло должно гореть в присутствии ки-слорода воздуха и при высокой температуре поверхности изделия и не должногореть, так это загрязняет воздух.

Page 303: основы классической триз. м. орлов

Физическое противоречие (вариант 2): масло должно нагреваться, чтобы заби-рать тепло от изделия и охлаждать его, и не должно нагреваться, чтобы небыло возгорания.

Физическое противоречие (вариант 3): кислород должен быть в воздухе, так какэто определено природным составом воздуха, и кислород не должен быть ввоздухе, чтобы масло не возгоралось.

Физическое противоречие (вариант 4): дым должен быть в воздухе, так как онявляется продуктом горения масла, и дым не должен быть в воздухе, чтобывоздух не загрязнялся.

Физическое противоречие должно отражать физико-химические свойствапроцесса, связывающие его с позитивной и негативной функциями для дан-ной проблемной ситуации. Нельзя, например, записать такое противоречие:изделие должно быть раскаленным, чтобы произошла закалка, и не должно бытьраскаленным, чтобы масло не загоралось. Практически эта модель ориентируетна смену способа закалки и на смену задачи, что неприемлемо в данной си-туации, так как требуется сохранить принцип закалки в масле.

Существование нескольких альтернативных моделей на этапе диагностики недолжно восприниматься как недопустимая ситуация. Более точные формули-ровки будут отрабатываться на этапе редукции. Однако, следует иметь в виду,что разные формулировки противоречий могут приводить к разным функцио-нальным идеальным моделям, и следовательно, к разным направлениям поис-ка решения.

Пример 113 (продолжение 7). На этом простом примере нетрудно видеть, чтос физическим противоречием по второму варианту связаны компоненты I и2, с физическим противоречием по третьему варианту связаны компоненты 2и 3, а с физическим противоречием по четвертому варианту — компоненты 3и 4. Структурные модели для каждой из оперативных зон приведены нарис. 16.5.

На шаге 4 нужно предварительно оценить ресурсы, находящихся в каждой извыделенных оперативных зон. Это может повлиять на оценку сложности за-дач, содержащихся в оперативных зонах.

Анализ можно проводить на основе таблицы выбора ресурсов (раздел 8.2,рис. 8.7 и 8.8). Здесь мы дадим упрощенные оценки.

Page 304: основы классической триз. м. орлов

Так для оперативной зоны а) потенциально полезными ресурсами являются:размеры и скорость опускания детали, размеры и форма ванны, расположе-ние ванны в цехе, возможность вынесения ванны из цеха.

Для второй оперативной зоны b): то же, что и для а) плюс возможность введе-ния присадок в масло, снижающих его способность к окислению, возмож-ность создания бескислородной атмосферы или вакуума в оперативной зоне.

Для третьей оперативной зоны с): то же, что и для а).

На шаге 5 нужно ориентировочно определить характер задач и предполагае-мые Мета-стратегии для их решения.

Пример 113 (продолжение 8). Так, для оперативных зон а) и b) явно просмат-риваются исправительные задачи с Мини-стратегиями среднего уровня слож-ности, так как в оперативных зонах имеются или могут быть введены некото-рые ресурсы, потенциально пригодные для решения задач. В оперативнойзоне с) может быть сформулирована исправительная задача по Мини-страте-гии с наименьшим уровнем сложности, так как известны и способ вытяжкигрязного воздуха, и способ подвода чистого воздуха. В то же время постановкас) не исключает возможности создания далеко не тривиальных решений.

На шаге 6 нужно оценить сложность задач, находящихся в каждой оператив-ной зоне и установить определенную последовательность решения задач.

Пример 113 (продолжение 9). В данном случае по результатам диагностики мыограничились тремя разными постановками задач.

Далеко не всегда легко заранее определить, какой из вариантов постановкиокажется наилучшим для усовершенствования системы в целом.

Например, здравый смысл подсказывает, что поскольку решение по модели с)не устраняет причины возгорания масла, то оно выглядит недостаточно пер-спективным. Однако, это может быть очень недорогое решение (и даже неизобретательское), соответствующее Мини-стратегии, например, оборудова-ние хорошей вытяжки. В то же время, мышление, свободное от стереотипов,могло бы рассмотреть возможности применения вредного дыма для выполне-ния какой-то полезной функции в этом процессе или в цехе.

Два других варианта примерно равноценны, хотя вариант а) выглядит не-сколько проще, но только потому, что предполагается найти решение, не уг-лубляясь в физико-химические особенности процесса горения, как это можетпотребоваться в оперативной зоне b). С другой стороны, решения на уровневещества обычно самые эффективные в долгосрочной перспективе, что и от-ражено в линиях развития инструмента и вещества.

В целом рекомендуются следующие правила:

1) сначала решаются задачи с техническими противоречиями, а потом — сфизическими;

2) сначала решаются более простые задачи, потом более сложные — на про-стых задачах можно лучше подготовиться к решению более сложных, так

Page 305: основы классической триз. м. орлов

как есть надежда увидеть проблему в целом или обнаружить скрытые ос-ложнения;

3) первой выбирается задача, решение которой могло бы устранить сразу не-сколько проблем (такая задача называется ключевой или корневой — в со-временной ТРИЗ имеются рекомендации по выявлению таких задач).

Для определенности примем, что первой будет решаться задача для оператив-ной зоны с), затем для зоны а), а затем для зоны b).

На шаге 7 нужно сформулировать уточненные постановки задач для каждойоперативной зоны.

Пример 113 (продолжение 10, а далее см. Практикум к разделам 16—17). В сис-теме, включающей изделие, масло, ванну и воздух, нужно устранить с мини-мальными изменениями загорание масла при следующих вариантах постано-вок задач:

• для оперативной зоны с): при опускании раскаленной крупногабарит-ной детали в закалочную масляную ванну образуется дым, загрязняю-щий воздух;

• для оперативной зоны а): при опускании раскаленной крупногабарит-ной детали в закалочную масляную ванну пограничный слой масла, не-посредственно соприкасающийся с поверхностью изделия, успевает на-греться до температуры возгорания и загорается;

• для оперативной зоны b): наличие кислорода воздуха в закалочной ван-не приводит к возгоранию масла при соприкосновении с высокотемпе-ратурной поверхностью закаливаемой крупногабаритной детали.

Рассмотренный алгоритм диагностики дает необходимые основания для пере-хода к этапу редукции для точного моделирования противоречий, формирова-ния идеальных функциональных моделей и тщательного анализа ресурсов.Далее решение идет в соответствии с этапами Мета-АРИЗ, причем возможно,что для отдельных задач нужно будет циклически повторить и некоторые про-цедуры или весь этап диагностики.

Page 306: основы классической триз. м. орлов

Верификация является ответственным и непростым этапом. Это обусловле-но почти невозможным требованием владеть самыми разнообразными зна-ниями, чтобы суметь предвидеть и полностью оценить качество решения ипоследствия применения найденной идеи. Сколько драматических судебизобретателей связано как с переоценкой своих идей, так и с их недо-оценкой! В первом случае изобретатели фанатично сражались за признаниесвоей идеи, либо недостаточно обоснованной, либо неэффективной, а ино-гда и просто надуманной и ненужной. Во втором случае изобретателиупускали сильнейшие продолжения своих пионерских идей и не смоглиразвить их до практически реализуемых решений. Это сделали за них дру-гие, ставшие впоследствии и известными изобретателями, и успешнымипредпринимателями.

Ориентация на Идеальный конечный результат, на Функциональную идеальнуюмодель (см. раздел 9.2) сразу отсекает неэффективные варианты и связанныйс их поиском перебор и ориентирует на выход в область существованиясильных, то есть высокоэффективных решений. Однако, многие инженеры, незнаюшие ТРИЗ, уклоняются от решения проблем с острыми физико-техни-ческими противоречиями и легко соглашаются платить за требуемую функ-цию каким угодно расходом энергии, вещества, информации; неудобствамипроизводства, эксплуатации, утилизации; неэкологичностью и так далее.Традиционное инженерное мышление недостаточно ориентировано и на эф-фективное использование ресурсов при решении технико-технологическихпроблем.

Высокоэффективное решение непременно должно улучшать показатели ка-чества системы за счет увеличения веса позитивных факторов и уменьше-ния веса негативных факторов (раздел 14.2 «Идеальная машина»). Принебольших конструкторских изменениях выявить последствия решенийсравнительно нетрудно. Особенно, если для этого имеются хорошо отрабо-танные математические имитационные модели в CAD-системах. Однако,при создании изобретательского решения дело обстоит не так просто.Во-первых, любая идея до завершения этапа Верификация по Мета-АРИЗрассматривается только лишь как гипотеза об усовершенствовании техниче-ской системы. Это означает, что эта идея еще не проходила конструктор-скую проработку. В лучшем случае идея только обсуждается вместе с кон-структорами, если они участвуют в работе изобретательской команды. Но

Page 307: основы классической триз. м. орлов

еще чаще над поиском решения работает один специалист, нередко пособственной инициативе, и поэтому он не имеет необходимой поддержкиспециалистов другого профиля. Во-вторых, применение CAD-систем ещеневозможно, так как для нового решения нужно построить адекватную ма-тематическую модель, а это требует немалого времени и, возможно, допол-нительных математических исследований.

И все же для верификации идеи решения в ТРИЗ были выработаны некото-рые практические рекомендации, помогающие избежать серьезных ошибок воценке качества решения. В эти рекомендации входят следующие проверки.

Правило исключения противоречия. Необходимым признаком эффективногорешения является устранение противоречия как причины проблемы.

Для проверки выполнения этого условия достаточно сравнить два описания«Было» и «Стало» и в самом общем виде составить заключение о том, разре-шено ли и каким именно образом разрешено противоречие, которое и было при-чиной существования проблемы. Проверка должна осуществляться для каж-дой альтернативы технического противоречия или для каждого конфликтую-щего состояния физического противоречия.

Правило выявления сверхэффектов. Это правило ориентирует на поиск непред-виденных качественных и количественных изменений, которые могут поя-виться в новом функционировании.

При внесении изменений мы меняем свойства компонентов (элементов, дета-лей, узлов, подсистем, систем, изделия в целом). Свойства компонентов опи-сываются параметрами. Для количественных изменений характерны линейныеоценки типа «больше» или «меньше». Если свойство имеет качественный ха-рактер, например, форма, цвет или удобство применения, либо при вносимыхизменениях наступают изменения в свойствах, то говорят о качественных из-менениях (нелинейных, меняющих сами свойства объекта). При качественномизменении у объекта обязательно появляются новые свойства, причем исчез-новение каких-то свойств в системном смысле тоже есть появление новогосвойства. При этом, если новое свойство не являлось прямой целью созданияизобретения, то оно называется сверхэффектом (еще раз посмотрите опреде-ление в разделе 14.2). К сожалению, могут возникать не только позитивныесверхэффекты, но и негативные сверхэффекты.

Ввиду особой важности методика поиска сверхэффектов оформлена в видеАлгоритма верификации решения и приводится ниже в разделе 17.3.

Правило проверки осуществимости. В полной мере оценить все свойства идеиможно лишь на практике. Многое можно проверить на опытных образцах,макетах и путем математического моделирования. Но все это происходит поз-же, когда сама идея уже принята по крайней мере для конструкторской про-работки. Это правило ориентирует на предварительную оценку идей решенияна непротиворечивость основным физическим и техническим законам. На-пример, до сих пор встречаются попытки изобрести «вечный двигатель» —Perpetuum Mobile.

Page 308: основы классической триз. м. орлов

При выполнении этого правила могут выявляться скрытые ранее проблемы,требующие создания новых изобретательских решений.

Правило проверки применимости. Это правило ориентирует не останавливатьсяна конкретном применении полученной идеи, а рассмотреть возможности ееразвития или перенесения на другие системы и в другие области техники.Следование этому правилу также может приводить к выявлению и решениюновых изобретательских задач.

Правило проверки новизны. Правило предусматривает исследование патентно-го фонда и технической литературы для проверки степени новизны получен-ного решения. Это необходимо в случае предполагаемого патентования идеирешения.

Правило проверки метода. Правило рекомендует проверить, не является ли но-вым сам способ решения проблемы. В этом случае можно пополнить Ваш ин-струментарий новым способом, внести его в ТРИЗ-Каталоги или оформитькаким-то иным образом.

17.2. Развитие решения

Для развития самого технического решения и возможностей его применениямогут быть использованы различные инструменты, из которых простейшимии весьма эффективными являются комбинаторные таблицы наподобие мор-фологической матрицы (раздел 4.2, рис. 4.5).

Приведем еще один «старинный» ТРИЗ-пример «Развитие магнитногофильтра».

Когда-то для очистки горячего газа от пыли использовали фильтры, сделан-ные из многих слоев металлической ткани. Газ должен свободно проходитьсквозь ткань, а пыль должны застревать в ячейках ткани. Такие фильтры име-ли крупный недостаток: они быстро забивались пылью, от которой было труд-но их очищать (продувкой воздуха в обратном направлении).

Был изобретен магнитный фильтр (рис. 17.1).

Page 309: основы классической триз. м. орлов

Пример 114. Магнитный фильтр. По формуле изобретения 1 (см. дальшетабл. 17.2) между полюсами мощного электромагнита расположены ферромаг-нитные частицы (крупинки металла). Они образуют пористую массу, черезкоторую пропускают запыленный газ. Пыль застревает в порах. Освободитьтакой фильтр от пыли легко: достаточно отключить электромагнит. Фильтр«рассыплется», так как ферромагнитные частицы вместе с пылью упадут вниз,например, в промывочную ванну. Затем электромагнит включают, и фильтриз очищенных частиц «собирается» заново.

Построим структурную модель фильтра в виде формулы. По исходной версииснаружи находится магнитная система М, внутри ее — ферромагнитный по-рошок (рабочий орган или индуктор И), а внутри порошка — пыль (изделиеили рецептор Р) из потока запыленного газа. Значит, структуру можно запи-сать в виде: МИРРИМ. Здесь Р взято дважды для симметрии.

Первый прием трансформации — перестановка символов структурнойформулы:

1. МИРРИМ, 2. ИМРРМИ, 3. РМИИМР, 4. МРИИРМ, 5. ИРММРИ,6. РИММИР.

Получились ли здесь новые фильтры? Например, по схеме 5, сделанной какбы по принципу «наоборот» по отношению к схеме 1. Здесь магнит долженбыть окружен порошком, сквозь который проходит газ.

Пример 115. Развитие магнитного фильтра. Для проверки подхода нашлосьизобретение 2: электромагнитный фильтр для механической очистки газов ижидкостей, содержащий источник магнитного поля и фильтрующий элементиз зернистого магнитного материала, отличающийся тем, что, с целью сниже-ния удельного расхода электроэнергии и увеличения производительности,фильтрующий элемент размещен вокруг источника магнитного поля и обра-зует внешний замкнутый магнитный контур.

Полное соответствие схеме 5, но сделано это изобретение через 7 лет послеизобретения 1!

Второй прием трансформации: изменение параметров компонентов структур-ной формулы.

Пример 116. Магнитный вентиль. Что будет, если магнитное поле плотнее со-жмет ферромагнитный порошок? Тогда через фильтр ничего не пройдет — нипыль, ни газ, ни жидкость. Но ведь теперь фильтр превратился в вентиль! Ипо этой идее было получено несколько патентов для регулирования потоковсамых различных веществ, причем каждый раз другими авторами и с интерва-лами в годы!

Изобретатели не работали над развитием решения, они не замечали, что при-думанные ими устройства могут иметь разнообразные варианты реализации иразличные применения, все из которых являются изобретениями!

Page 310: основы классической триз. м. орлов

Третий прием трансформации: изменение структуры и параметров компонен-тов изобретения.

Здесь удобно применять морфологические матрицы. Например, можно по-строить матрицу (рис. 17.2), в которой учтем все 6 структурных компоновок и5 состояний изделия.

Исходный магнитный фильтр по изобретению 1 попадает в клетку 19: схемаМИРРИМ, изделие — пыль (а это порошок!). Магнитный вентиль — клетки1, 7 и 19.

Интересно посмотреть клетку 13: сквозь ферромагнитный порошок идет «по-ток» твердого вещества — например, протягивается проволока. Под действиеммагнитного поля порошок сдавливает проволоку, и она становится тоньше.Похожий процесс используется при изготовлении проволоки: заготовку про-тягивают через отверстия металлической плиты (фильеры). Сначала заготовкапроходит через крупные фильеры, потом — через более и более маленькие,так что заготовка постепенно превращается в тонкую проволоку. Фильерыбыстро изнашиваются. Но можно ли вместо плиты использовать магнитныйпорошок, сжимаемый полем в соответствии с клеткой 13? Такое изобретение3 было сделано.

Пример 117. Бесфильерное волочение проволоки. Способ бесфильерного воло-чения стальной проволоки, включающий деформацию растяжением, отли-чающийся тем, что, с целью получения проволоки постоянного диаметра, не-обходимую деформацию осущестляют протягиванием проволоки через ферро-магнитную массу, помещенную в магнитном поле.

Рассмотрим еще два примера.

Пример 118. Способ шлифования. Изобретение 4: способ шлифования поверх-ностей инструментом, выполненным в виде баллона из эластичного материа-ла, отличающийся тем, что, с целью повышения качества обработки, в баллонвводят ферромагнитные частицы, а прижим инструмента осуществляют путемвоздействия внешнего магнитного поля. Снаружи находится магнитное поле,внутри — баллон с эластичными стенками, в баллоне — ферромагнитный по-рошок. Схема МРИИРМ, клетка 28.

Page 311: основы классической триз. м. орлов

Пример 119. Способ распыления расплавов. Изобретение 5: способ распыленияполимерных расплавов путем воздействия сжатого газа на поток расплава, от-личающийся тем, что, с целью повышения дисперсности расплава, в расплаввводят ферромагнитный порошок, после чего расплав пропускают через зонудействия знакопеременного магнитного поля. Снаружи находится магнитноеполе, внутри — расплав полимера, а в нем — порошок. Схема МРИИРМ,клетка 10.

Перестановка компонентов дает 6 схем устройства, изменение состояния из-делия — 5. Но вместе эти изменения дают 30 сочетаний (рис. 17.2). Во всехэтих схемах магнитное поле и изделие перемещались относительно друг другапоступательно. А что будет, если ввести относительное вращение? И такоеизобретени было создано.

Пример 120. Способ интенсификации процесса. Изобретение 6: способ получе-ния неорганических пигментов, отличающийся тем, что, с целью повышенияинтенсивности, взаимодействие осуществляют во вращающемся магнитномполе в присутствии ферромагнитных частиц. Снова схема МРИИРМ, и еслибы поле было не вращающимся, то изобретение 6 заняло бы клетку 22 в таб-лице 17.2. Но для схем с вращением магнитного поля нужно построить такуюже таблицу, но с номерами клеток от 31 до 60. Тогда изобретение 6 заняло быклетку 52.

Оказывается, что единственную исходную схему магнитного фильтра можноразвернуть в 60 (!) различных схем. Но мало кто это заметил…

Поэтому в соответствии с ТРИЗ для каждого изобретения на этапе «Верифи-кация» по Мета-АРИЗ рекомендуется искать возможности развития решения.

При поиске сверхэффектов фактически проводится исследование всехсвойств нового решения. Именно поэтому методика получила такое обобщен-ное название как Алгоритм верификации решения (рис. 17.3). В свою очередь,именно выявление сверхэффектов имеет две важнейшие цели: определитьвозможности развития решения и исключить неоправданные затраты на даль-нейшую разработку и попытки реализации неприемлемой идеи.

В качестве примера ниже приведены результаты верификации решения примодернизации газовой турбины в концерне СИМЕНС (см. раздел 12, При-мер 84).

Пример 84. Газовая турбина концерна СИМЕНС (окончание). Проверка необ-ходимого условия: сделан принципиально правильный шаг в направлении пол-ного устранения основных физических противоречий. Проверка достаточныхусловий: результаты представлены в таблице на рис. 17.4 (точные данные при-надлежат концерну СИМЕНС).

Page 312: основы классической триз. м. орлов

Page 313: основы классической триз. м. орлов

Page 314: основы классической триз. м. орлов

44. Закалочная ванна. Завершите решение трех задач для примера 14.1, осно-вываясь на формулировках, полученных в примере 14.1 (продолжение 10 вконце раздела 14.2).

Примечания:

• Не забудьте формулировать функциональные идеальные модели для ка-ждой задачи.

• Проверьте наличие позитивных и негативных сверхэффектов в Вашихрешениях.

• Проверьте возможность использования Ваших решений для решенияпроблем в других отраслях промышленности.

• Обратите внимание на то, что некоторые идеи пригодны для решениязадач при разных постановках. Иногда могут быть получены такие ре-шения, которые кардинально снимают проблему при нескольких воз-можных постановках, так что при получении такого решения отпадаетнеобходимость решать другие задачи.

• Сравните все полученные решения по различным критериям, например,с точки зрения экологичности, простоты технической реализации, эко-номической эффективности.

• При возникновении непреодолимых трудностей при решении задач впостановках а) и b) попробуйте применить Метод моделирования ма-ленькими фигурками из нижеследующего раздела 18.3.

45. Газовая турбина СИМЕНС. Рассмотрите возможности развития получен-ного решения. Проведите диагностику новой системы с целью ее усовершен-ствования на основе Законов и Линий развития систем (см. также разделы15.1 и 15.2).

46. Автобан. Проведите диагностику автобана с целью его усовершенствова-ния на основе Законов и Линий развития систем. Сформулируйте противоре-чия, определите множество оперативных зон и составьте для каждой опера-тивной зоны изобретательскую задачу.

47. Идеи для предпринимательства. Проверьте возможность развития продук-ции Вашего предприятия или снижения затрат на производство (хранение,транспортировку, обслуживание) на основе анализа достоинств и недостатковобъектов, выбранных для анализа, и разработки задач усовершенствованияэтих объектов на основе Алгоритма диагностики проблемной ситуации.

48. Ваши изобретения. Проверьте возможность развития решений и расшире-ния применения изобретений, сделанных Вами ранее.

Page 315: основы классической триз. м. орлов

Искусство изобретения

Page 316: основы классической триз. м. орлов

Хорошие результаты могут быть до-стигнуты только при высокой культуремышления.

Ученому, конструктору, изобретателюнужна мощная и послушная фантазия.

Между тем во многих случаях потен-циал фантазии катастрофически низок.

Может показаться, что применение за-конов, приемов, стандартов диамет-рально противоположно полету фан-тазии.

На деле же весь аппарат ТРИЗ рас-считан на сильную, хорошо управляе-мую фантазию.

Генрих Альтшуллер

Page 317: основы классической триз. м. орлов

«Развитие техники, как и всякое развитие, происходит по законам диалекти-ки. Поэтому ТРИЗ основывается на приложении диалектической логики ктворческому решению технических задач. Но… одной логики недостаточно.Необходимо учитывать особенности «инструмента», с помощью которого ра-ботает изобретатель, а «инструмент» этот весьма своеобразный — мозг челове-ка» — так писал основатель ТРИЗ 30 лет назад [3].75

Он же подчеркивал, что в любом творчестве максимально используются силь-ные стороны человеческого мышления и характера, такие, как интуиция, спо-собность воображения, настойчивость, огромная работоспособность, сме-лость, эрудиция и т. д. Но во избежание ошибок и потерь времени, как длятворческой личности, так и для человечества, нужно учитывать и слабые сто-роны мышления, особенно, психологическую инерцию.

Г. Альтшуллер приводит два примера:

1) для погружения и пребывания на глубине водолазы используют свинцо-вые галоши. Более 100 лет эти галоши делались одного размера, и однимбыли малы, а другим, разумеется, велики. И только примерно через вексделали «раздвижные галоши» — простейшее, но очень полезное усовер-шенствование!

2) Линзы и очки были известны за 300 лет до изобретения телескопа. 300 летникому не приходило в голову посмотреть на мир через две последова-тельно установленные линзы! Почему? Считалось, что линза дает иска-женное изображение. Две последовательно установленные линзы должныбыли (так подсказывал «здравый смысл») давать еще большее искажение.Этот психологический барьер задержал появление телескопа на 3 столе-тия! Между тем трудно назвать изобретение, которое оказало бы более ре-волюционизирующее влияние на мировоззрение человека. Телескоп от-крыл человеку звездные миры, дал огромный толчок развитию науки.Трудно даже представить, насколько вперед ушла бы цивилизация, еслибы телескоп появился на 300 лет раньше.

О психологической инерции автор ТРИЗ писал также следующее [6]: «Изо-бретатель строит ряд мысленных моделей и как бы экспериментирует с ними.

Page 318: основы классической триз. м. орлов

При этом мышление изобретающего человека имеет характерную особен-ность: …исходной моделью чаще всего берется уже существующая машина.Такая исходная модель имеет ограниченные возможности, сковывающие во-бражение. В этих условиях трудно прийти к принципиально новому решению.Если же изобретатель начинает с определения идеального конечного результата,то в качестве исходной модели принимается идеальная схема — предельно уп-рощенная и улучшенная. Дальнейшие мысленные эксперименты не отягоща-ются грузом привычных конструкционных форм и сразу же получают наибо-лее перспективное направление: изобретатель стремится достичь наибольшегорезультата наименьшими средствами.»

Сознание контролирует нас через образы, заложенные в слова [6]: «Задачаставится в известных терминах. И эти термины не остаются нейтральными,они стремятся сохранить присущее им содержание. Изобретение же состоит втом, чтобы придать старым терминам или их совокупности новое содержание.Инерцией, присущей технической терминологии, прежде всего и объясняетсяинерция мышления…»

Пример 121. Нефтепровод [5]. На одном из семинаров рассматривалась задачао переброске трубопровода для перекачки нефти через ущелье. По условиямзадачи устройство опор или подвески исключалось. Обычно в таких случаяхизгибают трубопровод в виде арки (обращенной выпуклостью вверх иливниз — при больших пролетах). Решение получилось тривиальное: нужно уве-личить площадь поперечного сечения трубы.

В следующий раз та же задача формулировалась иначе: необходимо перебро-сить нефтепровод. На этот раз среди решений оказалось и такое: прочностьзависит как от площади, так и от формы поперечного сечения. При той жеплощади поперечного сечения наиболее прочной будет конструкция в видеполого двутавра (рис. 18.1,а). Еще вариант (рис. 18.1,b): двутавр можно изгото-вить из двух труб меньшего диаметра, чем исходный трубопровод, располо-женных одна над другой и соединенных жесткими вертикальными связями.

В итоге, путем замены специального технического термина участники семи-нара отошли от привычного представления о трубе с круглым сечением, с кото-рым только и ассоциируется слово труба, а смогли предложить нефтепровод,но не круглого сечения.

Page 319: основы классической триз. м. орлов

Модель этого процесса можно построить на основе известной схемы преодо-ления познавательно-психологического барьера, предложенной академикомБ. Кедровым76 (рис. 18.2).

В поисках решения мысль человека движется от фактов Ф, описывающих ис-ходную ситуацию, к выявлению особенного О, что присуще этим фактам длявыдвижения Идеи решения. Движение мысли идет в некотором направлении(а) и упирается в познавательно-психологический барьер Б. Этот барьер озна-чает либо отсутствие достаточных знаний, либо отсутствие необходимого пси-хологического состояния. Какие действия ассоциируются с задачей о преодо-лении барьера? Например, такие: перелезть или перепрыгнуть через барьер.Именно это и показано, как модель творческого инсайта, представленногонеким трамплином, перебрасывающим мысль через барьер! Таким трампли-ном может служить другая мысль, идущая, например, в направлении ((3). Этоможет быть, практически, любая ассоциация: предмет или явление (в Методефокального объекта), другая идея, даже неверная (в Брейнсторминге), фанта-стическая аналогия (в Синектике) и так далее.

На самом деле и здесь срабатывает все та же психологическая инерция! Спро-сите себя: а чем именно мешает барьер? Если Вы хотите всего лишь увидетьИдею, находящуюся за барьером, то Ваши действия могут оказаться совсемиными! Могут подойти, например, такие ассоциации:

• обойти барьер сбоку;

• подняться над барьером на лестнице или воздушном шаре;

• снизить или разрушить барьер;

• пробить барьер, сделать в нем отверстие, туннель и так далее.

Page 320: основы классической триз. м. орлов

Все это разные образы. И они так же специфичны и вводят в заблуждение,как и термины в любой другой постановке проблемы. Суть же метафорыБ. Кедрова в том, что мысли нужен метод для усмотрения с его помошью«неочевидной Идеи». Таким методом в ТРИЗ является Функциональное идеаль-ное моделирование (см. раздел 9.2). Продолжая игру слов и смыслов, и перехо-дя к более фантастическим образам, можно сказать, что метод функциональ-ного идеального моделирования делает барьер… прозрачным! То есть сквозьнего что-то становится видно.

На рис. 18.3 представлена таблица сравнения «обычного» и ТРИЗ-мышления.«Обычное мышление контролируется сознанием, оно сдерживает нас от нело-гичных поступков, налагает массу запретов. Но каждое изобретение — этопреодоление привычных представлений о возможном и невозможном77.»

Page 321: основы классической триз. м. орлов

Саму способность к функционально-идеальному моделированию также надотренировать. Например, чтением научно-фантастической литературы, детек-тивных романов, анекдотов, даже сказок, просмотром юмористических ифантастических рисунков, произведений живописи, прослушиванием не-обычных музыкальных произведений.

Кроме концепции функционального идеального моделирования, для преодо-ления психологической инерции в ТРИЗ был создан ряд «неалгоритмических»методов:

• «Фантограмма» и моделирование по координатам «Размерность — Вре-мя — Стоимость» (специальная сокращенная форма «Фантограммы»);

• модель «Было — Стало»;

• «Моделирование маленькими фигурками»;

• рекомендации по предотвращению логических и психологическихошибок.

Первые два метода используются для снятия психологической инерции на на-чальных стадиях решения задачи, при се «растряске», а третий метод являетсяэффективным «неалгоритмическим» инструментом для генерирования новыхидей. Психологические рекомендации рассмотрены ниже в разделе 19 Инте-грация ТРИЗ в профессиональную деятельность.

Первая модель применяется прежде всего для «расчистки» мышления от нега-тивных стереотипных представлений об исходной задаче и о целях се реше-ния. Цель — увидеть (нестрого!) особенности этого объекта, границы возмож-ностей его трансформации.

«Фантограмма» представляет собой таблицу (рис. 18.4), помогающую провес-ти экспресс-тренинг или экспресс-стимуляцию воображения непосредственнона примере объекта решаемой проблемы.

Сама идея «Фантограммы» возникла у Г. Альтшуллера при изучении сотенпроизведений научной фантастики. Он подошел к оценке этих произведенийтак же, как и к оценке изобретений на новизну и полезность. Действитель-но, в «фантастике» является правилом создание произведений только с но-вой, оригинальной идеей фантастического сюжета. Это требует незаурядноговоображения и знаний. В то же время, для тренинга участникам полезно са-мим пробовать создавать новые объекты и процессы, применяя для этого«Фантограмму».

«Многие привыкли смотреть на научно-фантастическую литературу как наразвлекательное чтение, на литературу второго сорта… Ни одна из сравни-тельных таблиц предсказаний и степени их реального воплощения, составлен-

Page 322: основы классической триз. м. орлов

ных по оценкам ученых, не дает столь высокого процента успеха, как у писа-телей-фантастов. А ведь писатели-фантасты заглядывают в будущее на десят-ки и сотни лет. Например: утопия Ф. Одоевского «4338 год. Петербургскиеписьма» (1840) — самолеты, электропоезда, синтетические ткани, самодвижу-щиеся дороги; роман А. Богданова «Красная звезда» (1908) — атомные двига-тели, заводы-автоматы; утопия В. Никольского «Через тысячу лет» (1926) —прямое предсказание, что первая атомная бомба будет взорвана в 1945 году;роман первого американского писателя-фантаста X. Гернсбека «Ральф124С41+» (1911) — видеотелефон, гипнопедия, микрофильмы, радиолокация,ракеты (78).»

Жюль Верну79 принадлежит следующее высказывание: «Все, что человек спо-собен представить в своем воображении, другие сумеют претворить в жизнь.»Г. Альтшуллер составил таблицу (80) (рис. 18.5), убедительно подтверждающую,что «история научной фантастики дала яркие примеры превращения «невоз-можного» в «возможное»»

Page 323: основы классической триз. м. орлов

Потрясающим научно-фантастическим предвидением обладал основополож-ник теории ракетного и космического движения Константин Циолковский82-.Вот некоторые из его сбывшихся, а также вполне вероятных идей:

1. Ракетный самолет с крыльями и обыкновенными органами управления.

2. Уменьшение крыльев самолета с увеличением тяги двигателей и скоростиполета.

3. Проникновение в разреженные слои атмосферы, полет за пределы атмо-сферы и спуск планированием.

4. Основание подвижных станций вне атмосферы (искусственные спутникиЗемли)..

5. Посадка на Луну.

6. Скафандры, в том числе с жидкостным наполнением.

7. Использование космонавтами энергии Солнца сначала для жизненных це-лей станции, а затем и для перемещения в космосе.

8. Увеличение числа космических станций, развитие в космосе индустрии(см. еще один проект А. Юницкого далее в этом разделе).

Вместе с тем, механизм воздействия фантастики на науку не сводится к про-стой формуле «фантаст предсказал — ученый осуществил». Часть прогнозовоказывается, например, неверной или социально неприемлемой.

Специализированная форма «Фантограммы» стала самостоятельнымТРИЗ-инструментом в виде модели «Размерность — Время — Стоимость»(для краткости: модель РВС).

Как и «Фантограмма», модель РВС предназначена для расшатывания привыч-ных представлений об объекте. То есть ее назначение — переводить «привыч-ное» в «непривычное». При использовании этой модели последовательно рас-сматривают изменение условий задачи в зависимости от изменения трех пара-метров: геометрических размеров — Р (однако, в общем случае, это могут

8 1 А л е к с а н д р Б е л я е в (1884—1942) — о д и н из п е р в ы х р у с с к и х а в т о р о в — ф а н т а с т о в .82 Константин Циолковский (1857—1935) — выдающийся русский ученый-самоучка, осново-

положник теории ракетного движения, движения спутников и полетов на Луну и другие планеты.

Page 324: основы классической триз. м. орлов

быть изменения «размера» любого параметра, например, температуры, проч-ности, яркости и т. п.), времени — В, стоимости — С. Для РВС-моделирова-ния используется специальная таблица (рис. 18.6). Каждый параметр нужноизменять в максимально большом диапазоне, границами которого может бытьтолько потеря физического смысла задачи. Значения параметров нужно ме-нять ступенями так, чтобы можно было понимать и контролировать физиче-ское содержание задачи в новых условиях. Рассмотрим один из классическихпримеров, разработанный еще Г. Альтшуллером.

Пример 122. РВС-моделирование. Допустим, что проводится подготовка к ре-шению задачи об обнаружении неплотностей и утечки рабочего вещества изагрегатов холодильника. Результаты РВС-моделирования представлены в таб-лице на рис. 18.6.

При РВС-моделировании ответы могут быть очень разными — это зависит отфантазии, знаний, опыта, индивидуальных качеств человека. Нельзя толькозаменять цель исходной задачи! Например, нельзя в последней строке писать:повысить качество изготовления агрегатов — хотя, конечно, на практике ра-зумнее предотвратить появление неплотностей, чем потом «бороться» с ними.

И еще о стоимости: изменение этого параметра в сторону увеличения означа-ет лишь допущение, что есть гипотетическая «возможность» заплатить за из-менение как угодно много. А ответить нужно на вопрос: что при этом изме-нится в отношении к проблеме? Как она тогда может быть решена и почему?

Page 325: основы классической триз. м. орлов

РВС-моделирование часто сопровождается иллюстрациями. При этом реко-мендуется выполнять рисунки с возможной тщательностью, не допуская не-брежности. Плохой рисунок, как правило, свидетельствует о плохом пониманиизадачи. При этом минимальное количество рисунков два: рисунок «Было»(или «Есть») и рисунок «Стало» (или «Должно быть»). Иногда полезно выпол-нить оба рисунка в одном масштабе, а потом совместить их, и все отличиявыделить потом цветом.

А теперь два примера.

Пример 123. Кольцо на земном шаре. Это также одна из разминочных задачдля тренингов. Она формулируется очень просто и имеет очень простой от-вет. Но дело в том, что на тренинге требуется решить эту задачу за 20 се-кунд! Возьмите часы с секундной стрелкой и только после этого прочитайтеусловие задачи.

Оказывается, наши возможности восприятия и осознания условий задачи так-же непостоянны и зависят от многих факторов. В частности, если на семина-ре сначала говорится, что Вы должны решить достаточно сложную задачу, апотом время ограничивается 20 секундами, то процент правильно и вовремярешивших задачу падает!

Итак, задача: предположим, что на «идеально круглый» земной шар плотнонадето тонкое раздвигающееся кольцо. Вам нужно раздвинуть его так, чтобы содной стороны образовался зазор между кольцом и поверхностью Земли, дос-таточный, чтобы Вы проползли под кольцом, например, в 0,5 м. На сколькокилометров нужно увеличить окружность кольца?

Пример 124. Космический транспорт и космическое индустриальное кольцоА. Юницкого. Потрясающий пример РВС-моделирования представляет собойисследование еще одного невероятного, но не противоречащего физическимзаконам, изобретения уже известного нам изобретателя Анатолия Юницкого(см. раздел 15.3). На этот раз он изобрел… колесо! Но не простое, а размеромв земной шар! Да, он именно и предложил надеть на Землю по экватору коль-цо, которое будет затем космическим транспортным средством: на рис. 18.7, а«Было = Кольцо», а на рис. 18.7,b «Стало = КТС (Космическая ТранспортнаяСистема)». Фантастичность этого проекта превосходит выдумку самого баронаМюнхгаузена, который вытянул себя вместе с лошадью из болота за собствен-ную косичку! Однако, в КТС дело обстоит именно таким образом — КТСсама себя выносит в космос.

Пусть кольцо 1 (рис. 18.7,а) представляет собой ротор шагового электродвига-теля на магнитном подвесе. Статор двигателя выполнен внутри оболочки, вкоторой находится ротор, и также охватывает земной шар. Ротор висит в обо-лочке на магнитном подвесе и никакими элементами не касается оболочки.Размер ротора может быть 20—40 см. Внутри ротора могут располагаться ма-териалы для создания сооружений в космосе или сырье для работы космиче-ской промышленности. После разгона ротора до скорости, превышающейпервую космическую скорость, например, до 10 км/сек, он становится… неве-сомым! Тогда отключают магнитный подвес, и ротор уносится в космос! На

Page 326: основы классической триз. м. орлов

высоте ло 10 км (позиция 2 на рис. 18.7, b) сбрасывается оболочка, опускаемаяна Землю на парашютах. Далее ротор поднимается на заданную высоту. На-пример, в позиции 2 на рис. 16.7, b высота над Землей может быть 100 км. а впозиции 3—1000 км.

Ротор выполнен состоящим из секций, соединенных телескопическими свя-зями. Поэтому он свободно увеличивается по размеру диаметра и, соответст-венно, по размеру окружности. При диаметре Земли по экватору в 12 756 кмокружность экватора равна примерно 40 000 км. Такова же и стартовая окруж-ность ротора. На высоте 100 км его окружность увеличится всего лишь на628 км или на 1,6%, а на высоте в 1000 км — на 6280 км или на 15,7%.(Сравните с параметрами в предыдущей задаче, но с учетом того, что тамкольцо прижимается к Земле с одной стороны и отодвигается с другой!)

При торможении ротора он начинает сжиматься и может опускаться на Зем-лю! При этом возможен дополнительный возврат (рекуперация) огромногоколичества энергии!

Если в космосе производить хотя бы 1 % сегодняшних конструкционных ма-териалов или 50 % вырабатываемой сейчас энергии, то геокосмический грузо-поток должен быть минимум 10 миллионов тонн в год. Для выведения такогоколичества груза на орбиту, скажем, к 2020 году, кораблями типа «Шаттл»при интенсивности запусков 60 в год эту программу надо было начинать осу-ществлять раньше, чем в Древнем Египте приступили к строительству пира-миды Хеопса! А выводить столько грузов в год — вовсе нереально!

Причем уже сегодня ракетный транспорт близок к потенциальным пределамсвоего развития как с экономической, так и с технической и экологическойточек зрения. Например, подсчитано, что всего лишь не более 100 частых за-пусков орбитального корабля типа «Шаттл» приведут к катастрофическому инеобратимому разрушению озонового слоя планеты продуктами сгорания ра-кетного топлива.

КТС способен вывести в космос и забрать из космического индустриальногокольца за один полет от 1 до 5 миллионов тонн полезного груза! В год могут

Page 327: основы классической триз. м. орлов

быть сделаны десятки стартов-посадок, практически безвредных для приро-ды! Себестоимость выведения грузов в космос с помощью АТС будет менее1 доллара США за килограмм, что в тысячи раз меньше в сравнении с ракетнымтранспортом!

В таблице на рис. 18.8 приведен сокращенный перечень изобретательскихприемов, реализованных в космической транспортной системе А. Юницкого.

На начало III тысячелетия применение космической транспортной системыА. Юницкого для создания геокосмической индустриальной цивилизации —самая практичная идея из всех самых фантастических идей.

И в заключение этого раздела приведем оптимистическое напутствие Г. Альт-шуллера: «Освоение техники фантазирования нисколько не похоже на зазуб-

Page 328: основы классической триз. м. орлов

ривание шаблонных текстов. Одно и то же упражнение может быть выполне-но по-разному в зависимости от личности человека. Здесь, как в музыке, тех-нические приемы помогают раскрытию индивидуальных качеств, и интересновыполнение упражнения порой доставляют подлинно эстетическое удовольст-вие, как хорошо сыгранное музыкальное произведение.»

18.3. Моделирование маленькими фигурками

По-видимому, первым примером применения ТРИЗ к самой себе для своегоже развития было создание Метода моделирования маленькими фигурками(ММФ). Г. Альтшуллер обратил внимание на противоречия приема эмпатии(уподобления себя изменяемому объекту) из Синектики Гордона: сильнаясторона — включение фантазии и органов чувств для стимуляции воображе-ния, слабая сторона — принципиальная ограниченность метода при некото-рых часто встречающихся трансформациях типа разделения объекта, разреза-ния, растворения, скручивания, взрывания или конденсации, сжатия, нагреваи т. п. Итак, эмпатия должна быть, и ее не должно быть! Идеальное реше-ние — принцип копирования! Пусть действия моделируются, но не самимизобретателем, а какой-то условной моделью-фигуркой, а еще лучше толпамималеньких фигурок в любом нужном количестве и с любыми неожиданнымии фантастическими свойствами!

Аналогами для такой идеи послужили известные примеры из истории творче-ских решений. Так, известный химик Кекуле83 «увидел» структурную формулумолекулы бензола (С6Н6) сначала в виде кольца обезьян, ухватившихся за пру-тья клетки, а также за передние и задние руки друг друга. А в мысленном экс-перименте Максвелла84 требовалось из одного и того же сосуда с газом пере-вести в другой сосуд частички газа с большей энергией. Максвелл мысленносоединил сосуды трубочкой с «дверцей», которую «маленькие демоны» откры-вали перед высокоэнергстическими быстрыми частичками и закрывали передмедленными.

Историю с Кекуле историки творчества обычно приводили только для того,чтобы поговорить о роли случайности в открытии или изобретении, а из опы-та Максвелла делали и без того очевидный вывод о важности воображениядля ученого. И только Г. Альтшуллер превратил эти случаи в метод! Он далему название: Метод моделирования маленькими человечками. Много лет назадавтор учебника заменил в названии слово «человечки» на более эмоциональ-но-нейтральное — «фигурки». Дело в том, что в некоторых ситуациях частьили всех «человечков» нужно тем или иным способом уничтожать, что вызы-вает психологический дискомфорт при использовании этого образа и такжемешает успешно решать творческие задачи. Дискомфорт практически отсутст-вует при следующем представлении о «фигурках»: они умеют выполнять лю-

83 Кекуле фон Страдониц Ф. А. (1829—1896) — немецкий химик, открывший формулу бензола.84 Джеймс Максвелл (1831 — 1879) шотладский физик, создавший теоретические основы

описания электромагнитных нолей.

Page 329: основы классической триз. м. орлов

бые наши фантазии, умеют активно действовать, но остаются абсолютно абст-рактными объектами наподобие шахматных фигур или нарисованных карика-турных персонажей. «Фигурки» не более «живые» и «эмоциональные», чемлюбой напечатанный на этой странице символ: буква, запятая, точка, скобка,которые при необходимости можно спокойно стереть, чтобы заменить новы-ми символами.

Взяты именно условные «фигурки», а не, например, молекулы или микробы.Дело в том, что для мысленного моделирования нужно, чтобы маленькие час-тицы «видели», «понимали», могли действовать «коллективно»! ПрименяяММФ, изобретатель также использует эмпатию, но не сам! Это за него дела-ют маленькие фигурки! А изобретатель, словно кукловод или художник-анима-тор управляет этими фигурками и сам наблюдает их действия. Сохраненасильная сторона эмпатии без присущих ей недостатков. Правила ММФ пред-ставлены в таблице на рис. 18.9.

Рис. 18.9. Шаги и операции ММФ ТАБЛИЦА

Одной из первых демонстрационных задач по ММФ была следующая.

Пример 125. Адаптивный полировальный круг. Для полирования сложных по-верхностей трудно применять обычные полировальные круги, так как прибольшой толщине круга он не может попасть в узкие щели в изделии, а приузком круге падает производительность полирования. Применение ММФ мо-жет быть представлено следующим описанием.

Шаг 1. Изменять по правилам ТРИЗ нужно инструмент. Представим полиро-вальный круг состоящим из двух частей, одна из которых, по-видимому, со-прикасающаяся с изделием, должна быть подвергнута трансформации (слевана рис. 18.10,а).

Шаг 2. Теперь нарисуем множество фигурок, стремящихся изменить (справана рис. 18.10,а) цилиндрическую поверхность круга! Более того, пусть фи-гурки будут сами полировать деталь! А другие фигурки пусть держат тех, ктополирует.

Page 330: основы классической триз. м. орлов

Шаг 3. Пусть дана деталь сложной формы (рис. 18.10,b). Теперь во время вра-щения круга человечки прижимаются к детали, но только в месте соприкос-новения круга с деталью. А после выхода из контакта с деталью фигурки со-бираются в группу, придающую кругу привычную форму тела вращения.

Здесь все соответствует максимальной функциональной идеальной модели:круг сам принимает форму детали!

Шаг 4. Таким образом, становится яснее, что круг должен быть устроен так,чтобы его наружнаяя рабочая часть была динамизирована и могла адаптиро-ваться к профилю поверхности детали. Первая техническая возможность: со-ставные круги из многих пластин. Идея выглядит сомнительной из-за слож-ности, а из-за неравномерного износа пластин и вовсе может не дать нужногорезультата. Вторая возможность: выполнить внешнюю, динамизируемую частьиз магнитоабразивного порошка, а сердцевину круга — в виде магнита. Тогдамагнитоабразивные частицы будут, как и маленькие фигурки, подвижными,чтобы принимать вместе форму детали, и будут твердыми (по отдельности),чтобы полировать деталь. На нерабочих участках во время вращения кругачастицы будут немедленно располагаться в соответствии со структурой удер-живающего их внутреннего магнитного поля.

ММФ снижает инерцию, связанную с визуальным представлением и воспри-ятием объектов. Поэтому принципиально важно рисовать объект достаточнокрупно, чтобы силы, моделируемые в объекте, были представлены толпамифигурок, не стесненными линиями маленького рисунка и действующиминужным идеальным образом.

Page 331: основы классической триз. м. орлов

Одним из наиболее постыдных явлений для современного человечества (нача-ло III тысячелетия!) можно назвать довольно широко распространенное отно-шение к изобретателям как к людям, мягко говоря, со странностями. Человек,сделавший открытие или изобретение, и сообщивший, естественно, о своемоткрытии окружающим, вполне может получить ярлык чудака, еретика, психаи т. п. Чем крупнее и «еретичнее» изобретение, тем больше вероятность дляего автора оказаться осмеянным и даже отверженным.

Отношение к самому изобретению по-прежнему проходит через следующиепечально известные стадии:

• для первой стадии характерны безапелляционные выражения «Этого неможет быть!», «Это — нелепая выдумка!», «Это — ложная теория»и т. п.;

• на второй стадии звучат глубокомысленные высказывания типа «В этомчто-то есть, но кому это все нужно?», «Это невозможно реализовать»или «Это преждевременно»;

• на третьей стадии те же говоруны всех сортов и пород обязательно будуттвердить как можно громче «Что тут нового — это всем известно!»,«Я всегда видел в этом перспективу!», «Это не принадлежит только од-ному N.! Мы все внесли свой вклад в…» и т. д.

В ТРИЗ-школе различают творческую деятельность трех типов:

1) применение известной идеи по известному назначению;

2) создание новой идеи для известной цели;

3) создание новой цели и идеи для се достижения.

Посмотрите еще раз таблицу уровня изобретений на рис. 3.2. Творческая дея-тельность первого типа включает решения 1 и 2 уровней; деятельность второ-го типа — решения 3 и 4 уровней. Третий тип творчества включает 5 уровень,а также не указанный в таблице 6 уровень как систему открытий (изобрете-ний) 5 уровня.

Page 332: основы классической триз. м. орлов

Ступени творчества отличаются, однако, не только уровнем постановки и ре-шения проблем, но и стимулами, мотивацией самого творчества и, как отме-чено выше, характерной негативной реакцией окружающих на энтузиастовтворческой деятельности и их результаты. Слишком многих изобретателей ипервооткрывателей, создававших великие вехи в истории человечества, по-стигла драматическая или трагическая судьба.

Исследования тысяч судеб выдающихся творческих личностей (следует под-черкнуть, что к ним не относятся «изобретательные» преступники, амораль-ные и иные асоциальные типы), проведенные под руководством автора ТРИЗГенриха Альтшуллера на эту тему, привели к разработке теоретической моде-ли [6], на основе которой творческая личность могла бы противостоять нега-тивным воздействиям внешних обстоятельств.

Однако, краткие принципы были сформулированы Г. Альтшуллсром вместе сучениками и последователями еще за 10 лет до публикации указанной книги.Эти принципы должны помочь творческой личности сознательно вступать вборьбу со старыми представлениями и научиться, как говорят в боксе, уме-нию «держать удар».

«Творческий комплекс» включает шесть необходимых качеств.

1. Нужна достойная цель — новая, еще не достигнутая, значительная, общест-венно полезная. Для уровня творчества третьего типа можно говорить о выборецели служения общественному прогрессу, цели гуманистического развитияцивилизации (см. раздел Стратегия и тактика изобретения).

2. Нужен комплекс реальных рабочих планов достижения цели и регулярный са-моконтроль за выполнением этих планов. Цель останется смутной мечтой, еслине будет разработан пакет планов, например, на 10 лет, на 5 лет, на год.И если не будет оценки выполнения этих планов — каждый месяц или дажекаждый день. В большинстве случаев планы включают приобретение новыхзнаний и умений, например, знание иностранных языков для чтения нужныхработ в оригинале.

3. Высокая работоспособность в выполнении намеченных планов. Накопление исистематизация вспомогательной информации. Жюль Верн оставил послесебя картотеку из 20 000 (!) тетрадей.

4. Хорошая техника решения задач. Биографы Огюста Пиккара85 писали, чтоизобретение им батискафа коренным образом отличается от множества про-чих изобретений, зачастую случайных и, во всяком случае, интуитивных.Пиккар приходил к своим открытиям только благодаря систематическим.продуманным поискам решений. Создатель стратостата и батискафа умел ви-деть технические противоречия и владел немалым количеством изобретатель-ских приемов даже с точки зрения современной ТРИЗ.

5. Способность отстаивать свои идеи — «умение держать удар». Сорок лет про-шло от мечты о спуске на максимальные океанские глубины до реального

Page 333: основы классической триз. м. орлов

спуска первого батискафа. За эти годы Огюсту Пиккару довелось испытатьмногое: нехватку средств, издевки журналистов, сопротивление морских спе-циалистов. Пиккару было 70 лет, и он уступил место пилота своему сынуЖаку.

6. Результативность. При наличии первых пяти качеств должны быть частич-ные положительные результаты на пути к цели.

ТРИЗ непосредственно связана только с четвертым качеством из этого ком-плекса. Но качества образуют систему: нельзя добиться высоких показателейпо одному пункту, если на нуле все остальные.

Для развития общества важен любой из указанных типов творчества. Но еслижизнь связана с творческой дейтельностью первого типа, она чаще благопо-лучна, если же с деятельностью второго или третьего типов — почти всегда непроста или драматична.

Если творчество первого типа непосредственно реализует прогресс, то дея-тельность второго и третьего типов определяет его тактические и стратегиче-ские направления, ставит и решает задачи отдаленного, но непременно гряду-щего будущего. Поэтому важность такого творчества для общества в целомнамного значительнее.

И поэтому же ТРИЗ рекомендует, кроме мотивации, развивать творческие на-выки. Путем упражнений, накопления опыта решения изобретательских за-дач, совершенствования техники решения на основе ТРИЗ, изучения жизнивыдающихся творческих личностей, изучения творческих решений в искусст-ве, литературе, кино, политике, экономике, психологии и в других областяхчеловеческой деятельности.

Главная цель ТРИЗ — сделать мышление талантливым, сделать интуициюуправляемой, закономерно появляющейся и хорошо работающей.

Заметных изменений в Вашей вооруженности для решения новых за-дач Вы достигнете на основе проработки задач данного учебника.

Вместе с тем для адаптации ТРИЗ к Вашей профессиональной сфере необхо-дима постоянная работа и тренировка. Это объясняется вполне понятнымиявлениями.

Во-первых, читая специальную литературу в своей профессиональной сфере,Вы интерпретируете новые знания и извлекаете из них только те, которые ка-жутся непосредственно примененимыми в Вашей работе. То есть Вы отбирае-те и систематизируете информацию. ТРИЗ, напротив, универсальна и доста-точно обширна. Поэтому ее нужно осваивать всю и без пропусков! Это обрат-ная задача по отношению к тому, к чему мы привыкли за многие годы нашейпрофессиональной деятельности.

Page 334: основы классической триз. м. орлов

Во-вторых, любая деятельность требует накопления опыта. Действительно, ниодин врач не имеет права приступить к лечению пациента без достаточнойпрактики и аттестации под наблюдением более опытных врачей. Ни один врачне должен останавливаться в накоплении и анализе своего опыта практическиво всей своей будущей деятельности. Тогда почему же многие инженеры по-зволяют себе утверждаться в мысли, что они-то уж точно постигли все тонко-сти своей профессии? Или, еще хуже, если так же думают о себе менеджеры!

В-третьих, разве мы удивляемся, когда видим даже в окно спортивного зала(то есть не слыша ритма музыки или команд тренера) множество людей раз-ного возраста, прыгающих и размахивающих руками или совершающих оди-наковые ритмичные движения? Мы знаем, что это идет тренировка спортсме-нов или, скорее всего, «группы здоровья». Эти тренировки стали стандартнымэлементом культуры современного общества. Тогда почему рекомендация тре-нинга умственных способностей вызывает усмешку или удивление, считаетсяненужной или даже оскорбительной? Не потому ли, что культура мышлениясовременного общества еще недостаточно высока, чтобы включить в себя по-стоянный тренинг мышления как обязательный способ поддержания его дол-говечности и эффективности?!

Наконец, как много людей, считающих себя вполне цивилизованными, вооб-ще следуют даже известным и уже упомянутым рецептам здоровья? Из книги«Как стать гением» и других источников: здоровым мечтает быть каждый, ирецепт прост — не пить алкоголь, не курить, не слушать чрезмерно громкуюмузыку, особенно в наушниках, соблюдать режим и умеренность в еде, еже-дневно совершать пробежки и разминки. Вроде бы все просто. Но многие лииспользуют эту «простоту» в жизни? А ведь речь идет о бесспорном — о со-хранении здоровья. Что же говорить о творчестве, когда альтернативой при-таились по сути своей разрушительные для здоровья «удовольствия»? И когдасамо здоровье не воспринимается как удовольствие?

Итак, конкретные рекомендации.

1. Не следует думать, что сразу после прочтения этой книги Вы сможете решитьлюбую творческую проблему. Сравните: решились бы Вы выйти на ринг толькопосле того, как прочитали какое-нибудь наставление по боксу и даже не пред-ставляя, с кем Вам предстоит встретиться? А ведь кто знает, какая «пробле-ма-супертяжеловес» поджидает Вас в реальности на интеллектуальном ринге?

2. Регулярно работайте с этой и подобными книгами. Еще и еще раз пробуйтепроходить решения задач по памяти, все меньше подглядывая за ходом при-целенного в учебнике варианта решения.

3. Следите за принципом приема, а не за поясняющим его примером. Вся силаприема — в его принципе. И в Вашей фантазии, в способности интерпретиро-вать прием применительно к решаемой задаче.

4. Заменяйте термины! Это «золотое» ТРИЗ-правило! Нужно учиться представ-лять любые проблемы описаниями, понятными даже школьникам, хотя быстаршеклассникам. Нередко неумение представить проблему иными словами

Page 335: основы классической триз. м. орлов

в виде, понятном для человека не из Вашей отрасли, свидетельствует о том,что Вы сами недостаточно или неточно понимаете ее.

5. Составляйте собственные каталоги приемов и оригинальных идеи решенийиз патентов, технической литературы, фантастики, детективов и любых другихинтеллектуальных источников.

6. Записывайте! И это «золотое» ТРИЗ-правило! Во-первых, мы относимся кзаписанному с гораздо большей ответственностью, чем к произнесенному.Во-вторых, визуализация и использование чисто механических усилий возбу-ждает дополнительные и очень мощные нейронные поля и ассоциации, под-ключающиеся к решению проблемы. В-третьих, когда Вы знаете, что уже незабудете свои быстролетящие мысли, поскольку записали их, то этим Вы ос-вобождаете место в «оперативной памяти» мозга для новых мыслей!

7. Используйте ТРИЗ-Софтвер. Известные продукты описаны в разделе 21.CAI: Computer Aided Innovation/Invention. Одним из преимуществ ТРИЗ-софтве-ра является наличие разнообразных примеров применения ТРИЗ-инструмен-тов. Вторым преимуществом, особенно, в системе Idea Navigator (раздел 21.3.Idea Navigator: интеграция интеллектов), является возможность вносить собст-венные примеры пользователя непосредственно в каталоги и навигаторы сис-темы. Эта функция в системе Idea Navigator создана именно для последующейадаптации этой системы к профессиональной деятельности пользователя, напридание системе отраслевой ориентации с учетом индивидуальной специа-лизации и вкусов.

8. Тренируйте свою наблюдательность, чуство красоты решения.

В процессе поиска решения может случиться так, что Вам не удается созданиеидеи, несмотря на применение приемов и других рекомендаций.

Вполне возможно, что Вы имеете дело с задачей, для решения которой нужныновые знания, новые научные исследования. По сути дела, здесь проходитфундаментальная граница между возможностью и невозможностью создать иреализовать некоторую техническую идею.

Если бы перед самым талантливым изобретателем середины XIX века поста-вили задачу создать устройство для «просвечивания» металлических изделий,то он только пожал бы плечами. А сейчас конструкторы используют для этогои рентгеновские лучи, и гамма-лучи, и ультразвук.

Для правильной оценки возникшей ситуации Вы должны хорошо знать исто-рию своей отрасли, да и сопредельных отраслей.

И все же, что делать, если кажется, что никакие приемы уже не работают? Вэтом случае могут быть полезны поиски обходных путей, включая использо-вание психологических резервов человека.

Правило 1. Его можно выразить вопросами: «Почему было так и почему долж-но быть иначе?» Опытный изобретатель никогда не приступит к решению за-дачи, прежде чем не представит себе ясно, в каком направлении идет разви-тие техники (см. раздел Стратегия и тактика изобретения).

Page 336: основы классической триз. м. орлов

Правило 2. Его можно выразить в двух словах: «Пусть случится!» Для этого надопредставить себе, что негативное действие по техническому противоречию всеже случилось. Нужно проследить за тем, а не является ли это действие более ес-тественным для рассматриваемой системы, только плохо реализуемым. На од-ном заводе немало усилий было затрачено на разработку захватов для листовстали, переносимых краном. Размеры и вес листов постоянно увеличивались,случалось, что листы падали, приходилось искать новую конструкцию захвата.

Потом пошли по другому пути. Пусть «случай станет правилом» — листыдолжны находиться поближе к земле, их не надо поднимать! И были приме-нены простые тележки на рельсовых путях, позволившие перемещать листыпрактически любого нужного веса.

Правило 3. Это правило точно отражает главное психологическое открытие вметодике изобретательства, а именно, — опору на главное противоречие и иде-альный результат; «Чем больше нарастают трудности при уточнении форму-лировки противоречия, тем ближе верное решение!» Для себя я формулируюэто правило короче: «Чем труднее — тем лучше!»

В конце прошлого века шведский изобретатель Лаваль, работая над усовер-шенствованием паровой турбины, столкнулся с почти непреодолимым затруд-нением. Ротор турбины делал почти тридцать тысяч оборотов в минуту. Притакой скорости вращения необходимо было очень точно уравновесить ротор,а это как раз не удавалось сделать. Трудности непрерывно нарастали. Изобрета-тель увеличивал диаметр вала, делал вал более жестким, но каждый раз в ма-шине возникали вибрации, и вал деформировался. Поняв, что увеличиватьдалее жесткость вала невозможно, Лаваль решил проверить прямо противопо-ложный путь: для опыта массивный деревянный диск был насажен на… камы-шовый стебель — прием 11 Наоборот и правило «Пусть случится!». И вдругоказалось, что «гибкий вал» при вращении уравновешивается сам собой!

Правило 4. Очень полезное правило, если оно срабатывает! Его также можноопределить коротко для запоминания: «Минус умножить на минус дает плюс!»или «Одним выстрелом убить двух зайцев!» Это означает стремление устранитьнегативный эффект другим, обратно направленным, негативным эффектом втой же системе.

Например, диафрагму на первых фотоаппаратах с простыми объективами ус-танавливали либо перед объективом, либо позади объектива. В первом случаеизображение несколько «раздувалось», во втором — сжималось. Это явление(дисторсия) долго не могли устранить. А выход был найден в следующем: ус-тановили две диафрагмы — перед объективом и позади него! Поток лучей не-сколько расширялся, а затем настолько же сжимался. Один недостаток ком-пенсировался другим.

В целом, полезно помнить о том, что ТРИЗ. как и всякая теория, полезнавсем, но хорошо работает в талантливых руках. Теория шахматной игры соз-давалась в результате накопления и анализа очень большого числа сложныхреальных партий. По такому пути шла и продолжает идти ТРИЗ. Но еслишахматные записи в какой-то мере отражают ход мыслей шахматистов, то в

Page 337: основы классической триз. м. орлов

описаниях изобретений зафиксирован только итог работы. Для реконструиро-вания хода мыслей изобретателя нужен реинвентинг! ТРИЗ учит такому рсин-вентингу. И тем самым учит решению новых задач.

В основе шахматного анализа лежит стремление понять, чем игра гроссмей-стера отличается от игры обычного шахматиста-любителя. Понять гроссмей-стера может только близкий ему по силе шахматист! ТРИЗ же вооружает Васнаиболее сильными ходами, сыгранными в миллионах «изобретательских пар-тий», раскрывает секреты гроссмейстерской игры для каждого, кто захочет ихоткрыть для себя!

В изобретательской практике встречается немало типичных ошибок(рис. 19.1). Эти ошибки имеют разную природу, но все они мешают поискурешений (с ТРИЗ или без ТРИЗ).

Page 338: основы классической триз. м. орлов

Ниже мы рассмотрим два практических примера, которые демонстрируютприменение ТРИЗ при решении «неразрешимых» практических проблем.

Пример 126. Удержание большого тонкого стеклянного листа в вакууме

Общее описание проблемы

Одна из компаний в Южной Корее выпускает несколько необычные машиныдля производства жидкокристаллических экранов. В этих машинах соединя-ются вместе два очень тонких (менее 1 мм толщиной), гибких, легко ломаю-щихся, стеклянных листа с размерами по каждой стороне почти до 2 метров.На площади листа располагается несколько будущих экранов (рис. 19.2).

Робот приносит и укладывает первый (нижний) лист на нижнюю платформумашины. Затем робот подносит второй (верхний) лист к верхней платформе.С помощью вакуума этот лист прижимается к верхней платформе и удержива-ется перед операцией.

Каждый лист должен надежно удерживаться и прижиматься к соответствую-щей платформе. После этого верхняя платформа опускается навстречу ниж-ней, и положение верхнего листа относительно нижнего выравнивается поспециальным меткам.

В это время воздух из рабочей камеры выкачивается до установления глубоко-го вакуума. Поэтому удержание стекол осуществляется с помощью другогоспособа, а именно, с помощью электростатического поля.

При всей «ТРИЗ-идеальности» с точки зрения линий развития веществ и по-лей, этот способ на практике имеет два больших недостатка: слишком боль-шой расход энергии на создание требуемой величины электростатическогонапряжения и слишком большие затраты времени на переходные процессыпри включении и выключении электростатического поля.

Особое затруднение возникает из-за особого требования применяемой техно-логии сборки, состоящего в том, что стекла должны быть ориентированы го-ризонтально.

Первичные точки жидких кристаллов наносятся на нижнее стекло в заданныхместах расположения будущих экранов.

Герметизирующие полоски эпоксидного клея, окаймляющие будущие экраныпо контуру, наносятся на нижнюю поверхность верхнего листа.

После сближения на очень маленькую дистанцию (доли миллиметра!) и пози-ционирования листов друг относительно друга, по всей поверхности верхнеголиста подается импульс нейтрального газа, что приводит к прижатию верхне-го листа к нижнему (прессование).

Схема на рис. 19.2 иллюстрирует приведенное описание технологическогопроцесса.

Page 339: основы классической триз. м. орлов

Следует еще раз отметить, что удержание листов происходит в вакуумной ка-мере.

Автором этой книги было разработано более 20 решений этой задачи. Некото-рые из этих решений использованы здесь в виде, более подходящем для учеб-ных целей.

ДИАГНОСТИКА

Проблемная ситуация

Сначала листы удерживаются вакуумными капиллярами, выполненными вплатформах, а в условиях вакуума — электростатическим полем.

Несмотря на то, что электростатическое поле является более прогрессивным всоответствии с линиями развития ресурсов (и его применение может бытьзначительно улучшено!), заказчик потребовал (и это нередкий случай, когдаконсультанту приходится действовать вопреки ТРИЗ-законам развития) пол-ностью исключить применение электростатического способа.

Экстрагирование проблемы из исходной проблемной ситуации

Под действием собственного веса верхний лист стремится оторваться от верх-ней платформы и упасть вниз. И, несмотря на вакуум, верхний лист долженполностью быть прижат к верхней платформе плотно и равномерно.

Page 340: основы классической триз. м. орлов

Как это может быть сделано?

Стратегия решения завист от определения оперативной зоны, ресурсов и опе-ративного времени.

Рассмотрим следующие версии:

1) работа только с верхним листом в оперативное время;

2) работа с двумя листами в оперативное время;

3) совместное изучение системы на интервалах предоперативного, оператив-ного и пост-оперативного времени;

4) комбинированное изучение возможностей.

РЕДУКЦИЯ

Оперативная зона и ресурсы

Верхняя поверхность верхнего листа (для удержания!); пространство междуэтим листом и платформой; поверхность верхней платформы над верхнимлистом; силы гравитации (вес листа); глубокий вакуум.

Должны быть приняты во внимание материал листа (стекло) и материал плат-формы (алюминий).

Индуктор и рецептор

Индуктор — платформа. Рецептор — лист.

Техническое противоречие

Платформа S2 должна удерживать лист S1, но эффективное взаимодействиемежду листом и платформой отсутствует. Другими словами: платформа долж-на удерживать лист, однако силы гравитации противодействуют этому.

Page 341: основы классической триз. м. орлов

Физическое противоречие

Платформа S2 должна удерживать лист S1 для обеспечения главной полезнойфункции, и платформа S2 не должна удерживать лист S1 из-за отсутствия ре-сурсов (полей, сил).

Идеальный Функциональный Результат

Macro-FIM: Х-ресурс, не усложняя систему и не вызывая негативных эффек-тов, обеспечивает вместе с другими имеющимися ресурсами

[ надежное удержание верхнего листа (при глубоком вакууме)].

Дополнительное моделирование (рис. 19.5)

Построенная модель неполна, так как содержит только два вещества: S1 — ре-цептор и S2 — индуктор, а поле Fm полезного взаимодействия между нимиотсутствует (!). При этом имеется вредное воздействие гравитационного поляFg, которое оторвёт S1 от S2.

По таблице противоречий (рис. 19.4) можно извлечь ранжированное множест-во навигаторов: 03, 042, 052, 10, 13, 14, 18 и 19.

Тогда обобщенный «портрет» решения может иметь такое описание:

03 Дробление — разделить объект на независимые части;

04 Замена механической среды — с) перейти от неподвижных полей к движу-щимся, от фиксированных — к меняющимся во времени, от неструктуриро-ванных — к имеющим определенную структуру; d) использовать поля в соче-тании с ферромагнитными частицами;

05 Вынесение — отделить от объекта «мешающую часть» («мешающее» свойст-во) или, наоборот, выделить единственно нужную часть (нужное свойство);

10 Копирование — а) вместо недоступного, сложного, дорогостоящего, неудоб-ного или хрупкого объекта использовать его упрощенные и дешевые копии

13 Дешевая недолговечность вместо дорогой долговечности — заменить дорогойобъект набором дешевых объектов, поступившись при этом некоторыми каче-ствами (например, долговечностью);

Page 342: основы классической триз. м. орлов

14 Использование пневмо — и гидроконструкций — вместо твердых частей объ-екта использовать газообразные и жидкие: надувные и гидронаполняемые,воздушную подушку, гидростатические и гидрореактивные;

18 Посредник — а) использовать промежуточный объект, переносящий или пе-редающий действие; b) на время присоединить к объекту другой (легкоудаляе-мый) объект;

19 Переход в другое измерение — b) использовать многоэтажную компоновку;наклонить объект или положить его «набок»; использовать обратную сторонуданной площади.

Несколько решений может быть сформулировано на основе навигаторов 10,13, 18 и 19. При этом общая идея состоит в том, чтобы использовать копиюлиста в качестве посредника, который держит лист по всей его верхней по-верхности, а сам плотно прижат к нижней поверхности верхней платформы.

Другие решения могут быть сформулированы на основе навигаторов 05 и 14:продолжить использовать вакуум для удержания листа.

Решение физического противоречия в общем виде

В этом случае необходимо найти и применить подходящий физико-техниче-ский эффект для получения поля Fm (рис. 19.5, b), создающего достаточноеусилие для удержания листа под верхней платформой в условиях вакуума.

Идеи технических решений

В соответствии с рассмотренными моделями может быть получено немалотезнических решений. Рассмотрим некоторые из них.

Верхний лист удерживается прижатым к верхней платформе при условии, чтодавление Р1 < Р2 на определенную величину, где Р2 — остаточное давление ввакуумной камере.

Идея 02. Клей

Верхний лист удерживается с помощью клея S3. Клей может быть временнонанесен до поступления листа в камеру или выделяться из капилляров наверхней платформе. Клей может быть нанесен не по всей поверхности.

Page 343: основы классической триз. м. орлов

По окончании операции клей может быть втянут обратно в капилляры верх-ней платформы.

В верхней платформе встраиваются электромагниты. Временный односторон-не-адгезивный слой S3 с ферромагнитными частицами нанесен (наклеен) наверхнюю поверхность листа. После включения электромагнитов ферромаг-нитный посредник притягивается к верхней платформе вместе с листом.

Page 344: основы классической триз. м. орлов

Идея 05. Адгезивные ферромагнитные контуры в «пустых», технологических зо-нах под листом между экранами

Спорный вариант «идеального» решения: ферромагнитные частицы добавля-ются в эпоксидный клей S3. Проблема состоит в нарушении требуемыхсвойств слоя эпоксидного клея.

Специальная пластина-посредник с управляемыми электромагнитами S1’прикрепляется к верхнему листу на основе адгезии. В нижней платформеимеются электромагниты S2, которые создают поле такой же полярности, чтои верхние электромагниты. Благодаря этому, возникает эффект левитации, тоесть верхний лист висит над нижним листом.

После создания вакуума параметры токов электромагнитов изменяются так,чтобы верхний лист аккуратно опустился на нижний. Затем с помощью изме-нения полярности тока и магнитного поля одной из групп магнитов осущест-вляется прессование листов непосредственно в вакууме.

ВЕРИФИКАЦИЯ

Экономический эффект от создания новой конструкции без примененияэлектростатического способа составляет около 800 000 долларов США на однумашину. Экономический эффект от сокращения энергопотребления86 оцени-вается дополнительно в миллион долларов в течение от 3 до 5 лет.

Page 345: основы классической триз. м. орлов

Пример 127. Ортопедическое изобретение (87) FITBONE®

Общее описание проблемы

Известны разнообразные конструкции для удержания в правильном положе-нии и постепенного удлинения кости после тяжелой травмы. Некоторые изтаких конструкций относительно сложны, а их применение создает неудобст-ва и болевые ощущения для пациента. Проблема является очень сложной,имеющей историю в несколько десятилетий. Можно ли улучшить некоторыеиз таких конструкций?

Рассмотрим реинвентинг усовершенствования одного из ортопедических уст-ройств (рис. 19.12), созданных по методу Г.А. Илизарова (88). Для созданияFITBONE изобретатель доктор Т. Байер успешно применил ТРИЗ и МАИ.

ДИАГНОСТИКА

Исходная конструкция «держателя» состоит изстержней, связанных в единое целое с помощьюсборных колец. Вся конструкция может посте-пенно увеличиваться по длине при постепенномизменении длины стержней.

Разрывы в кости, полученные при травме, за-полняются фрагментами кости, взятыми у само-го пациента и подготовленными специальнымобразом.

Одной из проблем применения этой конструк-ции является трудоемкость ее «настройки», чтоможет иметь следствием появление ошибок вформе восстанавливаемой кости.

Еще одной проблемой является наличие много-численных открытых ранок от спиц, проходя-щих сквозь кожу до кости. Это может иметьследствием попадание в ранки инфекций.

Наконец, эта конструкция ограничивает под-вижность пациента и причиняет значительные болевые ощущения.

РЕДУКЦИЯ

Оперативная зона и ресурсы

OZ: кость. ОТ: время удержания и растяжения.

Индуктор и рецептор

Индуктор — стержни и спицы растягивающей конструкции. Рецептор — кость.

8 7 Торговая марка, р и с у н к и и исходные материалы принадлежат к о м п а н и и Wittenstein intens A G .Г е р м а н и я . С м . также материалы изобретателя Dr. T.Bayer: T R I Z in der W I T T E N S T E I N A G . —4 l h European T R I Z — C o n g r e s s , 2005; д о п о л н и т е л ь н ы й источник: magazine « D E R S P I E G E L » , N o . 30.June 2005 and www.fitbone.de.

8 8 А к а д е м и к Г а в р и и л А б р а м о в и ч И л и з а р о в (1921 — 1992) — в ы д а ю щ и й с я о р т о п е д и д е я т е л ь ме-дицины

Page 346: основы классической триз. м. орлов

Полное описание проблемы связано с выявлением и формулированием мно-гих противоречий. В учебных целях приведем только некоторые из них. Послеэтого возможно применение метода CICO.

Идеальный Функциональный Результат

Macro-FIM: Х-ресурс, не вносящий нежелательных эффектов и не создающийусложнения системы, обеспечивает вместе с другими имеющимися ресурсамиполучение:

[правильная форма кости (с уменьшением боли, ограничения движения и помехдля сна)].

ТРАНСФОРМАЦИЯ

Нетрудно видеть, что доминирующим здесь является ресурс пространства.Рассмотрим первый раздел Каталога фундаментальных трансформаций со спе-циализированными А-Навигаторами (Приложение 7).

Page 347: основы классической триз. м. орлов

Анализ навигаторов и формирование идей могут быть сделаны в следующемвиде.

В соответствии с навигатором 05 было бы целесообразно внести Х-ресурс какможно ближе к кости (внести в оперативную зону!).

В соответствии с навигатором 10 возможно применить какой-то Х-ресурс на-подобие самой восстанавливаемой кости (?).

Навигатор 19 может быть интерпретирован как рекомендация рассмотреть нетолько внешние поверхности кости, но и внутренние (дополнительное опера-тивное пространство! Но разве это возможно?).

После рассмотрения навигатора 19 навигатор 34 Матрешка уже не выглядитстранным и совершенно непригодным для развития новой конструкции. Дей-ствительно, возможен ли такой Х-ресурс, который обеспечил бы растяжениекости … изнутри самой кости (!?).

Аналогично можно рассуждать при рассмотрении навигаторов из результи-рующего кластера по методу СIСО. Тогда обобщенный «портрет» будущегорешения может быть описан по «фрагментам» и «проекциям» в следующемвиде:

04 Замена механической среды — Да! Нужно использовать электрические, маг-нитные или электромагнитные поля для управления новым Х-ресурсом в опе-ративной зоне около или внутри (!?) кости;

07 Динамизация — Да! Нужно в любом случае сделать параметры Х-ресурса(индуктора) и кости (рецептора) изменяемыми и управляемыми для согласо-вать оптимального увеличения длины кости при растягивании!

08 Периодическое действие — Интересно! Возможно, нужно перейти от непре-рывного воздействия к периодическому (импульсному), чтобы создать не-большие удлинения кости без значительных болевых ощущений?

Page 348: основы классической триз. м. орлов

17 Применение композиционных материалов —Да, в любом случае нужно обеспечить совмес-тимость материалов с тканями и костью;

31 Применение пористых материалов — Инте-ресно! Это выглядит как рекомендация допол-нительно применить пористые элементы(вставки, оболочки и т. п.) для фиксацииХ-ресурса снаружи или внутри кости;

34 Матрешка — Действительно, а почему быи нет, в конце концов! Почему бы не бытьХ-ресурсу конструкцией внутри кости!

Примем во внимание, что и после анализатаблицы на рис. 19.15 навигатор 34 Матрешкавыглядел вполне обещающе.

Вместе с навигаторами 04, 07 и 31 идея раз-местить конструкцию внутри кости выглядитперспективно!

Главная итоговая идея (рис. 19.16): реализоватьрастягивающее устройство в виде специального управляемого стержня (обо-значенного на рисунке как FITBONE®), вставленного в кость и увеличиваю-щегося по длине с помощью встроенного микро-мотора и миниатюрнойтрансмиссии.

ВЕРИФИКАЦИЯ

Оба вида противоречий — техническое и физическое — устранены. Конструк-ция обеспечивает надежное, легко контролируемое и управляемое растяжениеи поддержание правильной формы кости.

Сильный сверх-эффект: метод намного безболезненней.

Изобретатели сообщают, что обеспечивается рост кости примерно на 1 мм всутки. Через небольшое время пациент начинает нормально спать, умыватьсяи даже работать.

Конечно, в реальности все происходит не так просто, как в учебном примере.Но наша задача состояла в том, чтобы воспроизвести и показать шаги по соз-данию реального изобретения с помощью ТРИЗ и при движении по этапамМета-Алгоритма Изобретения.

Кроме этого, автор должен напомнить, что для решения проблем большойсложности, особенно таких, как в последнем примере, наряду с ТРИЗ безус-ловно необходимы специальные знания. Так, при решении проблем первогопримера автор опирался на поддержку со стороны специалистов компании,производящей упомянутые машины для сборки жидкокристаллических экра-нов. А при решении второй проблемы изобретатели и инженеры-биомехани-ки работали совместно с врачами — специалистами в хирургии и протезиро-вании.

Page 349: основы классической триз. м. орлов

49. «Увидеть» невидимое. Вспомните, каким образом врач в рентгенкабинетенастраивает рентгенаппарат, чтобы получить снимок только нужной областитела. Ведь чувствительная пленка находится в закрытой коробке, устанавли-ваемой к тому же за пластмассовой доской, на которой, впрочем, также нане-сена вспомогательная разметка для грубого позиционирования тела относи-тельно невидимой пленки. Какие приемы применены здесь?

50. Допустить «невозможное». Предположим, что геокосмический индустри-альный комплекс использует космическую транспортную систему (КТС)А. Юницкого. Индустриальное кольцо вынесено на высоту, например.1000 км. Между кольцом и Землей курсирует КТС. Можно допустить, что вкосмосе функционируют несколько индустриальных колец и несколько КТС(попробуйте нарисовать эти ситуации). Вопросы:

1) Можно ли установить промежуточное кольцо между существующимикольцами при старте КТС с Земли?

2) Можно ли опустить промежуточное КТС на Землю?

3) Как можно осуществлять обмен веществом и энергией между Землей иближайшим индустриальным кольцом при наличии нескольких промежу-точных КТС?

4) Как могут обмениваться соседние и несоседние индустриальные кольцавеществом и энергией на основе КТС или иными способами?

5) Может ли быть КТС или индустриальное кольцо запущено или переведе-но на полярную орбиту (движение в плоскости, перпендикулярной по от-ношению к плоскости экватора и проходящей через Северный и Южныйполюсы)?

6) Какие проблемы обеспечения технической надежности, безопасности иживучести КТС и индустриальных колец нужно решить?

51. Понять «непостижимое». Известно, что винтовую лестницу строили, что-бы сэкономить место в доме или, например, в башне храма или замка. Онаобычно крутая и относительно узкая. На ней трудно разминуться, если кто-топоднимается, а кто-то спускается. Можно ли удвоить пропускную способ-ность винтовой лестницы, не меняя диаметра сооружения?

52. Достойные цели. Хотите ли Вы и сможете ли решить следующие проблемы:

52.1. Обеспечить Землю чистыми продуктами питания.

52.2. Обеспечить Землю чистыми видами энергии.

Page 350: основы классической триз. м. орлов

52.3. Выравнивание уровня жизни на планете и установление глобальныхпринципов развития и прогресса.

52.4. Обеспечить защищенность людей от асоциально-направленного инфор-мационного влияния (особенно, скрытого и медленно действующего) черезсредства массовой информации: радио, телевидение, пресса, кино, аудио- ивидеопродукция, литература и т. д.

52.5. Обеспечить безопасность автомобильного транспорта.

52.6. Обеспечить безопасность полетов авилайнеров.

52.7. Исключить открытый или скрытый захват власти в регионе или над пла-нетой асоциальными элементами.

52.8. Устранение терроризма или защита от терроризма — в школах, общест-венных местах, на уровне региона или государства.

52.9. Устранение всех или наиболее опасных видов преступности.

52.10. Устранение наркомании.

52.11. Устранение никотиновой зависимости.

Page 351: основы классической триз. м. орлов

Развитие ТРИЗ

Page 352: основы классической триз. м. орлов

Прогресс держится на творчестве и за-висит от концентрации талантливыхлюдей в каждом поколении. Творче-ской личности необходимо уметь ре-шать сложнейшие задачи…

Сегодня время работает на ТРИЗ.

Первое поколение разработало основы.Но оно не имеет той свободы, раско-ванности, которая нужна для истинно-го исследования.

Нужно второе поколение разработчи-ков. Теперь слово за исследователями.Смелыми, дерзкими, способными со-хранить то, что важно, то, что достойносохранения на новом этапе, и смело вы-бросить все остальное.

Сегодня теория переросла свое назва-ние, но в силу традиций пока не полу-чила новое.

Сейчас впереди новая эпоха ТРИЗ 8 9 .

Генрих Альтшуллер

Page 353: основы классической триз. м. орлов

Огромное достоинство ТРИЗ как системы знаний состоит в том, что основ-ные принципы ТРИЗ не устареют. Они инвариантны во времени! Действи-тельно, не приходится сомневаться в неизменности главного открытияТРИЗ — принципа противоречия в развитии систем и в создании изобретениякак преодоления главного противоречия проблемы. Не приходится сомне-ваться и в основных закономерностях и приемах ТРИЗ. Также инвариантнымостанется и Мета-Алгоритм изобретения, Стареть могут только примеры изо-бретений, так как они больше связаны с конкретным уровнем развития инже-нерных и общенаучных знаний, с конкретно-историческим уровнем развитиятехнических систем. Так инвариантна арифметика, независимо от того, рас-считывается ли время поездки на автомобиле на работу или траектория полетана Марс. На рис. 20.1 приведены оценки темпов старения различных знаний.

Вопрос состоит в том, чтобы определить, в каких направлениях могут и долж-ны развиваться ТРИЗ-знания. В качестве альтернативных стратегических тен-денций можно указать следующие:

1) ориентация на изобретение инноваций человеком;

2) ориентация на формальный синтез решений компьютером.

Второе направление на самом деле практически полностью опирается на фор-мализацию процедур синтеза инноваций интеллектом человека. Правда, рядматематических моделей, в частности, моделей распознавания образов и мо-делей многокритериальной оптимизации, обещают сделать процесс компью-терного синтеза идей достаточно обоснованным и эффективным.

Но можно указать, по крайней мере, на следующие принципиальные нере-шенные проблемы компьютерного синтеза идей:

1) автоматическое формирование функциональной идеальной модели как целиинновации и трансформации;

2) автоматическое формирование и учет социально-значимых (этических, эко-логических, эстетических и других гуманистически-ориентированных) ас-пектов.

Page 354: основы классической триз. м. орлов

Одним словом, машина не может пока делать главное — изобретать соци-ально-ценный образ будущего. Это способен делать только человеческий ин-теллект.

Г. Альтшуллер указывал также следующее: «Простые задачи решаются бук-вальным преодолением физического противоречия, например, разделениемпротиворечивых свойств во времени или в пространстве. Решение сложныхзадач обычно связано с изменением смысла задачи — снятием первона-чальных ограничений, обусловленных психологической инерцией и до ре-шения кажущихся самоочевидными. Для правильного понимания задачинеобходимо… ее решить (!): изобретательские задачи не могут быть сразупоставлены точно. Процесс решения, в сущности, есть процесс корректи-ровки задачи.» И это переосмысление содержания задачи может делатьтолько человек!

Означает ли это, что стратегия развития ТРИЗ-знаний должна быть ориенти-рована на разработку методов, ориентированных только на использование ин-теллектуально-психических ресурсов человека?

Опыт работы автора с системами искусственного интеллекта и разработки та-ких систем для CAD/САМ, опыт применения и разработки ТРИЗ-моделей иТРИЗ-софтвера показывает, что центр тяжести исследований должен нахо-диться ближе к первому направлению: поддержка синтеза идей человеком. Приэтом компьютерные системы являются неотъемлемым инструментом творче-ства человека. То есть автор следует наиболее мощному приему ТРИЗ — ин-теграции альтернативных систем с получением позитивного системногосверхэффекта.

Компьютер может и должен освободить человека от рутинной и невыпол-нимой в ограниченное время работы, например, по поиску аналогов в па-тентном фонде или для доступа к различным знаниям, хранящихся в эн-

Page 355: основы классической триз. м. орлов

циклопедиях. Процедуры доступа должны включать описание цели и крите-риев поиска, а также сами методы поиска, обеспечивающие эффективнуюселекцию знаний и экстракцию нужных знаний применительно к целямсинтеза новых идей.

До настоящего (до 2006 года) остается малоизученным и малопродуктивнымнаправление создания компьютерных систем психологической поддержкипроцесса творчества, и особенно, инновационною и изобретательского твор-чества.

Таким образом, можно указать следующие фундаментальные направленияразвития ТРИЗ-знаний, ориентированных на поддержку инновационной дея-тельности человека интеллектуальными компьютерными системами:

1) создание систем обработки знаний для инновационной и изобретательскойдеятельности;

2) создание универсальных и специализированных прикладных систем на основеТРИЗ;

3) интеграция ТРИЗ-систем с другими системами поддержки деятельности че-ловека, например, с системами образования, проектирования, управления, на-учных исследований;

4) создание систем психологической поддержки инновационной и изобретатель-ской деятельности;

5) создание систем поддержки социально-ценностной ориентации человека сучетом закономерностей, ограничений и целей экологического и социальногопрогресса.

Особым фундаментальным направлением является расширение ТРИЗ-транс-фера в сферы искусства, менеджмента, воспитания. ТРИЗ может сыграть вы-дающуюся социально-значимую роль в развитии широкого движения с цельювоспитания творческих личностей, начиная с детского возраста. Как психоло-го-педагогическое кредо этого последнего по упоминанию, но не но важно-сти, направления, приведу высказывания самого Г. Альтшуллера90: «Обычномы живем по трехзвенной схеме: работа — деньги — удовольствия. Творческийстиль жизни предусматривает сокращение среднего звена, избыточного длясхемы творческая работа —удовольствия. Удовлетворение приносит сам про-цесс работы.

Творчество — это возможность самовыражения, самопознания, познания ок-ружающего мира, принесения добра этому миру. Творчество — это путешест-вие в страну мечты. Разве можно мечтать за деньги?

Творческий труд избирается человеком по доброй воле. Нельзя 15 часов вдень добровольно заниматься нелюбимым занятием: это запредельная нагруз-ка. Переход к творческому ритму жизни возможен только тогда, когда работа

Page 356: основы классической триз. м. орлов

превращается в потребность. Поэтому 15 часов работы воспринимаются как15 часов удовольствия! 15 часов награды.

…Чего мы хотим? Вообще, в дальнейшем, в целом. Прогресс человечества за-висит от концентрации талантливых людей в каждом поколении. Чем выше впоколении процент творческих личностей, тем лучше и выше общество. Этоглавный параметр общества, который определяет его дела, занятия, возмож-ности, перспективы. Если Эйнштейн занят работой, ему не до агрессии, не досклок в коридоре, он не будет этим заниматься. Это только отнимает время.Можно привести несколько исключений (в смысле отрицательного творчест-ва), но все равно прогресс остается и держится на творчестве.»

Поскольку автор отдает приоритет исследованиям и разработкам, стратегиче-ски ориентированным на интеллектуально-психическую активность человекапри решении проблем и создании инновационных идей, то следует хотя быкратко объяснить связь развиваемой им творческой методологии с ТРИЗ.

Вопрос о выборе творческого метода является в начале III тысячелетия не ме-нее остродискуссионным, чем до начала христианского летоисчисления.

Действительно, что находится между методом Брэйнсторминг, относящимся к«чистому» искусству, и, например, методом Морфологического анализа, отно-сящимся к «чистой» науке? Оба метода отличаются простотой и универсаль-ностью применения. Однако, они теряют свои преимущества в сложных зада-чах. И тогда случайный (?) поиск по методу Брэйнсторминг или сплошной пе-ребор по методу Морфологического анализа утрачивают свои преимущества,казавшиеся столь явными.

ТРИЗ создавалась школой Г. Альтшуллера как непримиримая альтернативаметоду Проб-и-Ошибок, под которым понималось, фактически, все, что неотносилось к ТРИЗ. Для оценки сложности задачи применялся мультипли-кативный функционал от размерности шкал переменных факторов. Напри-мер, если решение нужно найти в пространстве 5 факторов, каждый из ко-торых может принимать по 10 значений, то пространство перебора содержит100 000 комбинаций. В качестве примера нередко приводится метод Эдисо-на, примененный им при создании щелочного аккумулятора, при которомпотребовалось провести 50 тысяч экспериментов.

Однако, многие другие не менее известные примеры показывают, чтоудивительные решения обнаруживались в условиях немыслимой ком-бинаторной сложности. Это говорит в пользу того, что мозг человекаиспользует не просто и не столько переборные механизмы, а ка-кие-то иные, гораздо более эффективные.

Учитывая эти доводы, представляется вполне философским разрешение этогопротивопоставления в стиле самой ТРИЗ, а именно, объединением альтерна-тивных подходов.

Page 357: основы классической триз. м. орлов

Целью объединения является обоснованная интеграция методов творчества,считавшихся ранее несовместимыми и взаимно отвергавшимися в различныхнаправлениях. Основой для интеграции служит понимание природы мышле-ния хотя бы в том виде и объеме, какие объективно присутствуют в инте-гральном взаимодополняющем функционировании левого и правого полуша-рий мозга и в нейрофизиологической активности полушарий, а также лобныхдолей при генерации новых идей.

Обобщение этих знаний позволило автору в начале 1990-х годов построитьтри схемы творческого мышления, которые послужили в дальнейшем основойдля практических разработок и проверки самих этих схем. Результаты приме-нения подхода и новые данные о работе мозга подтвердили правильность иполезность этих схем.

Первая схема, приведенная на рис. 20.2, отражает фундаментальные различиялево- и правополушарного мышления и позволяет сформулировать требова-ния к теоретическим и прикладным разработкам:

1) время: учет макроритмов мышления и микроритмов функционированиямозга;

2) пространство: интеграция логико-алгоритмических моделей с эмоцио-нально-образными, метафорическими;

3) эмоции: учет психофизиологических особенностей конкретной личности —мотивация, психологические ресурсы, здоровье, подготовленность.

Результаты исследования активности мозга, особенно, российской школынейрофизиологов, стали основой для «топологической модели рожденияидеи», представленной на рис. 20.3.

И, наконец, третья схема даст представление об эмоционально-временных яв-лениях, которые необходимо учитывать в новых разработках (рис. 20.4).

Page 358: основы классической триз. м. орлов

Page 359: основы классической триз. м. орлов

Таким образом, интеграция подходов имеет вполне надежные психологическиеобоснования и обнаруживает с этих позиций и гармоничность, и прагматич-ность. Начало такой интеграции было положено в конце 1980-х голов авторомнастоящего учебника в направлении, которое получило название CROST™ —Constructive Result& Resource Oriented Strategy of Thinking& Transforming.

CROST интегрирует следующие концепты:

Constructive — в основе направления лежит ТРИЗ как конструктивная теорияи конструктивный инструментарий для управляемого синтеза идей, направ-ленного на преобразование (трансформацию) улучшаемого объекта;

Result&Resource Oriented — подход ориентирован на достижение результата сприменением минимально необходимых, наиболее доступных ресурсов, учи-тывая и интеллектуально-психические ресурсы человека;

Strategy of Thinking&Transforming — подход дисциплинирует и организуетмышление в направлении конструктивных, улучшающих трансформаций, от-вечающих содержанию и стратегическим целям задачи.

Весь объем знаний, имеющих отношение к мотивам, целям и способам твор-чества человека, трудно представить какой-то одной схемой. И все же разра-ботанная автором учебника и приводимая ниже схема представляется весьмапростой и конструктивной. Благодаря этой схеме, можно увидеть конкретныеступени в развитии методов творчества, связь этого развития с естественнои-сторической эволюцией общества и Природы. Она рационально дифференци-рует знания о творчестве. И что особенно важно, в ней аккумулированы воз-можности для будущего направленного развития этих знаний.

При разработке под руководством автора нового софтвера эта схема получиламетафорическое название Idea Navigator™. Пять ядер дают нам стратегиче-скую основу для конструктивного анализа и синтеза технологий творчества,для практического сопоставления и интегрированного применения «старых» иновых методов.

Пять символов, которые использованы в названии Idea Navigator™, составле-ны из понятий, образно отражающих основное содержание соответствующегоядра Idea Navigator™.

А теперь построим Idea Navigator™ вместе. И начнем со второй буквы — «В».Ключевые понятия — Brainstorming и Brainwave. Для наших целей уместнопринять, что все методы, основанные на догадках и свободных ассоциациях,на полете фантазии и произвольных аналогиях, это и есть Brainstorming, имею-щий результатом Brainwave. По сути своей, это методы правополушарного, ху-дожественного мышления. Независимо от конкретных версий, Brainstormingнередко определяют как метод «Проб-и-Ошибок». Но абсолютное большинст-во изобретений за время существования человечества было сделано именноэтим, можно сказать, «экспериментально-творческим методом». Поэтому не

Page 360: основы классической триз. м. орлов

будет ли более справедливо определить Brainstorming как метод «Проб-и-Удач»Во всяком случае можно собрать все версии этого направления в одно В-ядро(рис. 20.5).

Мы также имеем возможность связать символ В с именем психолога и педаго-га, ученого и писателя, Эдварда де Боно, специалиста, который на протяженииуже более 30 лет успешно развивает этот класс методов, придавая ему то ха-рактер рационально-направленного поиска, то характер игры и шутки.

Идеи де Боно так же, как и идеи Г. Альтшуллера, далеко не исчерпаны, и мыбудем использовать их не только в рамках В-ядра.

В-ядро тесно связано с ядром, научное развитие которого привело к конст-руктивным результатам только в последние 30—40 лет. Это ядро аккумулируетв себе знания о психике и психологии человека. Ключевым понятием мы из-брали понятие доминанты (dominant, dominance), определившее название этогоядра как D-ядра. Именно доминирующая мотивация личности, направлен-ность и конкретные состояния во многом определяют возможности открытияи изобретения нового.

Интуитивно это прекрасно осознавали выдающиеся мыслители во всех из-вестных нам эпохах цивилизации. Другое дело, какие конструктивные, то естьпрактичные и результативные, рекомендации они смогли нам дать. Такие ре-комендации чаще носили характер философского осмысления, созерцатель-ного и образного описания процесса и отдельных проявлений творческогоакта. Однако в последние несколько десятилетий с появлением исследованийо доминантах мышления, о роли и организации совместной работы различ-ных отделов мозга, появились предпосылки к разработке инструментальных

рекомендаций для управления и поддержки творческой деятель-ности.

Здесь же важно только указать на вполне очевидную иерархиче-скую взаимосвязь этих двух ядер (рис. 20.6), вместе и неразделиморазвивавшихся уже не одно тысячелетие.

И все же принципиальными недостатками «старых» методовВ-ядра и тем более D-ядра являлись следующие: случайный, мало

управляемый характер поиска новых идей, невозможность передачи накоп-ленного опыта.

Стремительный прогресс технологий и рост знаний с середины XX века по-требовали создания адекватных методов творчества. Методов, основанных назакономерностях эволюции технических систем, на закономерностях созда-ния изобретений высокого уровня. Такой подход и был предложен в ТРИЗ,которая строится на фундаменте систематического исследования знаний, ак-кумулированных в мировом патентном фонде. Конструктивизм этой концеп-

Page 361: основы классической триз. м. орлов

ции заключается в том, что для создания методов и теории изобретения необ-ходимо выявлять конкретные приемы и правила, модели и ресурсы, которыепривели к созданию высокоэффективных изобретений. По сути, это методылевополушарного, логического мышления. Свой главный метод Г. Альтшуллерназвал Алгоритмом решения изобретательских задач. Отсюда, а также и от име-ни автора ТРИЗ, появилось название ядра алгоритмических (algorithm,algorithmic) методов — А-Ядро.

Ясно, что с этим подходом соседствуют методы систематического конструи-рования и методы математического (компьютерного) синтеза технических ре-шений в САПР.

Таким образом, в целом мы имеем здесь дело с новым классом методов, даю-щих стратегию направленного поиска решений и оперирующих с логически-ми моделями. То есть мы можем говорить о ядре методов пре-имущественно левополушарного мышления. Именно методыА-ядра становятся стержнем для всех других ядер и должныбыть включены в них как обязательное ядро (рис. 20.7).

Во второй половине XX века чрезвычайно обострились про-блемы, связанные с сохранением Природы, с обеспечениемгармоничного и гуманистического развития человечества, спредотвращением войн, терроризма и преступности, с необхо-димостью выравнивания развития различных регионов планеты. Проблемыпозитивной эволюции цивилизации всегда находились в центре внимания вы-дающихся мыслителей в истории человечества. Однако именно накануне IIIтысячелетия эти проблемы приобрели острый характер и требуют безотлага-тельного решения.

Глобальные проблемы могут быть решены только на основеновых изобретений и открытий. Методы и модели, связан-ные с творчеством и направленные непосредственно на эво-люцию Природы и цивилизации, мы выделяем в отдельноеЕ-ядро. Ключевые понятия: Evolution и Ecology (рис. 20.8).

Автор сформулировал концепцию интеграции методов А-и В-ядер в конце 1980-х годов. Они должны образоватьвзаимнодополняющий инструментарий. Этот подход соот-ветствует одному из наиболее конструктивных приемовТРИЗ — интеграции альтернативных систем. Таким образом, появился при-мер применения приемов ТРИЗ к развитию самой ТРИЗ. Однако, обоснован-ное и скоординированное применение методов из разных ядер требует даль-нейшей разработки и экспериментальной проверки.

Эффективное использование современных знаний D- и Е-ядер также требуетразработки инструментальных моделей и методов. Эти методы должны учиты-вать прогрессивные цели и категорические ограничения эволюции. Онидолжны создавать позитивную мотивацию личности и существенно увеличи-вать творческие возможности человека. Мы полагаем, что к этим проблемамбудет привлечено внимание многих новых исследователей.

Page 362: основы классической триз. м. орлов

Полому, в ТRIZ Idea Navigator™ присутствует еще одноядро, а именно, С-ядро для конструктивной интеграциимоделей. Ключевыми понятиями являются Challenge иConstructivism (рис. 20.9).

В понятии Constructivism мы аккумулируем позитивные.созидательные модели и подходы в оппозиции к дест-руктивным, разрушительным тенденциям, которыеимеют место в обществе, а нередко и в психике челове-ка. Challenge означает решение экстремально сложныхпроблем на основе моделирования развития систем.

Мы вкладываем в это понятие стремление к открытию нового и в то же времябезусловно полезного, конструктивного, как это было, в частности, в истокахрусского художественного и архитектурного конструктивизма первой полови-ны XX века, выросшего в течение Европейского конструктивизма, а позднеепроявившегося в творчестве многих всемирно известных художников, писате-лей, композиторов, инженеров и архитекторов.

И в заключение данного раздела расположим полученные системы в соответ-ствии с моделью асимметричного мозга (рис. 20.10).

Основные разделы учебника посвящены анализу и систематизации методовА-ядра и в необходимой степени — методов С-ядра (в разделах «Мета- Алго-ритм изобретения» и «Стратегия и тактика изобретения»). Методы В-ядрарассмотрены в самом общем виде в разделах «Методы творчества» и «Искус-ство изобретения». Это объясняется наличием обширной литературы по мето-дам В-ядра. Несмотря на то, что в библиографии приведен ограниченныйсписок публикаций, которые были нам нужны для этой работы, этот списокможет помочь нахождению других работ на эту тему. Идеи и методы D- иЕ-ядср представлены фрагментарно по мере их соприкосновения с методамиА-, В- и С-ядер. Ограниченный объем учебника не позволил уделить этиммоделям необходимое внимание.

Page 363: основы классической триз. м. орлов

В Минске (столица Республики Беларусь, одной из бывших союзных респуб-лик экс-СССР) в конце 1980-х годов, после примерно 7 лет эксперименталь-ных работ, по инициативе и под руководством доктора Валерия Цурикова,специалиста ТРИЗ и исследователя, работавшего в области систем искусст-венного интеллекта, группой энтузиастов был создан пионерский ТРИЗ-соф-твер Изобретающая Машина (Invention Machine). К 1991 году было реализова-но более 2000 копий.

В 1992 году Валерий Цуриков выехал в США и основал компанию InventionMachine Corp., при этом программирование новой Windows-версии продолжа-лось в Минске. 1995 год принес фирме большой успех заключением контрак-та с фирмой Motorola на 3 млн долларов, а в 1996 году фирма Mitsubishi при-обрела версию Invention Machine на 18 млн долларов.

В 1997 году ТРИЗ-софтвер Invention Machine вышел в расширенной версиипод названием TechOptimizer. Стремительное распространение софтвераTechOptimizer привело к всемирной известности ТРИЗ и сделало фирмуInvention Machine Corp. признанным лидером в области CAI — Computer AidedInnovation / Invention.

На начало 2001 года TechOptimizer 3.5 являлся наиболее мошной системой,основанной на ТРИЗ. Инструментальную часть системы представляют четыреподсистемы, основанные на ТРИЗ-моделях: «Principles Module» — реализуетА-Матрицу и А-Каталог; «Prediction Module» — реализует ТРИЗ-закономер-ности развития систем и оригинальные модели трансформации, детализирую-щие и развивающие модели типа «Стандарты»; «Effects Module» — база зна-ний технических эффектов; «Feature Transfer Module» — реализует Метод ин-теграции альтернативных систем.

Исключительно ценной является подсистема «Effects Module». В ней собраноболее 4400 (!) эффектов из разных областей знания.

Подсистемы «Product Analysis Module» и «Process Analysis Module» основанына моделях функционально-стоимостного анализа и помогают правильноформулировать проблемы.

Наконец, подсистема «Internet Assistant Module with Patent Analyzer» впервыедала пользователю возможность доступа к известным патентным и другимфондам через Интернет непосредственно из ТРИЗ-софтвера.

Page 364: основы классической триз. м. орлов

Настоящий учебник принесет Вам несомненную пользу в работе сTechOptimizer 3.5 по следующим обстоятельствам:

1) Для работы с софтвером TechOptimizer 3.5 требуется предварительное изу-чение основ ТРИЗ. В этом отношении настоящий учебник дает необходи-мые знания для работы с ТРИЗ-подсистемами «Principles Module».«Prediction Module», «Effects Module» и «Feature Transfer Module»;

2) Существенную помощь пользователю в работе с софтверомTechOptimizer 3.5 окажет знание Мета-АРИЗ и понимание заложенной внего стратегии направленного решения инновационных проблем, так какTechOptimizer 3.5 не содержит такого обобщенного навигатора;

3) Знание принципов диагностики проблем, стратегии и тактики изобрете-ния и ТРИЗ-закономерностей развития систем поможет пользователям вработе как с подсистемами «Product Analysis Module» и «Process AnalysisModule», так и с ТРИЗ-подсистемами.

В заключение этого раздела следует обратить внимание читателей на новые вы-дающиеся инструменты фирмы Invention Machine Corp., а именно, системыKnowledgist, CoBrain и Goldfire Intelligence. Все системы являются мощными се-мантическими процессорами и предназначены для поиска знаний в патентных идругих электронных информационных фондах. Например, система Knowledgistможет обеспечить пользователю обращение к базам знаний «Effects Module» наестественном языке, при этом с помощью синонимической интерпретации сис-тема подберет пользователю наиболее подходящие разделы и примеры. СистемыCoBrain и Goldfire Intelligence чрезвычайно эффективны, например, для быстрогопросмотра и анализа патентных фондов с целью поиска аналогов, для прогнози-рования развития отрасли или оценки конкурентоспособности продукции.

Таким образом, софтвер фирмы Invention Machine Corp. ориентирован напервое и третье фундаментальные направления развития ТРИЗ-знаний — соз-дание систем обработки знаний для инновационной и изобретательской деятель-ности, особенно для интеграция с системами поддержки проектирования, управ-ления, научных исследований.

Знание ТРИЗ-закономерностей и моделей развития систем по разделу «Стра-тегия и тактика изобретения», метода реинвентинга и моделей структурирова-ния оперативной зоны обеспечит Вам необходимую целевую ориентацию приработе с системами Knowledgist, CoBrain и Goldfire Intelligence.

Дальнейшую информацию можно получать в Интернет по адресуwww.invention-machine.com.

Выдающийся теоретик ТРИЗ, ТРИЗ-писатель и педагог Борис Злотин прошелбольшой творческий путь вместе с основателем ТРИЗ Генрихом Альтшулле-ром. Также в 1992 году состоялся переезд Б. Злотина и его школы в США, гдес его участием была основана фирма Ideation International Inc.

Page 365: основы классической триз. м. орлов

Консалтинговая деятельность Б. Злотина вскоре принесла дальнейшую из-вестность ТРИЗ в США, а вместе с деятельностью фирмы В. Цурикова сталамощным катализатором как применения ТРИЗ, так и быстрого роста числаконсалтинговых и обучающих ТРИЗ-фирм. Так, ряд других ТРИЗ-специали-стов, переехавших вскоре из России в США, приняли участие в воссозданиитам в 1996 году международного издания ТРИЗ Journal — ранее единственногоТРИЗ-журнала в СССР, выходившего с 1990 года 1—2 раза в год (для сравне-ния — по 12 выпусков в год в США!).

Фирма Ideation International Inc., начиная с середины 1990-х годов, выпустиланесколько софтверных систем, таких как Problem Formulator, InnovationSituation Questionnaire, Ideator, Improver, Anticipatory Failure Determination (AFD),Knowledge Wizard, Innovation Workbench. Так или иначе все системы семействаTPИ3Soft фирмы Ideation International Inc. опираются на классическиеТРИЗ-модели трансформации, хотя содержат и иные оригинальные инстру-менты, особенно система AFD, предназначенная для анализа и предупрежде-ния появления системных дефектов. Таким образом, софтвер фирмы IdeationInternational Inc. ориентирован на второе (и частично, на третье и четвертое)фундаментальное направления развития ТРИЗ-знаний — создание универсаль-ных и специализированных прикладных систем на основе ТРИЗ.

Знакомство с основами классической ТРИЗ по настоящему учебнику, и осо-бенно, с концепцией Мета-АРИЗ и моделями развития систем, позволит Вам,при необходимости, быстро освоить большинство из указанных систем фир-мы Ideation International Inc.

Дальнейшую информацию можно получать в Интернет по адресуwww.ideationtriz.com.

21.3. TRIZ Idea Navigator™: интеграция интеллектов

Представленные выше софтверные продукты ориентированы на крупные пред-приятия, способные организовать непрерывный ТРИЗ-тренинг своих сотрудни-ков. Но применение таких систем средними и малыми предприятиями оказыва-ется далеко не таким простым, поскольку требует длительной предварительнойподготовки как по ТРИЗ-основам, так и по достаточно большому числу разно-образных системотехнических методов и моделей, выходящих за рамки ТРИЗ.Все упомянутые выше продукты не содержат единой навигационной системыпри поиске изобретательских идей и инновационных решений и не содержатспециальных средств психологической поддержки процесса мышления.

Чтобы сделать ТРИЗ более доступным малым и средним предприятиям, нетак давно мы начали разработку как можно более простого софтвера. На мо-мент редактирования этой книги ко второму изданию разработано нескольковерсий нового софтвера под общим названием Idea Navigator.

Все версии основаны на Мета-Алгоритме Изобретения (МАИ) и используют«стандартную» форму МАИ для обучения пользователей с помощью приме-ров, аккумулированных в базе данных софтвера, так и для генерации идей.

Page 366: основы классической триз. м. орлов

Рассмотрим здесь два примера «простейшего» софтвера Idea Navigator и егоперспективную версию

Этот софтвер разработан на базе простейшей версии МАИ под названиемSMART (Simplest Meta-Algorithm of Resourceful Thinking) — Простейший Ме-тa-Aлгоритм Изобретательного Мышления.

Этот алгоритм (рис. 21.1) применяется нами под названием SMART-2000Т-Р-И-3 много лет (как SMART с конца 1990-х) на тренингах и в реальныхпроектах по решению проблем как «бескомпьютерный» метод. Именно этотопыт и наблюдение за работой тех, кто только начал изучение ТРИЗ, и привелик идее создания «простейшего» ТРИЗ-софтвера Idea Navigator™ EasyTRIZ™.

Одной из немаловажных методических целей стала идея подобрать такое со-четание названий этапов, чтобы получить достаточно «осмысленное» и запо-минающееся раскрытие аббревиатуры ТРИЗ для англоязычного пользователя.Особенно для молодых людей — школьников и студентов. Были подобраныназвания «Targeting — Reducing — Inventing — Zooming», дающих в сокраще-нии TRIZ. Автор решил предложить этот эксперимент и для русскоязычногочитателя и пользователя.

Page 367: основы классической триз. м. орлов

Итак, первый этап МАИ «Диагностика» был назван в SMART-2000 как«Targeting», что можно перевести на русский как «нацеливание». Но хорошегоэквивалента, начинающегося в русском языке с буквы Т, не оказалось. Тогдадля русского перевода было решено ввести название «Тренд», совпадающее санглийским «Trend» и также неплохо отражающее назначение этапа. Действи-тельно, одна из важнейших задач диагностики состоит в том, чтобы опреде-лить цель и, следовательно, направление — тренд — развития системы и ре-шения проблем, связанных с устранением недостатков и причин, мешающихэтому развитию. При необходимости, можно было бы для русскоязычного«благозвучия», привычного уху некоторых «ортодоксальных» и «радикальных»тризовцев, применить слово «Теханализ», то есть «технический анализ», ночто сделано, то сделано. Кроме того, выбору понятия есть и более глубокоеобъяснение, сходное выбору новых названий для моделей противоречий (см.дальше).

Второй этап называется «Редукция», что соответствует основному назначениюэтого этапа в МАИ и не требует дополнительных пояснений.

Третий этап был назван «Изобретение», что также ясно соответствует целям идействиям на этом этапе.

Четвертый этап назван «Зуминг» (в английском — Zooming), что вполне эф-фективно может быть интерпретировано как изучение новой идеи в различ-ном масштабе и в различном системном окружении подобно изучению гео-графического местоположения на картах разного масштаба или подобно мас-штабированию (зумингу) при наведении фото- или видеокамеры на объектсъемки. Действительно, детальное изучение идеи можно вполне интерпрети-ровать как увеличение масштаба и приближение объекта съемки, а изучениеокружения системы или сверх-систем можно интерпретировать с уменьшени-ем масштаба. И само слово «Зуминг» уже достаточно прижилось в русскомязыке в связи с появлением систем компьютерной графики, а затем цифро-вых фотокамер и видеорекордеров.

Кроме всего сказанного, достаточно не забывать, что любые названия — этоне более чем метафоры, все они метафоричны — более или менее удачно, чтопокажет время.

Алгоритм SMART Т-Р-И-3» сначала был проверен в течение нескольких лет ив разных странах в его «бескомпьютерной» форме (рис. 21.2). При этом выяс-нилось, что эта схема является полезной и применяемой также достаточноопытными пользователями для экспресс-решения проблем и для стандартно-го представления процесса решения при «бескомпьютерной» работе, так ска-зать, с листом бумаги.

Вторая методическая и маркетинговая идея для EasyTRIZ™ состояла в том.чтобы создать «одноэкранный» софтвер!

Это должен был быть простейший софтвер с единственным (!) экраном длясквозного прохода по алгоритму МАИ при решении «всех» проблем — и ни-чего больше! Не считая небольшого количества вспомогательных всплываю-

Page 368: основы классической триз. м. орлов

щих окон. А схема алгоритма «Т-Р-И-3» должна все время присутствовать наэкране и запоминаться «навсегда».

Софтвер поддерживается специально написанным для этого уровня пользова-телей, простым, но достаточно строгим в определениях учебником пол назва-нием EasyTRIZ (91) («Нетрудный ТРИЗ»).

Скрин-шот основного экрана софтвера Idea Navigator™ EasyTRIZ™ показанна рис. 21.3.

В этом софтвере также используются новые названия для «классических» по-нятий «Техническое противоречие» и «Физическое противоречие». «Классиче-ские» названия для бинарных моделей противоречий не подходят для многихпрактических ситуаций, которые не относятся к техническим объектам, осо-бенно с участием человека.

Так для замены понятия «Техническое противоречие» на английском языкехорошо подходит «Standard contradiction». Смысл нового названия в том, что-бы указать на способ разрешения этого противоречия, включающего подборподходящих названий конфликтующих свойств (плюс- и минус-факторов) из«стандартных» 39 факторов и ведущих к выбору «стандартных» навигаторов(приемов) для разрешения именно этого «стандартного» противоречия.

Для замещения понятия «Физическое противоречие» вполне подходит «Ради-кальное противоречие». Во-первых, модель этого противоречия лежит в осно-ве, в «корне» любого «Стандартного противоречия», а во-вторых, разрешениеэтого противоречия, если уж не удалось решить проблему на уровне «Стан-дартного противоречия», возможно исключительно путем радикальной транс-формации исходной ситуации на основе четырех фундаментальных навигато-ров — одного, двух или в иных сочетаниях.

Названия «Стандартное противоречие» и «Радикальное противоречие» быливведены после немалых обсуждений и поисков. Но они открывают возмож-ность их универсального применения для любых без исключения ситуаций иобъектов без всяких натяжек и неудобств при интерпретации, особенно при-менительно к межперсональным конфликтам.

При соответствующем расширении типов примеров в софтвере (либо при до-полнении специальными учебными пособиями) он может стать универсаль-ным средством для обучения основам ТРИЗ школьников и студентов, специа-листов любого профессионального направления.

Подготовка и запись информации о процессе решения задачи реализуется набланке, структура полей которого близка к полному SMART-формату(рис. 21.2).

Некоторые другие версии софтвера Idea Navigator также используют SMARTT-R-I-Z.

9 1 www.easytriz.com

Page 369: основы классической триз. м. орлов

Page 370: основы классической триз. м. орлов

Page 371: основы классической триз. м. орлов

Этот софтвер92 также разработан на основе SMART-2000.

В отличие от EasyTRIZ™, софтвер Idea Navigator™ HandyTRIZ™ включает инст-рументы из трех студий А, В и С (рис. 21.4) и ориентирован на профессиональ-ное применение инженерами и исследователями, знакомыми с основами ТРИЗ.

Каждая студия использует одну и ту же схему МАИ, но со «своими» инстру-ментами.

Студия А включает все главные А-навигаторы. Используются также и новыеинструменты, разработанные в последнее время на основе А-Матрицы.

Студия В включает метод «Размер — Время — Стоимость» и матрицу длябрейнсторминга.

Студия С включает наиболее популярные инструменты на базе линий разви-тия ресурсов.

Page 372: основы классической триз. м. орлов

Работа в каждой студии поддерживается Проект-навигатором (рис. 21.5), ко-торый автоматически записывает информацию, созданную пользователем впроцессе решения задачи. При этом регистрация любой информации реализу-ется в одной и той же стандартной МАИ-структуре.

Каждый пример для пояснения действия любого навигатора имеет МАИ-фор-мат (см. далее Примеры 128 и 129). Этим задается стандартный формат для ре-шения проблемы как начинающим, так и профессиональным пользователем.

Специальные всплывающие окна используются для промежуточных записей идля записи новых идей. Все окна могут быть «свернуты», если временно неиспользуются (см. рис. 21.5, на котором окно «Идея» свернуто в «линию»).

«Ведущим» окном является окно SMART-навигатора, появляющееся на экра-не справа (рис. 21.6). Оно помогает пользователю легко ориентироваться в еготекущем «положении» на определенном этапе МАИ и «вспоминать» приме-няемый инструмент в процессе решения. Если SMART-навигация временноне нужна, то это окно сворачивается либо удаляется с экрана.

В дополнение к инструментам указанных трех студий всплывающее окно «До-минатор» (рис. 21.5) реализует также один из простейших инструментов

Page 373: основы классической триз. м. орлов

D-студии, а именно, психологическую поддержку на основе цветовой стиму-ляции. В этом окне пользователь может задавать цвет, который соответствуетего субъективному предпочтению на том или ином этапе МАИ, либо приприменении определенного инструмента.

Здесь реализована «динамизация» известного метода де Боно Six Thinking Hats(Шесть Мыслительных Шляп), так как можно менять цвета для разных «твор-ческих фаз». Для отдыха или стимуляции мышления можно раскрывать окно«Доминатор» на весь экран.

Весьма важно то, что стандартная структура МАИ используется для навига-ции во всех версиях софтвера. Благодаря этому, пользователь может легко пе-реходить к следующей версии по мере накопления достаточного опыта приработе с предшествующей версией.

Комбинирование инструментов трех студий дает пользователю большую сво-боду в управлении процессом решения проблемы.

Софтвер Idea NavigatorTM HandyTRIZTM занимает промежуточное положениемежду софтвером EasyTRIZ™ и наиболее продвинутой версией TRIZPentaCORE™, которая описывается далее.

Page 374: основы классической триз. м. орлов

Ниже представлена укрупненная структура софтвера Idea Navigator™ TRIZPentaCORE™ (рис. 21.7 и 21.8), развиваемого под руководством автора и пре-доставляющего пользователям максимальные удобства для творческого реше-ния инженерных проблем на основе интеграции самых мощных и проверен-ных практикой теорий и методов.

По совокупности функциональных свойств и по уровню системнойинтеграции TRIZ PentaCORET M является пионерским софтвером,не имеющим аналогов.

В основе концепции софтвера TRIZ PentaCORE™ лежит фундаментальнаяидея интеграции рационально-логического интеллекта и эмоционального интел-лекта. TRIZ PentaCORE™ содержит пять инструментальных модулей-ядер, оп-ределивших название софтвера, и один центральный модуль общесистемнойнавигации (рис. 21.7). Модули называются студиями, модели и инструментыкоторых человек выбирает и применяет в своем творчестве. Важнейшие моде-ли и инструменты студий, приведенные на рис. 21.8, в TRIZ PentaCORE™ на-зываются навигаторами (см. раздел 6. От практики к теории).

Важную роль для интеграции интеллектов играют два навигатора из управляю-щего F-Модуля: Мега-Навигатор и Мета-Навигатор. Название модуля F оп-ределяется его прямым отношением к фундаментальному понятию абстракт-ной алгебры и конструктивной математики Functor (сложное преобразованиемежду категориями, чему строго соответствует Мета-АРИЗ) и определениюFrontal, ассоциативно указывающему на связь с фронтальными (лобными) от-делами мозга, ответственными за генерацию идей (см. рис. 20.2, 20.3 и 20.10).

Мега-Навигатор опирается на таблицу выбора стратегии и стиля мышления(приводится в сокращенном виде на рис. 21.9).

Мета-Навигатор реализует функции Мета-АРИЗ (см. раздел 7.2. Мета-Алго-ритм изобретения). При этом в цветовой гамме оформления (рис. 21.10) и винструкциях к применению Мета-Навигатор интегрирует идею навигациимышления по де Боно под названием «Six Thinking Hats» — «Шесть мысли-тельных шляп». В основе этой идеи лежит управление эмоциональным интел-лектом в процессе творческого поиска решения проблемы.

Мета-Навигатор является инвариантной, а значит, хорошо узнаваемой, струк-турой для всех студий софтвера TRIZ PentaCORE™. При этом Мета-Навигаторлюбой студии на фазах Диагностика и Редукция опирается на модели и реко-мендации классической ТРИЗ, изложенные в настоящем учебнике.

Таким образом, софтвер TRIZ PentaCORE™ ориентирован на четыре (со вто-рого по пятое) фундаментальных направления развития ТРИЗ-знаний. TRIZPentaCORE™ является универсальной системой на основе ТРИЗ, интегрирующейтакже методы психологической поддержки инновационной и изобретательскойдеятельности и модели закономерностей, ограничений и целей экологического исоциального прогресса, и имеющей механизмы для интеграции с другими система-

Page 375: основы классической триз. м. орлов

Page 376: основы классической триз. м. орлов

Page 377: основы классической триз. м. орлов

ми поддержки деятельности человека, например, с системами образования, про-ектирования, управления, научных исследований.

Дальнейшую информацию можно получать в Интернет по адресуwww.modern-triz-academy.com.

В дополнение к изложенному приведем два примера из банка софтвера IdeaNavigator™ EasyTRIZTM. Они отражают также общий ход работы в EasyTRIZ(за исключением передачи цветовой поддержки).

Пример 128. Прогулочная подводная лодка

Тренд

Создание автономной прогулочной подводной лодки требует больших денеж-ных затрат и сопряжено с большим количеством проблем обеспечения надеж-ности и безопасности. Поэтому в конечном итоге такие проекты приводили кбольшой стоимости такой услуги для клиентов и не имели большого распро-странения. Административное противоречие: что можно сделать для созданиякоммерчески выгодного аттракциона пребывания отдыхающих, спортсменовили исследователей под водой?

Редукция

Прежде всего административное противоречие необходимо перевести в техни-ческое.

Стандартное противоречие (СП) 1: прогулочная подводная лодка должна бытьпростой в эксплуатации, но из-за внешних вредных воздействий она можетстать небезопасной.

СП 2: при простоте эксплуатации лодка должна быть недорогой, а значит, не-сложной в изготовлении.

03 и ведущие оперативные ресурсы: конфликтуют функциональные свойствавсей системы в целом.

Page 378: основы классической триз. м. орлов

Макро-ФИМ: Х-ресурс, абсолютно не усложняя систему и не вызывая нега-тивных эффектов, обеспечивает вместе с другими имеющимися ресурсами по-лучение

[недорогой, безопасной, простой в эксплуатации подводной лодки для прогулок].

Модели СП:

Явно выделяется прием 05 Вынесение.

Изобретение

Идея по навигатору 05: оставить главную полезную функцию (находиться подводой) за корпусом подводной лодки, а функции управления, перемещения иобеспечения безопасности вынести в надсистему, применив буксирующеесудно (Х-ресурс). При этом пассажиры могут изменять глубину погружения иосуществлять небольшие отклонения относительно курса буксирующего суд-на. В частности, подводная лодка может быть открытой, а пассажиры могутбыть в скафандрах или в легких водолазных костюмах.

Зуминг

Оба СП устранены.

Краткое описание примера

С целью создания недорогой и простой в экс-плуатации прогулочной подводной лодки глав-ная полезная функция (находиться под водой)оставлена за конструкцией лодки, а функцииуправления, перемещения и обеспечения безо-пасности вынесены в надсистему, а именно, пе-реданы буксирующему судну (навигатор 05).

Пример 129. Летающая цистерна

Тренд

При тушении пожаров в высотных зданиях исключительно сложной пробле-мой является доставка воды и других гасящих веществ на нужную высоту. Ис-пользование вертолетов часто затруднено из-за опасности задеть винтами заздание и из-за большой задымленности, а иногда и опасности возгорания са-мих вертолетов. Как можно увеличить возможность ликвидации пожаров ввысотных зданиях?

Page 379: основы классической триз. м. орлов

Редукция

Прежде всего переведем административное противоречие в техническое.

Сформулируем СП в следующем виде: вертолет должен доставлять воду нанужную высоту, но не должен подвергаться опасности аварии или крушения.

Запишем это СП в табличной форме:

Изобретение

Идея по приему 05: воду или другие средства тушения огня вынести в отдель-ную цистерну, прикрепленную к вертолету тросами с возможностью измене-ния длины тросов. При этом вертолет может находиться на безопасной высо-те над зданием, а цистерна может быть внесена в зону, максимально близкуюк пожару, и управляться либо дистанционно, либо специальным экипажем.Цистерна может иметь дополнительные средства маневрирования.

Зуминг

СП устранено.

Системный сверхэффект 1: много цистерн (а не дорогостоящих вертолетов!)может быть готово к применению.

Системный сверхэффект 2: цистерны могут за-правляться параллельно с работой занятых вер-толетов.

Краткое описание

Для обеспечения доставки воды или другихсредств пожаротушения на нужную высоту вы-сотного здания эти средства вынесены в отдель-ную емкость, например, в виде цистерны, при-крепленной к вертолету на тросах с управляе-мым изменением длины тросов (навигатор 05).В цистерну могут быть вынесены средства ло-кального маневрирования для оптимальногосближения с очагом пожара.

Page 380: основы классической триз. м. орлов

Решение любой сложной задачи из инженерной практики всегда есть не толь-ко сугубо логическое рассуждение или решение по аналогии, но более всегоакт интуитивного творчества, поддержанною и логикой, и аналогиями.

Инструменты классической ТРИЗ, рассмотренные в учебнике, позволяют ус-пешно решать не менее 70—75 % «стандартных» изобретательских задач длясовершенствования изделий и технологий. При достаточном опыте на основекомбинирования этих инструментов возможно решать около 90% задач.И эти дополнительные 15—20 % стоят не менее предыдущих, так как относят-ся к решениям очень сложных «нестандартных» задач.

И все же в числе оставшихся 10 % задач — «экстремально» сложные, требую-щие изобретательского таланта и… творческой удачи. Но тем более для их ре-шения важна ТРИЗ. ТРИЗ незаменима для «экстремально» сложных проблем,так как подготавливает и высвобождает «сверхсознание» для генерации ре-шающей идеи.

В решении любой задачи огромную роль играют развитое воображение, уме-ние мыслить нестандартно, умение не идти по «вектору психологическойинерции», не поддаваться кажущейся простоте случайною угадывания идеирешения. Инструменты классической ТРИЗ прекрасно помогают преодолетьэти психологические препятствия. Но остается еще мотивация. Трудно ожи-дать прихода идеи к тому, кто не стремится к решению задачи, для кого этоне важно или не интересно.

Границы возможностей ТРИЗ совпадают лишь с актуальными границами ес-тественно-научных знаний человечества, так как для синтеза идей ТРИЗ опи-рается на эти знания. В то же время ТРИЗ выходит за границы этих знаний.так как помогает исследователю и инженеру преодолеть и расширить сами этиограничения. Рассмотренные и специальные методы ТРИЗ способствуют ре-шению исследовательских проблем самого высокою уровня.

Классическая ТРИЗ потому и является классической, что ее основные прин-ципы останутся навсегда неизменной, инвариантной основой любой инже-нерной теории синтеза творческих решений. Систематизация и упорядочива-ние терминологии, выполненные в этой книге, представляют собой первуюступень в будущей интеграции ТРИЗ с системотехническими и специальнымиинженерными дисциплинами. ТРИЗ должна войти неотъемлемым компонен-том в любую теорию принятия решений, в любую теорию проектирования.

Совершенно необходимо применение ТРИЗ-концептов и инструментов вовсех инженерных дисциплинах и во всех высших учебных заведениях. Препо-давание основ ТРИЗ необходимо в каждой школе.

Page 381: основы классической триз. м. орлов

Исключительно важные возможности открывает ТРИЗ для развития детскоготворчества, для воспитании творческих личностей. Имеются многочисленныепримеры успешного применения ТРИЗ-моделей при организации воспита-тельного процесса и для непосредственного игрового усвоения ключевыхкомпонентов ТРИЗ с самого раннего возраста.

Конструктивные перспективы имеет интеграция ТРИЗ с любыми другими об-ластями деятельности, традиционно не относящимися к инженерным. ТРИЗимеет примеры успешного применения для решения медицинских задач, со-циальных проблем, менеджмента, организации избирательных кампаний,обеспечения надежности и безопасности технических объектов, проектов иорганизаций.

Обобщая, можно повторить высказывание, распространенное в среде привер-женцев ТРИЗ:

Внимание! Изучение ТРИЗ может изменить силу вашего мышления!

Конечно, если Вы уже освоили эту книгу, приведенное «предупреждение» не-сколько опоздало. Но зато Вы, я надеюсь, убедились в его справедливости итеперь сможете убедить в этом других людей. Чтобы сделать их более воору-женными перед появляющимися проблемами. Чтобы увеличить их способ-ность находить отличные идеи. Чтобы, наконец, просто добавить радостныхощущений в жизни через особую радость творческих побед.

ТРИЗ учит и приучает мыслить парадоксами, противоречиями. Она внушаетобоснованный оптимизм и дает уверенность в решении самых острых «нераз-решимых» проблем. Она воспитывает многостороннее видение и пониманиемира, его сложных явлений и проблем. Через логические модели и образныеметафоры ТРИЗ расширяет границы нашего мировосприятия, увеличиваетостроту и гибкость нашего мышления.

Конечно, многие люди чрезвычайно талантливы от природы. Но нет никакихсомнений в том, что всем им также полезна ТРИЗ! Как инструмент. Как тео-рия систематического изобретательства. Как безупречная модель мышления!

Я хочу напомнить здесь талантливые решения сэра Нормана Фостера привосстановлении здания Рейхстага (пример 31), сделанные им, по-видимому,без знания ТРИЗ. Но эти решения настолько эффективны, что достойны ана-лиза на основе ТРИЗ-реинвентинга и включения в «золотую коллекцию»ТРИЗ-моделей. И уже следующие поколения архитекторов могут освоить го-товые образцы для рационального синтеза творческих идей в своих проектах.

Одним из наиболее парадоксальных и смелых решений было создание куполакак места свободного посещения Рейхстага всеми желающими! Через боль-шие прозрачные плоскости в верхнем своде зала заседаний посетители могутвидеть парламентариев, изобретающих внизу судьбу государства. Возникаетприятная иллюзия, что политика и экономика совершенно прозрачны для ка-ждого из нас!

Но еще более концентрированный, главный образ невидимо присутствует вкуполе, когда мы обратим внимание на системную связь всех, кто имеет отно-

Page 382: основы классической триз. м. орлов

шение к этому зданию. Это каждый свободный в демократическом обществечеловек, имеющий возможность ходить над парламентариями. Это парламен-тарии, работающие внизу для этого свободного человека. И это — Бог над все-ми нами, над нашей совестью. И возникает модель демократии, о которой по-думалось при первом же посещении купола:

Каждый над правительством, но под Богом.

Итак, завершение первой работы с учебником означает и завершение важногоэтапа Вашего восхождения в искусстве ТРИЗ. Я мог бы запершить книгу сло-вами одного из участников моих семинаров, ставшего впоследствии моимколлегой:

Классическая ТРИЗ — э т о выходиз болота «Пробы — и — ошибки» к океану «Пробы — и — удачи»!

Но еще несколько слов, обращенных к неискушенному читателю, впервыезнакомящемуся с ТРИЗ, кажутся все же необходимыми.

Человек отражается в сотнях зеркал своих эмоций, способностей, мотивов,умений, поступков. Человек многомерен и неоднозначен. Человек противоре-чив и сложно связан с окружающим его Миром. Но он ищет решения. Ищетих каждодневно. Часто находит. Иногда — нет. Хорошие решения находит нечасто. Очень хорошие или гениальные — очень редко.

Можно ли помочь тем, кто стремится к поиску хороших решений? Кто не же-лает попусту тратить время своей жизни на поиск вслепую, наощупь, случай-ным образом, в необоснованном выжидании какого-то озарения или како-го-то невероятного удачного события! Да, можно. Таким людям необходимаТРИЗ.

Только ТРИЗ впервые в истории цивилизации предлагает систематическийпуть к преодолению проблемных противоречий, к созданию эффективныхидей.

ТРИЗ-менталитет помогает более эффективно организовать и другие аспектыжизни человека. Помогает выдерживать удары судьбы. Помогает нередкопредвидеть и предотвращать проблемы. Помогает находить ресурсы в безна-дежных, как представлялось, ситуациях!

Я благодарю Вас за внимание и доверие.

Я желаю Вам благополучия и успеха.

стр.383 в книге пропущена, она пустая!

Page 383: основы классической триз. м. орлов

Да, изобретать по старинке проще.Рыть землю лопатой проще, чем управ-лять экскаватором. Ходить пешкомпроще, чем водить машину. За ско-рость, мощность, эффективность лю-бого действия приходится платить зна-ниями.

Изобретательство не исключение. Хо-чешь быстро решать трудные задачи —учись, осваивай «изобретательскуюфизику» и все остальное. Впрочем …для решения изобретательских задачважны не столько новые знания, ско-лько хорошая организация тех знаний,которыми человек уже обладает.

Изобретательская деятельность много-гранна. И все-таки … решение —основа основ изобретательства.

Изобретателем XIX века был мас-тер-умелец, он своими руками строилновую машину, переделывал ее на вселады, добиваясь, чтобы она работала.Современный изобретатель, преждевсего, мыслитель, интеллектуал. Са-мое важное — тонкие и точные интел-лектуальные операции.

Генрих Альтшуллер.И т у т появился изобретатель.

Москва, 1987.

Page 384: основы классической триз. м. орлов

Page 385: основы классической триз. м. орлов

Page 386: основы классической триз. м. орлов

Page 387: основы классической триз. м. орлов

Page 388: основы классической триз. м. орлов

Page 389: основы классической триз. м. орлов

Page 390: основы классической триз. м. орлов

Page 391: основы классической триз. м. орлов

Page 392: основы классической триз. м. орлов

Page 393: основы классической триз. м. орлов

Page 394: основы классической триз. м. орлов

Page 395: основы классической триз. м. орлов

Page 396: основы классической триз. м. орлов

Page 397: основы классической триз. м. орлов

Page 398: основы классической триз. м. орлов

Page 399: основы классической триз. м. орлов

Page 400: основы классической триз. м. орлов

Page 401: основы классической триз. м. орлов

Page 402: основы классической триз. м. орлов

Page 403: основы классической триз. м. орлов

Page 404: основы классической триз. м. орлов

Page 405: основы классической триз. м. орлов

Page 406: основы классической триз. м. орлов

Page 407: основы классической триз. м. орлов

Page 408: основы классической триз. м. орлов

Page 409: основы классической триз. м. орлов

Page 410: основы классической триз. м. орлов

Page 411: основы классической триз. м. орлов

Page 412: основы классической триз. м. орлов

Page 413: основы классической триз. м. орлов

Page 414: основы классической триз. м. орлов

Page 415: основы классической триз. м. орлов

Page 416: основы классической триз. м. орлов

Page 417: основы классической триз. м. орлов

Page 418: основы классической триз. м. орлов

Практикум к разделам 3—5

34. Портрет звука. Практически применено соединение физического (отраже-ние звука) и геометрического эффектов: пещера имеет форму правильного эл-липса (даже дыни в объемном представлении), поэтому звук от хлопка ладо-нями или крик в одном из центров эллипса многократно отражается от стен ипотолка и долго не затихает. Эти десятикратно сложившиеся эхо напоминаюттопот целого стада. Негромкие звуки возвращаются как… «ответ предков», на-рисованных на стенах.

35. Александрийский маяк. Свое имя строитель скрыл под толстым слоем шту-катурки, а имя императора написал сверху штукатурки, которая, конечно, современем обсыпалась (ресурс времени, материала и пространства — см. прием34 Матрешка).

36. Загадки пирамид. Использовался физический эффект («горизонтальность»жидкости в относительно короткой емкости — желобе, трубке, траншее) иэффекты геометрического подобия:

a) предположительно, по периметру основания будущей пирамиды выкапыва-лась траншея, которая заполнялась водой. По наклону уровня воды относи-тельно краев траншеи можно было судить о горизонтальности подготовлен-ной строительной площадки.

b) этот ответ известен достоверно. Высота пирамиды контролировалась на ос-нове принципа подобия по сравнению с высотой вертикально стоящей вехи вмомент, когда высота вехи становилась равной длине ее тени. В этот моментдлина тени пирамиды была равна ее высоте.

c) могло использоваться свойство прямой линии. С двух сторон можно былоустановить по две вехи так, чтобы третья веха, установленная в середине пло-щадки была бы третьей точкой, лежащей на двух взаимно перпендикулярныхпрямых линиях, каждая из которых включает две вехи и центральную веху.По мере роста пирамиды достаточно было контролировать положение цен-тральной вехи, поднимающейся вместе с верхним строительным уровнем.

d) есть две гипотезы, основанные на одном и том же эффекте: куча песка, на-сыпаемая строго с вершины, как псевдотекучее твердое тело имеет форму пра-вильного конуса, угол наклона образующей которого составляет около 52?. То-гда можно было бы вместо средней вехи для контроля за симметрией пирамидынасыпать достаточно высокий песчаный конус, и при строительстве пирамидыконтролировать одновременно симметрию и углы наклона граней. По второй

Page 419: основы классической триз. м. орлов

гипотезе пирамида строилась насыпанием конуса в центре строительной пло-щадки до самого верха пирамиды. По мере роста гигантского искусственногоконуса он обкладывался блоками (которые мы и видим снаружи пирамид), и вконусе устраивались из блоков укрепленные помещения и проходы.

37. Посол Исмений. Посол умышленно уронил перстень с пальца и наклонил-ся, чтобы поднять его. Противоречие разрешено в структуре (действии): повнешнему проявлению одно и то же, а по содержанию — нет.

38. Коронация императоров. Карл Великий выхватил корону из рук Папы исам надел себе на голову. То же сделал и Наполеон. Противоречие разрешенов пространстве и во времени — часть целого действия (коронование) выпол-нила одна персона, а другую часть — другая.

39. Пизанская башня. Ответ на второй вопрос (см. рисунок): с северной сторо-ны под основанием башни были просверлены 12 отверстий, фундамент осел,и вылет 7-го яруса башни уменьшился на 40 см и достиг, как считают, безо-пасной величины в 4,07 м.

Практикум к разделам 6—7

40. Кубик льда. Функциональное идеальное моделирование: форма имеет видперевернутой усеченной пирамиды с достаточно пологими углами наклонаграней, из которой лед, расширяясь, будет «извлекаться» сам. Усиление: дноформы сделано гибким и также заполнено водой, которая при замерзании вы-толкнет кубики вверх. Приемы и стандарты, связанные с фазовым переходом.

41. Агрессивная жидкость. Идеальный конечный результат: налить агрессив-ную жидкость в стакан из испытуемого материала (прием 11 Наоборот).

42. Колпачок для свечи. Колпачок укреплен на проволочном держателе, имею-щем в основании форму трубки, надеваемой прямо на верхнюю часть свечи.По мере горения верхняя часть свечи и держатель с колпачком опускаются.Приемы 5, 6, 21, 29.

Page 420: основы классической триз. м. орлов

43. Кремлевские звезды. Ось вращения звезды смещена так, что звезда приоб-ретает функцию флюгера. Чем сильнее ветер, тем надежнее звезда устанавли-вается по ветру (приемы 21 Обратить вред в пользу и 29 Самообслуживание).

44. Заварник для чая. В нижней передней части заварника делается накопи-тель для чаинок (см. рисунок). Разрешение противоречия в пространстве иструктуре.

45. Игрушка. Надувная или раздвижная игрушка. Разрешение противоречияво времени, пространстве и структуре.

46. Переход на пляж. Для того, чтобы песок с пляжа не переносился обувьюна прогулочную зону, используется… солома и скошенная трава. Приемы18 Посредник, 28 Заранее подложенная подушка и 31 Применение пористыхматериалов.

47. Тренировка по прыжкам в воду. Ответ в разделе 12.3, пример 79.

48. Поезд метро. Поезд содержит меньше вагонов — разрешение противоречияв структуре и пространстве.

49. Ги де Мопассан и башня Густава Эйфеля. Прием 34 Матрешка, но глав-ное — разрешение противоречия в структуре и пространстве: чтобы не видетьцелого, можно забраться в часть этого целого.

50. Направление движения жидкости в трубе. Разрешение противоречия в ве-ществе и во времени: нагреть пятно на трубе около повреждения и измерятьтемпературу трубы недалеко от места нагрева. Если температура вырастет, товода течет в направлении от места нагрева к месту измерения. Если темпера-тура не изменится, то вода течет в обратном направлении.

51. Полки в обувном магазине. Отдельные коробки выдвинуты и играют рольполок. Приемы 5, 12, 13, 19, 24.

Практикум к разделам 10—13

52. Рекламный плакат (1). Фирма ЗМ, USA включила в клеевой слой стеклян-ные микрошарики. До прижатия плакат легко перемещается. Разрешениепротиворечия во времени, материале и структуре. Использован комплексныйстандарт на введение добавок и принцип интеграции альтернативных систем.

Page 421: основы классической триз. м. орлов

53. Рекламный плакат (2). Плакат сделан из перфорированного материала —изнутри хорошо видно все, что находится снаружи, так как глаза находятсядостаточно близко к отверстиям перфорации. Разрешение противоречия вструктуре и материале. В регионах с жарким климатом появляется сверхэф-фект — плакат защищает от солнца.

54. Любая сковородка — тефлоновая! Прием 18 Посредник: фирма Дюпон(США) выпускает тефлоновые пленки многократного применения, уклады-ваемые в посуду.

55. Дверной звонок. Приемы 4, 5, 10, 12: используется миниатюрный, лежа-щий в кармане источник звука с радиоприемным устройством, а от кнопкидверного звонка срабатывает радиопередатчик, запускающий «карманныйзвонок». Следующая задача: как сделать, чтобы во всех соседних квартирах несрабатывали «карманные звонки», если гость пришел к одному из соседей?

56. Износ шин. Фирма Мишлен (Франция) выпустила цветные автопокрыш-ки, которые могут стать весьма модными. По аналогии и на основе несколь-ких технических эффектов, например, на химическом эффекте 22, можно сде-лать покрышку, об износе которой можно судить по стиранию верхнего цвет-ного слоя до появления сигнального слоя другого цвета.

57. Нейтрализация выхлопных газов холодного двигателя. Фирма SAAB (Шве-ция) выпустила экспериментальный автомобиль, в котором в течение некото-рого времени после пуска двигателя выхлопные газы собираются в емкость,занявшую часть багажника, а в катализатор подаются после достаточного егопрогрева. Химический эффект 10 Разделение веществ вместе с приемами5 Вынесение и 39 Предварительно антидействие.

58. Греющая одежда. Фирма Gateway Technologies (USA) выпустила ткань,включающую микрокапсулы с полиэтиленгликолем. При замерзании это ве-щество отдает часть тепла, которое было накоплено, когда ткань находилась втеплом помещении. Комплексный стандарт на введение добавок и техниче-ские эффекты, связанные с фазовыми переходами веществ, например, физи-ческий эффект 4 Стабилизация температуры.

59. Микропинцет. Применение веществ с памятью формы по физическим эф-фектам 6 и 12.

60. Как живут орлы и грифы? Физический эффект 17 и прием 18 Посредник: внастоящее время это можно сделать достаточно просто и эффективно — уста-новить для наблюдения миниатюрные передающие телевизионные камеры савтономными источниками питания.

61. Белый светодиод. Исследователи Института прикладной физики твердоготела во Фрайбурге (Германия) ввели несколько микрограммов люминисцент-ного красителя в прозрачный линзообразный корпус синего светодиода. Кра-ситель поглотил синее излучение нитрида галлия, и световод стал светитьсябелым светом. Химический эффект 27 и другие.

62. Зеркало для телескопа. Медленное вращение 45-тонной расплавленноймассы в специальной форме приводит к образованию параболического тела

Page 422: основы классической триз. м. орлов

вращения. Можно сказать, что на заводе Шотт (Германия) применили не-сколько геометрических эффектов, включая эффект 8 Повышение управляе-мости, а также физический эффект 6 Управление перемещением объектов.

63. Заморозка ягод и фруктов. Заморозку ведут в потоке сильно охлажденного(псевдоожиженного) воздуха. Продукты успевают обморозиться до соприкос-новения с конвейером и поэтому не смерзаются вместе. В новой установке,созданной в Санкт-Петербурге (Россия) просматривается применение приема33 Проскок и физических эффектов из группы 2 Понижение температуры игруппы 6 Управление перемещением объектов.

64. Непадающая зубная щетка. См. пример 41 в разделе 9.2 Функциональноеидеальное моделирование

65. Тренировка скалолазов. Учеными из Университета Потсдам (Германия)разработан специальный стенд на основе вращающегося диска с укрепленны-ми на нем выступами для зацепления руками и ногами. Ось вращения дискатакже может менять положение. Приемы 7, 10, 19, 20, 22.

66. Супермаховик. Решение основано на тонком физическом эффекте:

Конструкции, имеющие в статике форму «застывшей» динамической поверх-ности с определенными свойствами, ведут себя в динамике и под нагрузкойподобно эластичным объектам. Так и поверхность опоры центра имеет изгибпо аналогии с линией наибольшего напряжения вращающейся скакалки.

Такой центр изобретен в коллективе создателя суперма-ховиков и двигате-лей на их основе профессора Гулиа в Московском авиационном институте(Россия).

67. Испытания провода. На фирме SIEMENS (Deutschland) кусок контактногопровода замкнули в кольцо диаметром 3 метра и закрепили на диске, вращае-мом управляемым электродвигателем. На этом стенде испытываются такженовые токосъемники и изучаются процессы искрообразования и электромаг-нитных излучений. Приемы 7, 10, 11, 22 вместе с физическими эффектами 17,20 и другими.

Page 423: основы классической триз. м. орлов

Практикум к разделам 14—15

Задачи 35—43 на момент выхода книги не имеют контрольных ответов.

Практикум к разделам 16—17

44. Закалочная ванна. Завершите решение трех задач для примера 14.1, осно-вываясь на формулировках, полученных в примере 14.1 (продолжение 10 вконце раздела 14.2). Контрольное решение: создание в ванне слоя из углеки-слого газа.

Ответы на другие вопросы и задачи 45—48 нужно искать самостоятельно.

Практикум к разделам 18—19

49. «Увидеть» невидимое. На тело проецируется копия будущего потока рент-геновских лучей, но в виде безвредного и видимого светового излучения. Из-лучаемый свет используется перед включением рентгеновского аппарата.Прием 09 и 10.

50. Допустить «невозможное». Все контрольные идеи имеются, но не приво-дятся, чтобы не ограничивать Ваших поисков.

51. Понять «непостижимое». Контрольное решение имеется, но — единствен-ный случай в этом учебнике — не приводится. Найдите решение самостоя-тельно.

52. Достойные цели. Задачи носят учебный характер и предназначены для дис-куссий в творческой аудитории. Это — вызов всем изобретателям.

Page 424: основы классической триз. м. орлов

Page 425: основы классической триз. м. орлов

Page 426: основы классической триз. м. орлов

Page 427: основы классической триз. м. орлов

1. О психологии изобретательского творчества. Журнал «Вопросы психоло-гии» ( М , 1956. № 6; с Р. Шапиро).

2. Как научиться изобретать (1961).

3. Основы изобретательства (1964).

4. Алгоритм изобретения (1973).

5. Творчество как точная наука (1979).

6. И тут появился изобретатель (1984, 1987, 1989).

7. Найти идею (1986).

8. Как стать гением: жизненная стратегия творческой личности(1994; с И. Верткиным).

на русском языкеwww.altshuller.ru

www.ariz.ru

www.natm.ru

www.trizland.ru

www.triz-ri.ru

www.triz.org.ru

www.trizway.ru

на английском языкеwww.triz-journal.com

веб-сайты автораwww.modern-triz-academy.ru

www.modern-triz-academy.com

www.easytriz.com

www.handytriz.com

Page 428: основы классической триз. м. орлов

Презентация книги специалистом ТРИЗ 4

Предисловие автора к первому и второму изданиям на русском языке 6

Т Р И З в начале XXI века. Предисловие автора 13

ВВЕДЕНИЕ 17

1. Изобретение цивилизации 182. Реинвентинг — ключевая концепция обучения

и самообучения для ТРИЗ 21

МЕТОДЫ ИЗОБРЕТЕНИЯ 33

3. Изобретение 343.1. Открытие и изобретение 343.2. Уровни изобретений 36

4. Изобретательское творчество 384.1. Изобретение теорий изобретения 384.2. Традиционные методы изобретения 48

5. Классическая ТРИЗ 545.1. Идеи ТРИЗ 545.2. Становление классической ТРИЗ 565.3. Структура классической ТРИЗ 62

Практикум к разделам 3—5 67

А-СТУДИЯ: АЛГОРИТМИЧЕСКАЯ НАВИГАЦИЯ МЫШЛЕНИЯ 69

6. От практики к теории 706.1. А-Навигация мышления 706.2. А-Навигаторы изобретения 74

7. Дисциплина творчества 867.1. Вдохновение и дисциплина 867.2. Мета-Алгоритм Изобретения 92

8. Оперативная зона 1078.1. Эпицентр проблемы 1078.2. Ресурсы 112

9. От существующего к возникающему 1229.1. Противоречия 1229.2. Функциональное идеальное моделирование 1319.3. Редукция и трансформации 1399.4. Классификация А-Моделей трансформации 162

Практикум к разделам 6—9 164

Page 429: основы классической триз. м. орлов

КЛАССИЧЕСКИЕ НАВИГАТОРЫ ИЗОБРЕТЕНИЯ А-СТУДИИ 167

10. Навигаторы стандартных решений 16910.1. Таблица комплексных трансформаций 16910.2. Принципы применения стандартных решений 170

11. Навигаторы решения технических противоречий 18011.1. Интеграция инверсных технических противоречий 18011.2. А-Каталог и А-Матрица специализированных

навигаторов 18211.3. Принципы применения специализированных

навигаторов 18411.4. Интеграция альтернативных противоречий —

метод CICO 20012. Навигация решения физических противоречий 206

12.1. Интеграция физических противоречий 20612.2. Каталоги фундаментальных навигаторов 21012.3. Принципы применения фундаментальных навигаторов 214

13. Навигаторы поиска нового принципа функционирования 23113.1. Каталоги технических эффектов 23113.2. Принципы применения технических эффектов 233

Практикум к разделам 10—13 245

СТРАТЕГИЯ ИЗОБРЕТЕНИЯ 247

14. Управление развитием систем 24914.1. Развитие систем 24914.2. «Идеальная машина» 25414.3. Кривая роста главного параметра системы 257

15. Классические ТРИЗ-модели инновационного развития 26315.1. ТРИЗ-Законы развития систем 26315.2. Линии системо-технического развития 26615.3. Интеграция альтернативных систем 282

Практикум к разделам 14—15 293

ТАКТИКА ИЗОБРЕТЕНИЯ 295

16. Диагностика проблемы 29716.1. Типы проблемных ситуаций 29716.2. Алгоритм диагностики проблемной ситуации 300

17. Верификация решения 30617.1. Эффективность решения 30617.2. Развитие решения 30817.3. Алгоритм верификации решения 311

Практикум к разделам 16—17 314

ИСКУССТВО ИЗОБРЕТЕНИЯ 315

18. Практицизм фантазии 31718.1. Неалгоритмические ТРИЗ-методы 31718.2. Модели «Фантограмма» и «Было — Стало» 32118.3. Моделирование маленькими фигурками 328

Page 430: основы классической триз. м. орлов

19. Интеграция ТРИЗ в профессиональную деятельность 33119.1. Мотивация и развитие личности 33119.2. Адаптация ТРИЗ-знаний к профессии 33319.3. Десять типичных ошибок 33719.4. Примеры реинвентинга 338

Практикум к разделам 18—19 349

РАЗВИТИЕ ТРИЗ 351

20. Выбор стратегии: человек или компьютер? 35320.1. ТРИЗ-знания: стратегии развития и применения 35320.2. Homo Inventor: человек изобретательный 35620.3. CROST: пять ядер творчества 359

21. CAI: Computer Aided Innovation/Invention 36321.1. От Invention Machine к Co Brain 36321.2. От Problem Formulator к Innovation Workbench 36421.3. TRIZ Idea Navigator™: интеграция интеллектов 365

Послесловие автора 380

ПРИЛОЖЕНИЯ: каталоги навигаторов А-студии 385

Приложение 1. Каталог Структурно-функциональные модели 386Приложение 2. Каталог А-Компакт-Стандарты 387Приложение 3. А-Матрица для выбора специализированных

А-Навигаторов 389Приложение 4. Каталог специализированных А-Навигаторов 393Приложение 5. Каталог фундаментальных А-Навигаторов 403Приложение 6. Каталог фундаментальных А-Навигаторов,

А-Компакт-Стандартов и классических стандартов 404Приложение 7. Каталог фундаментальных трансформаций

со специализированными А-Навигаторами 406Приложение 8. Каталог физических эффектов 408Приложение 9. Каталог химических эффектов 411Приложение 10. Каталог геометрических эффектов 414

Указатель примеров 415

Ответы и решения 419

Практикум к разделам 3—5 419Практикум к разделам 6—7 420Практикум к разделам 10—13 421Практикум к разделам 14—15 424Практикум к разделам 16 —17 424Практикум к разделам 18 —19 424

Указатель терминов 425

Избранные работы Г. С. Альтшуллера 428

Дополнительные источники информации 428

Page 431: основы классической триз. м. орлов

Михаил Александрович Орлов

Основы классической ТРИЗ

Практическое руководстводля изобретательного мышления

Ответственный за выпускB. Митин

Макет и версткаC. Тарасов

ОбложкаЕ. Холмский

ООО «СОЛОН-ПРЕСС»123242, г. Москва, а/я 20

Телефоны:(095) 254-44-10, (095) 252-36-96, (095) 252-25-21

www.solon-press.ru. E-mail: [email protected]

По вопросам приобретения обращаться:ООО «Альянс-книга КТК»

Тел: (495) 258-91-94, 258-91-95www.abook.ru

ООО «СОЛОН-ПРЕСС»103050, г. Москва, Дегтярный пер., д. 5, стр. 2

Формат 70×100/16. Объем 27 п. л. Тираж 1500

Отпечатано в ООО «Арт-диал»143983, МО, г. Железнодорожный, ул. Керамическая, д. 3

Заказ № 139

Электронная версия данной книги создана исключительно для ознакомления!Реализация данной электронной книги в любых интернет-магазинах,и на CD (DVD) дисках с целью получения прибыли, незаконна и запрещена!По вопросам приобретения печатной или электронной версии данной книгиобращайтесь непосредственно к законным издателям, их представителям,либо в соответствующие организации торговли!

Page 432: основы классической триз. м. орлов

Понравилась статья? Поделить с друзьями:
  • Applied robotics инструкция по сборке манипулятора
  • Цдк руководство по эксплуатации
  • Gisflor инструкция по применению на русском языке
  • Евроторг руководство официальный сайт
  • Велсон инструкция по применению отзывы пациентов принимавших препарат