Как называлась первая отечественная эвм разработанная под руководством академика лебедева

Советская вычислительная школа Сергея Лебедева

Время на прочтение
12 мин

Количество просмотров 32K

Сергей Алексеевич Лебедев был советским академиком и основоположником вычислительной техники в СССР. Он создал первый в континентальной Европе компьютер с хранимой в памяти программой (МЭСМ) и был одним из разработчиков первых цифровых электронных вычислительных машин с динамически изменяемой программой вычислений. Под руководством и самоличном участии этого выдающегося ученого было создано 18 ЭВМ, причем 15 из них выпускались серийно.

Лебедев стоял у истоков развития и становления отечественной вычислительной техники. Опыт его работы уникален, так как охватывает период от создания первых ламповых компьютеров, выполнявших сотни и тысячи операций в секунду, до быстродействующих супер-ЭВМ на больших интегральных схемах.

Сергей Лебедев родился 2 ноября 1902 г. в городе Нижний Новгород. Отец Алексей Иванович был известным автором «Азбуки» и «Словаря непонятных слов», а мать Анастасия Петровна (в девичестве Маврина, из дворян) преподавала общие предметы в младших классах народного училища. В послереволюционные годы главу семейства пригласили на работу наркомом просвещения и Лебедевы переехали в Москву.

Сергей Лебедев (1920 г.)

Начало пути

В 1921 г. Сергей сдал экзамены экстерном за среднюю школу и поступил в Московское высшее техническое училище (МВТУ) им. Н.Э.Баумана на электротехнический факультет. Его учителями и научными руководителями были выдающиеся русские ученые-электротехники, профессора Карл Адольфович Круг, Леонид Иванович Сиротинский и Александр Александрович Глазунов. Все они трудились над разработкой плана электрификации СССР (план ГОЭЛРО). Для успешного осуществления потребовались уникальные теоретические и экспериментальные исследования. Лебедев был еще студентом, но уже тогда основное внимание уделял проблеме устойчивости параллельной работы электростанций. Первые результаты по данной проблеме были отражены в его дипломном проекте, который выполнялся под руководством профессора К.А.Круга.

В 1928 г. Лебедев получил диплом инженера-электрика и остался преподавать в родной альма-матер, параллельно занимая должность младшего научного сотрудника Всесоюзного электротехнического института (ВЭИ). Именно в этом ВУЗе он возглавил лабораторию электрических сетей, где продолжил работу над проблемой устойчивости. Тематика лаборатории постепенно расширялась, охватывая также и проблемы автоматического регулирования. И в результате в 1936 г. на ее базе сформировался отдел автоматики, руководить которым поручили Сергею Алексеевичу.

К этому времени Лебедев уже стал профессором и автором (совместно с Петром Сергеевичем Ждановым) широко известной среди специалистов-электротехников монографии “Устойчивость параллельной работы электрических систем”.

Лебедев в своем кабинете

У научной деятельности Лебедева замечалась характерная особенность, которая заключалась в органическом сочетании большой глубины теоретической проработки с конкретной практической направленностью. Продолжая теоретические исследования, он стал активным участником подготовки сооружения Куйбышевского гидроузла.

В начале Второй мировой войны Лебедев был вынужден покинуть ВЭИ и уехать в Свердловск. Все ресурсы отдела автоматики переключили на оборонную тематику.

За поразительно короткие сроки работы в Свердловске, Алексей Сергеевич спроектировал систему стабилизации танкового орудия при прицеливании. Эта разработка усовершенствовала танк, делая его менее уязвимым и спасая тем самым многих танкистов. Система позволяла наводить и стрелять из орудия без остановки машины. За свое изобретение ученый был награжден орденом Трудового Красного Знамени и медалью «За доблестный труд в Великой Отечественной войне 1941-1945 гг.».

В 1945 г. Лебедева избрали действительным членом Академии Наук УССР

После окончания войны ученый занялся реализацией давно запланированного проекта по созданию вычислительной машины с использованием двоичной системы счисления. В те годы не было достаточно полных публикаций о двоичной системе счисления и методике операций над двоичными числами. Базой для построения цифровой вычислительной машины стала методика выполнения арифметических операций в двоичной системе счисления и ранее разработанные самим Лебедевым методы решения математических задач.

В 1947 г. Лебедев стал директором Института электротехники АН Украины и по совместительству возглавил руководство лабораторией Института точной механики и вычислительной техники СССР.

МЭСМ

В 1948 г. начался процесс создания малой электронной счетной машины (МЭСМ). Для научной работы Лебедеву выделили частично разрушенное здание бывшей монастырской гостиницы в Феофании (Киев). С финансовой помощью и поддержкой вице-президента АН УССР Михаила Алексеевича Лаврентьева, помещение было отремонтировано и оборудовано под лабораторию.

Здание в Феофании, где размещалась лаборатория Лебедева

Лебедев выдвинул, обосновал и реализовал в первой советской машине принципы построения ЭВМ с хранившейся в памяти программой. МЭСМ занимала целое крыло двухэтажного здания (60 м²) и состояла из 6 000 электронных ламп. Примечательно то, что проектирование, монтаж и отладка машины были выполнены в течении трех лет. При этом в разработке участвовали лишь 11 инженеров и 15 технических сотрудников. Тогда как на разработку первого в мире электронного компьютера ЭНИАК (США) ушло пять лет и было задействовано 13 разработчиков и более 200 техников.


Схема элементарной ячейки блока памяти арифметического устройства МЭСМ

МЭСМ была арифметическим устройством, производившим операции сложения, вычитания, умножения, деления, сдвига, сравнения с учётом знака, сравнения по абсолютной величине, передачи управления, передачи чисел с магнитного барабана, сложения команд, остановки. МЭСМ имела двоичное представление чисел с фиксированной запятой, 16 двоичных разрядов на число, плюс один разряд на знак.

6 ноября 1950 г. состоялся пробный пуск машины, в ходе которого решалась задача: Y» + Y = 0; Y(0) = 0; Y(\pi) = 0.

Не смотря на то, что МЭСМ создавалась более как макет Большой электронной счетной машины, ей нашли практическое применение. Первой советской ЭВМ весьма заинтересовались математики, задачи которых требовали использования быстродействующего вычислителя. До 1953 г. МЭСМ была единственной вычислительной машиной в СССР.

Участники разработки МЭСМ — Лев Наумович Дашевский и Соломон Бениаминович Погребинский (Киев, 1951 г.)

Характеристики МЭСМ

Элементная база: 6 000 электронных ламп (около 3500 триодов и 2500 диодов)
Быстродействие: 3 000 операций в секунду
Потребляемая мощность: около 25 кВт
Разрядность: 16
Тактовая частота: 5 кГц
Устройства ввода / вывода: ввод с перфокарты или набором кода на штекерном коммутаторе; вывод с помощью электромеханического печатающего устройства либо фотоустройства для получения данных на фотоплёнке.
Также мог использоваться магнитный барабан, хранящий до 5000 кодов чисел или команд.

БЭСМ

Следующей после МЭСМ была разработана большая электронно-счётная машина (БЭСМ). В структуре устройства уже тогда были реализованы основные решения, характерные для современных вычислительных машин.

У БЭСМ была двоичная система представления чисел с учётом порядков, то есть в форме чисел с плавающей запятой. Машина оперировала диапазон чисел примерно от 10-9 до 109. Система команд была трёхадресной, в нее входило 9 арифметических операций, 8 операций передач кодов, 6 логических операций, 9 операций управления.

Лабораторные испытания БЭСМ

БЭСМ имела 39 двоичных разрядов для представления чисел в виде мантиссы/порядка, из них 32 разряда отводилось для значащей части и 5 для порядка. Еще по одному разряду отводилось для знаков мантиссы и порядка. При написании программ для машины применялась техника самомодифицирующегося кода, когда напрямую модифицировались адресные части команд для доступа к массивам.

Один из разработчиков БЭСМ Всеволод Сергеевич Бурцев вспоминает о машине следующее:

Во многих блоках первой БЭСМ в анодной цепи были использованы не лампы сопротивления, а ферритовые трансформаторы. Так как эти трансформаторы были изготовлены кустарным способом, они часто выгорали, при этом выделяли едкий специфический запах. Сергей Алексеевич обладал замечательным обонянием и, обнюхивая стойку, с точностью до блока указывал на дефектный. Он практически никогда не ошибался.

Характеристики БЭСМ

Элементная база: 4 000 электронных ламп, 5 000 полупроводниковых диодов
Быстродействие: 8 000 операций в секунду
Потребляемая мощность: около 35 кВт
Разрядность: 39
Тактовая частота: 9 МГц
Внешняя память: на магнитных барабанах (2 барабана по 5120 слов) и магнитных лентах (4 по 30 000 слов)
Устройства ввода / вывода: ввод с перфокарты, цифро-печать и фото-печатное устройство.

Группа сотрудников ИТМ и ВТ АН СССР в день награждения за создание БЭСМ (1956 г.)

В 1956 г. БЭСМ получила награду и была принята Государственной комиссией в эксплуатацию.

БЭСМ-2, М-20 и БЭСМ-4

В 1958 г. БЭСМ была подготовлена к серийному производству. Коллектив ИТМиВТ под руководством Лебедева разработал и презентовал две ЭВМ: БЭСМ-2 и М-20. Их характерной особенностью было то, что они разрабатывались в тесном контакте с промышленностью (особенно М-20). Специалисты завода и академического института вместе участвовали в создании машины. Этот принцип был хорош тем, что улучшал качество документации, т. к. в ней учитывались технологические возможности завода.

Вычислительная машина БЭСМ-2 сохранила систему команд и все основные параметры предыдущего устройства, но конструкция стала более технологичной и удобной для серийного выпуска. В БЭСМ-2 было реализовано оперативное запоминающее устройство на ферритных сердечниках, широко применялись полупроводниковые диоды, а также была усовершенствована конструкция (мелкоблочная). На БЭСМ-2 проводились расчеты, связанные с запуском искусственных спутников, первых пилотируемых космических кораблей. Именно на одной из упомянутых ЭВМ был произведён расчёт траектории ракеты, доставившей вымпел СССР на Луну.

БЭСМ-2 имела около 4 000 электронных ламп, и была собрана на трех основных стойках

Характеристики БЭСМ-2

Элементная база: 4 000 электронных ламп, 5 000 полупроводниковых диодов
Быстродействие: 20 000 операций в секунду
Потребляемая мощность: 35 кВт
Разрядность: 45
Тактовая частота: 10 МГц
Внешняя память: на магнитных барабанах и магнитных лентах
Устройства ввода / вывода: ввод с перфоленты, которую печатает устройство.

М-20 стала первой советской машиной, которая поставлялась в комплекте со специальным математическим обеспечением (по своей сути — ОС). В новое устройство Лебедев заложил рад конструктивных решений, расширяющих функциональность и почти не увеличивающих количество электронных ламп.

М-20 обладала производительностью 20 000 операций в секунду за счет совмещения работы отдельных устройств и более быстрого выполнения арифметических операций. В машине впервые были применены: автоматическая модификация адреса; совмещение работы арифметического устройства и выборки команд из памяти; использование буферной памяти для массивов, выдаваемых на печать.

М-20

Характеристики М-20

Элементная база: электронные лампы, полупроводниковые схемы
Быстродействие: 20 000 операций в секунду
Потребляемая мощность: 50 кВт
Разрядность: 45
Тактовая частота: 0.6667 мГц
Внешняя память: на магнитных барабанах и магнитных лентах
Устройства ввода / вывода: ввод с перфоленты, которую печатает устройство

После вручения наград в Кремле (1962 г.)

В 1965 г. появилась серийная ЭВМ на полупроводниковых элементах БЭСМ-4, которая унаследовала архитектуру М-20. Для БЭСМ-4 существовало не менее 3 разных компиляторов с языка Алгол-60, компилятор Fortran, не менее 2 разных ассемблеров, компилятор с оригинального языка Эпсилон.

Характеристики БЭСМ-4

Элементная база: электронные лампы, полупроводниковые схемы
Быстродействие: до 40 000 операций в секунду
Потребляемая мощность: 50 кВт
Разрядность: 45
Тактовая частота: 9 МГц
Внешняя память: на магнитных барабанах и магнитных лентах
Устройства ввода / вывода: ввод с перфоленты, которую печатает устройство

БЭСМ-6

Разработка БЭСМ-6 завершилась в конце 1965 г. Эта машина стала первой советской супер-ЭВМ на элементной базе второго поколения (полупроводниковых транзисторах). В электронных схемах БЭСМ-6 использовалось 60 000 транзисторов и 180 000 полупроводников-диодов. Элементная база была новой для того времени.

У БЭСМ-6 имелся магистральный или водопроводный принцип организации управления. С его помощью потоки команд и операндов обрабатывались параллельно. В разработке использовалась ассоциативная память на сверхбыстрых регистрах, что сократило количество обращений к ферритной памяти и позволило осуществить локальную оптимизацию вычислений в динамике счета. Оперативная память имела расслоение (8-слойная) на автономные модули, что дало возможность одновременно обращаться к блокам памяти по нескольким направлениям. Многопрограммный режим работы БЭСМ-6 позволил решать несколько задач с заданными приоритетами. Аппаратный механизм преобразования математического адреса в физический дал возможность динамически распределять оперативную память в процессе вычислений средствами ОС.

У БЭСМ-6 был конвейерный центральный процессор с отдельными конвейерами для устройства управления и арифметического устройства. Он позволял совмещать обработку нескольких команд, находящихся на разных стадиях выполнения. Имелся кеш на 16 48-битных слов (4 чтения данных, 4 чтения команд, 8 — буфер записи). Система команд включала в себя 50 24-битных команд.

Лаборатория для проведения финишных испытаний знаменитой БЭСМ-6

С 1968 г. начался выпуск БЭСМ-6 на заводе Счётно-аналитических машин (САМ) в Москве.

Характеристики БЭСМ-6

Элементная база: транзисторный парафазный усилитель с диодной логикой на входе
Быстродействие: около 1 млн операций в секунду
Потребляемая мощность: 60 кВт
Разрядность: 48
Тактовая частота: 10 МГц
Внешняя память: на магнитных лентах и магнитных дисках
Устройства ввода / вывода: ввод с перфокарты, цифропечать и фотопечатное устройство

На Дне открытых дверей факультета вычислительной математики и кибернетики МГУ Владимир Пономарев демонстрирует игру «Калах» на экране терминала БЭСМ-6

С 1967 г. практически все крупные вычислительные центры СССР стали оснащаться компьютерами БЭСМ-6. И даже спустя годы на заседании отделения информатики, вычислительной техники и автоматизации Академии наук (1983 г.) академик Е. П. Велихов сказал, что создание БЭСМ-6 явилось одним из основных вкладов АН СССР в развитие советской индустрии.

В 1990 г. один из экземпляров БЭСМ-6 был перевезен в Лондон и установлен в Музее науки, как лучший в Европе суперкомпьютер своего времени.

Серия 5Э26

ЭВМ 5Э26 была последней прижизненной разработкой Лебедева, которую он успел запустить в серийное производство.

В 1968 г. Лебедев принял предложение Генерального конструктора зенитных ракетных комплексов для ПВО Бориса Васильевича Бункина. Он согласился разработать специализированный управляющий малогабаритный мобильный высокопроизводительный цифровой вычислительный комплекс (ЦВК) 5Э26. О реализации такой возможности Сергей Алексеевич мечтал еще при создании МЭСМ. Благодаря этой работе, была проведена крупнейшая реорганизация института. Объединение ресурсов множества различных лабораторий привело к фактическому созданию отделений:
— по ЭВМ общего назначения
— по ЭВМ специального назначения (включая архитектуру)
— по электронному конструированию
— по запоминающим устройствам
— по САПР и технологии.

Всеволодом Сергеевичем Бурцевым (заместитель Лебедева) была предложена многопроцессорная архитектура ЦВК 5Э26, обеспечивающая работу до трех модулей центральных процессоров и двух специальных процессоров ввода-вывода информации с общей памятью.

Конструктивно ЦВК серии 5Э26 представлял собой шкаф высотой 1885 мм, шириной 2870 мм, глубиной 655 мм, который ставился у стенки транспортного средства.

У 5Э26 имелась высокоэффективная система автоматического резервирования, базирующаяся на аппаратном контроле. Система давала возможность восстанавливать процесс управления при сбоях и отказах аппаратуры, работающей в широком диапазоне климатических и механических воздействий, с развитым математическим обеспечением автоматизации программирования.

ЦКВ 5Э261

ЦКВ 5Э26 легко адаптировался к различным требованиям по производительности и памяти в системах управления специального назначения. Устройство также работало в реальном времени, снабжалось развитым математическим обеспечением, эффективной системой автоматизации программирования и возможностью работы с языками высокого уровня. В 5Э26 была реализована энергонезависимая память команд на микробиаксах с возможностью электрической перезаписи информации внешней аппаратурой записи и введена эффективная система эксплуатации с двухуровневой локализацией неисправной ячейки, обеспечивающая эффективность восстановления аппаратуры среднетехническим персоналом.

В качестве интегральных схем использовались в основном полупроводниковые микросхемы одних из первых отечественных серий-133 и 130 (ТТЛ-типа).

Лебедев во время поездки в Англию (Кембридж, 1964 г.)

Характеристики 5Э261

Элементная база: стандартная серия ТТЛ-микросхем
Быстродействие: 1,5 млн операций в секунду
Потребляемая мощность: 5,5 кВт
Разрядность: 32
Объем оперативной памяти: 32-34 Кб
Объем командной памяти: 64-256 Кб
Независимый процессор ввода-вывода информации по 12 каналам связи: максимальный темп обмена свыше 1 Мб/с.

Опыт создания ЭВМ 5Э26 стал базой для конструирования семейства супер-ЭВМ «Эльбрус». Название было предложено Лебедевым. Появление «Эльбруса» завершило создание ПРО СССР, однако сам он уже не успел принять участие в их разработке.

Послесловие

Лебедев с семьей

По воспоминаниям сотрудников, работавших с Сергеем Алексеевичем в Киеве, он был идеальным руководителем. В работе доводил все до совершенства, большое внимание уделял мелочам. Он никогда не повышал голос и относился ко всем исключительно ровно, справедливо, без предвзятости. Всегда отмечал даже небольшие успехи своих сотрудников. В процессе отладки машины равных ему не было. Лебедев превосходил всех в понимании неполадок и сбоев в машине.

Сергей Алексеевич на протяжении всей своей жизни вел большую работу по подготовке научных кадров. Он был одним из инициаторов создания Московского физико-технического института, основателем и руководителем кафедры вычислительной техники в этом институте, руководил работой многих аспирантов и дипломников.

Лебедев с дочерьми Екатериной и Натальей

В начале 70-х Сергей Алексеевич уже не мог руководить Институтом точной механики и вычислительной техники, в 1973 г. тяжелая болезнь вынудила его оставить пост директора. Но он продолжал работать дома.

Сергей Алексеевич Лебедев скончался 3 июля 1974 г. в Москве. Похоронен на Новодевичьем кладбище.

В Киеве на здании, где располагался Институт электротехники АН Украины, висит мемориальная доска, текст которой гласит: ” В этом здании в Институте электротехники АН УССР в 1946—1951 г.г. работал выдающийся ученый, создатель первой отечественной электронной вычислительной машины, Герой Социалистического Труда, академик Сергей Алексеевич Лебедев”.

Мозаика с изображением Лебедева в ИТМиВТ

В год 95-летия со дня рождения Сергея Алексеевича Лебедева заслуги ученого признали и за рубежом. Как новатор вычислительной техники, он был отмечен именной медалью Международного компьютерного общества с надписью: «Сергей Алексеевич Лебедев 1902–1974 г.г… Разработчик и конструктор первого компьютера в Советском Союзе. Основоположник советского компьютеростроения».

#статьи


  • 0

Как СССР побеждал в компьютерной гонке, а потом её провалил

Советские компьютеры 1950‑х годов не уступали западным, но с конца 1960‑х они стали резко отставать от капиталистических ЭВМ.

Иллюстрация: Victor R. Ruiz / Hans Bln / Wikipedia / filistimlyanin / Freepik / Дима Руденок для Skillbox Media

Марина Демидова

Программист, консультант, специалист по документированию. Легко и доступно рассказывает о сложных вещах в программировании и дизайне.

Компьютерная эра во всём мире началась почти одновременно — сразу после Второй мировой войны. В 1948 году у США уже были первые ЭВМ Mark и ENIAC, поэтому советское правительство решило не отставать и организовало структуры, которые должны были заниматься разработкой аналогичной техники.

Одну из них, Институт точной механики и вычислительной техники (ИТМиВТ), долгое время возглавлял академик Сергей Алексеевич Лебедев. Сегодня его называют отцом советских ЭВМ.

Фотография Сергея Алексеевича в кабинете на Новопесчаной после избрания академиком
Фото: «История информационных технологий в СССР и России»

Первую ЭВМ в СССР и континентальной Европе создали в Киевском институте электротехники под руководством академика Лебедева.

Вообще, Лебедев хотел создать цифровую ЭВМ ещё в начале войны — тогда он руководил лабораторией в Московском электротехническом институте. Однако в 1941 году институт эвакуировали на Урал и учёному пришлось плотно заниматься военными разработками: самонаводящимися торпедами, системой стабилизации танковых орудий и тому подобным.

Когда война закончилась, Лебедев вернулся в Москву. Но реализовать проект счётной супермашины оказалось непросто. Он обратился в ЦК ВКП(б) и рассказал куратору по науке, что его ЭВМ будет выполнять до 10 000 операций в секунду, но над ним только посмеялись: «А что будет, когда мы все задачи на вашей машине прорешаем — выбросим её на свалку?»

К счастью, в 1947 году Лебедева пригласили в Киев, и он продолжил работу над вычислительной машиной. К осени 1948 года Сергей Алексеевич уже разработал модель вычислительной машины. Она работала по принципу арифмометра и предназначалась для ускорения и автоматизации счёта. Лебедев назвал свою машину МЭСМ (малая электронная счётная машина). А в марте 1949 года Лебедев создал и испытал работающий макет арифметико-логического устройства на радиолампах.

В 1951 году началась сложная работа по переводу макета в действующую ЭВМ. Это были послевоенные годы, людей не хватало, поэтому над машиной работали всего 12 инженеров, 15 техников и монтажниц. Трудиться приходилось сутки напролёт: Лебедев и сам всё время что-то паял, монтировал, клепал. И к декабрю 1951 года машина была готова!

МЭСМ использовала 6000 радиоламп и занимала 60 квадратных метров. Правда, с помещением под компьютер просчитались — машину собрали в комнате на нижнем этаже двухэтажного здания, и когда все 6000 ламп загорелись, температура резко подскочила. Работать стало невозможно, поэтому пришлось разобрать потолок и часть кровли.

Характеристики МЭСМ:

  • Машина производила до 50 операций в секунду — неплохая скорость по сравнению с ручными вычислениями.
  • Ёмкость ОЗУ — 31 число и 63 команды.
  • Представление чисел — с фиксированной точкой, 16 двоичных разрядов.
  • Команды трёхадресные, длиной в 20 двоичных разрядов (4 разряда — код операций).
  • Дополнительно можно было подключать ЗУ на магнитном барабане ёмкостью 5000 слов.
  • Данные вводились с помощью перфоленты или штекеров на коммутаторах, а выводились на электромеханическое печатающее устройство или фотографировались.

Во время испытаний МЭСМ производила сложные вычисления — рассчитывала сумму факториалов нечётных чисел, возводила дроби в степень. Все увидели, что скорость компьютера намного превышает человеческие возможности.

В 1952 году ЭВМ продемонстрировали на публике — и с тех пор она считается первой работающей электронно-вычислительной машиной в СССР и континентальной Европе.

Лебедев разработал МЭСМ в качестве макета для отработки принципов построения БЭСМ (большой электронной счётной машины), которую создавали параллельно. Но и саму МЭСМ активно использовали — на ней решали разные научно-технические и экономические задачи:

  • рассчитывали энергосистемы и строительные конструкции;
  • обрабатывали геодезические наблюдения;
  • составляли статистические таблицы;
  • решали задачи баллистики, синтеза аммиака и многое другое.

МЭСМ использовали в реальных задачах до 1957 года, а потом ещё два года на ней обучали студентов.

Благодаря первой машине Лебедева в СССР начало развиваться программирование и производство вычислительной техники.

В том же 1952 году команда Лебедева построила БЭСМ-1.

  • В машине было 5000 электронных ламп.
  • Она могла выполнять 8000–10 000 операций в секунду.
  • Внешняя память — на магнитных барабанах (два барабана по 5120 слов) и магнитных лентах (четыре барабана по 30 000 слов). Машина имела общую память для команд и данных — всё по архитектуре фон Неймана.
  • Система представления чисел — двоичные с плавающей точкой.
  • Система команд — трёхадресная. В каждой команде содержатся код операции, два адреса исходных операндов и адрес результата операции.

В 1953 году на международной конференции в Дармштадте БЭСМ-1 признали самым быстродействующим компьютером в Европе. По скорости работы и объёму памяти она уступала только американской IBM 701.

Сергей Лебедев и Владимир Мельников у машины БЭСМ АН СССР
Фото: «Виртуальный компьютерный музей»

В столице оценили работу Лебедева и назначили его директором московского Института точной механики и вычислительной техники (ИТМиВТ). БЭСМ перевезли в Москву и установили на первом этаже института. На ней решали научные и прикладные задачи, казавшиеся в то время неразрешимыми из-за большого объёма вычислений.

БЭСМ могла рассчитать траекторию полёта снаряда быстрее, чем снаряд долетал до цели. В то время это было огромным достижением. А ещё именно на БЭСМ-1 была рассчитана траектория полёта ракеты, доставившей на Луну вымпел СССР в 1959 году.

В 1960 году БЭСМ-1 разобрали, и по этому поводу сотрудники ИТМиВТ даже написали эпитафию.

БЭСМ-2
Фото: «История информационных технологий в СССР и России»

В 1957 году Ульяновский завод им. Володарского начал выпускать компьютеры БЭСМ-2. Ими оснастили все крупные вычислительные центры страны. На новых БЭСМ рассчитывали запуски искусственных спутников Земли и первых космических кораблей.

А в середине 1960-х разработали и запустили в производство БЭСМ-6 — супер-ЭВМ второго поколения на полупроводниковых транзисторах. Она могла выполнять уже около 1 млн операций в секунду.

БЭСМ-6 в Музее науки, Лондон, Великобритания
Фото: Wikimedia Commons

В то время советская вычислительная техника шла вровень с западными разработками. Даже Норберт Винер говорил, что советские учёные опережают американских в области теории информации, а в части аппаратуры отстают совсем немного.

Лебедев, используя свои наработки при создании МЭСМ, разработал ещё 15 электронно-вычислительных машин. Но отечественным кибернетикам не дано было стать лидерами в компьютерной гонке. В 1966 году в СССР свернули разработку собственных вычислительных машин и начали копировать серию IBM 360 в качестве единого стандарта ЭВМ.

Академик Лебедев протестовал против этого решения — он рьяно доказывал, что клонирование устаревающих систем отбросит компьютерную индустрию на годы назад. Но учёного не послушали — у его оппонентов была власть.

В 1972 году решение о копировании американской IBM приняли окончательно. Эту весть Сергей Александрович принял очень тяжело. Здоровье немолодого уже академика постоянно ухудшалось, и через два года, после долгой болезни, Лебедев скончался.

Сергей Лебедев с коллегами знакомятся с компьютерами IBM, апрель-май 1959 года
Фото: «История информационных технологий в СССР и России»

Много ли выиграла советская компьютерная индустрия от этого решения? По мнению академика Малиновского, нанесённый ущерб был выше, чем полученные результаты. Клонирование IBM шло с трудом, документацию было сложно достать, не было подходящего оборудования и комплектующих. Сроки изготовления постоянно срывались.

В 1970-х годах советская вычислительная техника уже серьёзно отставала от западной, особенно в гражданских областях. ЭВМ использовали в основном в военных разработках. Но руководство страны не рассматривало производство электронно-вычислительных машин как ключевую отрасль. Бытовало мнение, что нехватку компьютеров можно восполнить большим количеством людей с арифмометрами.

В итоге компьютерная революция 1980-х застала страну врасплох. А в 1990-х годах СССР перестал существовать и отставание отечественной компьютерной техники от западной уже мало кого интересовало.

Как зарабатывать больше с помощью нейросетей?
Бесплатный вебинар: 15 экспертов, 7 топ-нейросетей. Научитесь использовать ИИ в своей работе и увеличьте доход.

Узнать больше

Советская вычислительная школа Сергея Лебедева

Время на прочтение
12 мин

Количество просмотров 30K

Сергей Алексеевич Лебедев был советским академиком и основоположником вычислительной техники в СССР. Он создал первый в континентальной Европе компьютер с хранимой в памяти программой (МЭСМ) и был одним из разработчиков первых цифровых электронных вычислительных машин с динамически изменяемой программой вычислений. Под руководством и самоличном участии этого выдающегося ученого было создано 18 ЭВМ, причем 15 из них выпускались серийно.

Лебедев стоял у истоков развития и становления отечественной вычислительной техники. Опыт его работы уникален, так как охватывает период от создания первых ламповых компьютеров, выполнявших сотни и тысячи операций в секунду, до быстродействующих супер-ЭВМ на больших интегральных схемах.

Сергей Лебедев родился 2 ноября 1902 г. в городе Нижний Новгород. Отец Алексей Иванович был известным автором «Азбуки» и «Словаря непонятных слов», а мать Анастасия Петровна (в девичестве Маврина, из дворян) преподавала общие предметы в младших классах народного училища. В послереволюционные годы главу семейства пригласили на работу наркомом просвещения и Лебедевы переехали в Москву.

Сергей Лебедев (1920 г.)

Начало пути

В 1921 г. Сергей сдал экзамены экстерном за среднюю школу и поступил в Московское высшее техническое училище (МВТУ) им. Н.Э.Баумана на электротехнический факультет. Его учителями и научными руководителями были выдающиеся русские ученые-электротехники, профессора Карл Адольфович Круг, Леонид Иванович Сиротинский и Александр Александрович Глазунов. Все они трудились над разработкой плана электрификации СССР (план ГОЭЛРО). Для успешного осуществления потребовались уникальные теоретические и экспериментальные исследования. Лебедев был еще студентом, но уже тогда основное внимание уделял проблеме устойчивости параллельной работы электростанций. Первые результаты по данной проблеме были отражены в его дипломном проекте, который выполнялся под руководством профессора К.А.Круга.

В 1928 г. Лебедев получил диплом инженера-электрика и остался преподавать в родной альма-матер, параллельно занимая должность младшего научного сотрудника Всесоюзного электротехнического института (ВЭИ). Именно в этом ВУЗе он возглавил лабораторию электрических сетей, где продолжил работу над проблемой устойчивости. Тематика лаборатории постепенно расширялась, охватывая также и проблемы автоматического регулирования. И в результате в 1936 г. на ее базе сформировался отдел автоматики, руководить которым поручили Сергею Алексеевичу.

К этому времени Лебедев уже стал профессором и автором (совместно с Петром Сергеевичем Ждановым) широко известной среди специалистов-электротехников монографии “Устойчивость параллельной работы электрических систем”.

Лебедев в своем кабинете

У научной деятельности Лебедева замечалась характерная особенность, которая заключалась в органическом сочетании большой глубины теоретической проработки с конкретной практической направленностью. Продолжая теоретические исследования, он стал активным участником подготовки сооружения Куйбышевского гидроузла.

В начале Второй мировой войны Лебедев был вынужден покинуть ВЭИ и уехать в Свердловск. Все ресурсы отдела автоматики переключили на оборонную тематику.

За поразительно короткие сроки работы в Свердловске, Алексей Сергеевич спроектировал систему стабилизации танкового орудия при прицеливании. Эта разработка усовершенствовала танк, делая его менее уязвимым и спасая тем самым многих танкистов. Система позволяла наводить и стрелять из орудия без остановки машины. За свое изобретение ученый был награжден орденом Трудового Красного Знамени и медалью «За доблестный труд в Великой Отечественной войне 1941-1945 гг.».

В 1945 г. Лебедева избрали действительным членом Академии Наук УССР

После окончания войны ученый занялся реализацией давно запланированного проекта по созданию вычислительной машины с использованием двоичной системы счисления. В те годы не было достаточно полных публикаций о двоичной системе счисления и методике операций над двоичными числами. Базой для построения цифровой вычислительной машины стала методика выполнения арифметических операций в двоичной системе счисления и ранее разработанные самим Лебедевым методы решения математических задач.

В 1947 г. Лебедев стал директором Института электротехники АН Украины и по совместительству возглавил руководство лабораторией Института точной механики и вычислительной техники СССР.

МЭСМ

В 1948 г. начался процесс создания малой электронной счетной машины (МЭСМ). Для научной работы Лебедеву выделили частично разрушенное здание бывшей монастырской гостиницы в Феофании (Киев). С финансовой помощью и поддержкой вице-президента АН УССР Михаила Алексеевича Лаврентьева, помещение было отремонтировано и оборудовано под лабораторию.

Здание в Феофании, где размещалась лаборатория Лебедева

Лебедев выдвинул, обосновал и реализовал в первой советской машине принципы построения ЭВМ с хранившейся в памяти программой. МЭСМ занимала целое крыло двухэтажного здания (60 м²) и состояла из 6 000 электронных ламп. Примечательно то, что проектирование, монтаж и отладка машины были выполнены в течении трех лет. При этом в разработке участвовали лишь 11 инженеров и 15 технических сотрудников. Тогда как на разработку первого в мире электронного компьютера ЭНИАК (США) ушло пять лет и было задействовано 13 разработчиков и более 200 техников.


Схема элементарной ячейки блока памяти арифметического устройства МЭСМ

МЭСМ была арифметическим устройством, производившим операции сложения, вычитания, умножения, деления, сдвига, сравнения с учётом знака, сравнения по абсолютной величине, передачи управления, передачи чисел с магнитного барабана, сложения команд, остановки. МЭСМ имела двоичное представление чисел с фиксированной запятой, 16 двоичных разрядов на число, плюс один разряд на знак.

6 ноября 1950 г. состоялся пробный пуск машины, в ходе которого решалась задача: Y» + Y = 0; Y(0) = 0; Y(pi) = 0.

Не смотря на то, что МЭСМ создавалась более как макет Большой электронной счетной машины, ей нашли практическое применение. Первой советской ЭВМ весьма заинтересовались математики, задачи которых требовали использования быстродействующего вычислителя. До 1953 г. МЭСМ была единственной вычислительной машиной в СССР.

Участники разработки МЭСМ — Лев Наумович Дашевский и Соломон Бениаминович Погребинский (Киев, 1951 г.)

Характеристики МЭСМ

Элементная база: 6 000 электронных ламп (около 3500 триодов и 2500 диодов)
Быстродействие: 3 000 операций в секунду
Потребляемая мощность: около 25 кВт
Разрядность: 16
Тактовая частота: 5 кГц
Устройства ввода / вывода: ввод с перфокарты или набором кода на штекерном коммутаторе; вывод с помощью электромеханического печатающего устройства либо фотоустройства для получения данных на фотоплёнке.
Также мог использоваться магнитный барабан, хранящий до 5000 кодов чисел или команд.

БЭСМ

Следующей после МЭСМ была разработана большая электронно-счётная машина (БЭСМ). В структуре устройства уже тогда были реализованы основные решения, характерные для современных вычислительных машин.

У БЭСМ была двоичная система представления чисел с учётом порядков, то есть в форме чисел с плавающей запятой. Машина оперировала диапазон чисел примерно от 10-9 до 109. Система команд была трёхадресной, в нее входило 9 арифметических операций, 8 операций передач кодов, 6 логических операций, 9 операций управления.

Лабораторные испытания БЭСМ

БЭСМ имела 39 двоичных разрядов для представления чисел в виде мантиссы/порядка, из них 32 разряда отводилось для значащей части и 5 для порядка. Еще по одному разряду отводилось для знаков мантиссы и порядка. При написании программ для машины применялась техника самомодифицирующегося кода, когда напрямую модифицировались адресные части команд для доступа к массивам.

Один из разработчиков БЭСМ Всеволод Сергеевич Бурцев вспоминает о машине следующее:

Во многих блоках первой БЭСМ в анодной цепи были использованы не лампы сопротивления, а ферритовые трансформаторы. Так как эти трансформаторы были изготовлены кустарным способом, они часто выгорали, при этом выделяли едкий специфический запах. Сергей Алексеевич обладал замечательным обонянием и, обнюхивая стойку, с точностью до блока указывал на дефектный. Он практически никогда не ошибался.

Характеристики БЭСМ

Элементная база: 4 000 электронных ламп, 5 000 полупроводниковых диодов
Быстродействие: 8 000 операций в секунду
Потребляемая мощность: около 35 кВт
Разрядность: 39
Тактовая частота: 9 МГц
Внешняя память: на магнитных барабанах (2 барабана по 5120 слов) и магнитных лентах (4 по 30 000 слов)
Устройства ввода / вывода: ввод с перфокарты, цифро-печать и фото-печатное устройство.

Группа сотрудников ИТМ и ВТ АН СССР в день награждения за создание БЭСМ (1956 г.)

В 1956 г. БЭСМ получила награду и была принята Государственной комиссией в эксплуатацию.

БЭСМ-2, М-20 и БЭСМ-4

В 1958 г. БЭСМ была подготовлена к серийному производству. Коллектив ИТМиВТ под руководством Лебедева разработал и презентовал две ЭВМ: БЭСМ-2 и М-20. Их характерной особенностью было то, что они разрабатывались в тесном контакте с промышленностью (особенно М-20). Специалисты завода и академического института вместе участвовали в создании машины. Этот принцип был хорош тем, что улучшал качество документации, т. к. в ней учитывались технологические возможности завода.

Вычислительная машина БЭСМ-2 сохранила систему команд и все основные параметры предыдущего устройства, но конструкция стала более технологичной и удобной для серийного выпуска. В БЭСМ-2 было реализовано оперативное запоминающее устройство на ферритных сердечниках, широко применялись полупроводниковые диоды, а также была усовершенствована конструкция (мелкоблочная). На БЭСМ-2 проводились расчеты, связанные с запуском искусственных спутников, первых пилотируемых космических кораблей. Именно на одной из упомянутых ЭВМ был произведён расчёт траектории ракеты, доставившей вымпел СССР на Луну.

БЭСМ-2 имела около 4 000 электронных ламп, и была собрана на трех основных стойках

Характеристики БЭСМ-2

Элементная база: 4 000 электронных ламп, 5 000 полупроводниковых диодов
Быстродействие: 20 000 операций в секунду
Потребляемая мощность: 35 кВт
Разрядность: 45
Тактовая частота: 10 МГц
Внешняя память: на магнитных барабанах и магнитных лентах
Устройства ввода / вывода: ввод с перфоленты, которую печатает устройство.

М-20 стала первой советской машиной, которая поставлялась в комплекте со специальным математическим обеспечением (по своей сути — ОС). В новое устройство Лебедев заложил рад конструктивных решений, расширяющих функциональность и почти не увеличивающих количество электронных ламп.

М-20 обладала производительностью 20 000 операций в секунду за счет совмещения работы отдельных устройств и более быстрого выполнения арифметических операций. В машине впервые были применены: автоматическая модификация адреса; совмещение работы арифметического устройства и выборки команд из памяти; использование буферной памяти для массивов, выдаваемых на печать.

М-20

Характеристики М-20

Элементная база: электронные лампы, полупроводниковые схемы
Быстродействие: 20 000 операций в секунду
Потребляемая мощность: 50 кВт
Разрядность: 45
Тактовая частота: 0.6667 мГц
Внешняя память: на магнитных барабанах и магнитных лентах
Устройства ввода / вывода: ввод с перфоленты, которую печатает устройство

После вручения наград в Кремле (1962 г.)

В 1965 г. появилась серийная ЭВМ на полупроводниковых элементах БЭСМ-4, которая унаследовала архитектуру М-20. Для БЭСМ-4 существовало не менее 3 разных компиляторов с языка Алгол-60, компилятор Fortran, не менее 2 разных ассемблеров, компилятор с оригинального языка Эпсилон.

Характеристики БЭСМ-4

Элементная база: электронные лампы, полупроводниковые схемы
Быстродействие: до 40 000 операций в секунду
Потребляемая мощность: 50 кВт
Разрядность: 45
Тактовая частота: 9 МГц
Внешняя память: на магнитных барабанах и магнитных лентах
Устройства ввода / вывода: ввод с перфоленты, которую печатает устройство

БЭСМ-6

Разработка БЭСМ-6 завершилась в конце 1965 г. Эта машина стала первой советской супер-ЭВМ на элементной базе второго поколения (полупроводниковых транзисторах). В электронных схемах БЭСМ-6 использовалось 60 000 транзисторов и 180 000 полупроводников-диодов. Элементная база была новой для того времени.

У БЭСМ-6 имелся магистральный или водопроводный принцип организации управления. С его помощью потоки команд и операндов обрабатывались параллельно. В разработке использовалась ассоциативная память на сверхбыстрых регистрах, что сократило количество обращений к ферритной памяти и позволило осуществить локальную оптимизацию вычислений в динамике счета. Оперативная память имела расслоение (8-слойная) на автономные модули, что дало возможность одновременно обращаться к блокам памяти по нескольким направлениям. Многопрограммный режим работы БЭСМ-6 позволил решать несколько задач с заданными приоритетами. Аппаратный механизм преобразования математического адреса в физический дал возможность динамически распределять оперативную память в процессе вычислений средствами ОС.

У БЭСМ-6 был конвейерный центральный процессор с отдельными конвейерами для устройства управления и арифметического устройства. Он позволял совмещать обработку нескольких команд, находящихся на разных стадиях выполнения. Имелся кеш на 16 48-битных слов (4 чтения данных, 4 чтения команд, 8 — буфер записи). Система команд включала в себя 50 24-битных команд.

Лаборатория для проведения финишных испытаний знаменитой БЭСМ-6

С 1968 г. начался выпуск БЭСМ-6 на заводе Счётно-аналитических машин (САМ) в Москве.

Характеристики БЭСМ-6

Элементная база: транзисторный парафазный усилитель с диодной логикой на входе
Быстродействие: около 1 млн операций в секунду
Потребляемая мощность: 60 кВт
Разрядность: 48
Тактовая частота: 10 МГц
Внешняя память: на магнитных лентах и магнитных дисках
Устройства ввода / вывода: ввод с перфокарты, цифропечать и фотопечатное устройство

На Дне открытых дверей факультета вычислительной математики и кибернетики МГУ Владимир Пономарев демонстрирует игру «Калах» на экране терминала БЭСМ-6

С 1967 г. практически все крупные вычислительные центры СССР стали оснащаться компьютерами БЭСМ-6. И даже спустя годы на заседании отделения информатики, вычислительной техники и автоматизации Академии наук (1983 г.) академик Е. П. Велихов сказал, что создание БЭСМ-6 явилось одним из основных вкладов АН СССР в развитие советской индустрии.

В 1990 г. один из экземпляров БЭСМ-6 был перевезен в Лондон и установлен в Музее науки, как лучший в Европе суперкомпьютер своего времени.

Серия 5Э26

ЭВМ 5Э26 была последней прижизненной разработкой Лебедева, которую он успел запустить в серийное производство.

В 1968 г. Лебедев принял предложение Генерального конструктора зенитных ракетных комплексов для ПВО Бориса Васильевича Бункина. Он согласился разработать специализированный управляющий малогабаритный мобильный высокопроизводительный цифровой вычислительный комплекс (ЦВК) 5Э26. О реализации такой возможности Сергей Алексеевич мечтал еще при создании МЭСМ. Благодаря этой работе, была проведена крупнейшая реорганизация института. Объединение ресурсов множества различных лабораторий привело к фактическому созданию отделений:
— по ЭВМ общего назначения
— по ЭВМ специального назначения (включая архитектуру)
— по электронному конструированию
— по запоминающим устройствам
— по САПР и технологии.

Всеволодом Сергеевичем Бурцевым (заместитель Лебедева) была предложена многопроцессорная архитектура ЦВК 5Э26, обеспечивающая работу до трех модулей центральных процессоров и двух специальных процессоров ввода-вывода информации с общей памятью.

Конструктивно ЦВК серии 5Э26 представлял собой шкаф высотой 1885 мм, шириной 2870 мм, глубиной 655 мм, который ставился у стенки транспортного средства.

У 5Э26 имелась высокоэффективная система автоматического резервирования, базирующаяся на аппаратном контроле. Система давала возможность восстанавливать процесс управления при сбоях и отказах аппаратуры, работающей в широком диапазоне климатических и механических воздействий, с развитым математическим обеспечением автоматизации программирования.

ЦКВ 5Э261

ЦКВ 5Э26 легко адаптировался к различным требованиям по производительности и памяти в системах управления специального назначения. Устройство также работало в реальном времени, снабжалось развитым математическим обеспечением, эффективной системой автоматизации программирования и возможностью работы с языками высокого уровня. В 5Э26 была реализована энергонезависимая память команд на микробиаксах с возможностью электрической перезаписи информации внешней аппаратурой записи и введена эффективная система эксплуатации с двухуровневой локализацией неисправной ячейки, обеспечивающая эффективность восстановления аппаратуры среднетехническим персоналом.

В качестве интегральных схем использовались в основном полупроводниковые микросхемы одних из первых отечественных серий-133 и 130 (ТТЛ-типа).

Лебедев во время поездки в Англию (Кембридж, 1964 г.)

Характеристики 5Э261

Элементная база: стандартная серия ТТЛ-микросхем
Быстродействие: 1,5 млн операций в секунду
Потребляемая мощность: 5,5 кВт
Разрядность: 32
Объем оперативной памяти: 32-34 Кб
Объем командной памяти: 64-256 Кб
Независимый процессор ввода-вывода информации по 12 каналам связи: максимальный темп обмена свыше 1 Мб/с.

Опыт создания ЭВМ 5Э26 стал базой для конструирования семейства супер-ЭВМ «Эльбрус». Название было предложено Лебедевым. Появление «Эльбруса» завершило создание ПРО СССР, однако сам он уже не успел принять участие в их разработке.

Послесловие

Лебедев с семьей

По воспоминаниям сотрудников, работавших с Сергеем Алексеевичем в Киеве, он был идеальным руководителем. В работе доводил все до совершенства, большое внимание уделял мелочам. Он никогда не повышал голос и относился ко всем исключительно ровно, справедливо, без предвзятости. Всегда отмечал даже небольшие успехи своих сотрудников. В процессе отладки машины равных ему не было. Лебедев превосходил всех в понимании неполадок и сбоев в машине.

Сергей Алексеевич на протяжении всей своей жизни вел большую работу по подготовке научных кадров. Он был одним из инициаторов создания Московского физико-технического института, основателем и руководителем кафедры вычислительной техники в этом институте, руководил работой многих аспирантов и дипломников.

Лебедев с дочерьми Екатериной и Натальей

В начале 70-х Сергей Алексеевич уже не мог руководить Институтом точной механики и вычислительной техники, в 1973 г. тяжелая болезнь вынудила его оставить пост директора. Но он продолжал работать дома.

Сергей Алексеевич Лебедев скончался 3 июля 1974 г. в Москве. Похоронен на Новодевичьем кладбище.

В Киеве на здании, где располагался Институт электротехники АН Украины, висит мемориальная доска, текст которой гласит: ” В этом здании в Институте электротехники АН УССР в 1946—1951 г.г. работал выдающийся ученый, создатель первой отечественной электронной вычислительной машины, Герой Социалистического Труда, академик Сергей Алексеевич Лебедев”.

Мозаика с изображением Лебедева в ИТМиВТ

В год 95-летия со дня рождения Сергея Алексеевича Лебедева заслуги ученого признали и за рубежом. Как новатор вычислительной техники, он был отмечен именной медалью Международного компьютерного общества с надписью: «Сергей Алексеевич Лебедев 1902–1974 г.г… Разработчик и конструктор первого компьютера в Советском Союзе. Основоположник советского компьютеростроения».

#статьи

  • 13 апр 2022

  • 0

Как СССР побеждал в компьютерной гонке, а потом её провалил

Советские компьютеры 1950‑х годов не уступали западным, но с конца 1960‑х они стали резко отставать от капиталистических ЭВМ.

Иллюстрация: Victor R. Ruiz / Hans Bln / Wikipedia / filistimlyanin / Freepik / Дима Руденок для Skillbox Media

Марина Демидова

Программист, консультант, специалист по документированию. Легко и доступно рассказывает о сложных вещах в программировании и дизайне.

Компьютерная эра во всём мире началась почти одновременно — сразу после Второй мировой войны. В 1948 году у США уже были первые ЭВМ Mark и ENIAC, поэтому советское правительство решило не отставать и организовало структуры, которые должны были заниматься разработкой аналогичной техники.

Одну из них, Институт точной механики и вычислительной техники (ИТМиВТ), долгое время возглавлял академик Сергей Алексеевич Лебедев. Сегодня его называют отцом советских ЭВМ.

Фотография Сергея Алексеевича в кабинете на Новопесчаной после избрания академиком
Фото: «История информационных технологий в СССР и России»

Первую ЭВМ в СССР и континентальной Европе создали в Киевском институте электротехники под руководством академика Лебедева.

Вообще, Лебедев хотел создать цифровую ЭВМ ещё в начале войны — тогда он руководил лабораторией в Московском электротехническом институте. Однако в 1941 году институт эвакуировали на Урал и учёному пришлось плотно заниматься военными разработками: самонаводящимися торпедами, системой стабилизации танковых орудий и тому подобным.

Когда война закончилась, Лебедев вернулся в Москву. Но реализовать проект счётной супермашины оказалось непросто. Он обратился в ЦК ВКП(б) и рассказал куратору по науке, что его ЭВМ будет выполнять до 10 000 операций в секунду, но над ним только посмеялись: «А что будет, когда мы все задачи на вашей машине прорешаем — выбросим её на свалку?»

К счастью, в 1947 году Лебедева пригласили в Киев, и он продолжил работу над вычислительной машиной. К осени 1948 года Сергей Алексеевич уже разработал модель вычислительной машины. Она работала по принципу арифмометра и предназначалась для ускорения и автоматизации счёта. Лебедев назвал свою машину МЭСМ (малая электронная счётная машина). А в марте 1949 года Лебедев создал и испытал работающий макет арифметико-логического устройства на радиолампах.

В 1951 году началась сложная работа по переводу макета в действующую ЭВМ. Это были послевоенные годы, людей не хватало, поэтому над машиной работали всего 12 инженеров, 15 техников и монтажниц. Трудиться приходилось сутки напролёт: Лебедев и сам всё время что-то паял, монтировал, клепал. И к декабрю 1951 года машина была готова!

МЭСМ использовала 6000 радиоламп и занимала 60 квадратных метров. Правда, с помещением под компьютер просчитались — машину собрали в комнате на нижнем этаже двухэтажного здания, и когда все 6000 ламп загорелись, температура резко подскочила. Работать стало невозможно, поэтому пришлось разобрать потолок и часть кровли.

Характеристики МЭСМ:

  • Машина производила до 50 операций в секунду — неплохая скорость по сравнению с ручными вычислениями.
  • Ёмкость ОЗУ — 31 число и 63 команды.
  • Представление чисел — с фиксированной точкой, 16 двоичных разрядов.
  • Команды трёхадресные, длиной в 20 двоичных разрядов (4 разряда — код операций).
  • Дополнительно можно было подключать ЗУ на магнитном барабане ёмкостью 5000 слов.
  • Данные вводились с помощью перфоленты или штекеров на коммутаторах, а выводились на электромеханическое печатающее устройство или фотографировались.

Во время испытаний МЭСМ производила сложные вычисления — рассчитывала сумму факториалов нечётных чисел, возводила дроби в степень. Все увидели, что скорость компьютера намного превышает человеческие возможности.

В 1952 году ЭВМ продемонстрировали на публике — и с тех пор она считается первой работающей электронно-вычислительной машиной в СССР и континентальной Европе.

Лебедев разработал МЭСМ в качестве макета для отработки принципов построения БЭСМ (большой электронной счётной машины), которую создавали параллельно. Но и саму МЭСМ активно использовали — на ней решали разные научно-технические и экономические задачи:

  • рассчитывали энергосистемы и строительные конструкции;
  • обрабатывали геодезические наблюдения;
  • составляли статистические таблицы;
  • решали задачи баллистики, синтеза аммиака и многое другое.

МЭСМ использовали в реальных задачах до 1957 года, а потом ещё два года на ней обучали студентов.

Благодаря первой машине Лебедева в СССР начало развиваться программирование и производство вычислительной техники.

В том же 1952 году команда Лебедева построила БЭСМ-1.

  • В машине было 5000 электронных ламп.
  • Она могла выполнять 8000–10 000 операций в секунду.
  • Внешняя память — на магнитных барабанах (два барабана по 5120 слов) и магнитных лентах (четыре барабана по 30 000 слов). Машина имела общую память для команд и данных — всё по архитектуре фон Неймана.
  • Система представления чисел — двоичные с плавающей точкой.
  • Система команд — трёхадресная. В каждой команде содержатся код операции, два адреса исходных операндов и адрес результата операции.

В 1953 году на международной конференции в Дармштадте БЭСМ-1 признали самым быстродействующим компьютером в Европе. По скорости работы и объёму памяти она уступала только американской IBM 701.

Сергей Лебедев и Владимир Мельников у машины БЭСМ АН СССР
Фото: «Виртуальный компьютерный музей»

В столице оценили работу Лебедева и назначили его директором московского Института точной механики и вычислительной техники (ИТМиВТ). БЭСМ перевезли в Москву и установили на первом этаже института. На ней решали научные и прикладные задачи, казавшиеся в то время неразрешимыми из-за большого объёма вычислений.

БЭСМ могла рассчитать траекторию полёта снаряда быстрее, чем снаряд долетал до цели. В то время это было огромным достижением. А ещё именно на БЭСМ-1 была рассчитана траектория полёта ракеты, доставившей на Луну вымпел СССР в 1959 году.

В 1960 году БЭСМ-1 разобрали, и по этому поводу сотрудники ИТМиВТ даже написали эпитафию.

БЭСМ-2
Фото: «История информационных технологий в СССР и России»

В 1957 году Ульяновский завод им. Володарского начал выпускать компьютеры БЭСМ-2. Ими оснастили все крупные вычислительные центры страны. На новых БЭСМ рассчитывали запуски искусственных спутников Земли и первых космических кораблей.

А в середине 1960-х разработали и запустили в производство БЭСМ-6 — супер-ЭВМ второго поколения на полупроводниковых транзисторах. Она могла выполнять уже около 1 млн операций в секунду.

БЭСМ-6 в Музее науки, Лондон, Великобритания
Фото: Wikimedia Commons

В то время советская вычислительная техника шла вровень с западными разработками. Даже Норберт Винер говорил, что советские учёные опережают американских в области теории информации, а в части аппаратуры отстают совсем немного.

Лебедев, используя свои наработки при создании МЭСМ, разработал ещё 15 электронно-вычислительных машин. Но отечественным кибернетикам не дано было стать лидерами в компьютерной гонке. В 1966 году в СССР свернули разработку собственных вычислительных машин и начали копировать серию IBM 360 в качестве единого стандарта ЭВМ.

Академик Лебедев протестовал против этого решения — он рьяно доказывал, что клонирование устаревающих систем отбросит компьютерную индустрию на годы назад. Но учёного не послушали — у его оппонентов была власть.

В 1972 году решение о копировании американской IBM приняли окончательно. Эту весть Сергей Александрович принял очень тяжело. Здоровье немолодого уже академика постоянно ухудшалось, и через два года, после долгой болезни, Лебедев скончался.

Сергей Лебедев с коллегами знакомятся с компьютерами IBM, апрель-май 1959 года
Фото: «История информационных технологий в СССР и России»

Много ли выиграла советская компьютерная индустрия от этого решения? По мнению академика Малиновского, нанесённый ущерб был выше, чем полученные результаты. Клонирование IBM шло с трудом, документацию было сложно достать, не было подходящего оборудования и комплектующих. Сроки изготовления постоянно срывались.

В 1970-х годах советская вычислительная техника уже серьёзно отставала от западной, особенно в гражданских областях. ЭВМ использовали в основном в военных разработках. Но руководство страны не рассматривало производство электронно-вычислительных машин как ключевую отрасль. Бытовало мнение, что нехватку компьютеров можно восполнить большим количеством людей с арифмометрами.

В итоге компьютерная революция 1980-х застала страну врасплох. А в 1990-х годах СССР перестал существовать и отставание отечественной компьютерной техники от западной уже мало кого интересовало.

Машина Лебедева

Сергей Алексеевич Лебедев — один из отцов отечественного компьютеростроения. Под его руководством были созданы 15 различных типов электронно-вычислительных машин — причем не только ламповых, но и аппаратов на интегральных схемах. Ну и конечно же главное достижение легендарного ученого — создание Малой электронной счетной машины (МЭСМ). Во многих источниках ее называют первой советской ЭВМ. Да что там, даже сам Лебедев так ее охарактеризовал в статье «У истоков первой ЭВМ». Хотя как раз тут первенство Лебедева может быть оспорено — но об этом позже.

Работу над созданием МЭСМ Лебедев начал в Киеве в 1947 году, куда попал по приглашению Михаила Лаврентьева, на тот момент директора Института математики Академии Наук Украины и по совместительству — заместителя президента этой самой Академии. К переезду на Украину Сергей Алексеевич склонялся долго и тяжело. К тому времени ученый уже 10 лет руководил одним из отделов во Всесоюзном электротехническом институте, и даже должность директора целого института в столице УССР его не прельщала.

Как позже рассказывал сын ученого, Сергей Лебедев-младший, выбор был сделан при помощи жребия. «Мать предложила бросить жребий. Две бумажки с надписями ‘Киев’ и ‘Москва’ были положены в шапку и тщательно перемешаны. К счастью, выпал Киев! С тех пор эта шапка прочно вошла в семейные фольклорные анналы и стала в кругу друзей не менее знаменитой, чем шапка Мономаха».

В Киеве Сергей Алексеевич стал руководителем Института энергетики. Там Лебедев инициировал создание лаборатории моделирования и вычислительной техники в составе Института электротехники. Немалую роль в этом сыграл Лаврентьев, который написал Сталину письмо с просьбой поддержать работы в области вычислительной техники, учитывая их важность для обороноспособности СССР. Собрав команду талантливых ученых, Лебедев приступил к сборке машины в бывшем здании психиатрической больницы в предместье Феофания.

К концу 1949 года была полностью разработана архитектура МЭСМ, а к осени 1950 года «компьютер» полностью собрали.

1951 год. Молодые кибернетики за пультом МЭСМ. Фото: Информационные технологии в Украине

Пробный пуск машины случился 6 ноября 1950 года, а уже 4 января 1951 года работающая МЭСМ была продемонстрирована приемной комиссии. К концу того же 1951 года работу аппарата оценила комиссия более высокого уровня, из Москвы, во главе с академиком М.В. Келдышем, и 25 декабря рекомендовала ввести машину в эксплуатацию.

Открытие Исаака

1951 год можно было бы считать годом рождения отечественной информатики. Но в марте 2018 года на пленарном заседании Института истории естествознания и техники РАН этой датой назначили 4 декабря 1948 года. А все благодаря Исааку Бруку, создателю ЭВМ М-1.

Сразу после окончания Великой отечественной войны при Президиуме Академии Наук СССР был создан научный семинар для обсуждения вопросов автоматизации вычислений. Исаак Брук был одним из его активных участников и продвигал идею создания института для изучения проблем вычислительной техники. В 1948 году благодаря поддержке президента Академии С.И. Вавилова было создано учреждение — Институт точной механики и вычислительной техники. Но Брук, получивший 4 декабря того же года авторское свидетельство на автоматическую цифровую вычислительную машину, в том самом институте не работал ни дня.

Исаак Брук. Фото: Политехнический музей

Почему так случилось — неизвестно. По одной из версий, директор института Николай Бруевич был редкостным ретроградом: не приветствовал развитие цифровых ЭВМ и делал ставку на развитие механических вычислительных аппаратов. По другой версии, у новосозданного учреждения не было ничего кроме вывески, и поэтому Брук решил остаться сотрудником Энергетического института.

В отличие от работников профильных учреждений Брук не имел большой государственной поддержки и вместе со своей командой работал скорее на голом энтузиазме. Да, Исаак Семенович имел довольно серьезного покровителя, в лице директора института Глеба Кржижановского, старого большевика и одного из близких друзей Ленина. Тем не менее, как позже вспоминал один из участников сборки М-1 Александр Залкинд, «работа над ЭВМ [… ] велась полулегально, сегодня сказали бы, что это хобби руководителя работ и только».

Вместе со своим коллегой Баширом Рамеевым и несколькими учениками Брук собрал электронно-вычислительную машину менее чем за год: процесс начали в октябре 1950 года, а уже летом 1951 М-1 могла выполнять основные арифметические операции. Эксплуатация машины стартовала в январе 1952 года — всего лишь через месяц после того, как правительственная комиссия рекомендовала к использованию МЭСМ.

Несмотря на то, что у ЭВМ Лебедева было в названии прилагательное «малая», М-1 по сравнению с киевским аппаратом была просто крохой. Площадь, которую занимала М-1, составляла лишь 4 квадратных метра, тогда как МЭСМ «раскинулась» аж на 60 — а количество выделяемого последней тепла было так велико, что со здания пришлось снимать крышу. Количество ламп — 700 у М-1 против 6000 у МЭСМ, потребляемая мощность — 8 и 25 кВт соответственно. Детище Брука заметно проигрывало и в производительности: собранная в Москве ЭВМ выдавала около 20 операций в секунду против 50 у МЭСМ.

Фотография первой программы, выполненной на М-1. Фото: Великая страна СССР

«Компактность» и качество

Казалось бы, ЭВМ Лебедева круче по всем параметрам. Но М-1, собранная в гораздо более стесненных условиях и с меньшим количеством ресурсов, имела ряд концептуальных преимуществ.

  1. М-1 была первым аппаратом, логические схемы которого были построены полностью на полупроводниковых диодах. Этому способствовал недостаток материалов и изобретательность самого Брука. Руководитель проекта распорядился «прошерстить» склады института, где хранилось огромное количество радиотехники, переданной по репарациям из Германии — и набрал там медно-закисных выпрямителей (диодов) для своей машины.
  2. В М-1 впервые была использована двухадресная система команд, в отличии от трехадресной на МЭСМ: такую особенность предложил молодой математик Юлий Шрейдер, осваивавший основы программирования на ЭВМ. У такой системы есть ряд преимуществ по сравнению с трех- и четырехадресной: упрощается устройство управления, рациональнее используется память и отсутствует необходимость записывать малоинформативные адреса.
  3. У М-1 была интегрированная оперативная память на электронно-лучевых трубках, которая позволяла записывать до 256 слов. Аналогичный объем данных умещался и на магнитном барабане, который выполнял роль медленной памяти. У первой версии МЭСМ, для сравнения, в оперативной и долговременной памяти умещалось лишь по 31 числу.

Из-за последней особенности некоторые исследователи настаивают на том, что, дескать, МЭСМ на момент ввода в эксплуатацию была не более чем огромным калькулятором, и для серьезных расчетов (например, для решения уравнений в частных производных) она не годилась.

М-1 благодаря наличию объемной памяти с момента ввода в эксплуатацию в январе 1952 года выполняла вычисления, на которые МЭСМ «сподобилась» лишь спустя несколько месяцев, после подключения магнитного барабана.

Так выглядела ЭВМ М-1. Слева направо: ссторона АУ и сторона магнитного барабана. Фото: Виртуальный компьютерный музей

Первые среди отстающих

Сложно ответить на вопрос, почему именно Лебедев, а не Брук был выбран на роль «отца советской ЭВМ». Может быть, все дело в протекции руководившего в то время Украиной Никиты Хрущева, поскольку именно в тот период началась разработка МЭСМ. А может быть, дело в печальном факте антисемитизма и национальности Брука. Факт остается фактом, Лебедев еще до окончания разработки МЭСМ был приглашен в Москву возглавлять профильный Институт точной механики и вычислительной техники, а впоследствии стал академиком АН СССР. Брук же «дослужился» только до члена-корреспондента, и долгие годы был лишь завлабораторией.

Но несомненно, как МЭСМ, так и М-1 стали важными вехами в истории советской кибернетики и компьютерной науки. На основе московской ЭВМ в той же лаборатории позже были построены машины М-2 и М-3: последняя стала основой для серий ЭВМ «Арагац», «Раздан» и «Минск». А Лебедев, используя свои наработки при создании МЭСМ, позже разработал еще 15 советских электронно-вычислительных машин.

К сожалению, успехи Брука, Лебедева и других советских кибернетиков не позволили Советскому Союзу захватить лидерство в «компьютерной гонке». Еще в 1964 году «отец кибернетики» Норберт Винер в интервью журналу «U.S. News & World Report» сказал, что советские ученые опережают американских в области теории информации, а в части аппаратуры если и отстают, то ненамного. Но в 1966 году было принято роковое для компьютерной отрасли решение о прекращении разработки собственных вычислительных систем и копировании серии IBM/360 — в качестве единого индустриального стандарта ЭВМ.

Роковое решение 1966 года отбросило советскую компьютерную индустрию на годы назад. Фото: IT History

Сергей Лебедев был против такого решения. Ученый утверждал, что копирование устаревающей иностранной системы приведет к отставанию СССР от лидеров в области компьютерной индустрии. Но к создателю МЭСМ не прислушались. Последствия перехода на заграничный стандарт можно сравнить с «фиатизацией» советского автопрома — копированием итальянских машин для создания «классического» семейства автомобилей ВАЗ.

При этом Институт точной механики и вычислительной техники, которым Лебедев руководил в последние годы жизни, спорное решение не затронуло, так как ИТМВТ занимался разработкой суперкомпьютеров для военных нужд. Именно в этой области применения компьютеров советские инженеры и ученые добились наибольшего успеха. Чего стоит только серия ЭВМ «Эльбрус», которые используются в системе ПРО второго поколения и Центре управления полетами. Увы, в создании персональных компьютеров наша промышленность подобных достижений не имела…

Как развивалась история коммерческих персональных компьютеров? Смотри историю 1953 по 1985 год в нашей галерее!

Это тоже интересно:

На первый взгляд может показаться, что вычислительная техника разрабатывалась только в США. Но это не так. Действительно, новая научная область требовала больших финансовых вложений, что было не под силу послевоенной Европе, ставшей основным плацдармом Второй мировой войны. Одной из немногих стран, которая, несмотря ни на что, стала участником гонки в компьютеростроении, являлся СССР.
Советские ЭВМ

В 1948 г. академик Сергей Алексеевич Лебедев (1902-1974), пионер отечественного производства компьютеров, начал строительство первой советской (и европейской) ЭВМ – малой электронной счетной машины (МЭСМ). Работы по ее созданию носили исследовательский, экспериментальный характер. В 1950 г. в Институте электромеханики Академии наук Украины МЭСМ ввели в эксплуатацию. В 1952-1953 гг. она оставалась практически единственной регулярно эксплуатируемой ЭВМ в Европе.

МЭСМ

Основные параметры машины: быстродействие – 50 операций в секунду; в памяти можно было хранить 31 16-разрядное число и 63 команды длиной 20 бит; площадь помещения, занимаемого машиной, — 60 м^2; потребляемая мощность – 25 кВт. Только в ОЗУ использовалось 2,5 тыс. триодов и 1,5 тыс. диодов. Для расширения маленькой памяти можно было дополнительно использовать магнитный барабан емкостью 5 тыс. слов (по 16 бит). Машина имела сменное так называемое долговременное запоминающее устройство (позже названное ПЗУ) для хранения числовых констант и часто выполняемых команд.

МЭСМ

Конечно, машина, по современным меркам, работала медленно, но основные принципы ее построения (Лебедев предложил их независимо от проводимых в США разработок) использовались при проектировании других ЭВМ. МЭСМ фактически явилась моделью БЭСМ – большой электронной счетной машины. Обе машины (МЭСМ и БЭСМ) были изготовлены в единичном экземпляре.

БЭСМ

Практически весь коллектив сотрудников, создавших МЭСМ, стал ядром Вычислительного центра АН УССР, организованного на базу лаборатории С. А. Лебедева.

Работа над БЭСМ в Вычислительном центре закончилась в 1952 г., и через год в АН СССР она уже вошла в строй. БЭСМ по праву признана лучшей европейской ЭВМ 50-х гг. XX в. Машина обрабатывала 39-разрядные слова со средней скоростью 10 тыс. операций в секунду. В качестве внешних запоминающих устройств БЭСМ использовала два магнитных барабана по 5120 символов в каждом. Скорость считывания с барабана составляла 800 слов в минуту. К машине также подключались магнитные ленты общей емкостью 120 тыс. слов.

Шкаф

БЭСМ положила начало целой серии цифровых вычислительных машин. Ртутные линии задержки, используемые в качестве элементов оперативной памяти, в 1954 г. были заменены на запоминающие электронно-лучевые трубки. А через два года их сменили ферритовые сердечники объемом 1024 39-разрядных слова. В таком виде машина известна как БЭСМ-1. На ней решались разнообразные задачи, например, подсчитывались орбиты движения 700 малых планет Солнечной системы.

Для промышленного изготовления конструкцию машины переделали, и в 1958 г. начался серийный выпуск ламповой машины БЭСМ-2. Ее потребляемая мощность составляла 75 кВт.

БЭСМ-2

В 1964 и 1966 гг. появились новые машины этого ряда – БЭСМ-3М и БЭСМ-4. В отличие от своих предшественниц, они собирались из полупроводниковых элементов. Машина БЭСМ-4 имела память 2*4096 45-разрядных слов, четыре магнитных барабана объемом 16,384 тыс. слов и потребляла всего 8 кВт мощности.

БЭСМ-4

В 1967 г. для задач, требующих множества сложных вычислений, была создана полупроводниковая машина БЭСМ-6 со средним быстродействием 1 млн операций в секунду. По сравнению с БЭСМ-4 память возросла в 8 раз (разрядов было 48, а не 45), а магнитных барабанов стало 16 по 32 тыс. слов в каждом.

В БЭСМ-6 отразились все передовые тенденции развития вычислительной техники того времени: мультипрограммный режим, аппаратная система прерывания, схема «защиты памяти» и автоматического присвоения адресов (т.е. фактически диспетчер задач). Любая часть памяти могла использоваться в качестве стека. Центральный процессор использовал одноадресную систему команд и 16 быстродействующих регистров.

БЭСМ-6

Для программирования применялись языки FORTRAN и Algol. Машина оказалась настолько удачна и надежна, что эксплуатировалась до 90-х гг. Редкий современный компьютер похвастает подобным долголетием!

Фортран

Под руководством С. А. Лебедева в 1958 г. в Институте точной механики и вычислительной техники АН СССР создали ЭВМ М20. Она стала родоначальницей семейства машин М220 и М222. Среднее быстродействие М20 было 20 тыс. операций в секунду. Память объемом 4096 45-разрядных слов выполнена на ферритовых сердечниках. Три магнитных барабана запоминали более 12 тыс. слов. Ввод происходил с перфокарт, вывод – на печатающее устройство. Машина была построена по блочному принципу, что упрощало ремонт. В ней использовалось 4,5 тыс. электронных ламп и 3,5 тыс. полупроводниковых диодов.

М20

В 1957 г. в Пензе была создана одноадресная ламповая ЭВМ «Урал-1». Хотя машина отличалась большими размерами, по производительности ее отнесли к малым. Можно считать, что с «Урал-1» началась история малых ЭВМ. При малом быстродействии (100 операций в секунду) машина не нуждалась в быстром запоминающем устройстве, поэтому в качестве основной памяти использовался магнитный барабан объемом 1024 36-битных слова, который впоследствии заменили на ферритовое запоминающее устройство. В 1964-1971 гг. выпустили ряд программно и аппаратно совместимых между собой моделей: «Урал-11», «Урал-14», «Урал-16».

Урал-1

Машины серии «Минск» в 70-х гг. и 80-х гг. XX в. Применялись в основном для инженерных и научных расчетов. Одна из них, «Минск-22» (ее показатели: 5 тыс. операций в секунду, память – 8 тыс. 37-разрядных слов), долгое время являлась основным компьютером вычислительного центра ГУМа (главного универмага страны). В ней (магнитная лента вмещала 1,6 млн слов) хранилась информация о всех складах магазина, машина производила расчет заработной платы. Однако, испытывая некоторое недоверие к вычислительной технике, руководство параллельно держало обширный штат бухгалтеров, проверявших вычисления машины. Ассемблер ЭВМ имел кириллическую мнемонику и назывался ЯСК (язык символического кодирования).

Минск-22

Другой компьютер этого ряда «Минск-32» обладал быстродействием 25 тыс. операций в секунду и комплектовался памятью до 65 тыс. 37-разрядных слов. Машина была программно совместима с «Минском-22». Медленные и быстрые каналы позволяли подключать к ней магнитные барабаны, что существенно ускоряло производительность. ЭВМ «Минск-32» уже имела компиляторы с языков программирования высокого уровня – Алгамс (разновидность Algol) и Кобол.

Минск-32

К отечественным супер ЭВМ (машины, предназначенные для высокоскоростных вычислений) относят многопроцессорные вычислительные комплексы (МВК) «Эльбрус», разработанные в 1970-1980-х гг. «Эльбрус-1» достигал производительности 10 млн операций в секунду. В конфигурацию машины входило до десяти центральных процессоров, обращающихся к общей памяти. Обман с внешними устройствами производили процессоров ввода-вывода, которые фактически представляли собой специализированные. Максимально машина могла управлять четырьмя такими процессорами. Другие спец ЭВМ – процессоры передачи данных – обеспечивали связь с пользователями.

Эльбрус-1

В МВК использовано много неординарных решений, например, каждая величина, хранящаяся в памяти, снабжена дополнительным признаком – тегом (управляющим разрядом). В нем содержится информация о типе хранимой величины, а также признак защиты от чтения или записи. Архитектура центрального процессора имела много общего с аналогичными комплексами американской фирмы Burroughs.

В конце 70-х гг. в Советском Союзе началось производство универсальных многопроцессорных комплексов четвертого поколения «Эльбрус-2». Производительность каждого процессора превышала 10млн операций в секунду. Суммарная производительность могла достигать 100 млн операций в секунду.

Эльбрус-2

Отечественное компьютеростроение испытывало трудности, связанные с необходимостью высококачественного промышленного изготовления электронных компонентов. Вероятно, поэтому был повторен не совсем удачный опыт фирмы IBM System/360 в виде серии ЕС ЭВМ (единой серии). Многие успешные (и не очень) решения копировались с западных аналогов. Прообразом киевской мини-машины СМ-4 и зеленоградской «Электроники-79» стали машины серии PDP-11 фирмы DEC (США). Однако отечественные образцы уступали по основному критерию потребителя – надежности. А с появлением персональных компьютеров бороться с всепроникающим IBM PC не смогли ни западные конкуренты, ни российские разработчики.

Загрузка…

Значение машины БЭСМ АН для отечественной и мировой вычислительной техники невозможно переоценить — многое из того, что сегодня обыденно в ИТ, впервые было опробовано при разработке именно этой машины. Важно сохранить любые свидетельства способности отечественных разработчиков в самых сложных ситуациях справляться с техническими и организационными проблемами.

Первая БЭСМ: начало путиПостановление Совета министров СССР об образовании Института точной механики и вычислительной техники Академии наук СССР было принято в июне 1948 года, когда руководство страны уже осознало необходимость создания устройств, позволяющих автоматизировать процесс математических расчетов. В США в это время уже полным ходом шли работы, приведшие впоследствии к созданию цифровых вычислительных машин. Никакого научного обмена идеями и разработками в этой области тогда не существовало — подробности американских разработок стали известны в нашей стране только в середине 1950-х годов. Но общая тенденция была одинакова — осуществлялся переход от аналоговых (уже электронных, но еще не цифровых) и релейных (во многом цифровых, но не электронных, а электромеханических) машин к цифровым.

Первый директор ИТМиВТ АН СССР Николай Григорьевич БруевичПервым директором ИТМиВТ стал академик, генерал-лейтенант Николай Григорьевич Бруевич, известный своими работами в области автоматизации интеллектуальной деятельности. Бруевич — один из создателей теории точности и надежности машин и приборов, разработчик теории счетно-решающих устройств, в частности логического анализа и синтеза устройств цифровых вычислительных машин, а также средств управления машинами. Под руководством Бруевича проводились исследования вопросов автоматизации умственного труда в области машиностроения, сущность которых — создание более эффективных приемов исследования на основе применения вычислительной техники.

При создании ИТМиВТ его первому директору удалось объединить в новом институте несколько ранее разрозненных групп ученых. Первое время тематика работ института не была напрямую связана с цифровой электронной вычислительной техникой, но уже тогда был создан отдел быстродействующих ЭВМ. Бруевич убедил руководство страны, что нужно отказаться от слепого копирования американской релейной вычислительной машины и приступить к проектированию вычислительных машин на электронных лампах.

В начале 1950 года директором ИТМиВТ был назначен переведенный из Киева на работу в Москву академик Михаил Алексеевич Лаврентьев, который назначил начальником лаборатории № 1 Сергея Алексеевича Лебедева.

Академик Михаил Алексеевич Лаврентьев               Создатель первых отечественных ЭВМ академик Сергей Алексеевич Лебедев

Лебедев работал в институте электротехники АН УССР, где создавался макет электронной счетной машины (МЭСМ), который впоследствии был развит и превращен в малую электронную счетную машину. Работа над МЭСМ подходила к концу: в 1949 году была завершена разработка запоминающего устройства и других основных элементов машины. В Москве Лебедеву была поставлена задача в кратчайшие сроки создать не макет, а полноценную вычислительную машину для проведения расчетов, необходимых для проектирования и производства ядерного оружия. Такой машиной должна была стать БЭСМ — быстродействующая электронная счетная машина.

Для работы над БЭСМ Лебедев планировал взять с собой из Киева всех разработчиков МЭСМ и даже добился предоставления им жилья в Москве на Песчаной улице, но в последний момент руководство разрешило переезд в Москву только его самого. В результате пришлось срочно формировать совершенно новый коллектив, так как работа над МЭСМ в Киеве продолжалась, и Лебедев одновременно руководил двумя коллективами.

МЭСМ в связи с началом работ над БЭСМ стала называться малой электронной счетной машиной, а из Киева Лебедев привез собственноручно выполненный проект БЭСМ, который вскоре стал именоваться как большая электронная счетная машина. Один из ведущих разработчиков ИТМиВТ Петр Петрович Головистиков вспоминал: «Существует легенда, что вся схема БЭСМ у Сергея Алексеевича была записана на папиросных коробках «Казбек» или отдельных листках. Это неверно. Она заключалась в толстых тетрадях, в которых самым скрупулезным образом были изображены все структурные схемы машины, приведены временные диаграммы работы блоков, подробно расписаны все варианты выполнения отдельных операций». Среди документации ИТМиВТ была обнаружена одна из таких тетрадей (рис. 1), состоящая из 100 разлинованных страниц, заполненных личными записями Лебедева. В ней, например, имеются такие заголовки:

Рис. 1. Страница 46 рабочей тетради С. А. Лебедева07.07.50:
Управление внешней памятью (магнитной записью).

09.07.50:
Передача с магнитной ленты на барабан.

12.07.50:
Рассмотреть вариант макета с общими элементами памяти для команд и чисел с одним управляющим коммутатором и работой на 4 такта ЦУ (а не на 3 такта).

16.07.50:
Программное и схемное осуществление передачи с ленты на барабан.
Выбор количества разрядов машины.
Выбор количества разрядов для макета с параллельным вводом чисел.

21.07.50:
Перевод из двоичной в десятичную систему на машине.

Операции.

23.07.50:
Управление магнитной лентой.

04.08.50:
Возможность и целесообразность осуществления варианта с параллельным вводом кодов и памятью на тригерных ячейках.

08.08.50:
Передача с барабана на внутреннюю память.

Чтение тетради позволяет проследить весь процесс постепенного понимания структуры будущей вычислительной машины. Первая дата в тетради относится к 7 июля 1950 года, когда Лебедев уже работал над двумя проектами — доведением до рабочего состояния МЭСМ и разработкой БЭСМ. Последняя дата (12 августа 1950 года) обозначена на странице 46 (рис. 1), а все дальнейшие записи следуют без указания дат. По-видимому, вторая половина тетради заполнилась к концу лета 1950 года. За это время были спроектированы основные узлы будущей машины и разработаны алгоритмы выполнения (производства, как написано в тетради) основных операций: сложения, умножения, деления.

Необходимо было рассчитывать все, даже длину магнитных лент, которые предполагалось использовать в качестве внешней памяти. Подобный расчет также имеется в тетради — была вычислена суммарная длина ленты (200 метров) и определено полное время передачи информации с ленты на магнитный барабан (20 минут). И тут же помечено: «Время приемлемое».

Рис. 2. Страницы 84 и 85 рабочей тетради С. А. ЛебедеваЛебедев расписывал операции и одновременно вычислял время их выполнения, выясняя для себя основные вопросы начального этапа проектирования — имеет ли смысл вводить ту или иную операцию, какова будет производительность новой машины? Например, после вычисления времени, необходимого для выполнения операции получения обратной величины с точностью до 2-30, выписан результат: 1,5 миллисекунды, и в тетради поставлена резолюция: «Приемлемо».

Особый интерес вызывают страницы 84 и 85 (рис. 2), на которых есть записи, не имеющие технического характера, — они посвящены организации работ над проектом большой машины. Записи сделаны при подготовке к встрече с руководством, от которого зависел успех проекта создания новой ЭВМ. Здесь обозначены проблемы, с которыми сталкивались обе группы разработчиков, работавшие в Киеве и в Москве, но главный вывод был прост — при реальном обеспечении работы можно построить машину ко второму полугодию 1952 года. Указанный срок был выдержан.

Рис. 3. План работ над эскизным проектом БЭСМ, составленный С. А. Лебедевым в 1950 годуОдин только перечень заголовков этой тетради показывает, что Лебедев вел свою разработку очень тщательно, вникая во все тонкости работы машины, многие из которых открывались впервые, не забывая о важности правильной организации труда и планировании. Лебедев лично составил план работ по созданию БЭСМ и постоянно контролировал ход его выполнения. Работа по этому плану проводилась сотрудниками ИТМиВТ, составившими так называемую «московскую группу». В соответствии с ним завершение разработки эскизного проекта намечалось на I квартал 1951 года (практически одновременно с завершением работы над макетом МЭСМ). В плане были выделены три основных направления работ (рис. 3):

  1. Разработка принципиальной схемы ячеек.

  2. Расчетная и экспериментальная проверка.

  3. Разработка эскизного проекта.

По каждому направлению были определены 20 главных работ, для которых устанавливались сроки выполнения и затраты ресурсов. В состав работ входили следующие:

  1. Разработка основных электронных элементов (счетчики, ячейки статического запоминания, ключи, суммирующие ячейки).

  2. Разработка методики производства арифметических операций (сложение, вычитание, умножение, деление).

  3. Разработка методики производства специальных операций (сравнение, сдвиг, изменение знака, интерполяция).

  4. Разработка методики и вспомогательных устройств для перевода чисел из десятичной в двоичную систему счисления и обратно.

  5. Разработка арифметического устройства.

  6. Разработка устройства для интерполирования.

  7. Разработка вспомогательных устройств для решения системы линейных уравнений.

  8. Разработка устройства быстрой внутренней памяти.

  9. Разработка устройства внешней памяти.

  10. Разработка блока центрального управления машиной.

  11. Разработка блока управления командами.

  12. Разработка блока управления операциями.

  13. Разработка блока управления памятью.

  14. Разработка устройства для приготовления программы и внешних цифровых данных.

  15. Разработка устройства для окончательной записи результатов.

  16. Разработка системы связи между блоками.

  17. Разработка системы контроля, сигнализации и питания машины.

  18. Разработка скелетной схемы машины.

  19. Эскизная разработка конструкции машины.

  20. Разработка действующего макета машины (на пониженной частоте, с уменьшенным количеством разрядов, с ограниченной памятью, на статических блоках на электронных лампах и с ограниченным количеством операций).

На плане заметны неоднократно вносившиеся правки, относящиеся к срокам выполнения заданий и ресурсам, требующимся для этого. Состав работ практически не подвергался изменению, хотя пункт № 4 явно вставлялся тогда, когда все остальные работы уже были написаны (это подтверждается исправлением номеров всех пунктов плана, начиная с пункта № 5 и до конца списка). Также позднейшую вставку представляет собой пункт № 7, поэтому пункты плана начиная с № 8 исправлялись дважды (второй раз новые номера просто писались левее первоначального). Вставка пункта № 7 наталкивает на мысль, что решение запланировать создание отдельного устройства для решения линейных уравнений пришло к Лебедеву несколько позднее (в окончательном варианте БЭСМ никаких подобных аналоговых устройств не осталось — машина была полностью цифровой).

Ресурсы для проекта, по-видимому, исчислялись в тысячах рублей в ценах 1950 года. Цена определялась (и корректировалась, часто несколько раз) для каждого пункта плана. Сразу при создании плана первоначальные сроки были установлены только для первых его пунктов. У пункта № 8 (и последующих пунктов) плана первый срок проставлен только карандашом, тогда как у предыдущих пунктов — теми же фиолетовыми чернилами, что и само название работы. Иногда первоначальные сроки отодвигались, но некоторые из них затем вновь были восстановлены. Так или иначе, работы над эскизным проектом БЭСМ завершились именно в первом квартале 1951 года. Это означало, что электрические схемы устройств были не только разработаны, но и проверены как математическими расчетами, так и на специально созданных макетах, был также составлен текст самого эскизного проекта.

Сергей Алексеевич не побоялся привлечь к работе над ЭВМ молодых студентов Московского энергетического института, где он читал лекции по основам цифровых приборов. К работе им были привлечены девять студентов МЭИ, которым были выданы темы дипломным работ, непосредственно относящиеся к разработке вычислительной машины:

  1. В. С. Бурцев — блок управления командами.

  2. И. Д. (Горелова) Визун — усилители считывания и записи к потенциалоскопу.

  3. А. Н. Зимарев — арифметическое устройство чисел.

  4. С. П. Кузнецов — датчик основных сигналов машины.

  5. А. Г. Лаут — блок местного управления.

  6. В. Н. Лаут — запоминающее устройство на потенциалоскопах.

  7. В. А. Мельников — блок центрального управления операциями.

  8. В. П. Смирягин — арифметическое устройство порядков.

  9. А. С. Федоров — устройство внешней памяти.

Работа каждого участника была отражена в плане эскизного проекта, который представляет собой лист бумаги формата А4, заполненный с одной стороны рукописными записями, сделанными автоматической ручкой с фиолетовыми чернилами и, по-видимому, более поздними карандашными пометками и пометками более темными чернилами. Судя по почерку, записи и пометки сделаны непосредственно С. А. Лебедевым. По этому плану завершение разработки эскизного проекта намечалось на I квартал 1951 года (практически одновременно с завершением работы над макетом МЭСМ).

Молодые коллеги Лебедева оказывали ему весьма существенную помощь. Все студенты блестяще справились со своими дипломными проектами, которые дали им мощнейший импульс к творческому развитию. Из девяти студентов двое — В. С. Бурцев и В. А. Мельников впоследствии стали лауреатами Государственных премий, действительными членами Академии наук, директорами академических институтов. Валентин Лаут защитил докторскую диссертацию, ему дважды присуждалась Государственная премия. Имена многих выпускников МЭИ 1950 года неоднократно встречаются в списках сотрудников, награжденных орденами и медалями за участие в важнейших работах ИТМиВТ.

Если бы в архиве института случайно не сохранился листок Лебедева с планом работ над эскизным проектом, мы бы никогда не узнали о той огромной работе, которая проводилась молодым коллективом института при создании первой полноценной отечественной цифровой вычислительной машины (МЭСМ изначально проектировалась как макетный вариант и никогда не производилась серийно). Разработчики ЭВМ, как и разработчики другой техники, предпочитают сохранять только окончательные варианты документации — предварительные варианты, черновики, записки, письма, чертежи, эскизы часто теряются, хотя именно с их помощью можно проследить процесс работы над новыми проектами, не менее интересный, чем результат. Сегодня, с внедрением новых технологий проектирования, разработчики стали формировать так называемые «книги проектов», в которые заносятся все промежуточные документы и их варианты. На основе этих книг (архивов документов) компании, ведущие разработку, получают возможность доказывать свою непосредственную причастность к процессу разработки и свои авторские права. Однако эти архивы не сохраняют то, что люди называют «теплом человеческих рук», тот энергетический заряд, который передается от личных записей разработчиков.

На фото. Академик А. А. Дородницын и сотрудники ИТМиВТ АН СССР Л. Н. Королев, В. С. Бурцев и И. С. Мухин (стоят) во время командировки в США в июне 1958 года

Как результат общего труда по реализации разработанного Лебедевым плана 21 апреля 1951 года начала работу Государственная комиссия по приемке эскизного проекта БЭСМ, а летом 1952 года было завершено изготовление БЭСМ, которая заработала к осени 1952 года. В итоге в апреле 1953 года Государственная комиссия под председательством М. В. Келдыша приняла к работе БЭСМ, в июне 1953 года Лебедев был назначен директором ИТМиВТ и избран действительным членом Академии наук СССР по Отделению физико-математических наук, став первым академиком по специальности «счетные устройства».

Многие задачи, казавшиеся до этого неразрешимыми из-за большого объема вычислений, легко решались на БЭСМ, получившей наименование БЭСМ Академии наук. Сам Лебедев любил приводить в качестве примера расчет на БЭСМ траектории полета снаряда, который осуществлялся на БЭСМ быстрее, чем летел сам снаряд.

Рис. 4. Машина БЭСМ АН

БЭСМ АН была установлена на первом этаже здания ИТМиВТ на Ленинском проспекте (рис. 4), и долгое время на ней решались как научные, так и прикладные задачи, в частности был проведен расчет траектории ракеты, доставившей вымпел Советского Союза на Луну. При эксплуатации машины за долгие годы возникали различные сложные ситуации, ведь в состав машины входили 4 тыс. электронных ламп, но инженеры и техники всегда находили оригинальные решения по поддержанию ее работоспособности.

После создания в феврале 1955 года Вычислительного центра АН СССР перед ИТМиВТ была поставлена задача подготовить БЭСМ к серийному выпуску, что и было сделано к концу 1957 года, когда Ульяновский завод начал выпускать эту машину под наименованием БЭСМ-2. Этими машинами были оснащены практически все крупные вычислительные центры страны. На БЭСМ-2 осуществлялись расчеты запусков искусственных спутников Земли и первых космических кораблей с человеком на борту. БЭСМ-2 была воспроизведена в Китае, куда выезжала группа сотрудников ИТМиВТ. К моменту окончания работы над БЭСМ АН Лебедев уже продумал принципы и архитектуру новой машины М-20, которая должна была стать самой быстродействующей в мире.

БЭСМ выпускалась в различных модификациях до 1964 года — всего в нашей стране, кроме самого первого и единственного экземпляра БЭСМ АН, было изготовлено 16 экземпляров БЭСМ-2, 27 экземпляров БЭСМ-2М и 2 экземпляра БЭСМ-3.

В октябре 1955 года Лебедев сделал сенсационный доклад на Международной конференции по электронным счетным машинам в Дармштадте ФРГ доказав, что БЭСМ АН оказалась самой быстрой ЭВМ в Европе, а в декабре того же года первое сообщение о БЭСМ появилось в центральной печати. Газета «Правда» опубликовала большую статью Лебедева «Электронная счетная машина», в которой он подробно описывал основные принципы устройства цифровой вычислительной машины и новые возможности, которые открываются перед наукой и промышленностью страны в результате внедрения вычислительной техники. Все машины серии БЭСМ (от БЭСМ АН до БЭСМ-6) на момент своего создания были лучшими в Европе в классе универсальных ЭВМ. Летом 1958 группа сотрудников ИТМиВТ была включена в состав делегации, которая выезжала в США по приглашению компании IBM, продемонстрировавшей свои достижения в разработке цифровых ЭВМ. Делегацию возглавлял директор Вычислительного центра Академии наук академик А. А. Дородницын, а от ИТМиВТ в делегацию были включены заместитель директора института И. С. Мухин и молодые разработчики В. С. Бурцев и Л. Н. Королев.

Рис. 5. Макет машины БЭСМ АН в музее истории ИТМиВТ РАНВ 1960 году машину БЭСМ АН разобрали, освободив помещение для М-50, и по этому поводу была выпущена трогательная эпитафия.

Ни одна другая машина в ИТМиВТ не удостаивалась такой чести. Сотрудники института, работавшие на ней, стали решать свои задачи на БЭСМ-2, а позже — на БЭСМ-4. Отдельные части БЭСМ АН удалось сохранить. Когда в 1982 году к 80-летию С. А. Лебедева стараниями тогдашнего директора ИТМиВТ В. С. Бурцева в институте был открыт музей истории, для него из сохранившихся блоков БЭСМ АН и БЭСМ-2 был создан специальный стенд, представляющий собой работающий макет одной из секций БЭСМ (рис. 5).

В левой части макета установлено пять плат, изготовленных точно по чертежам первой машины и укомплектованных деталями того времени. На правой части располагается демонстрационная панель с экраном. Правая и левая части перекрываются раздвижной стеклянной дверью, сохранившейся в подлинном виде с 1951 года. Верхняя плата укомплектована разъемами типа «лист» и начинена подлинными блоками БЭСМ АН. Вторая сверху плата укомплектована подлинными блоками БЭСМ-2, в которой был осуществлен переход на пальчиковые лампы (ведущий разработчик — П. П. Головистиков) и широко применялись кристаллические диоды. Третья сверху плата представляет собой образец пульта управления с запоминающим устройством на электронных трубках, применявшимся на первой машине. На пульте воспроизведены все органы управления машиной. Четвертая сверху плата представляет собой полную мнемоническую схему центрального пульта управления БЭСМ, а на пятой плате располагаются тумблеры управления макетом.

Вера Карпова (v_karpova@ipmce.ru) — руководитель музея истории института точной механики и вычислительной техники им. С. А. Лебедева РАН, Леонид Карпов (mak@ispras.ru) — ведущий научный сотрудник института системного программирования РАН (Москва).


Расшифровка записей по организации работ и планам С. А. Лебедева

Организация работы (стр. 84 тетради С. А. Лебедева).

Московская группа. Киевская группа. Направления работ.

Помещение (освоение помещения. Академия, проводка, строительство Института Феофания. Площадь. Расширение. Жилье)

Кадры (списочный состав) по Москве и по Киеву. Оценка кадров. Недостаток.

Первоочередное мероприятие. Сборка работников ВЭИ, как необходимое условие успешного развертывания работы.

Оборудование. На сегодняшний день удовлетворительно при действительном развертывании работ — резкое увеличение.

Материалы — исключительно плохое снабжение. Трудность заранее предусмотреть необходимые параметры. Малое сравнительно потребное количество. Необходимость внеочередного снабжения.

Система оплаты — более низкие ставки, чем в СКБ 245, — в результате трудность набора инженерно-технического персонала.

Ожидаемые результаты (стр. 85 тетради С. А. Лебедева).

Запуск макета в 4-м квартале 50 г. Можно решать реальные задачи.

Угроза срыва успешного окончания эскизного проекта.

Немедленно приступить к изготовлению опытного образца.

При реальном обеспечении работы можно построить машину ко второму полугодию 1952 г.


Первоисточники

  1. П. С. Жданов, С. А. Лебедев. «Устойчивость параллельной работы электрических систем», М.-Л.: Энергоиздат, 1933. 263 с., 2-е изд. 1934.
  2. С. А. Лебедев, «Электронная счетная машина», газета «Правда», 4 декабря 1955.

  3. «От БЭСМ до суперЭВМ. Страницы истории ИТМ и ВТ им. С. А. Лебедева АН СССР в воспоминаниях сотрудников». Институт точной механики и вычислительной техники им. С. А. Лебедева, под ред. Г. Г. Рябова, в 2 томах, 1988.
  4. «С. А. Лебедев — творец отечественных ЭВМ». Институт точной механики и вычислительной техники им. С. А. Лебедева, сборник статей, 1990, 2002.

  5. Малиновский Б. Н. «История вычислительной техники в лицах». К.: фирма «КИТ», ПТОО «А. С. К.», 1995. ISBN 5-7707-6131-8.
  6. «Сергей Алексеевич Лебедев. К 100-летию со дня рождения основоположника отечественной электронной вычислительной техники». Под ред. В. С. Бурцева, М.: ФИЗМАТЛИТ, 2002.
  7. В. Б. Карпова, «История создания БЭСМ АН СССР», Международная конференция «Развитие вычислительной техники в России и странах бывшего СССР: история и перспективы», тезисы доклада, Петрозаводск, июль 2006.

Понравилась статья? Поделить с друзьями:
  • Транексамовая кислота таблетки инструкция при обильных месячных
  • Руководство для пользователя как по английский
  • Р4007 руководство по эксплуатации
  • Лего эльфы спа салон наиды инструкция
  • Флоксавет инструкция по применению в ветеринарии