Осциллограф dso150 инструкция на русском языке

В наше время многие увлекаются различными ардуинами и делают свои подобия умных домов со множеством исполняющих устройств и часто сталкиваются с проблемой наблюдения различных сигналов в динамике, особенно при управлении яркостью подсветки или скоростью вращения всяких двигателей. Для этих целей, конечно же, лучше подойдет полноценный осциллограф, но это решение довольно дорогостоящее и часто сугубо стационарное. Я увлекаюсь модификацией фонариков, и в один прекрасный момент я решил обзавестись осциллографом для модификации и разработки их драйверов. Так как частоты управляющих ШИМ-сигналов в драйверах обычно невелики (от 200Гц до 100КГц), я решил попробовать самый бюджетный вариант — компактный портативный DSO150, характеристики которого хорошо подходят к моим требованиям.

Характеристики

  • Количество каналов: 1
  • Частота дискретизации: 1 миллион выборок в секунду
  • Полоса пропускания: 0-200Кгц
  • Входной импеданс: 1МОм, 20пФ
  • Тип входа: GND, DC, AC
  • Диапазон измерения: 5мВ/дел — 20мВ/дел
  • Максимальное входное напряжение: 50В
  • Размер буфера: 1024
  • Режим синхронизации: авто, нормальный, одиночный
  • Триггер: по нарастанию/спаду фронта
  • Дисплей: цветной, 320×240, диагональю 2.4 дюйма
  • Погрешность: 5%
  • Контроллер: STM32F103C8
  • Габариты: 105x75x22мм
  • Вес: 100г

Здесь уже было несколько обзоров DSO150, мой вариант отличается комплектацией: помимо уже собранного осциллографа в комплекте с ним идут 2 пробы (стандартные крокодилы и P6100), а так же сетевой блок питания на 9В.

Распаковка

Приехал осциллограф ко мне без какой-либо коробки. Вообще DSO150, как и более дешевая бескорпусная версия DSO138, позиционируется как DIY набор для самостоятельной сборки, но на странице товара у продавца можно выбрать несколько вариантов, в том числе можно заказать полностью готовое устройство. Никакого желания сидеть и запаивать каждый резистор у меня не было, поэтому я выбрал готовый вариант, в комплекте с которым еще идут блок питания и проба P6100:

Разъем пробы — такой же BNC:

Щуп:

На пробе имеется делитель на 1X-10X, что позволяет расширить предел максимального напряжения до 500В:

В колпачке пробы имеется подпружиненный крючок, с помощью которого удобно цепляться к проводам и контактам:


Блок питания с китайской вилкой:

Характеристики: напряжение 9В, ток 1А, центральный контакт — плюсовой:

Сам осциллограф работает в диапазоне входных напряжений 8-10В и потребляет при этом около 130мА.
DSO150 лежал в антистатическом пакете вместе с парой страниц инструкции, стандартной пробой в виде крокодилов и пакетиком с саморезами. Да, под «полностью готово» подразумевались только платы, затолкать все это великолепие в корпус все же придется самому. Платы:


На дисплее есть защитная пленка, на задней его части имеются полоски двухстороннего скотча:

В инструкции подробно и в картинках расписан каждый этап сборки и настройки осциллографа. В моем случае этап сборки полностью пройден за меня, нужно лишь закрепить платы в корпусе с помощью комплектных саморезов и настроить форму сигнала подстроечными конденсаторами. Так выглядит 1КГц меандр со встроенного генератора до всех настроек:

А так после:

Настройка осуществляется с помощью пары подстроечных конденсаторов, доступ к которым обеспечивается через вырезы на плате:

В предыдущих версиях DSO150 этих вырезов не было, доступ к конденсаторам осуществлялся перестановкой первой платы. Вид осциллографа после сборки:

На экран я наклеил матовую защитную пленку. Элементы управления на лицевой части: 4 кнопки и энкодер. Каждая кнопка выполняет 2 действия в зависимости от характера нажатия (короткое/длительное).
V/DIV: короткое нажатие переводит в режим выбора чувствительности, длительное — устанавливает ноль.
SEC/DIV: короткое нажатие переводит в режим выбора горизонтального разрешения (сек/дел), длительное — переводит вид в центр буфера.
TRIGGER: короткое нажатие — выбор режиме триггера (AUTO, NORM, SING) и уровня (по фронту/спаду), длительное — устанавливает уровень триггера в среднее значение амплитуды.
OK: короткое — включает заморозку сигнала (HOLD), длительное — скрывает/отображает параметры сигнала.
Выбор значений осуществляется вращением ручки энкодера. Короткий клик энкодером сохраняет введенное значение, длительное удержание — переводит в режим выбора напряжения встроенного генератора (0.1В/3.3В).
Одновременное зажатие SEC/DIV+TRIGGER приводит к сбросу до заводских настроек.

На тыльной стороне ничего нет:

На верхней стороне расположен входной BNC разъем, контактное ушко встроенного генератора и переключатель режима входа (GND/DC/AC):

На нижней стороне только вход питания и выключатель:

Впечатления

Тру-электронщикам возможности данного осциллографа покажутся слишком слабыми, но для моих низкочастотных задач — самое норм. На частотах свыше 100КГц форма меандра начинает искажаться и превращается в синусоиду ближе к 200КГц))) В целом, DSO150 меня порадовал, шумы практически отсутствуют:

Помимо, собственно, графика сигнала на экране можно включить отображение параметров сигнала:

Наводки от сети 50Гц на теле:

ШИМ сигнал с драйвера фонаря в разных режимах яркости:

Какие плюсы у DSO150? Главные козыри — цена, портативность и низковольтное питание. По сравнению с полноценными осциллографами это все же полу-игрушка, но тем не менее даже с ее помощью можно решать некоторые задачи. Переделка на питание от аккумулятора достаточно тривиальна, поэтому приложив немного усилий можно получить очень компактный автономный осциллограф.

Переводим на литий

Питание от внешнего источника — самый главный недостаток данной модели, но с помощью аккумулятора от телефона и небольшого повышающего модуля на MT3608 эту ситуацию можно исправить. В корпусе осциллографа идеально умещается аккумулятор BL-4U от Nokia, при этом вообще не нужно ничего подрезать и подпиливать:


Повышайку на MT3608 нельзя оставлять постоянно подключенной к аккумулятору, потому что на холостом ходу она потребляет около 1мА и будет его высаживать. Для отключения модуля задействуем уже имеющийся выключатель, и чтобы это сделать нам необходимо перерезать 2 дорожки, а затем зачистить маску на одной из них для подпайки провода:

Повышающий модуль я собрал сам на коленке, ибо заводских у меня не было, зато были дроссели и сами микросхемы:


Схема:

Сверлить отверстия и соединять землю со вторым слоем не стал, хотя по-правильному надо было бы. Изначально я поставил дроссель CD32, но он сильно грелся, поэтому позже я заменил его на CD47. Резисторы: R1 — 43 КОм, R2 — 3 КОм, с такими номиналами теоретическое напряжение на выходе — 9.14В, на практике:

Вполне сойдет, конденсаторы поставил по 22 мкф.
Дальше подпаиваем провода к дорожкам выключателя, заодно не забываем накинуть на ногу AMS1117 питание с диода:

Да, получилось немного грязновато — тыкал обычным USB паяльником с канифольным припоем) Дальше приклеиваем к плате осциллографа и подключаем модуль зарядки лития:

Затем приклеиваем аккумулятор с повышающим модулем и подключаем провода. Общий вид с еще пока не подключенным ко входу осциллографа повышающим модулем:

Влезло все идеально, прямо миллиметр в миллиметр, не пришлось ничего подпиливать или ломать:

Вход для зарядки:

Общий вид:

Готово! Теперь у нас есть полностью автономный карманный осциллограф, батарейка имеет реальную емкость около 800мА/ч, хватает ее примерно на 3 часа полноценной работы, после преобразователь перестает справляться, и появляются шумы. Но даже такая автономность лучше, чем никакая, не правда ли?)

Доставка

Осциллограф заказывался на Taobao через посредника yoybuy. Доставка всего заказа вышла в $20, в пересчете цена за осциллограф вышла примерно в $30.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

JYE Tech уже почти 10 лет выпускает конструкторы для сборки измерительных приборов. DSO 150 — один из популярных продуктов: невысокая цена и наличие корпуса выгодно отличают его от других продуктов компании. В обзоре мы соберем прибор, переведем инструкцию по сборке на русский язык и проведем немного тестов. Для заинтересовавшихся — прошу под кат. Внимание, трафик!

Введение:

Я несколько лет занимаюсь радиолюбительством как хобби, и как у многих, чьё хобби не связано с основной работой — у меня нет доступа к профессиональному оборудованию, а именно — к осциллографу. Как любителя, меня отпугивает высокая цена на прибор, который будет мало использоваться.

Поэтому мне было интересно взять на обзор небольшой осциллограф DSO 15002K, чтобы понять — нужен ли мне более профессиональный прибор, и понять принцип работы осциллографа.

Технические характеристики:

Сразу скажу пару слов о том, что именно эту модель активно подделывают. Производитель даже отдельную страницу на своем форуме посвятил тому, как отличить оригинал от подделки:

Дополнительная информация

Мой прибор оригинальный. Подделка также отличается очень низкой ценой. Только на оригинале можно менять прошивки; подделки, судя по форумам, при попытке их обновить превращаются в кирпич (хотя есть способы откатиться к старой версии прошивки).

Про ценовую политику

Версия 15002k на бэнге стоит 32$, 15001k на бэнге стоит 21$ (с указанием, что это оригинал). В официальном магазине фирмы на али цены выше: 15001к — 39$, 15002к — 43$, полностью собранный — 49$.

Упаковка и комплектация:

Упаковка:

Прибор пришел в стандартном для банггуда черном пакете. На пакете была отдельная наклейка с надписью «Fragile» (Хрупкое).

Коробка с деталями была в несколько слоев обмотана вспененным материалом:

Я заказал версию DSO 15002K, которая отличается от DSO 15001K тем, что нужно помимо выводных компонентов на плату измерителей нужно установить и SMD детали. Кстати, у производителя появилась и версия, где все детали SMD, правда она продается полностью собранной, и стоит дороже.

Детали упакованы в картонную коробку, на которой есть наклейка-пломба:

Сверху видим комплектные щупы:

Платы упакованы в антистатический пакет:

Вот так выглядит весь набор:

Элементы корпуса крупным планом:

Платы:

Вы еще не заметили ничего необычного? Производитель ошибся и в версию 15002K положил плату analog board, на которую уже установлены все SMD детали, а не пустую плату. Ну и в довесок в пакете с деталями есть все необходимые SMD детали, которые будут теперь запасными.

Рассмотрим платы поближе:

Основная плата:

Analog board:

Детали

Производителю — плюс в карму: он положил по 1 запасному SMD резистору каждого номинала и 2 запасных SMD конденсатора. Электролитические конденсаторы используются фирмы Hliaeng.


Небольшой спойлер: сразу после сборки прибор не заработал как надо. И пока я переписывался с техподдержкой, я перевел руководство по сборке, местами дополнив его. В некоторых местах перевод корявый, поэтому предложения по его совершенствованию только приветствуются. Из-за разницы форматирования из 4 страниц у меня получилось 18. Внизу страницы есть ссылка на архив, в котором эта инструкция размещена в формате .pdf.

Принципиальная схема

Основная плата:

Analog board:

Приступим к сборке:

Инструкция советует сборку начать с проверки основной платы. Никаких деталей паять не нужно до того, как Вы убедитесь, что она работает, иначе лишитесь гарантии. Проверяем и видим такую картину:

Сразу же и оценим экран: обычный TFT 320х240, углы обзора неважные. На свету яркость и контрастность падает, в темноте смотрится нормально:

Едем дальше. Для пайки я использовал гель флюс, так как он потом легче смывается.

Сначала были припаяны все кнопки и контакт для тестового сигнала:


К ним добавились выключатель, колодка 1х5 и разъем внутреннего питания (который можно и не запаивать). Феном был удален резистор 30 для проверки работоспособности выключателя:

С основной платой разобрались, переходим к плате измерителей.

Нас лишили радости установки SMD компонентов, поэтому переходим сразу к выводным. Устанавливаем все резисторы. В инструкции я расписал их цветовую маркировку, но на всякий случай проверяем их тестером (да и быстрей это будет).

Ставим керамические конденсаторы: так как каждого только по 1 номиналу, перепутать что-либо невозможно. На всякий случай маркировку написал в инструкции.

Электролитических конденсаторов 3 штуки, и все одного номинала. Серой полосой отмечен минус на конденсаторе, на плате видим +. Главное не перепутать полярность. Дальше паяем разъемную колодку и переключатель. BNC разъем запаять чуть сложнее: нам нужен мощный паяльник (на 50-100 Вт.).

Переходим к самой маленькой плате — плате энкодера. Здесь главное установить энкодер на правильную сторону печатной платы. Ориентироваться можно по картинке.

Теперь смываем флюс изопропиловым спиртом со всех плат.

С экрана снимаем пленку, берем любую другую, вырезаем по размеру и клеим. С двустороннего скотча сзади экрана снимаем пленку, экран кладем на пластиковую переднюю панель в пазы, и сверху накрываем печатной платой.

Энкодер устанавливаем на основную плату, фиксируем комплектными винтами и припаиваемым его выводы.

Сверху устанавливаем analog board и переходим к проверке контрольных напряжений на точках. Переключатель переводим в положение GND.

Показания должны быть такими:

И здесь у меня случилась неприятность: большинство контрольных напряжений не совпало с целевыми значениями, о чем я сразу сообщил производителю. Естественно, прибор показывал «температуру с марса».

Оказалось, что из-за питания от кроны и были проблемы. После замены батареек на питание с помощью блока питания 12 В. и понижающего адаптера контрольные напряжения приблизились к норме, и прибор ожил.

Дальше следует этап настройки переменных конденсаторов. Для этого подключаем комплектный щуп к BNC разъему, красный щуп подключаем к тестовому выводу прибора, который выдает 1 кГц. Нажимаем на энкодер на 3 секунды, и прибор переходит в режим подачи тестового сигнала. Путем вращения переменного конденсатора С3 стремимся придать прямоугольнику острые края. Должно получиться как-то так:

Аналогичным образом подстраиваем С5. На этом настройка закончена, и можно все собирать.

Прибор собирается просто, после того, как перевел инструкцию, все лишние вопросы по сборке отпали.

Прошивка в приборе версии 113-15001-064, а самая свежая, судя по сайту — 113-1501-110.

Результат:



У задней панельки было какое-то чувство незаконченности, решил заполнить пустое место:

Реальный вес прибора составил 92 грамма:

Тесты

Для проверки использовал приложение «Звуковой генератор». На приборе была включена информация в текстовом виде:

322 Гц:


4245 Гц:

9307 Гц:

20000 Гц:

На 20 кГц нормально отображалась только синусоида. Таким образом, производитель неплохо «завысил» технические характеристики прибора. Естественно, для серьезного применения 20 кГц явно недостаточно.

Про полосу частот

Из книги «Радиоэлектроника для чайников»:

Полоса частот и разрешающая способность осциллографа
Для того чтобы выбрать себе рабочий осциллограф, нужно знать хотя бы пару его важных характеристик. Одной из основных является так называемая полоса частот. Полосой частот осциллографа называется максимальная частота, сигнал с которой еще можно анализировать прибором (т.е. осциллографом), измеренная в мегагерцах. Осциллографы на базе ПК имеют наиболее низкую полосу частот — около 5-10 МГц. В принципе, такой полосы хватает для работы с большинством задач, включая радиолюбительство и даже сервисный ремоҥт видео- и аудиоаппаратуры.
Средняя полоса частот бюджетного настольного осциллографа составляет уже около 20-35 МГц. Этого диапазона с головой хватает для выполнения всех мало-мальски распространенных задач. Разве что специализированные задачи по поиску и устранению неисправностей в компьютерах и сверхвысокочастотных системах связи (СВЧ) могут потребовать частот, превышающих 100 МГц. Однако любое расширение полосы частот приводит к возрастанию стоимости измерительного прибора.

Тогда нужен ли этот набор? На мой взгляд, это отличное пособие для начинающих для того, чтобы понять принцип работы прибора. Это интересный и недорогой приборчик может выступить в качестве наглядного пособия на уроке физики в школе. Да и можно к нему прицепить фотоэлемент и фиксировать частоту мерцания светодиодных лампочек. Либо для измерения небольших частот, как-никак.

Итоги:

Достоинства:
— Низкая цена;
— Качественные печатные платы;
— Наличие заводского корпуса, ничего не нужно допиливать;
— Подробная инструкция (хотя русский пришлось «допиливать»).

Недостатки:
— Заявленная полоса частот сильно завышена;
— На корпусе нет защитного стекла для экрана (при перевозке в сумке экран можно повредить).

P.S. Переведенную инструкцию, последнюю прошивку, схемы сложил в архив.

Upd. от 12.03.2018:

Перепрошил на версию 111, вот как это выглядит:

Для начала запаиваем 2 перемычки на основной плате:

И впаиваем разъем для удобства:

Я прошивал с помощью адаптера на CP2102, т.к. адаптер на PL2303HX не видела программа.
Вот он в диспетчере устройств:

Далее Вам нужно запросить у китайцев по электронной почте код доступа:

После успешной прошивки появится такой экран, куда с помощью поворотов и нажатия энкодера нужно ввести полученный код:

Результат:

Товар для написания обзора предоставлен магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Зачастую возникает необходимость не только измерить уровень сигнала, но и посмотреть его форму, посмотреть как изменяется сигнал от каскада к каскаду, узнать его частоту, амплитуду. С этим нам поможет разобраться осциллограф. Рассмотрим цифровой осциллограф DSO150, обладающий как минимум двумя положительными качествами: цена, компактность, добавим еще мобильность, и несомненно, он сможет удовлетворить запросы начинающего радиолюбителя. 

Цифровой осциллограф DSO-SHELL (DSO150) DIY

Напряжение питания устройства 9В (минимально 8В, максимально 10В), потребляемый ток приблизительно 120 мА, питание подключается снизу. Там же находится выключатель.

В верхней части находится трехканальный переключатель AC-DC-GND. 

AC — (переменный ток) — проходит только переменная составляющая входного напряжения;
DC —  (постоянный ток) — вход открыт для постоянной составляющей входного напряжения.
GND (земля) — входной сигнал отключён, вход замкнут  на землю;

Контакт посредине — это выход внутреннего генератора на 1кГц, для проверки осциллографа. Ну, и собственно, разъем для подключения щупа. Сразу нужно заметить, что максимальное напряжение, которое может измерять осциллограф 50В. 

осциллограф DSO150 общий вид

осциллограф DSO150 вид сверху

Для измерения большего напряжения применяется щуп с делителем. В комплект не входит, приобретается отдельно.

щуп с делителем для осциллографа DSO150

В продаже имеются несколько вариантов продаваемых приборов, различной степени сборки. Более разобранные немного дешевле и дают шанс потренироваться, желающим набраться опыта в работе с паяльником. Самостоятельная сборка не составит особого труда. В комплекте есть инструкция с пошаговой сборкой, правда на английском языке.

Давайте рассмотрим характеристики прибора поподробнее. Осциллограф может отображать сигналы на частоте до 200кГц. Если вы собираетесь работать с большими частотами, то должны понимать, что их отображение будет некорректным. Диапазон чувствительности: 5 – 20 мВ/дел.  Временной диапазон развёртки: 500с/дел– 10 мкc/дел. Работает на процессоре ARM Cortex-M3 (STM32F103C8) и оснащён 2,4-дюймовым цветным экраном. Максимальное входное напряжение при использовании щупа 1х — 50В, щуп 10х — до 500В соответственно.

На экране осциллографа при включении появляются текущие измерения. Отключить или включить их отображение можно нажатием на кнопку «OK»  в течении 3 сек.

Freq — частота 

 Cycl — период

 Pw — ширина импульса

 Duty — коэффициент заполнения (скважность)
Umax — максимальное напряжение

Umin — минимальное измерение

Uavr — среднее напряжение

Urms — среднеквадратичное значение напряжения

При нажатии на кнопку V/DIV включается режим регулировки масштабирования по напряжению — одна клетка от 5 мВ до 20 В. (цифра 1 справа на фото). Регулировка производится ручкой ADJ. Надпись над цифрой 2 показывает текущий режим AC, DC или GRN. Повторное нажатие на кнопку V/DIV активирует стрелочку слева экрана, регулировкой ADJ выставляется уровень нуля.

осциллограф DSO150 описание

При нажатии на кнопку SEC/DIV включается регулировка масштабирования по горизонтали — одна клетка от 10 мкс до 500 сек.(над цифрой 3 фотографии). При повторном нажатии  на кнопку SEC/DIV активируется перемещение сигнала по горизонтали. Регулировка производится ручкой ADJ. 

При нажатии на кнопку TRIGGER первый раз, ручкой ADJ может быть выбрано три режима:

AUTO (автоматический) — автоколебательный режим генератора развёртки, при котором развёртка происходит без запускающего импульса

NORM (ждущий) — ждущая развёртка, при которой генератор развёртки для выполнения каждого своего цикла  ждёт запускающего синхроимпульса;

Single (одиночный) — регистрация останавливается после сбора данных. Для повторного запуска регистрации нажимаем каждый раз на кнопку «OK»

При повторном нажатии на кнопку TRIGGER активируется стрелочка в правой части экрана (подсвечивается голубым цветом), ручкой ADJ плавно регулируется уровень сигнала, при достижении которого будет происходить синхронизация (например, если нужно выделить форму основного сигнала среди низкоамплитудных шумов)

При третьем нажатии на кнопку TRIGGER, регулировкой ADJ доступен выбор двух режимов синхронизации по фронту (восходящему импульсу) или по спаду (нисходящему импульсу) (см. над цифрой 5 на фото) 

При длительном нажатии на регулировочную ручку ADJ активируется режим, при котором можно изменять амплитудное значение напряжения встроенного генератора. Переключается однократным нажатием на «ADJ»:  0,1 В или 3,3 В.

Убираем повторным длительным нажатием.

переключение режимов в осциллографе DSO150

активация режимов в осциллографе DSO150

Установка аккумулятора в осциллограф

Как вы могли заметить питание осциллографа осуществляется от источника постоянного тока от 8 до 10 В. В комплектацию блок питания не входит и к тому же привязывает устройство к розетке. Питание от аккумулятора сделает прибор более мобильным. Для этого нам придется добавить три элемента.

Непосредственно сам аккумулятор. Вполне подойдет от старого мобильного. Если нет  можно приобрести здесь.

Осциллограф

Модуль заряда TP4056 с microUSB входом, который позволит заряжать наш аккумулятор от любого USB выхода или стандартной зарядки от телефона (power banka наконец). Имеет встроенную защиту и индикатор заряда.

Осциллограф

На выходе нашего аккумулятора максимальное напряжение 4,2 В. Этого не хватает для запитывания осциллографа. С этим нам поможет справиться так называемый booster-модуль или модуль STEP UP MT3608. Подавая на вход такого модуля напряжение от 2 до 24 вольт, мы можем получить на выходе напряжение до 28 вольт. Стоит заметить, что напряжение на выходе не может быть меньше, чем напряжение на входе.

Осциллограф

Соединить модули не составит особого труда. Сборка производится по следующей схеме.

схема подключения зарядного модуля к осциллографу

Подстроечным резистором на повышающем модуле необходимо установить напряжение 9 В. 

Для того, чтобы использовать уже имеющийся выключатель на осциллографе придется внести изменения на плате. 

осциллограф DSO 150 перепайка под аккумулятор

Я разместил собранные модули в корпусе осциллографа следующим образом. Для фиксации можно использовать клей или двухсторонний скотч.

осциллограф DSO-SHELL (DSO150) установка акккумулятора

При зарядке модуль подсвечивается красным. Во время заряда осциллографом также можно пользоваться. Причем  пользоваться теперь можно в любом месте. 

осциллограф DSO150 вид снизу на зарядке

Надеюсь статья была полезна. Всем спасибо. Удачных творческих идей.

Ссылки на основные компоненты:

Осцилло́граф (лат. oscillo — качаюсь + греч. γραφω — пишу) — прибор, предназначенный для исследования (наблюдения, записи, измерения) амплитудных и временны́х параметров электрического сигнала, подаваемого на его вход, либо непосредственно на экране, либо записываемого на фотоленте. Один из важнейших приборов в радиоэлектронике.

Википедия.

Моим первым осциллографом был радиолюбительский Н3015, произведённый в СССР в 1985 году. Со временем, у него отказала часть вертикальной отклоняющей системы. Затем была попытка создания самодельного цифрового осциллографа на основе микроконтроллера STM32 с цветным LCD-дисплеем. Проект частично работает, но был заброшен из-за нехватки времени. Может как-нибудь о нём напишу потом статью.

И вот недавно на Aliexpress я стал присматриваться к недорогим наборам для самостоятельной сборки осциллографа. Среди множества моделей я остановился на DSO150 от компании JYE Tech.

Покупал я его на Aliexpress. Найти можно его по этой ссылке. На момент покупки он стоил 1320 руб.

img

Замечание

У меня ревизия 05. На момент написания статьи уже появилась ревизия 06. В устройство могут вноситься различные изменения и коррективы, поэтому внимательно изучайте свою инструкцию перед сборкой.

Распаковка

Пришёл осциллограф вот в такой коробочке из довольно плотного картона. Испытание почтой она выдержала отлично. На коробке отметка «15001K». Буква «K» означает, что это кит для самостоятельной сборки. Набор 15002K отличается от 15001K нераспаянными SMD элементами. Ещё есть 15003K — он без корпуса.

Содержимое коробки:

  • корпус;
  • две платы + дисплей;
  • маленькая плата для установки энкодера;
  • набор радиодеталей;
  • щупы (крокодилы);
  • две инструкции;
  • электрическая схема.

Корпус пластиковый, состоит из пяти частей: лицевой части, лицевой рамки (на фотографии они соединены), задней части, нижней и верхней торцевых частей:

Радиодетали:

  • BNC-разъём;
  • металлический контакт для выхода тестового сигнала;
  • конденсаторы;
  • конденсаторы электролитические (100µF 16V);
  • резисторы;
  • плата для энкодера;
  • энкодер;
  • двухконтактный разъём для подключения аккумулятора;
  • два переключателя;
  • три гребёнки контактов;
  • два подстречных конденсатора (5-30 pF);
  • 4 кнопки.

Плата с аналоговой частью. Здесь уже распаяны SMD конденсаторы, резисторы и микросхемы:

Цифровая часть. Здесь ещё дополнительно распаяны стабилизатор напряжения, разъём питания, кварц, колодка под гребёнку контактов, дисплей:

Сборка

1. Для начала убеждаемся, что основная часть у нас работает и не повреждена. Для этого подаём питание 9 вольт на круглый разъём (центральный контакт — плюсовой). Если всё нормально, то мы должны увидеть загрузку, логотип, а затем картинку с сигналом, как на следующей фотографии. Если этого не произошло, то необходимо либо поднимать вопрос о возврате с продавцом, либо связаться с изготовителем для исправления самостоятельно. У меня всё заработало сразу:

2. Впаиваем контакт выхода тестового сигнала (J8).

3. Впаиваем разъём для питания от аккумулятора (J6).

4. Выключатель питания (SW5).

5. Впаиваем гребёнку из 4-х контактов (J2).

6. Кнопки (SW1-4).

7. Теперь необходимо убрать резистор R30 с основной платы (выпаять паяльником, либо аккуратно выломать плоскогубцами). Он был нужен для подачи питания в обход выключателя при первоначальной проверке платы:

Теперь снова подаём питание и убеждаемся, что выключатель и все кнопки функционируют нормально.

Сборка основной платы закончена. Теперь аналоговая часть.

1. Впаиваем резисторы. Внимательно проверяем номиналы по полоскам и лучше при этом вооружиться мультиметром.

R1 510 KΩ
R2 5.1 MΩ
R3 1.2 MΩ
R4 11 KΩ
R5, R6, R14 1 KΩ
R7 300 Ω
R8, R13, R16 150 Ω
R9 91 Ω
R10 30 Ω
R11, R12 15 Ω
R15 680 Ω
R26, R27 120 Ω

2. Впаиваем конденсаторы. Сверяемся с маркировкой.

C1 0.1 µF
C2 330 pF
C4 1 pF
C6, C7 120 pF

3. Два подстроечных конденсатора.

4. Переключатель режимов (SW1).

5. Электролитические конденсаторы.

C10, C11, C12, C13, C14 100 µF / 16V

6. Впаиваем BNC коннектор. Тут потребуется мощный паяльник, чтобы хорошо прогреть место крепления к плате.

7. Две гребёнки контактов 2×5 (J2, J3).

Обе платы собраны и теперь выглядят вот так:

Впаиваем энкодер в его небольшую плату. Тут нужно быть внимательным и не перепутать сторону. Иначе ничего не заработает.

Проверка и калибровка

Аккуратно собираем лицевую часть. Для этого вставляем LCD дисплей в лицевую панель, затем главную плату. Вставляем плату с энкодером, прикручиваем её и припаиваем к основной плате.
Теперь соединяем плату с аналоговой частью и основную плату через разъёмы указанные на фото:

Подключаем питание 9 вольт. Переключатель AC/DC/GND переводим в положение GND. Включаем питание выключателем ON/OFF и замеряем напряжения. Они должны соответствовать указанным в инструкции.

Подключаем красный щуп к выходу тестового сигнала. Нажимаем на энкодер (ADJ) и держим 3 секунды, пока в левом нижнем углу дисплея не появится надпись «T.S. Amp»:

Коротким нажатием на энкодер устанавливаем значение напряжения тестового сигнала в 0.1V. Затем нажатиями кнопки V/DIV устанавливаем выделение на индикатор напряжения в левом нижнем углу. Поворотом энкодера устанавливаем там значение 50mV.

Теперь нажимаем кнопку TRIGGER до тех пор, пока уровень триггера (стрелочка справа) не окрасится в голубой цвет. После этого крутим энкодер и устанавливаем его так, чтобы уровень триггера был между максимальным и минимальным значениями сигнала. Это стабилизирует картинку.

Теперь берём маленькую отвёртку и крутим конденсатор C3. Необходимо как можно точнее приблизить изображение сигнала к прямоугольной форме.

Затем нажимаем на энкодер и устанавливаем напряжение тестового сигнала 3.3V. Теперь крутим конденсатор C5.

На этом калибровка окончена. Можно всё собрать в корпус.

Обзор и тестирование

Характеристики осциллографа:

Максимальная скорость оцифровки сигнала (частота дискретизации) 1 млн/с
Аналоговая полоса пропускания 0 — 200 кГц
Диапазон чувствительности 5 мВ/дел — 20 В/дел
Максимальное входное напряжение 50 Vpk
Входное сопротивление и ёмкость 1 MΩ / 20 pF
Разрешение 12 бит
Длина буфера 1024 точки
Диапазон времени 500 с/дел — 10 мкс/дел
Режимы триггера Авто, нормальный, один замер
Позиция триггера Центр буфера
Питание 9 В / DC (8 — 10 В)
Ток потребления ~120 мА @ 9 В
Размеры 105 x 75 x 22 мм
Масса 100 г (без щупов и блока питания)
Дисплей 2.4″ TFT LCD 320×240

В качестве микроконтроллера используется STM32F103C8T6. Усилением сигналов в аналоговой части занимаются операционные усилители серий TL082 и TL084. А за переключение резисторных делителей отвечают аналоговые мультиплексоры 74HC4053 и 74HC4051. Судя по схеме, используется аппаратный контроль триггера. За это отвечает ОУ, включенный в режиме компаратора. Уровень сигнала для сравнения задаётся через ШИМ с микроконтроллера. Отрицательное напряжение для питания операционных усилителей и мультиплексоров генерируется преобразователем ICL7660.

В качестве источника питания я сначала выбрал сетевой блок питания 9 вольт. Но так как осциллограф позиционируется как портативный, то логично было бы подключить к нему аккумулятор. Вот тут возникают определённые трудности. У меня в наличии имеется трёхбаночный LiFePO4 аккумулятор. В полностью заряженном состоянии его напряжение составляет 10.95 В, что довольно много. Разрядив до допустимых 10 вольт, я попробовал подключить его. И увидел сильные всплески сигнала в отрицательном напряжении. Постепенно разряжая аккумулятор, удалось добиться нормальной работы только при напряжении меньше 9.3 В. Но тут возникает другая проблема: довольно быстрое снижение напряжения аккумулятора (основной его рабочий диапазон находится в районе 9.9 В). По этой причине я хочу заказать повышающий DC-DC преобразователь, поставить одну-две банки 18650 и выставить выходное напряжение 9 вольт.

Осциллограф действительно маленький, легко помещается в руке. Но при этом это полноценный прибор, с возможностью отображения осциллограммы, замера частоты, напряжения и других параметров.

На передней панели располагается цветной LCD дисплей диагональю 2.4 дюйма. Подсветка достаточно яркая, все элементы интерфейса видно хорошо. Ниже располагаются 4 кнопки и ручка энкодера.

Функции кнопок:

Кнопка Функция При долгом нажатии
V/DIV Выбор чувствительности (вольт на деление).
Вертикальная позиция сигнала.
Калибровка нуля (необходимо перевести переключатель AC/DC/GND в положение GND).
SEC/DIV Выбор времени (секунд на деление).
Перемещение сигнала по горизонтали.
Переход в центр буфера
TRIGGER Выбор режима триггера (Auto, Normal, Single).
Уровень триггера.
Выбор типа триггера (по фронту, по спаду).
Установка уровня триггера по среднему значению амплитуды сигнала.
OK Включение режима HOLD («заморозка» сигнала). Включение/выключение замеров.
ADJ Изменение выбранного параметра. Выбор напряжения тестового сигнала.
OK + TRIGGER Сохранение текущего сигнала в EEPROM
OK + SEC/DIV Отображение сохранённого сигнала из EEPROM
SEC/DIV + TRIGGER Восстановление заводских настроек

Снизу располагается разъём и выключатель питания. Отверстие для выведения провода подключения аккумулятора не предусмотрено. При необходимости его нужно будет просверлить самостоятельно.

Сверху находятся: разъём BNC для подключения щупов, выход тестового прямоугольного сигнала (0.1 В или 3.3 В, 1 кГц), и переключатель AC/DC/GND. В положении AC отфильтровывается постоянная составляющая сигнала, в положении GND входной контур замыкается на землю.

Основная площадь дисплея поделена на 12 делений по горизонтали и 8 делений по вертикали. Осциллограмма изображается жёлтой линией. Слева находится стрелка — указатель нулевого уровня. Справа — указатель уровня триггера.

Сверху отображается статус осциллографа (Running / HOLD), горизонтальная позиция в буфере, состояние триггера.

Состояний триггера три:

  • Holdoff — триггер выключен до тех пор, пока буфер не заполнен до точки его запуска.
  • Waiting — ожидание необходимого фронта волны.
  • Trigged — сигнал зарегистрирован.

Если установлен режим времени 50 мс/дел и медленнее и при этом режим триггера AUTO, то триггер автоматически переходит в статус Holdoff с постоянным движением осциллограммы справа налево.

В нижней части дисплея отображается чувствительность, род тока (AC/DC), режим времени, режим триггера, тип триггера (по фронту или по спаду).

Для тестирования я воспользовался программой для смартфона «Function Generator» от Keuwlsoft. Скачать можно в Google Play.
Синус 100 Гц:

Вот такая хорошая синусоида. Включим отображение замеров:

Обратите внимание на очень точное определение частоты.

Треугольник 100 Гц:

Прямоугольник 100 Гц. Тут скорее всего перекос из-за конденсаторов в выходном аудиотракте смартфона:

Синус 440 Гц:

Треугольник 440 Гц:

Прямоугольник 1 кГц:

Треугольник 1 кГц:

Пила 1 кГц:

Попробуем частоты повыше. 20 кГц:

Теперь подаём сигнал со звуковой карты компьютера. 40 кГц:

80 кГц:

А это ШИМ сигнал с ардуины:

Теперь подробнее об измеряемых параметрах. Лучше всего их описывает вот эта картинка (найдено на сайте http://www.rfcafe.com/references/electrical/sinewave-voltage-conversion.htm):

  • Freq — частота;
  • Cycl — период;
  • PW — ширина импульса (Pulse Width);
  • Duty — заполнение ШИМ в %;
  • Vmax — макимальное напряжение;
  • Vmin — минимальное напряжение;
  • Vavr — среднее напряжение;
  • Vpp — амплитуда сигнала (Vmax — Vmin);
  • Vrms — эффективное значение напряжения переменного тока. Среднеквадратичное значение синусоидальной волны представляет собой значение постоянного напряжения, которое обеспечивало бы такое же количество тепла в нагревательном элементе.

В общем, очень неплохой осциллограф за свои деньги. Свои задачи выполняет полностью. Собирается довольно легко, нужны только минимальные навыки владения паяльником.

img

Предупреждение!

Автор не несёт ответственности за возможную порчу оборудования. Всё, что вы делаете — вы делаете на свой страх и риск!

Update:
Пока писал эту статью, вздулся аккумулятор который у меня был подключен к осциллографу. Собственно от этого напряжение и падало быстро. Теперь точно куплю двухбаночный LiPo и DC-DC step up.

katranji-LOGO

Комплект осциллографа katranji DSO150 DIY

katranji-DSO150-DIY-Осциллограф-Kit-PRO

Требования

  • USB-кабель питания или литиевая батарея 3.7 В (дополнительно)
  • Переменный или постоянный токtage 0–5 В MAX или дополнительный генератор сигналов
  • Тестовые зонды

katranji-DSO150-DIY-осциллограф-комплект-1

инструкции

  • Подключите кабель датчиков к одному из следующих каналов (CH1 – CH2).
    katranji-DSO150-DIY-осциллограф-комплект-2
  • Подключите кабель питания USB или используйте переключатель батареи для включения осциллографа.
    katranji-DSO150-DIY-осциллограф-комплект-3
  • После подключения питания; ЖК-дисплей включится. Отрегулируйте триммер для контрастности ЖК-дисплея на задней стороне с помощью изолированной отвертки.
    katranji-DSO150-DIY-осциллограф-комплект-4
  • Выберите количество тестовых каналов CH1 – CH2, повернув ползунковый переключатель (SW1) влево ←
    katranji-DSO150-DIY-осциллограф-комплект-5katranji-DSO150-DIY-осциллограф-комплект-6
  • Тестируемый сигнал можно приостановить, повернув ползунковый переключатель (SW1) вправо → , на экране отобразится функция Single в правом нижнем углу и приостановится показанный тестируемый сигнал с сообщением READY, нажмите (SW1), чтобы отобразить следующие циклы сигнала, чтобы вернуться к сигналу мгновенного тестирования, поверните ползунковый переключатель (SW1) вправо →, на экране появится функция AUTO и повторноview мгновенное тестирование сигнала.
    katranji-DSO150-DIY-осциллограф-комплект-7
  • Цикл сигнала можно определить в микро- и миллисекундах, повернув ползунковый переключатель SW2 вправо→ и влево ←.
    Начиная следующее:
    100 – 200 – 500 микросекунд США
    1 – 2 – 5 – 10 – 20 – 50 – 100 – 200 – 500 – 1000 мс миллисекунд
    katranji-DSO150-DIY-осциллограф-комплект-8
  • Прокрутите Offset, чтобы отрегулировать смещение сигнала по оси X.
    katranji-DSO150-DIY-осциллограф-комплект-9
  • Используйте уровень, чтобы отрегулировать громкость входного сигнала.tagе от 0 В до 5.1 Вkatranji-DSO150-DIY-осциллограф-комплект-10
  • Нажмите ползунковый переключатель SW2, чтобы повернуть тестовый сигнал между – и +.
    katranji-DSO150-DIY-осциллограф-комплект-11

Документы / Ресурсы

Понравилась статья? Поделить с друзьями:
  • Инструкция к швейной машинке janome 2121
  • Toyota levin ae101 мануал
  • Plaqueoff для собак инструкция по применению
  • Альгавак вакцина инструкция по применению для детей
  • Байзафон фунгицид инструкция по применению для винограда