Как называется первая отечественная эвм разработанная под руководством академика с а лебедева

#статьи


  • 0

Как СССР побеждал в компьютерной гонке, а потом её провалил

Советские компьютеры 1950‑х годов не уступали западным, но с конца 1960‑х они стали резко отставать от капиталистических ЭВМ.

Иллюстрация: Victor R. Ruiz / Hans Bln / Wikipedia / filistimlyanin / Freepik / Дима Руденок для Skillbox Media

Марина Демидова

Программист, консультант, специалист по документированию. Легко и доступно рассказывает о сложных вещах в программировании и дизайне.

Компьютерная эра во всём мире началась почти одновременно — сразу после Второй мировой войны. В 1948 году у США уже были первые ЭВМ Mark и ENIAC, поэтому советское правительство решило не отставать и организовало структуры, которые должны были заниматься разработкой аналогичной техники.

Одну из них, Институт точной механики и вычислительной техники (ИТМиВТ), долгое время возглавлял академик Сергей Алексеевич Лебедев. Сегодня его называют отцом советских ЭВМ.

Фотография Сергея Алексеевича в кабинете на Новопесчаной после избрания академиком
Фото: «История информационных технологий в СССР и России»

Первую ЭВМ в СССР и континентальной Европе создали в Киевском институте электротехники под руководством академика Лебедева.

Вообще, Лебедев хотел создать цифровую ЭВМ ещё в начале войны — тогда он руководил лабораторией в Московском электротехническом институте. Однако в 1941 году институт эвакуировали на Урал и учёному пришлось плотно заниматься военными разработками: самонаводящимися торпедами, системой стабилизации танковых орудий и тому подобным.

Когда война закончилась, Лебедев вернулся в Москву. Но реализовать проект счётной супермашины оказалось непросто. Он обратился в ЦК ВКП(б) и рассказал куратору по науке, что его ЭВМ будет выполнять до 10 000 операций в секунду, но над ним только посмеялись: «А что будет, когда мы все задачи на вашей машине прорешаем — выбросим её на свалку?»

К счастью, в 1947 году Лебедева пригласили в Киев, и он продолжил работу над вычислительной машиной. К осени 1948 года Сергей Алексеевич уже разработал модель вычислительной машины. Она работала по принципу арифмометра и предназначалась для ускорения и автоматизации счёта. Лебедев назвал свою машину МЭСМ (малая электронная счётная машина). А в марте 1949 года Лебедев создал и испытал работающий макет арифметико-логического устройства на радиолампах.

В 1951 году началась сложная работа по переводу макета в действующую ЭВМ. Это были послевоенные годы, людей не хватало, поэтому над машиной работали всего 12 инженеров, 15 техников и монтажниц. Трудиться приходилось сутки напролёт: Лебедев и сам всё время что-то паял, монтировал, клепал. И к декабрю 1951 года машина была готова!

МЭСМ использовала 6000 радиоламп и занимала 60 квадратных метров. Правда, с помещением под компьютер просчитались — машину собрали в комнате на нижнем этаже двухэтажного здания, и когда все 6000 ламп загорелись, температура резко подскочила. Работать стало невозможно, поэтому пришлось разобрать потолок и часть кровли.

Характеристики МЭСМ:

  • Машина производила до 50 операций в секунду — неплохая скорость по сравнению с ручными вычислениями.
  • Ёмкость ОЗУ — 31 число и 63 команды.
  • Представление чисел — с фиксированной точкой, 16 двоичных разрядов.
  • Команды трёхадресные, длиной в 20 двоичных разрядов (4 разряда — код операций).
  • Дополнительно можно было подключать ЗУ на магнитном барабане ёмкостью 5000 слов.
  • Данные вводились с помощью перфоленты или штекеров на коммутаторах, а выводились на электромеханическое печатающее устройство или фотографировались.

Во время испытаний МЭСМ производила сложные вычисления — рассчитывала сумму факториалов нечётных чисел, возводила дроби в степень. Все увидели, что скорость компьютера намного превышает человеческие возможности.

В 1952 году ЭВМ продемонстрировали на публике — и с тех пор она считается первой работающей электронно-вычислительной машиной в СССР и континентальной Европе.

Лебедев разработал МЭСМ в качестве макета для отработки принципов построения БЭСМ (большой электронной счётной машины), которую создавали параллельно. Но и саму МЭСМ активно использовали — на ней решали разные научно-технические и экономические задачи:

  • рассчитывали энергосистемы и строительные конструкции;
  • обрабатывали геодезические наблюдения;
  • составляли статистические таблицы;
  • решали задачи баллистики, синтеза аммиака и многое другое.

МЭСМ использовали в реальных задачах до 1957 года, а потом ещё два года на ней обучали студентов.

Благодаря первой машине Лебедева в СССР начало развиваться программирование и производство вычислительной техники.

В том же 1952 году команда Лебедева построила БЭСМ-1.

  • В машине было 5000 электронных ламп.
  • Она могла выполнять 8000–10 000 операций в секунду.
  • Внешняя память — на магнитных барабанах (два барабана по 5120 слов) и магнитных лентах (четыре барабана по 30 000 слов). Машина имела общую память для команд и данных — всё по архитектуре фон Неймана.
  • Система представления чисел — двоичные с плавающей точкой.
  • Система команд — трёхадресная. В каждой команде содержатся код операции, два адреса исходных операндов и адрес результата операции.

В 1953 году на международной конференции в Дармштадте БЭСМ-1 признали самым быстродействующим компьютером в Европе. По скорости работы и объёму памяти она уступала только американской IBM 701.

Сергей Лебедев и Владимир Мельников у машины БЭСМ АН СССР
Фото: «Виртуальный компьютерный музей»

В столице оценили работу Лебедева и назначили его директором московского Института точной механики и вычислительной техники (ИТМиВТ). БЭСМ перевезли в Москву и установили на первом этаже института. На ней решали научные и прикладные задачи, казавшиеся в то время неразрешимыми из-за большого объёма вычислений.

БЭСМ могла рассчитать траекторию полёта снаряда быстрее, чем снаряд долетал до цели. В то время это было огромным достижением. А ещё именно на БЭСМ-1 была рассчитана траектория полёта ракеты, доставившей на Луну вымпел СССР в 1959 году.

В 1960 году БЭСМ-1 разобрали, и по этому поводу сотрудники ИТМиВТ даже написали эпитафию.

БЭСМ-2
Фото: «История информационных технологий в СССР и России»

В 1957 году Ульяновский завод им. Володарского начал выпускать компьютеры БЭСМ-2. Ими оснастили все крупные вычислительные центры страны. На новых БЭСМ рассчитывали запуски искусственных спутников Земли и первых космических кораблей.

А в середине 1960-х разработали и запустили в производство БЭСМ-6 — супер-ЭВМ второго поколения на полупроводниковых транзисторах. Она могла выполнять уже около 1 млн операций в секунду.

БЭСМ-6 в Музее науки, Лондон, Великобритания
Фото: Wikimedia Commons

В то время советская вычислительная техника шла вровень с западными разработками. Даже Норберт Винер говорил, что советские учёные опережают американских в области теории информации, а в части аппаратуры отстают совсем немного.

Лебедев, используя свои наработки при создании МЭСМ, разработал ещё 15 электронно-вычислительных машин. Но отечественным кибернетикам не дано было стать лидерами в компьютерной гонке. В 1966 году в СССР свернули разработку собственных вычислительных машин и начали копировать серию IBM 360 в качестве единого стандарта ЭВМ.

Академик Лебедев протестовал против этого решения — он рьяно доказывал, что клонирование устаревающих систем отбросит компьютерную индустрию на годы назад. Но учёного не послушали — у его оппонентов была власть.

В 1972 году решение о копировании американской IBM приняли окончательно. Эту весть Сергей Александрович принял очень тяжело. Здоровье немолодого уже академика постоянно ухудшалось, и через два года, после долгой болезни, Лебедев скончался.

Сергей Лебедев с коллегами знакомятся с компьютерами IBM, апрель-май 1959 года
Фото: «История информационных технологий в СССР и России»

Много ли выиграла советская компьютерная индустрия от этого решения? По мнению академика Малиновского, нанесённый ущерб был выше, чем полученные результаты. Клонирование IBM шло с трудом, документацию было сложно достать, не было подходящего оборудования и комплектующих. Сроки изготовления постоянно срывались.

В 1970-х годах советская вычислительная техника уже серьёзно отставала от западной, особенно в гражданских областях. ЭВМ использовали в основном в военных разработках. Но руководство страны не рассматривало производство электронно-вычислительных машин как ключевую отрасль. Бытовало мнение, что нехватку компьютеров можно восполнить большим количеством людей с арифмометрами.

В итоге компьютерная революция 1980-х застала страну врасплох. А в 1990-х годах СССР перестал существовать и отставание отечественной компьютерной техники от западной уже мало кого интересовало.

Как зарабатывать больше с помощью нейросетей?
Бесплатный вебинар: 15 экспертов, 7 топ-нейросетей. Научитесь использовать ИИ в своей работе и увеличьте доход.

Узнать больше

Советская вычислительная школа Сергея Лебедева

Время на прочтение
12 мин

Количество просмотров 32K

Сергей Алексеевич Лебедев был советским академиком и основоположником вычислительной техники в СССР. Он создал первый в континентальной Европе компьютер с хранимой в памяти программой (МЭСМ) и был одним из разработчиков первых цифровых электронных вычислительных машин с динамически изменяемой программой вычислений. Под руководством и самоличном участии этого выдающегося ученого было создано 18 ЭВМ, причем 15 из них выпускались серийно.

Лебедев стоял у истоков развития и становления отечественной вычислительной техники. Опыт его работы уникален, так как охватывает период от создания первых ламповых компьютеров, выполнявших сотни и тысячи операций в секунду, до быстродействующих супер-ЭВМ на больших интегральных схемах.

Сергей Лебедев родился 2 ноября 1902 г. в городе Нижний Новгород. Отец Алексей Иванович был известным автором «Азбуки» и «Словаря непонятных слов», а мать Анастасия Петровна (в девичестве Маврина, из дворян) преподавала общие предметы в младших классах народного училища. В послереволюционные годы главу семейства пригласили на работу наркомом просвещения и Лебедевы переехали в Москву.

Сергей Лебедев (1920 г.)

Начало пути

В 1921 г. Сергей сдал экзамены экстерном за среднюю школу и поступил в Московское высшее техническое училище (МВТУ) им. Н.Э.Баумана на электротехнический факультет. Его учителями и научными руководителями были выдающиеся русские ученые-электротехники, профессора Карл Адольфович Круг, Леонид Иванович Сиротинский и Александр Александрович Глазунов. Все они трудились над разработкой плана электрификации СССР (план ГОЭЛРО). Для успешного осуществления потребовались уникальные теоретические и экспериментальные исследования. Лебедев был еще студентом, но уже тогда основное внимание уделял проблеме устойчивости параллельной работы электростанций. Первые результаты по данной проблеме были отражены в его дипломном проекте, который выполнялся под руководством профессора К.А.Круга.

В 1928 г. Лебедев получил диплом инженера-электрика и остался преподавать в родной альма-матер, параллельно занимая должность младшего научного сотрудника Всесоюзного электротехнического института (ВЭИ). Именно в этом ВУЗе он возглавил лабораторию электрических сетей, где продолжил работу над проблемой устойчивости. Тематика лаборатории постепенно расширялась, охватывая также и проблемы автоматического регулирования. И в результате в 1936 г. на ее базе сформировался отдел автоматики, руководить которым поручили Сергею Алексеевичу.

К этому времени Лебедев уже стал профессором и автором (совместно с Петром Сергеевичем Ждановым) широко известной среди специалистов-электротехников монографии “Устойчивость параллельной работы электрических систем”.

Лебедев в своем кабинете

У научной деятельности Лебедева замечалась характерная особенность, которая заключалась в органическом сочетании большой глубины теоретической проработки с конкретной практической направленностью. Продолжая теоретические исследования, он стал активным участником подготовки сооружения Куйбышевского гидроузла.

В начале Второй мировой войны Лебедев был вынужден покинуть ВЭИ и уехать в Свердловск. Все ресурсы отдела автоматики переключили на оборонную тематику.

За поразительно короткие сроки работы в Свердловске, Алексей Сергеевич спроектировал систему стабилизации танкового орудия при прицеливании. Эта разработка усовершенствовала танк, делая его менее уязвимым и спасая тем самым многих танкистов. Система позволяла наводить и стрелять из орудия без остановки машины. За свое изобретение ученый был награжден орденом Трудового Красного Знамени и медалью «За доблестный труд в Великой Отечественной войне 1941-1945 гг.».

В 1945 г. Лебедева избрали действительным членом Академии Наук УССР

После окончания войны ученый занялся реализацией давно запланированного проекта по созданию вычислительной машины с использованием двоичной системы счисления. В те годы не было достаточно полных публикаций о двоичной системе счисления и методике операций над двоичными числами. Базой для построения цифровой вычислительной машины стала методика выполнения арифметических операций в двоичной системе счисления и ранее разработанные самим Лебедевым методы решения математических задач.

В 1947 г. Лебедев стал директором Института электротехники АН Украины и по совместительству возглавил руководство лабораторией Института точной механики и вычислительной техники СССР.

МЭСМ

В 1948 г. начался процесс создания малой электронной счетной машины (МЭСМ). Для научной работы Лебедеву выделили частично разрушенное здание бывшей монастырской гостиницы в Феофании (Киев). С финансовой помощью и поддержкой вице-президента АН УССР Михаила Алексеевича Лаврентьева, помещение было отремонтировано и оборудовано под лабораторию.

Здание в Феофании, где размещалась лаборатория Лебедева

Лебедев выдвинул, обосновал и реализовал в первой советской машине принципы построения ЭВМ с хранившейся в памяти программой. МЭСМ занимала целое крыло двухэтажного здания (60 м²) и состояла из 6 000 электронных ламп. Примечательно то, что проектирование, монтаж и отладка машины были выполнены в течении трех лет. При этом в разработке участвовали лишь 11 инженеров и 15 технических сотрудников. Тогда как на разработку первого в мире электронного компьютера ЭНИАК (США) ушло пять лет и было задействовано 13 разработчиков и более 200 техников.


Схема элементарной ячейки блока памяти арифметического устройства МЭСМ

МЭСМ была арифметическим устройством, производившим операции сложения, вычитания, умножения, деления, сдвига, сравнения с учётом знака, сравнения по абсолютной величине, передачи управления, передачи чисел с магнитного барабана, сложения команд, остановки. МЭСМ имела двоичное представление чисел с фиксированной запятой, 16 двоичных разрядов на число, плюс один разряд на знак.

6 ноября 1950 г. состоялся пробный пуск машины, в ходе которого решалась задача: Y» + Y = 0; Y(0) = 0; Y(\pi) = 0.

Не смотря на то, что МЭСМ создавалась более как макет Большой электронной счетной машины, ей нашли практическое применение. Первой советской ЭВМ весьма заинтересовались математики, задачи которых требовали использования быстродействующего вычислителя. До 1953 г. МЭСМ была единственной вычислительной машиной в СССР.

Участники разработки МЭСМ — Лев Наумович Дашевский и Соломон Бениаминович Погребинский (Киев, 1951 г.)

Характеристики МЭСМ

Элементная база: 6 000 электронных ламп (около 3500 триодов и 2500 диодов)
Быстродействие: 3 000 операций в секунду
Потребляемая мощность: около 25 кВт
Разрядность: 16
Тактовая частота: 5 кГц
Устройства ввода / вывода: ввод с перфокарты или набором кода на штекерном коммутаторе; вывод с помощью электромеханического печатающего устройства либо фотоустройства для получения данных на фотоплёнке.
Также мог использоваться магнитный барабан, хранящий до 5000 кодов чисел или команд.

БЭСМ

Следующей после МЭСМ была разработана большая электронно-счётная машина (БЭСМ). В структуре устройства уже тогда были реализованы основные решения, характерные для современных вычислительных машин.

У БЭСМ была двоичная система представления чисел с учётом порядков, то есть в форме чисел с плавающей запятой. Машина оперировала диапазон чисел примерно от 10-9 до 109. Система команд была трёхадресной, в нее входило 9 арифметических операций, 8 операций передач кодов, 6 логических операций, 9 операций управления.

Лабораторные испытания БЭСМ

БЭСМ имела 39 двоичных разрядов для представления чисел в виде мантиссы/порядка, из них 32 разряда отводилось для значащей части и 5 для порядка. Еще по одному разряду отводилось для знаков мантиссы и порядка. При написании программ для машины применялась техника самомодифицирующегося кода, когда напрямую модифицировались адресные части команд для доступа к массивам.

Один из разработчиков БЭСМ Всеволод Сергеевич Бурцев вспоминает о машине следующее:

Во многих блоках первой БЭСМ в анодной цепи были использованы не лампы сопротивления, а ферритовые трансформаторы. Так как эти трансформаторы были изготовлены кустарным способом, они часто выгорали, при этом выделяли едкий специфический запах. Сергей Алексеевич обладал замечательным обонянием и, обнюхивая стойку, с точностью до блока указывал на дефектный. Он практически никогда не ошибался.

Характеристики БЭСМ

Элементная база: 4 000 электронных ламп, 5 000 полупроводниковых диодов
Быстродействие: 8 000 операций в секунду
Потребляемая мощность: около 35 кВт
Разрядность: 39
Тактовая частота: 9 МГц
Внешняя память: на магнитных барабанах (2 барабана по 5120 слов) и магнитных лентах (4 по 30 000 слов)
Устройства ввода / вывода: ввод с перфокарты, цифро-печать и фото-печатное устройство.

Группа сотрудников ИТМ и ВТ АН СССР в день награждения за создание БЭСМ (1956 г.)

В 1956 г. БЭСМ получила награду и была принята Государственной комиссией в эксплуатацию.

БЭСМ-2, М-20 и БЭСМ-4

В 1958 г. БЭСМ была подготовлена к серийному производству. Коллектив ИТМиВТ под руководством Лебедева разработал и презентовал две ЭВМ: БЭСМ-2 и М-20. Их характерной особенностью было то, что они разрабатывались в тесном контакте с промышленностью (особенно М-20). Специалисты завода и академического института вместе участвовали в создании машины. Этот принцип был хорош тем, что улучшал качество документации, т. к. в ней учитывались технологические возможности завода.

Вычислительная машина БЭСМ-2 сохранила систему команд и все основные параметры предыдущего устройства, но конструкция стала более технологичной и удобной для серийного выпуска. В БЭСМ-2 было реализовано оперативное запоминающее устройство на ферритных сердечниках, широко применялись полупроводниковые диоды, а также была усовершенствована конструкция (мелкоблочная). На БЭСМ-2 проводились расчеты, связанные с запуском искусственных спутников, первых пилотируемых космических кораблей. Именно на одной из упомянутых ЭВМ был произведён расчёт траектории ракеты, доставившей вымпел СССР на Луну.

БЭСМ-2 имела около 4 000 электронных ламп, и была собрана на трех основных стойках

Характеристики БЭСМ-2

Элементная база: 4 000 электронных ламп, 5 000 полупроводниковых диодов
Быстродействие: 20 000 операций в секунду
Потребляемая мощность: 35 кВт
Разрядность: 45
Тактовая частота: 10 МГц
Внешняя память: на магнитных барабанах и магнитных лентах
Устройства ввода / вывода: ввод с перфоленты, которую печатает устройство.

М-20 стала первой советской машиной, которая поставлялась в комплекте со специальным математическим обеспечением (по своей сути — ОС). В новое устройство Лебедев заложил рад конструктивных решений, расширяющих функциональность и почти не увеличивающих количество электронных ламп.

М-20 обладала производительностью 20 000 операций в секунду за счет совмещения работы отдельных устройств и более быстрого выполнения арифметических операций. В машине впервые были применены: автоматическая модификация адреса; совмещение работы арифметического устройства и выборки команд из памяти; использование буферной памяти для массивов, выдаваемых на печать.

М-20

Характеристики М-20

Элементная база: электронные лампы, полупроводниковые схемы
Быстродействие: 20 000 операций в секунду
Потребляемая мощность: 50 кВт
Разрядность: 45
Тактовая частота: 0.6667 мГц
Внешняя память: на магнитных барабанах и магнитных лентах
Устройства ввода / вывода: ввод с перфоленты, которую печатает устройство

После вручения наград в Кремле (1962 г.)

В 1965 г. появилась серийная ЭВМ на полупроводниковых элементах БЭСМ-4, которая унаследовала архитектуру М-20. Для БЭСМ-4 существовало не менее 3 разных компиляторов с языка Алгол-60, компилятор Fortran, не менее 2 разных ассемблеров, компилятор с оригинального языка Эпсилон.

Характеристики БЭСМ-4

Элементная база: электронные лампы, полупроводниковые схемы
Быстродействие: до 40 000 операций в секунду
Потребляемая мощность: 50 кВт
Разрядность: 45
Тактовая частота: 9 МГц
Внешняя память: на магнитных барабанах и магнитных лентах
Устройства ввода / вывода: ввод с перфоленты, которую печатает устройство

БЭСМ-6

Разработка БЭСМ-6 завершилась в конце 1965 г. Эта машина стала первой советской супер-ЭВМ на элементной базе второго поколения (полупроводниковых транзисторах). В электронных схемах БЭСМ-6 использовалось 60 000 транзисторов и 180 000 полупроводников-диодов. Элементная база была новой для того времени.

У БЭСМ-6 имелся магистральный или водопроводный принцип организации управления. С его помощью потоки команд и операндов обрабатывались параллельно. В разработке использовалась ассоциативная память на сверхбыстрых регистрах, что сократило количество обращений к ферритной памяти и позволило осуществить локальную оптимизацию вычислений в динамике счета. Оперативная память имела расслоение (8-слойная) на автономные модули, что дало возможность одновременно обращаться к блокам памяти по нескольким направлениям. Многопрограммный режим работы БЭСМ-6 позволил решать несколько задач с заданными приоритетами. Аппаратный механизм преобразования математического адреса в физический дал возможность динамически распределять оперативную память в процессе вычислений средствами ОС.

У БЭСМ-6 был конвейерный центральный процессор с отдельными конвейерами для устройства управления и арифметического устройства. Он позволял совмещать обработку нескольких команд, находящихся на разных стадиях выполнения. Имелся кеш на 16 48-битных слов (4 чтения данных, 4 чтения команд, 8 — буфер записи). Система команд включала в себя 50 24-битных команд.

Лаборатория для проведения финишных испытаний знаменитой БЭСМ-6

С 1968 г. начался выпуск БЭСМ-6 на заводе Счётно-аналитических машин (САМ) в Москве.

Характеристики БЭСМ-6

Элементная база: транзисторный парафазный усилитель с диодной логикой на входе
Быстродействие: около 1 млн операций в секунду
Потребляемая мощность: 60 кВт
Разрядность: 48
Тактовая частота: 10 МГц
Внешняя память: на магнитных лентах и магнитных дисках
Устройства ввода / вывода: ввод с перфокарты, цифропечать и фотопечатное устройство

На Дне открытых дверей факультета вычислительной математики и кибернетики МГУ Владимир Пономарев демонстрирует игру «Калах» на экране терминала БЭСМ-6

С 1967 г. практически все крупные вычислительные центры СССР стали оснащаться компьютерами БЭСМ-6. И даже спустя годы на заседании отделения информатики, вычислительной техники и автоматизации Академии наук (1983 г.) академик Е. П. Велихов сказал, что создание БЭСМ-6 явилось одним из основных вкладов АН СССР в развитие советской индустрии.

В 1990 г. один из экземпляров БЭСМ-6 был перевезен в Лондон и установлен в Музее науки, как лучший в Европе суперкомпьютер своего времени.

Серия 5Э26

ЭВМ 5Э26 была последней прижизненной разработкой Лебедева, которую он успел запустить в серийное производство.

В 1968 г. Лебедев принял предложение Генерального конструктора зенитных ракетных комплексов для ПВО Бориса Васильевича Бункина. Он согласился разработать специализированный управляющий малогабаритный мобильный высокопроизводительный цифровой вычислительный комплекс (ЦВК) 5Э26. О реализации такой возможности Сергей Алексеевич мечтал еще при создании МЭСМ. Благодаря этой работе, была проведена крупнейшая реорганизация института. Объединение ресурсов множества различных лабораторий привело к фактическому созданию отделений:
— по ЭВМ общего назначения
— по ЭВМ специального назначения (включая архитектуру)
— по электронному конструированию
— по запоминающим устройствам
— по САПР и технологии.

Всеволодом Сергеевичем Бурцевым (заместитель Лебедева) была предложена многопроцессорная архитектура ЦВК 5Э26, обеспечивающая работу до трех модулей центральных процессоров и двух специальных процессоров ввода-вывода информации с общей памятью.

Конструктивно ЦВК серии 5Э26 представлял собой шкаф высотой 1885 мм, шириной 2870 мм, глубиной 655 мм, который ставился у стенки транспортного средства.

У 5Э26 имелась высокоэффективная система автоматического резервирования, базирующаяся на аппаратном контроле. Система давала возможность восстанавливать процесс управления при сбоях и отказах аппаратуры, работающей в широком диапазоне климатических и механических воздействий, с развитым математическим обеспечением автоматизации программирования.

ЦКВ 5Э261

ЦКВ 5Э26 легко адаптировался к различным требованиям по производительности и памяти в системах управления специального назначения. Устройство также работало в реальном времени, снабжалось развитым математическим обеспечением, эффективной системой автоматизации программирования и возможностью работы с языками высокого уровня. В 5Э26 была реализована энергонезависимая память команд на микробиаксах с возможностью электрической перезаписи информации внешней аппаратурой записи и введена эффективная система эксплуатации с двухуровневой локализацией неисправной ячейки, обеспечивающая эффективность восстановления аппаратуры среднетехническим персоналом.

В качестве интегральных схем использовались в основном полупроводниковые микросхемы одних из первых отечественных серий-133 и 130 (ТТЛ-типа).

Лебедев во время поездки в Англию (Кембридж, 1964 г.)

Характеристики 5Э261

Элементная база: стандартная серия ТТЛ-микросхем
Быстродействие: 1,5 млн операций в секунду
Потребляемая мощность: 5,5 кВт
Разрядность: 32
Объем оперативной памяти: 32-34 Кб
Объем командной памяти: 64-256 Кб
Независимый процессор ввода-вывода информации по 12 каналам связи: максимальный темп обмена свыше 1 Мб/с.

Опыт создания ЭВМ 5Э26 стал базой для конструирования семейства супер-ЭВМ «Эльбрус». Название было предложено Лебедевым. Появление «Эльбруса» завершило создание ПРО СССР, однако сам он уже не успел принять участие в их разработке.

Послесловие

Лебедев с семьей

По воспоминаниям сотрудников, работавших с Сергеем Алексеевичем в Киеве, он был идеальным руководителем. В работе доводил все до совершенства, большое внимание уделял мелочам. Он никогда не повышал голос и относился ко всем исключительно ровно, справедливо, без предвзятости. Всегда отмечал даже небольшие успехи своих сотрудников. В процессе отладки машины равных ему не было. Лебедев превосходил всех в понимании неполадок и сбоев в машине.

Сергей Алексеевич на протяжении всей своей жизни вел большую работу по подготовке научных кадров. Он был одним из инициаторов создания Московского физико-технического института, основателем и руководителем кафедры вычислительной техники в этом институте, руководил работой многих аспирантов и дипломников.

Лебедев с дочерьми Екатериной и Натальей

В начале 70-х Сергей Алексеевич уже не мог руководить Институтом точной механики и вычислительной техники, в 1973 г. тяжелая болезнь вынудила его оставить пост директора. Но он продолжал работать дома.

Сергей Алексеевич Лебедев скончался 3 июля 1974 г. в Москве. Похоронен на Новодевичьем кладбище.

В Киеве на здании, где располагался Институт электротехники АН Украины, висит мемориальная доска, текст которой гласит: ” В этом здании в Институте электротехники АН УССР в 1946—1951 г.г. работал выдающийся ученый, создатель первой отечественной электронной вычислительной машины, Герой Социалистического Труда, академик Сергей Алексеевич Лебедев”.

Мозаика с изображением Лебедева в ИТМиВТ

В год 95-летия со дня рождения Сергея Алексеевича Лебедева заслуги ученого признали и за рубежом. Как новатор вычислительной техники, он был отмечен именной медалью Международного компьютерного общества с надписью: «Сергей Алексеевич Лебедев 1902–1974 г.г… Разработчик и конструктор первого компьютера в Советском Союзе. Основоположник советского компьютеростроения».

Советская вычислительная школа Сергея Лебедева

Время на прочтение
12 мин

Количество просмотров 29K

Сергей Алексеевич Лебедев был советским академиком и основоположником вычислительной техники в СССР. Он создал первый в континентальной Европе компьютер с хранимой в памяти программой (МЭСМ) и был одним из разработчиков первых цифровых электронных вычислительных машин с динамически изменяемой программой вычислений. Под руководством и самоличном участии этого выдающегося ученого было создано 18 ЭВМ, причем 15 из них выпускались серийно.

Лебедев стоял у истоков развития и становления отечественной вычислительной техники. Опыт его работы уникален, так как охватывает период от создания первых ламповых компьютеров, выполнявших сотни и тысячи операций в секунду, до быстродействующих супер-ЭВМ на больших интегральных схемах.

Сергей Лебедев родился 2 ноября 1902 г. в городе Нижний Новгород. Отец Алексей Иванович был известным автором «Азбуки» и «Словаря непонятных слов», а мать Анастасия Петровна (в девичестве Маврина, из дворян) преподавала общие предметы в младших классах народного училища. В послереволюционные годы главу семейства пригласили на работу наркомом просвещения и Лебедевы переехали в Москву.

Сергей Лебедев (1920 г.)

Начало пути

В 1921 г. Сергей сдал экзамены экстерном за среднюю школу и поступил в Московское высшее техническое училище (МВТУ) им. Н.Э.Баумана на электротехнический факультет. Его учителями и научными руководителями были выдающиеся русские ученые-электротехники, профессора Карл Адольфович Круг, Леонид Иванович Сиротинский и Александр Александрович Глазунов. Все они трудились над разработкой плана электрификации СССР (план ГОЭЛРО). Для успешного осуществления потребовались уникальные теоретические и экспериментальные исследования. Лебедев был еще студентом, но уже тогда основное внимание уделял проблеме устойчивости параллельной работы электростанций. Первые результаты по данной проблеме были отражены в его дипломном проекте, который выполнялся под руководством профессора К.А.Круга.

В 1928 г. Лебедев получил диплом инженера-электрика и остался преподавать в родной альма-матер, параллельно занимая должность младшего научного сотрудника Всесоюзного электротехнического института (ВЭИ). Именно в этом ВУЗе он возглавил лабораторию электрических сетей, где продолжил работу над проблемой устойчивости. Тематика лаборатории постепенно расширялась, охватывая также и проблемы автоматического регулирования. И в результате в 1936 г. на ее базе сформировался отдел автоматики, руководить которым поручили Сергею Алексеевичу.

К этому времени Лебедев уже стал профессором и автором (совместно с Петром Сергеевичем Ждановым) широко известной среди специалистов-электротехников монографии “Устойчивость параллельной работы электрических систем”.

Лебедев в своем кабинете

У научной деятельности Лебедева замечалась характерная особенность, которая заключалась в органическом сочетании большой глубины теоретической проработки с конкретной практической направленностью. Продолжая теоретические исследования, он стал активным участником подготовки сооружения Куйбышевского гидроузла.

В начале Второй мировой войны Лебедев был вынужден покинуть ВЭИ и уехать в Свердловск. Все ресурсы отдела автоматики переключили на оборонную тематику.

За поразительно короткие сроки работы в Свердловске, Алексей Сергеевич спроектировал систему стабилизации танкового орудия при прицеливании. Эта разработка усовершенствовала танк, делая его менее уязвимым и спасая тем самым многих танкистов. Система позволяла наводить и стрелять из орудия без остановки машины. За свое изобретение ученый был награжден орденом Трудового Красного Знамени и медалью «За доблестный труд в Великой Отечественной войне 1941-1945 гг.».

В 1945 г. Лебедева избрали действительным членом Академии Наук УССР

После окончания войны ученый занялся реализацией давно запланированного проекта по созданию вычислительной машины с использованием двоичной системы счисления. В те годы не было достаточно полных публикаций о двоичной системе счисления и методике операций над двоичными числами. Базой для построения цифровой вычислительной машины стала методика выполнения арифметических операций в двоичной системе счисления и ранее разработанные самим Лебедевым методы решения математических задач.

В 1947 г. Лебедев стал директором Института электротехники АН Украины и по совместительству возглавил руководство лабораторией Института точной механики и вычислительной техники СССР.

МЭСМ

В 1948 г. начался процесс создания малой электронной счетной машины (МЭСМ). Для научной работы Лебедеву выделили частично разрушенное здание бывшей монастырской гостиницы в Феофании (Киев). С финансовой помощью и поддержкой вице-президента АН УССР Михаила Алексеевича Лаврентьева, помещение было отремонтировано и оборудовано под лабораторию.

Здание в Феофании, где размещалась лаборатория Лебедева

Лебедев выдвинул, обосновал и реализовал в первой советской машине принципы построения ЭВМ с хранившейся в памяти программой. МЭСМ занимала целое крыло двухэтажного здания (60 м²) и состояла из 6 000 электронных ламп. Примечательно то, что проектирование, монтаж и отладка машины были выполнены в течении трех лет. При этом в разработке участвовали лишь 11 инженеров и 15 технических сотрудников. Тогда как на разработку первого в мире электронного компьютера ЭНИАК (США) ушло пять лет и было задействовано 13 разработчиков и более 200 техников.


Схема элементарной ячейки блока памяти арифметического устройства МЭСМ

МЭСМ была арифметическим устройством, производившим операции сложения, вычитания, умножения, деления, сдвига, сравнения с учётом знака, сравнения по абсолютной величине, передачи управления, передачи чисел с магнитного барабана, сложения команд, остановки. МЭСМ имела двоичное представление чисел с фиксированной запятой, 16 двоичных разрядов на число, плюс один разряд на знак.

6 ноября 1950 г. состоялся пробный пуск машины, в ходе которого решалась задача: Y» + Y = 0; Y(0) = 0; Y(pi) = 0.

Не смотря на то, что МЭСМ создавалась более как макет Большой электронной счетной машины, ей нашли практическое применение. Первой советской ЭВМ весьма заинтересовались математики, задачи которых требовали использования быстродействующего вычислителя. До 1953 г. МЭСМ была единственной вычислительной машиной в СССР.

Участники разработки МЭСМ — Лев Наумович Дашевский и Соломон Бениаминович Погребинский (Киев, 1951 г.)

Характеристики МЭСМ

Элементная база: 6 000 электронных ламп (около 3500 триодов и 2500 диодов)
Быстродействие: 3 000 операций в секунду
Потребляемая мощность: около 25 кВт
Разрядность: 16
Тактовая частота: 5 кГц
Устройства ввода / вывода: ввод с перфокарты или набором кода на штекерном коммутаторе; вывод с помощью электромеханического печатающего устройства либо фотоустройства для получения данных на фотоплёнке.
Также мог использоваться магнитный барабан, хранящий до 5000 кодов чисел или команд.

БЭСМ

Следующей после МЭСМ была разработана большая электронно-счётная машина (БЭСМ). В структуре устройства уже тогда были реализованы основные решения, характерные для современных вычислительных машин.

У БЭСМ была двоичная система представления чисел с учётом порядков, то есть в форме чисел с плавающей запятой. Машина оперировала диапазон чисел примерно от 10-9 до 109. Система команд была трёхадресной, в нее входило 9 арифметических операций, 8 операций передач кодов, 6 логических операций, 9 операций управления.

Лабораторные испытания БЭСМ

БЭСМ имела 39 двоичных разрядов для представления чисел в виде мантиссы/порядка, из них 32 разряда отводилось для значащей части и 5 для порядка. Еще по одному разряду отводилось для знаков мантиссы и порядка. При написании программ для машины применялась техника самомодифицирующегося кода, когда напрямую модифицировались адресные части команд для доступа к массивам.

Один из разработчиков БЭСМ Всеволод Сергеевич Бурцев вспоминает о машине следующее:

Во многих блоках первой БЭСМ в анодной цепи были использованы не лампы сопротивления, а ферритовые трансформаторы. Так как эти трансформаторы были изготовлены кустарным способом, они часто выгорали, при этом выделяли едкий специфический запах. Сергей Алексеевич обладал замечательным обонянием и, обнюхивая стойку, с точностью до блока указывал на дефектный. Он практически никогда не ошибался.

Характеристики БЭСМ

Элементная база: 4 000 электронных ламп, 5 000 полупроводниковых диодов
Быстродействие: 8 000 операций в секунду
Потребляемая мощность: около 35 кВт
Разрядность: 39
Тактовая частота: 9 МГц
Внешняя память: на магнитных барабанах (2 барабана по 5120 слов) и магнитных лентах (4 по 30 000 слов)
Устройства ввода / вывода: ввод с перфокарты, цифро-печать и фото-печатное устройство.

Группа сотрудников ИТМ и ВТ АН СССР в день награждения за создание БЭСМ (1956 г.)

В 1956 г. БЭСМ получила награду и была принята Государственной комиссией в эксплуатацию.

БЭСМ-2, М-20 и БЭСМ-4

В 1958 г. БЭСМ была подготовлена к серийному производству. Коллектив ИТМиВТ под руководством Лебедева разработал и презентовал две ЭВМ: БЭСМ-2 и М-20. Их характерной особенностью было то, что они разрабатывались в тесном контакте с промышленностью (особенно М-20). Специалисты завода и академического института вместе участвовали в создании машины. Этот принцип был хорош тем, что улучшал качество документации, т. к. в ней учитывались технологические возможности завода.

Вычислительная машина БЭСМ-2 сохранила систему команд и все основные параметры предыдущего устройства, но конструкция стала более технологичной и удобной для серийного выпуска. В БЭСМ-2 было реализовано оперативное запоминающее устройство на ферритных сердечниках, широко применялись полупроводниковые диоды, а также была усовершенствована конструкция (мелкоблочная). На БЭСМ-2 проводились расчеты, связанные с запуском искусственных спутников, первых пилотируемых космических кораблей. Именно на одной из упомянутых ЭВМ был произведён расчёт траектории ракеты, доставившей вымпел СССР на Луну.

БЭСМ-2 имела около 4 000 электронных ламп, и была собрана на трех основных стойках

Характеристики БЭСМ-2

Элементная база: 4 000 электронных ламп, 5 000 полупроводниковых диодов
Быстродействие: 20 000 операций в секунду
Потребляемая мощность: 35 кВт
Разрядность: 45
Тактовая частота: 10 МГц
Внешняя память: на магнитных барабанах и магнитных лентах
Устройства ввода / вывода: ввод с перфоленты, которую печатает устройство.

М-20 стала первой советской машиной, которая поставлялась в комплекте со специальным математическим обеспечением (по своей сути — ОС). В новое устройство Лебедев заложил рад конструктивных решений, расширяющих функциональность и почти не увеличивающих количество электронных ламп.

М-20 обладала производительностью 20 000 операций в секунду за счет совмещения работы отдельных устройств и более быстрого выполнения арифметических операций. В машине впервые были применены: автоматическая модификация адреса; совмещение работы арифметического устройства и выборки команд из памяти; использование буферной памяти для массивов, выдаваемых на печать.

М-20

Характеристики М-20

Элементная база: электронные лампы, полупроводниковые схемы
Быстродействие: 20 000 операций в секунду
Потребляемая мощность: 50 кВт
Разрядность: 45
Тактовая частота: 0.6667 мГц
Внешняя память: на магнитных барабанах и магнитных лентах
Устройства ввода / вывода: ввод с перфоленты, которую печатает устройство

После вручения наград в Кремле (1962 г.)

В 1965 г. появилась серийная ЭВМ на полупроводниковых элементах БЭСМ-4, которая унаследовала архитектуру М-20. Для БЭСМ-4 существовало не менее 3 разных компиляторов с языка Алгол-60, компилятор Fortran, не менее 2 разных ассемблеров, компилятор с оригинального языка Эпсилон.

Характеристики БЭСМ-4

Элементная база: электронные лампы, полупроводниковые схемы
Быстродействие: до 40 000 операций в секунду
Потребляемая мощность: 50 кВт
Разрядность: 45
Тактовая частота: 9 МГц
Внешняя память: на магнитных барабанах и магнитных лентах
Устройства ввода / вывода: ввод с перфоленты, которую печатает устройство

БЭСМ-6

Разработка БЭСМ-6 завершилась в конце 1965 г. Эта машина стала первой советской супер-ЭВМ на элементной базе второго поколения (полупроводниковых транзисторах). В электронных схемах БЭСМ-6 использовалось 60 000 транзисторов и 180 000 полупроводников-диодов. Элементная база была новой для того времени.

У БЭСМ-6 имелся магистральный или водопроводный принцип организации управления. С его помощью потоки команд и операндов обрабатывались параллельно. В разработке использовалась ассоциативная память на сверхбыстрых регистрах, что сократило количество обращений к ферритной памяти и позволило осуществить локальную оптимизацию вычислений в динамике счета. Оперативная память имела расслоение (8-слойная) на автономные модули, что дало возможность одновременно обращаться к блокам памяти по нескольким направлениям. Многопрограммный режим работы БЭСМ-6 позволил решать несколько задач с заданными приоритетами. Аппаратный механизм преобразования математического адреса в физический дал возможность динамически распределять оперативную память в процессе вычислений средствами ОС.

У БЭСМ-6 был конвейерный центральный процессор с отдельными конвейерами для устройства управления и арифметического устройства. Он позволял совмещать обработку нескольких команд, находящихся на разных стадиях выполнения. Имелся кеш на 16 48-битных слов (4 чтения данных, 4 чтения команд, 8 — буфер записи). Система команд включала в себя 50 24-битных команд.

Лаборатория для проведения финишных испытаний знаменитой БЭСМ-6

С 1968 г. начался выпуск БЭСМ-6 на заводе Счётно-аналитических машин (САМ) в Москве.

Характеристики БЭСМ-6

Элементная база: транзисторный парафазный усилитель с диодной логикой на входе
Быстродействие: около 1 млн операций в секунду
Потребляемая мощность: 60 кВт
Разрядность: 48
Тактовая частота: 10 МГц
Внешняя память: на магнитных лентах и магнитных дисках
Устройства ввода / вывода: ввод с перфокарты, цифропечать и фотопечатное устройство

На Дне открытых дверей факультета вычислительной математики и кибернетики МГУ Владимир Пономарев демонстрирует игру «Калах» на экране терминала БЭСМ-6

С 1967 г. практически все крупные вычислительные центры СССР стали оснащаться компьютерами БЭСМ-6. И даже спустя годы на заседании отделения информатики, вычислительной техники и автоматизации Академии наук (1983 г.) академик Е. П. Велихов сказал, что создание БЭСМ-6 явилось одним из основных вкладов АН СССР в развитие советской индустрии.

В 1990 г. один из экземпляров БЭСМ-6 был перевезен в Лондон и установлен в Музее науки, как лучший в Европе суперкомпьютер своего времени.

Серия 5Э26

ЭВМ 5Э26 была последней прижизненной разработкой Лебедева, которую он успел запустить в серийное производство.

В 1968 г. Лебедев принял предложение Генерального конструктора зенитных ракетных комплексов для ПВО Бориса Васильевича Бункина. Он согласился разработать специализированный управляющий малогабаритный мобильный высокопроизводительный цифровой вычислительный комплекс (ЦВК) 5Э26. О реализации такой возможности Сергей Алексеевич мечтал еще при создании МЭСМ. Благодаря этой работе, была проведена крупнейшая реорганизация института. Объединение ресурсов множества различных лабораторий привело к фактическому созданию отделений:
— по ЭВМ общего назначения
— по ЭВМ специального назначения (включая архитектуру)
— по электронному конструированию
— по запоминающим устройствам
— по САПР и технологии.

Всеволодом Сергеевичем Бурцевым (заместитель Лебедева) была предложена многопроцессорная архитектура ЦВК 5Э26, обеспечивающая работу до трех модулей центральных процессоров и двух специальных процессоров ввода-вывода информации с общей памятью.

Конструктивно ЦВК серии 5Э26 представлял собой шкаф высотой 1885 мм, шириной 2870 мм, глубиной 655 мм, который ставился у стенки транспортного средства.

У 5Э26 имелась высокоэффективная система автоматического резервирования, базирующаяся на аппаратном контроле. Система давала возможность восстанавливать процесс управления при сбоях и отказах аппаратуры, работающей в широком диапазоне климатических и механических воздействий, с развитым математическим обеспечением автоматизации программирования.

ЦКВ 5Э261

ЦКВ 5Э26 легко адаптировался к различным требованиям по производительности и памяти в системах управления специального назначения. Устройство также работало в реальном времени, снабжалось развитым математическим обеспечением, эффективной системой автоматизации программирования и возможностью работы с языками высокого уровня. В 5Э26 была реализована энергонезависимая память команд на микробиаксах с возможностью электрической перезаписи информации внешней аппаратурой записи и введена эффективная система эксплуатации с двухуровневой локализацией неисправной ячейки, обеспечивающая эффективность восстановления аппаратуры среднетехническим персоналом.

В качестве интегральных схем использовались в основном полупроводниковые микросхемы одних из первых отечественных серий-133 и 130 (ТТЛ-типа).

Лебедев во время поездки в Англию (Кембридж, 1964 г.)

Характеристики 5Э261

Элементная база: стандартная серия ТТЛ-микросхем
Быстродействие: 1,5 млн операций в секунду
Потребляемая мощность: 5,5 кВт
Разрядность: 32
Объем оперативной памяти: 32-34 Кб
Объем командной памяти: 64-256 Кб
Независимый процессор ввода-вывода информации по 12 каналам связи: максимальный темп обмена свыше 1 Мб/с.

Опыт создания ЭВМ 5Э26 стал базой для конструирования семейства супер-ЭВМ «Эльбрус». Название было предложено Лебедевым. Появление «Эльбруса» завершило создание ПРО СССР, однако сам он уже не успел принять участие в их разработке.

Послесловие

Лебедев с семьей

По воспоминаниям сотрудников, работавших с Сергеем Алексеевичем в Киеве, он был идеальным руководителем. В работе доводил все до совершенства, большое внимание уделял мелочам. Он никогда не повышал голос и относился ко всем исключительно ровно, справедливо, без предвзятости. Всегда отмечал даже небольшие успехи своих сотрудников. В процессе отладки машины равных ему не было. Лебедев превосходил всех в понимании неполадок и сбоев в машине.

Сергей Алексеевич на протяжении всей своей жизни вел большую работу по подготовке научных кадров. Он был одним из инициаторов создания Московского физико-технического института, основателем и руководителем кафедры вычислительной техники в этом институте, руководил работой многих аспирантов и дипломников.

Лебедев с дочерьми Екатериной и Натальей

В начале 70-х Сергей Алексеевич уже не мог руководить Институтом точной механики и вычислительной техники, в 1973 г. тяжелая болезнь вынудила его оставить пост директора. Но он продолжал работать дома.

Сергей Алексеевич Лебедев скончался 3 июля 1974 г. в Москве. Похоронен на Новодевичьем кладбище.

В Киеве на здании, где располагался Институт электротехники АН Украины, висит мемориальная доска, текст которой гласит: ” В этом здании в Институте электротехники АН УССР в 1946—1951 г.г. работал выдающийся ученый, создатель первой отечественной электронной вычислительной машины, Герой Социалистического Труда, академик Сергей Алексеевич Лебедев”.

Мозаика с изображением Лебедева в ИТМиВТ

В год 95-летия со дня рождения Сергея Алексеевича Лебедева заслуги ученого признали и за рубежом. Как новатор вычислительной техники, он был отмечен именной медалью Международного компьютерного общества с надписью: «Сергей Алексеевич Лебедев 1902–1974 г.г… Разработчик и конструктор первого компьютера в Советском Союзе. Основоположник советского компьютеростроения».

#статьи

  • 13 апр 2022

  • 0

Как СССР побеждал в компьютерной гонке, а потом её провалил

Советские компьютеры 1950‑х годов не уступали западным, но с конца 1960‑х они стали резко отставать от капиталистических ЭВМ.

Иллюстрация: Victor R. Ruiz / Hans Bln / Wikipedia / filistimlyanin / Freepik / Дима Руденок для Skillbox Media

Марина Демидова

Программист, консультант, специалист по документированию. Легко и доступно рассказывает о сложных вещах в программировании и дизайне.

Компьютерная эра во всём мире началась почти одновременно — сразу после Второй мировой войны. В 1948 году у США уже были первые ЭВМ Mark и ENIAC, поэтому советское правительство решило не отставать и организовало структуры, которые должны были заниматься разработкой аналогичной техники.

Одну из них, Институт точной механики и вычислительной техники (ИТМиВТ), долгое время возглавлял академик Сергей Алексеевич Лебедев. Сегодня его называют отцом советских ЭВМ.

Фотография Сергея Алексеевича в кабинете на Новопесчаной после избрания академиком
Фото: «История информационных технологий в СССР и России»

Первую ЭВМ в СССР и континентальной Европе создали в Киевском институте электротехники под руководством академика Лебедева.

Вообще, Лебедев хотел создать цифровую ЭВМ ещё в начале войны — тогда он руководил лабораторией в Московском электротехническом институте. Однако в 1941 году институт эвакуировали на Урал и учёному пришлось плотно заниматься военными разработками: самонаводящимися торпедами, системой стабилизации танковых орудий и тому подобным.

Когда война закончилась, Лебедев вернулся в Москву. Но реализовать проект счётной супермашины оказалось непросто. Он обратился в ЦК ВКП(б) и рассказал куратору по науке, что его ЭВМ будет выполнять до 10 000 операций в секунду, но над ним только посмеялись: «А что будет, когда мы все задачи на вашей машине прорешаем — выбросим её на свалку?»

К счастью, в 1947 году Лебедева пригласили в Киев, и он продолжил работу над вычислительной машиной. К осени 1948 года Сергей Алексеевич уже разработал модель вычислительной машины. Она работала по принципу арифмометра и предназначалась для ускорения и автоматизации счёта. Лебедев назвал свою машину МЭСМ (малая электронная счётная машина). А в марте 1949 года Лебедев создал и испытал работающий макет арифметико-логического устройства на радиолампах.

В 1951 году началась сложная работа по переводу макета в действующую ЭВМ. Это были послевоенные годы, людей не хватало, поэтому над машиной работали всего 12 инженеров, 15 техников и монтажниц. Трудиться приходилось сутки напролёт: Лебедев и сам всё время что-то паял, монтировал, клепал. И к декабрю 1951 года машина была готова!

МЭСМ использовала 6000 радиоламп и занимала 60 квадратных метров. Правда, с помещением под компьютер просчитались — машину собрали в комнате на нижнем этаже двухэтажного здания, и когда все 6000 ламп загорелись, температура резко подскочила. Работать стало невозможно, поэтому пришлось разобрать потолок и часть кровли.

Характеристики МЭСМ:

  • Машина производила до 50 операций в секунду — неплохая скорость по сравнению с ручными вычислениями.
  • Ёмкость ОЗУ — 31 число и 63 команды.
  • Представление чисел — с фиксированной точкой, 16 двоичных разрядов.
  • Команды трёхадресные, длиной в 20 двоичных разрядов (4 разряда — код операций).
  • Дополнительно можно было подключать ЗУ на магнитном барабане ёмкостью 5000 слов.
  • Данные вводились с помощью перфоленты или штекеров на коммутаторах, а выводились на электромеханическое печатающее устройство или фотографировались.

Во время испытаний МЭСМ производила сложные вычисления — рассчитывала сумму факториалов нечётных чисел, возводила дроби в степень. Все увидели, что скорость компьютера намного превышает человеческие возможности.

В 1952 году ЭВМ продемонстрировали на публике — и с тех пор она считается первой работающей электронно-вычислительной машиной в СССР и континентальной Европе.

Лебедев разработал МЭСМ в качестве макета для отработки принципов построения БЭСМ (большой электронной счётной машины), которую создавали параллельно. Но и саму МЭСМ активно использовали — на ней решали разные научно-технические и экономические задачи:

  • рассчитывали энергосистемы и строительные конструкции;
  • обрабатывали геодезические наблюдения;
  • составляли статистические таблицы;
  • решали задачи баллистики, синтеза аммиака и многое другое.

МЭСМ использовали в реальных задачах до 1957 года, а потом ещё два года на ней обучали студентов.

Благодаря первой машине Лебедева в СССР начало развиваться программирование и производство вычислительной техники.

В том же 1952 году команда Лебедева построила БЭСМ-1.

  • В машине было 5000 электронных ламп.
  • Она могла выполнять 8000–10 000 операций в секунду.
  • Внешняя память — на магнитных барабанах (два барабана по 5120 слов) и магнитных лентах (четыре барабана по 30 000 слов). Машина имела общую память для команд и данных — всё по архитектуре фон Неймана.
  • Система представления чисел — двоичные с плавающей точкой.
  • Система команд — трёхадресная. В каждой команде содержатся код операции, два адреса исходных операндов и адрес результата операции.

В 1953 году на международной конференции в Дармштадте БЭСМ-1 признали самым быстродействующим компьютером в Европе. По скорости работы и объёму памяти она уступала только американской IBM 701.

Сергей Лебедев и Владимир Мельников у машины БЭСМ АН СССР
Фото: «Виртуальный компьютерный музей»

В столице оценили работу Лебедева и назначили его директором московского Института точной механики и вычислительной техники (ИТМиВТ). БЭСМ перевезли в Москву и установили на первом этаже института. На ней решали научные и прикладные задачи, казавшиеся в то время неразрешимыми из-за большого объёма вычислений.

БЭСМ могла рассчитать траекторию полёта снаряда быстрее, чем снаряд долетал до цели. В то время это было огромным достижением. А ещё именно на БЭСМ-1 была рассчитана траектория полёта ракеты, доставившей на Луну вымпел СССР в 1959 году.

В 1960 году БЭСМ-1 разобрали, и по этому поводу сотрудники ИТМиВТ даже написали эпитафию.

БЭСМ-2
Фото: «История информационных технологий в СССР и России»

В 1957 году Ульяновский завод им. Володарского начал выпускать компьютеры БЭСМ-2. Ими оснастили все крупные вычислительные центры страны. На новых БЭСМ рассчитывали запуски искусственных спутников Земли и первых космических кораблей.

А в середине 1960-х разработали и запустили в производство БЭСМ-6 — супер-ЭВМ второго поколения на полупроводниковых транзисторах. Она могла выполнять уже около 1 млн операций в секунду.

БЭСМ-6 в Музее науки, Лондон, Великобритания
Фото: Wikimedia Commons

В то время советская вычислительная техника шла вровень с западными разработками. Даже Норберт Винер говорил, что советские учёные опережают американских в области теории информации, а в части аппаратуры отстают совсем немного.

Лебедев, используя свои наработки при создании МЭСМ, разработал ещё 15 электронно-вычислительных машин. Но отечественным кибернетикам не дано было стать лидерами в компьютерной гонке. В 1966 году в СССР свернули разработку собственных вычислительных машин и начали копировать серию IBM 360 в качестве единого стандарта ЭВМ.

Академик Лебедев протестовал против этого решения — он рьяно доказывал, что клонирование устаревающих систем отбросит компьютерную индустрию на годы назад. Но учёного не послушали — у его оппонентов была власть.

В 1972 году решение о копировании американской IBM приняли окончательно. Эту весть Сергей Александрович принял очень тяжело. Здоровье немолодого уже академика постоянно ухудшалось, и через два года, после долгой болезни, Лебедев скончался.

Сергей Лебедев с коллегами знакомятся с компьютерами IBM, апрель-май 1959 года
Фото: «История информационных технологий в СССР и России»

Много ли выиграла советская компьютерная индустрия от этого решения? По мнению академика Малиновского, нанесённый ущерб был выше, чем полученные результаты. Клонирование IBM шло с трудом, документацию было сложно достать, не было подходящего оборудования и комплектующих. Сроки изготовления постоянно срывались.

В 1970-х годах советская вычислительная техника уже серьёзно отставала от западной, особенно в гражданских областях. ЭВМ использовали в основном в военных разработках. Но руководство страны не рассматривало производство электронно-вычислительных машин как ключевую отрасль. Бытовало мнение, что нехватку компьютеров можно восполнить большим количеством людей с арифмометрами.

В итоге компьютерная революция 1980-х застала страну врасплох. А в 1990-х годах СССР перестал существовать и отставание отечественной компьютерной техники от западной уже мало кого интересовало.

Машина Лебедева

Сергей Алексеевич Лебедев — один из отцов отечественного компьютеростроения. Под его руководством были созданы 15 различных типов электронно-вычислительных машин — причем не только ламповых, но и аппаратов на интегральных схемах. Ну и конечно же главное достижение легендарного ученого — создание Малой электронной счетной машины (МЭСМ). Во многих источниках ее называют первой советской ЭВМ. Да что там, даже сам Лебедев так ее охарактеризовал в статье «У истоков первой ЭВМ». Хотя как раз тут первенство Лебедева может быть оспорено — но об этом позже.

Работу над созданием МЭСМ Лебедев начал в Киеве в 1947 году, куда попал по приглашению Михаила Лаврентьева, на тот момент директора Института математики Академии Наук Украины и по совместительству — заместителя президента этой самой Академии. К переезду на Украину Сергей Алексеевич склонялся долго и тяжело. К тому времени ученый уже 10 лет руководил одним из отделов во Всесоюзном электротехническом институте, и даже должность директора целого института в столице УССР его не прельщала.

Как позже рассказывал сын ученого, Сергей Лебедев-младший, выбор был сделан при помощи жребия. «Мать предложила бросить жребий. Две бумажки с надписями ‘Киев’ и ‘Москва’ были положены в шапку и тщательно перемешаны. К счастью, выпал Киев! С тех пор эта шапка прочно вошла в семейные фольклорные анналы и стала в кругу друзей не менее знаменитой, чем шапка Мономаха».

В Киеве Сергей Алексеевич стал руководителем Института энергетики. Там Лебедев инициировал создание лаборатории моделирования и вычислительной техники в составе Института электротехники. Немалую роль в этом сыграл Лаврентьев, который написал Сталину письмо с просьбой поддержать работы в области вычислительной техники, учитывая их важность для обороноспособности СССР. Собрав команду талантливых ученых, Лебедев приступил к сборке машины в бывшем здании психиатрической больницы в предместье Феофания.

К концу 1949 года была полностью разработана архитектура МЭСМ, а к осени 1950 года «компьютер» полностью собрали.

1951 год. Молодые кибернетики за пультом МЭСМ. Фото: Информационные технологии в Украине

Пробный пуск машины случился 6 ноября 1950 года, а уже 4 января 1951 года работающая МЭСМ была продемонстрирована приемной комиссии. К концу того же 1951 года работу аппарата оценила комиссия более высокого уровня, из Москвы, во главе с академиком М.В. Келдышем, и 25 декабря рекомендовала ввести машину в эксплуатацию.

Открытие Исаака

1951 год можно было бы считать годом рождения отечественной информатики. Но в марте 2018 года на пленарном заседании Института истории естествознания и техники РАН этой датой назначили 4 декабря 1948 года. А все благодаря Исааку Бруку, создателю ЭВМ М-1.

Сразу после окончания Великой отечественной войны при Президиуме Академии Наук СССР был создан научный семинар для обсуждения вопросов автоматизации вычислений. Исаак Брук был одним из его активных участников и продвигал идею создания института для изучения проблем вычислительной техники. В 1948 году благодаря поддержке президента Академии С.И. Вавилова было создано учреждение — Институт точной механики и вычислительной техники. Но Брук, получивший 4 декабря того же года авторское свидетельство на автоматическую цифровую вычислительную машину, в том самом институте не работал ни дня.

Исаак Брук. Фото: Политехнический музей

Почему так случилось — неизвестно. По одной из версий, директор института Николай Бруевич был редкостным ретроградом: не приветствовал развитие цифровых ЭВМ и делал ставку на развитие механических вычислительных аппаратов. По другой версии, у новосозданного учреждения не было ничего кроме вывески, и поэтому Брук решил остаться сотрудником Энергетического института.

В отличие от работников профильных учреждений Брук не имел большой государственной поддержки и вместе со своей командой работал скорее на голом энтузиазме. Да, Исаак Семенович имел довольно серьезного покровителя, в лице директора института Глеба Кржижановского, старого большевика и одного из близких друзей Ленина. Тем не менее, как позже вспоминал один из участников сборки М-1 Александр Залкинд, «работа над ЭВМ [… ] велась полулегально, сегодня сказали бы, что это хобби руководителя работ и только».

Вместе со своим коллегой Баширом Рамеевым и несколькими учениками Брук собрал электронно-вычислительную машину менее чем за год: процесс начали в октябре 1950 года, а уже летом 1951 М-1 могла выполнять основные арифметические операции. Эксплуатация машины стартовала в январе 1952 года — всего лишь через месяц после того, как правительственная комиссия рекомендовала к использованию МЭСМ.

Несмотря на то, что у ЭВМ Лебедева было в названии прилагательное «малая», М-1 по сравнению с киевским аппаратом была просто крохой. Площадь, которую занимала М-1, составляла лишь 4 квадратных метра, тогда как МЭСМ «раскинулась» аж на 60 — а количество выделяемого последней тепла было так велико, что со здания пришлось снимать крышу. Количество ламп — 700 у М-1 против 6000 у МЭСМ, потребляемая мощность — 8 и 25 кВт соответственно. Детище Брука заметно проигрывало и в производительности: собранная в Москве ЭВМ выдавала около 20 операций в секунду против 50 у МЭСМ.

Фотография первой программы, выполненной на М-1. Фото: Великая страна СССР

«Компактность» и качество

Казалось бы, ЭВМ Лебедева круче по всем параметрам. Но М-1, собранная в гораздо более стесненных условиях и с меньшим количеством ресурсов, имела ряд концептуальных преимуществ.

  1. М-1 была первым аппаратом, логические схемы которого были построены полностью на полупроводниковых диодах. Этому способствовал недостаток материалов и изобретательность самого Брука. Руководитель проекта распорядился «прошерстить» склады института, где хранилось огромное количество радиотехники, переданной по репарациям из Германии — и набрал там медно-закисных выпрямителей (диодов) для своей машины.
  2. В М-1 впервые была использована двухадресная система команд, в отличии от трехадресной на МЭСМ: такую особенность предложил молодой математик Юлий Шрейдер, осваивавший основы программирования на ЭВМ. У такой системы есть ряд преимуществ по сравнению с трех- и четырехадресной: упрощается устройство управления, рациональнее используется память и отсутствует необходимость записывать малоинформативные адреса.
  3. У М-1 была интегрированная оперативная память на электронно-лучевых трубках, которая позволяла записывать до 256 слов. Аналогичный объем данных умещался и на магнитном барабане, который выполнял роль медленной памяти. У первой версии МЭСМ, для сравнения, в оперативной и долговременной памяти умещалось лишь по 31 числу.

Из-за последней особенности некоторые исследователи настаивают на том, что, дескать, МЭСМ на момент ввода в эксплуатацию была не более чем огромным калькулятором, и для серьезных расчетов (например, для решения уравнений в частных производных) она не годилась.

М-1 благодаря наличию объемной памяти с момента ввода в эксплуатацию в январе 1952 года выполняла вычисления, на которые МЭСМ «сподобилась» лишь спустя несколько месяцев, после подключения магнитного барабана.

Так выглядела ЭВМ М-1. Слева направо: ссторона АУ и сторона магнитного барабана. Фото: Виртуальный компьютерный музей

Первые среди отстающих

Сложно ответить на вопрос, почему именно Лебедев, а не Брук был выбран на роль «отца советской ЭВМ». Может быть, все дело в протекции руководившего в то время Украиной Никиты Хрущева, поскольку именно в тот период началась разработка МЭСМ. А может быть, дело в печальном факте антисемитизма и национальности Брука. Факт остается фактом, Лебедев еще до окончания разработки МЭСМ был приглашен в Москву возглавлять профильный Институт точной механики и вычислительной техники, а впоследствии стал академиком АН СССР. Брук же «дослужился» только до члена-корреспондента, и долгие годы был лишь завлабораторией.

Но несомненно, как МЭСМ, так и М-1 стали важными вехами в истории советской кибернетики и компьютерной науки. На основе московской ЭВМ в той же лаборатории позже были построены машины М-2 и М-3: последняя стала основой для серий ЭВМ «Арагац», «Раздан» и «Минск». А Лебедев, используя свои наработки при создании МЭСМ, позже разработал еще 15 советских электронно-вычислительных машин.

К сожалению, успехи Брука, Лебедева и других советских кибернетиков не позволили Советскому Союзу захватить лидерство в «компьютерной гонке». Еще в 1964 году «отец кибернетики» Норберт Винер в интервью журналу «U.S. News & World Report» сказал, что советские ученые опережают американских в области теории информации, а в части аппаратуры если и отстают, то ненамного. Но в 1966 году было принято роковое для компьютерной отрасли решение о прекращении разработки собственных вычислительных систем и копировании серии IBM/360 — в качестве единого индустриального стандарта ЭВМ.

Роковое решение 1966 года отбросило советскую компьютерную индустрию на годы назад. Фото: IT History

Сергей Лебедев был против такого решения. Ученый утверждал, что копирование устаревающей иностранной системы приведет к отставанию СССР от лидеров в области компьютерной индустрии. Но к создателю МЭСМ не прислушались. Последствия перехода на заграничный стандарт можно сравнить с «фиатизацией» советского автопрома — копированием итальянских машин для создания «классического» семейства автомобилей ВАЗ.

При этом Институт точной механики и вычислительной техники, которым Лебедев руководил в последние годы жизни, спорное решение не затронуло, так как ИТМВТ занимался разработкой суперкомпьютеров для военных нужд. Именно в этой области применения компьютеров советские инженеры и ученые добились наибольшего успеха. Чего стоит только серия ЭВМ «Эльбрус», которые используются в системе ПРО второго поколения и Центре управления полетами. Увы, в создании персональных компьютеров наша промышленность подобных достижений не имела…

Как развивалась история коммерческих персональных компьютеров? Смотри историю 1953 по 1985 год в нашей галерее!

Это тоже интересно:

Советская вычислительная школа Сергея Лебедева

Время на прочтение
12 мин

Количество просмотров 29K

Сергей Алексеевич Лебедев был советским академиком и основоположником вычислительной техники в СССР. Он создал первый в континентальной Европе компьютер с хранимой в памяти программой (МЭСМ) и был одним из разработчиков первых цифровых электронных вычислительных машин с динамически изменяемой программой вычислений. Под руководством и самоличном участии этого выдающегося ученого было создано 18 ЭВМ, причем 15 из них выпускались серийно.

Лебедев стоял у истоков развития и становления отечественной вычислительной техники. Опыт его работы уникален, так как охватывает период от создания первых ламповых компьютеров, выполнявших сотни и тысячи операций в секунду, до быстродействующих супер-ЭВМ на больших интегральных схемах.

Сергей Лебедев родился 2 ноября 1902 г. в городе Нижний Новгород. Отец Алексей Иванович был известным автором «Азбуки» и «Словаря непонятных слов», а мать Анастасия Петровна (в девичестве Маврина, из дворян) преподавала общие предметы в младших классах народного училища. В послереволюционные годы главу семейства пригласили на работу наркомом просвещения и Лебедевы переехали в Москву.

Сергей Лебедев (1920 г.)

Начало пути

В 1921 г. Сергей сдал экзамены экстерном за среднюю школу и поступил в Московское высшее техническое училище (МВТУ) им. Н.Э.Баумана на электротехнический факультет. Его учителями и научными руководителями были выдающиеся русские ученые-электротехники, профессора Карл Адольфович Круг, Леонид Иванович Сиротинский и Александр Александрович Глазунов. Все они трудились над разработкой плана электрификации СССР (план ГОЭЛРО). Для успешного осуществления потребовались уникальные теоретические и экспериментальные исследования. Лебедев был еще студентом, но уже тогда основное внимание уделял проблеме устойчивости параллельной работы электростанций. Первые результаты по данной проблеме были отражены в его дипломном проекте, который выполнялся под руководством профессора К.А.Круга.

В 1928 г. Лебедев получил диплом инженера-электрика и остался преподавать в родной альма-матер, параллельно занимая должность младшего научного сотрудника Всесоюзного электротехнического института (ВЭИ). Именно в этом ВУЗе он возглавил лабораторию электрических сетей, где продолжил работу над проблемой устойчивости. Тематика лаборатории постепенно расширялась, охватывая также и проблемы автоматического регулирования. И в результате в 1936 г. на ее базе сформировался отдел автоматики, руководить которым поручили Сергею Алексеевичу.

К этому времени Лебедев уже стал профессором и автором (совместно с Петром Сергеевичем Ждановым) широко известной среди специалистов-электротехников монографии “Устойчивость параллельной работы электрических систем”.

Лебедев в своем кабинете

У научной деятельности Лебедева замечалась характерная особенность, которая заключалась в органическом сочетании большой глубины теоретической проработки с конкретной практической направленностью. Продолжая теоретические исследования, он стал активным участником подготовки сооружения Куйбышевского гидроузла.

В начале Второй мировой войны Лебедев был вынужден покинуть ВЭИ и уехать в Свердловск. Все ресурсы отдела автоматики переключили на оборонную тематику.

За поразительно короткие сроки работы в Свердловске, Алексей Сергеевич спроектировал систему стабилизации танкового орудия при прицеливании. Эта разработка усовершенствовала танк, делая его менее уязвимым и спасая тем самым многих танкистов. Система позволяла наводить и стрелять из орудия без остановки машины. За свое изобретение ученый был награжден орденом Трудового Красного Знамени и медалью «За доблестный труд в Великой Отечественной войне 1941-1945 гг.».

В 1945 г. Лебедева избрали действительным членом Академии Наук УССР

После окончания войны ученый занялся реализацией давно запланированного проекта по созданию вычислительной машины с использованием двоичной системы счисления. В те годы не было достаточно полных публикаций о двоичной системе счисления и методике операций над двоичными числами. Базой для построения цифровой вычислительной машины стала методика выполнения арифметических операций в двоичной системе счисления и ранее разработанные самим Лебедевым методы решения математических задач.

В 1947 г. Лебедев стал директором Института электротехники АН Украины и по совместительству возглавил руководство лабораторией Института точной механики и вычислительной техники СССР.

МЭСМ

В 1948 г. начался процесс создания малой электронной счетной машины (МЭСМ). Для научной работы Лебедеву выделили частично разрушенное здание бывшей монастырской гостиницы в Феофании (Киев). С финансовой помощью и поддержкой вице-президента АН УССР Михаила Алексеевича Лаврентьева, помещение было отремонтировано и оборудовано под лабораторию.

Здание в Феофании, где размещалась лаборатория Лебедева

Лебедев выдвинул, обосновал и реализовал в первой советской машине принципы построения ЭВМ с хранившейся в памяти программой. МЭСМ занимала целое крыло двухэтажного здания (60 м²) и состояла из 6 000 электронных ламп. Примечательно то, что проектирование, монтаж и отладка машины были выполнены в течении трех лет. При этом в разработке участвовали лишь 11 инженеров и 15 технических сотрудников. Тогда как на разработку первого в мире электронного компьютера ЭНИАК (США) ушло пять лет и было задействовано 13 разработчиков и более 200 техников.


Схема элементарной ячейки блока памяти арифметического устройства МЭСМ

МЭСМ была арифметическим устройством, производившим операции сложения, вычитания, умножения, деления, сдвига, сравнения с учётом знака, сравнения по абсолютной величине, передачи управления, передачи чисел с магнитного барабана, сложения команд, остановки. МЭСМ имела двоичное представление чисел с фиксированной запятой, 16 двоичных разрядов на число, плюс один разряд на знак.

6 ноября 1950 г. состоялся пробный пуск машины, в ходе которого решалась задача: Y» + Y = 0; Y(0) = 0; Y(pi) = 0.

Не смотря на то, что МЭСМ создавалась более как макет Большой электронной счетной машины, ей нашли практическое применение. Первой советской ЭВМ весьма заинтересовались математики, задачи которых требовали использования быстродействующего вычислителя. До 1953 г. МЭСМ была единственной вычислительной машиной в СССР.

Участники разработки МЭСМ — Лев Наумович Дашевский и Соломон Бениаминович Погребинский (Киев, 1951 г.)

Характеристики МЭСМ

Элементная база: 6 000 электронных ламп (около 3500 триодов и 2500 диодов)
Быстродействие: 3 000 операций в секунду
Потребляемая мощность: около 25 кВт
Разрядность: 16
Тактовая частота: 5 кГц
Устройства ввода / вывода: ввод с перфокарты или набором кода на штекерном коммутаторе; вывод с помощью электромеханического печатающего устройства либо фотоустройства для получения данных на фотоплёнке.
Также мог использоваться магнитный барабан, хранящий до 5000 кодов чисел или команд.

БЭСМ

Следующей после МЭСМ была разработана большая электронно-счётная машина (БЭСМ). В структуре устройства уже тогда были реализованы основные решения, характерные для современных вычислительных машин.

У БЭСМ была двоичная система представления чисел с учётом порядков, то есть в форме чисел с плавающей запятой. Машина оперировала диапазон чисел примерно от 10-9 до 109. Система команд была трёхадресной, в нее входило 9 арифметических операций, 8 операций передач кодов, 6 логических операций, 9 операций управления.

Лабораторные испытания БЭСМ

БЭСМ имела 39 двоичных разрядов для представления чисел в виде мантиссы/порядка, из них 32 разряда отводилось для значащей части и 5 для порядка. Еще по одному разряду отводилось для знаков мантиссы и порядка. При написании программ для машины применялась техника самомодифицирующегося кода, когда напрямую модифицировались адресные части команд для доступа к массивам.

Один из разработчиков БЭСМ Всеволод Сергеевич Бурцев вспоминает о машине следующее:

Во многих блоках первой БЭСМ в анодной цепи были использованы не лампы сопротивления, а ферритовые трансформаторы. Так как эти трансформаторы были изготовлены кустарным способом, они часто выгорали, при этом выделяли едкий специфический запах. Сергей Алексеевич обладал замечательным обонянием и, обнюхивая стойку, с точностью до блока указывал на дефектный. Он практически никогда не ошибался.

Характеристики БЭСМ

Элементная база: 4 000 электронных ламп, 5 000 полупроводниковых диодов
Быстродействие: 8 000 операций в секунду
Потребляемая мощность: около 35 кВт
Разрядность: 39
Тактовая частота: 9 МГц
Внешняя память: на магнитных барабанах (2 барабана по 5120 слов) и магнитных лентах (4 по 30 000 слов)
Устройства ввода / вывода: ввод с перфокарты, цифро-печать и фото-печатное устройство.

Группа сотрудников ИТМ и ВТ АН СССР в день награждения за создание БЭСМ (1956 г.)

В 1956 г. БЭСМ получила награду и была принята Государственной комиссией в эксплуатацию.

БЭСМ-2, М-20 и БЭСМ-4

В 1958 г. БЭСМ была подготовлена к серийному производству. Коллектив ИТМиВТ под руководством Лебедева разработал и презентовал две ЭВМ: БЭСМ-2 и М-20. Их характерной особенностью было то, что они разрабатывались в тесном контакте с промышленностью (особенно М-20). Специалисты завода и академического института вместе участвовали в создании машины. Этот принцип был хорош тем, что улучшал качество документации, т. к. в ней учитывались технологические возможности завода.

Вычислительная машина БЭСМ-2 сохранила систему команд и все основные параметры предыдущего устройства, но конструкция стала более технологичной и удобной для серийного выпуска. В БЭСМ-2 было реализовано оперативное запоминающее устройство на ферритных сердечниках, широко применялись полупроводниковые диоды, а также была усовершенствована конструкция (мелкоблочная). На БЭСМ-2 проводились расчеты, связанные с запуском искусственных спутников, первых пилотируемых космических кораблей. Именно на одной из упомянутых ЭВМ был произведён расчёт траектории ракеты, доставившей вымпел СССР на Луну.

БЭСМ-2 имела около 4 000 электронных ламп, и была собрана на трех основных стойках

Характеристики БЭСМ-2

Элементная база: 4 000 электронных ламп, 5 000 полупроводниковых диодов
Быстродействие: 20 000 операций в секунду
Потребляемая мощность: 35 кВт
Разрядность: 45
Тактовая частота: 10 МГц
Внешняя память: на магнитных барабанах и магнитных лентах
Устройства ввода / вывода: ввод с перфоленты, которую печатает устройство.

М-20 стала первой советской машиной, которая поставлялась в комплекте со специальным математическим обеспечением (по своей сути — ОС). В новое устройство Лебедев заложил рад конструктивных решений, расширяющих функциональность и почти не увеличивающих количество электронных ламп.

М-20 обладала производительностью 20 000 операций в секунду за счет совмещения работы отдельных устройств и более быстрого выполнения арифметических операций. В машине впервые были применены: автоматическая модификация адреса; совмещение работы арифметического устройства и выборки команд из памяти; использование буферной памяти для массивов, выдаваемых на печать.

М-20

Характеристики М-20

Элементная база: электронные лампы, полупроводниковые схемы
Быстродействие: 20 000 операций в секунду
Потребляемая мощность: 50 кВт
Разрядность: 45
Тактовая частота: 0.6667 мГц
Внешняя память: на магнитных барабанах и магнитных лентах
Устройства ввода / вывода: ввод с перфоленты, которую печатает устройство

После вручения наград в Кремле (1962 г.)

В 1965 г. появилась серийная ЭВМ на полупроводниковых элементах БЭСМ-4, которая унаследовала архитектуру М-20. Для БЭСМ-4 существовало не менее 3 разных компиляторов с языка Алгол-60, компилятор Fortran, не менее 2 разных ассемблеров, компилятор с оригинального языка Эпсилон.

Характеристики БЭСМ-4

Элементная база: электронные лампы, полупроводниковые схемы
Быстродействие: до 40 000 операций в секунду
Потребляемая мощность: 50 кВт
Разрядность: 45
Тактовая частота: 9 МГц
Внешняя память: на магнитных барабанах и магнитных лентах
Устройства ввода / вывода: ввод с перфоленты, которую печатает устройство

БЭСМ-6

Разработка БЭСМ-6 завершилась в конце 1965 г. Эта машина стала первой советской супер-ЭВМ на элементной базе второго поколения (полупроводниковых транзисторах). В электронных схемах БЭСМ-6 использовалось 60 000 транзисторов и 180 000 полупроводников-диодов. Элементная база была новой для того времени.

У БЭСМ-6 имелся магистральный или водопроводный принцип организации управления. С его помощью потоки команд и операндов обрабатывались параллельно. В разработке использовалась ассоциативная память на сверхбыстрых регистрах, что сократило количество обращений к ферритной памяти и позволило осуществить локальную оптимизацию вычислений в динамике счета. Оперативная память имела расслоение (8-слойная) на автономные модули, что дало возможность одновременно обращаться к блокам памяти по нескольким направлениям. Многопрограммный режим работы БЭСМ-6 позволил решать несколько задач с заданными приоритетами. Аппаратный механизм преобразования математического адреса в физический дал возможность динамически распределять оперативную память в процессе вычислений средствами ОС.

У БЭСМ-6 был конвейерный центральный процессор с отдельными конвейерами для устройства управления и арифметического устройства. Он позволял совмещать обработку нескольких команд, находящихся на разных стадиях выполнения. Имелся кеш на 16 48-битных слов (4 чтения данных, 4 чтения команд, 8 — буфер записи). Система команд включала в себя 50 24-битных команд.

Лаборатория для проведения финишных испытаний знаменитой БЭСМ-6

С 1968 г. начался выпуск БЭСМ-6 на заводе Счётно-аналитических машин (САМ) в Москве.

Характеристики БЭСМ-6

Элементная база: транзисторный парафазный усилитель с диодной логикой на входе
Быстродействие: около 1 млн операций в секунду
Потребляемая мощность: 60 кВт
Разрядность: 48
Тактовая частота: 10 МГц
Внешняя память: на магнитных лентах и магнитных дисках
Устройства ввода / вывода: ввод с перфокарты, цифропечать и фотопечатное устройство

На Дне открытых дверей факультета вычислительной математики и кибернетики МГУ Владимир Пономарев демонстрирует игру «Калах» на экране терминала БЭСМ-6

С 1967 г. практически все крупные вычислительные центры СССР стали оснащаться компьютерами БЭСМ-6. И даже спустя годы на заседании отделения информатики, вычислительной техники и автоматизации Академии наук (1983 г.) академик Е. П. Велихов сказал, что создание БЭСМ-6 явилось одним из основных вкладов АН СССР в развитие советской индустрии.

В 1990 г. один из экземпляров БЭСМ-6 был перевезен в Лондон и установлен в Музее науки, как лучший в Европе суперкомпьютер своего времени.

Серия 5Э26

ЭВМ 5Э26 была последней прижизненной разработкой Лебедева, которую он успел запустить в серийное производство.

В 1968 г. Лебедев принял предложение Генерального конструктора зенитных ракетных комплексов для ПВО Бориса Васильевича Бункина. Он согласился разработать специализированный управляющий малогабаритный мобильный высокопроизводительный цифровой вычислительный комплекс (ЦВК) 5Э26. О реализации такой возможности Сергей Алексеевич мечтал еще при создании МЭСМ. Благодаря этой работе, была проведена крупнейшая реорганизация института. Объединение ресурсов множества различных лабораторий привело к фактическому созданию отделений:
— по ЭВМ общего назначения
— по ЭВМ специального назначения (включая архитектуру)
— по электронному конструированию
— по запоминающим устройствам
— по САПР и технологии.

Всеволодом Сергеевичем Бурцевым (заместитель Лебедева) была предложена многопроцессорная архитектура ЦВК 5Э26, обеспечивающая работу до трех модулей центральных процессоров и двух специальных процессоров ввода-вывода информации с общей памятью.

Конструктивно ЦВК серии 5Э26 представлял собой шкаф высотой 1885 мм, шириной 2870 мм, глубиной 655 мм, который ставился у стенки транспортного средства.

У 5Э26 имелась высокоэффективная система автоматического резервирования, базирующаяся на аппаратном контроле. Система давала возможность восстанавливать процесс управления при сбоях и отказах аппаратуры, работающей в широком диапазоне климатических и механических воздействий, с развитым математическим обеспечением автоматизации программирования.

ЦКВ 5Э261

ЦКВ 5Э26 легко адаптировался к различным требованиям по производительности и памяти в системах управления специального назначения. Устройство также работало в реальном времени, снабжалось развитым математическим обеспечением, эффективной системой автоматизации программирования и возможностью работы с языками высокого уровня. В 5Э26 была реализована энергонезависимая память команд на микробиаксах с возможностью электрической перезаписи информации внешней аппаратурой записи и введена эффективная система эксплуатации с двухуровневой локализацией неисправной ячейки, обеспечивающая эффективность восстановления аппаратуры среднетехническим персоналом.

В качестве интегральных схем использовались в основном полупроводниковые микросхемы одних из первых отечественных серий-133 и 130 (ТТЛ-типа).

Лебедев во время поездки в Англию (Кембридж, 1964 г.)

Характеристики 5Э261

Элементная база: стандартная серия ТТЛ-микросхем
Быстродействие: 1,5 млн операций в секунду
Потребляемая мощность: 5,5 кВт
Разрядность: 32
Объем оперативной памяти: 32-34 Кб
Объем командной памяти: 64-256 Кб
Независимый процессор ввода-вывода информации по 12 каналам связи: максимальный темп обмена свыше 1 Мб/с.

Опыт создания ЭВМ 5Э26 стал базой для конструирования семейства супер-ЭВМ «Эльбрус». Название было предложено Лебедевым. Появление «Эльбруса» завершило создание ПРО СССР, однако сам он уже не успел принять участие в их разработке.

Послесловие

Лебедев с семьей

По воспоминаниям сотрудников, работавших с Сергеем Алексеевичем в Киеве, он был идеальным руководителем. В работе доводил все до совершенства, большое внимание уделял мелочам. Он никогда не повышал голос и относился ко всем исключительно ровно, справедливо, без предвзятости. Всегда отмечал даже небольшие успехи своих сотрудников. В процессе отладки машины равных ему не было. Лебедев превосходил всех в понимании неполадок и сбоев в машине.

Сергей Алексеевич на протяжении всей своей жизни вел большую работу по подготовке научных кадров. Он был одним из инициаторов создания Московского физико-технического института, основателем и руководителем кафедры вычислительной техники в этом институте, руководил работой многих аспирантов и дипломников.

Лебедев с дочерьми Екатериной и Натальей

В начале 70-х Сергей Алексеевич уже не мог руководить Институтом точной механики и вычислительной техники, в 1973 г. тяжелая болезнь вынудила его оставить пост директора. Но он продолжал работать дома.

Сергей Алексеевич Лебедев скончался 3 июля 1974 г. в Москве. Похоронен на Новодевичьем кладбище.

В Киеве на здании, где располагался Институт электротехники АН Украины, висит мемориальная доска, текст которой гласит: ” В этом здании в Институте электротехники АН УССР в 1946—1951 г.г. работал выдающийся ученый, создатель первой отечественной электронной вычислительной машины, Герой Социалистического Труда, академик Сергей Алексеевич Лебедев”.

Мозаика с изображением Лебедева в ИТМиВТ

В год 95-летия со дня рождения Сергея Алексеевича Лебедева заслуги ученого признали и за рубежом. Как новатор вычислительной техники, он был отмечен именной медалью Международного компьютерного общества с надписью: «Сергей Алексеевич Лебедев 1902–1974 г.г… Разработчик и конструктор первого компьютера в Советском Союзе. Основоположник советского компьютеростроения».

#статьи

  • 13 апр 2022

  • 0

Как СССР побеждал в компьютерной гонке, а потом её провалил

Советские компьютеры 1950‑х годов не уступали западным, но с конца 1960‑х они стали резко отставать от капиталистических ЭВМ.

Иллюстрация: Victor R. Ruiz / Hans Bln / Wikipedia / filistimlyanin / Freepik / Дима Руденок для Skillbox Media

Марина Демидова

Программист, консультант, специалист по документированию. Легко и доступно рассказывает о сложных вещах в программировании и дизайне.

Компьютерная эра во всём мире началась почти одновременно — сразу после Второй мировой войны. В 1948 году у США уже были первые ЭВМ Mark и ENIAC, поэтому советское правительство решило не отставать и организовало структуры, которые должны были заниматься разработкой аналогичной техники.

Одну из них, Институт точной механики и вычислительной техники (ИТМиВТ), долгое время возглавлял академик Сергей Алексеевич Лебедев. Сегодня его называют отцом советских ЭВМ.

Фотография Сергея Алексеевича в кабинете на Новопесчаной после избрания академиком
Фото: «История информационных технологий в СССР и России»

Первую ЭВМ в СССР и континентальной Европе создали в Киевском институте электротехники под руководством академика Лебедева.

Вообще, Лебедев хотел создать цифровую ЭВМ ещё в начале войны — тогда он руководил лабораторией в Московском электротехническом институте. Однако в 1941 году институт эвакуировали на Урал и учёному пришлось плотно заниматься военными разработками: самонаводящимися торпедами, системой стабилизации танковых орудий и тому подобным.

Когда война закончилась, Лебедев вернулся в Москву. Но реализовать проект счётной супермашины оказалось непросто. Он обратился в ЦК ВКП(б) и рассказал куратору по науке, что его ЭВМ будет выполнять до 10 000 операций в секунду, но над ним только посмеялись: «А что будет, когда мы все задачи на вашей машине прорешаем — выбросим её на свалку?»

К счастью, в 1947 году Лебедева пригласили в Киев, и он продолжил работу над вычислительной машиной. К осени 1948 года Сергей Алексеевич уже разработал модель вычислительной машины. Она работала по принципу арифмометра и предназначалась для ускорения и автоматизации счёта. Лебедев назвал свою машину МЭСМ (малая электронная счётная машина). А в марте 1949 года Лебедев создал и испытал работающий макет арифметико-логического устройства на радиолампах.

В 1951 году началась сложная работа по переводу макета в действующую ЭВМ. Это были послевоенные годы, людей не хватало, поэтому над машиной работали всего 12 инженеров, 15 техников и монтажниц. Трудиться приходилось сутки напролёт: Лебедев и сам всё время что-то паял, монтировал, клепал. И к декабрю 1951 года машина была готова!

МЭСМ использовала 6000 радиоламп и занимала 60 квадратных метров. Правда, с помещением под компьютер просчитались — машину собрали в комнате на нижнем этаже двухэтажного здания, и когда все 6000 ламп загорелись, температура резко подскочила. Работать стало невозможно, поэтому пришлось разобрать потолок и часть кровли.

Характеристики МЭСМ:

  • Машина производила до 50 операций в секунду — неплохая скорость по сравнению с ручными вычислениями.
  • Ёмкость ОЗУ — 31 число и 63 команды.
  • Представление чисел — с фиксированной точкой, 16 двоичных разрядов.
  • Команды трёхадресные, длиной в 20 двоичных разрядов (4 разряда — код операций).
  • Дополнительно можно было подключать ЗУ на магнитном барабане ёмкостью 5000 слов.
  • Данные вводились с помощью перфоленты или штекеров на коммутаторах, а выводились на электромеханическое печатающее устройство или фотографировались.

Во время испытаний МЭСМ производила сложные вычисления — рассчитывала сумму факториалов нечётных чисел, возводила дроби в степень. Все увидели, что скорость компьютера намного превышает человеческие возможности.

В 1952 году ЭВМ продемонстрировали на публике — и с тех пор она считается первой работающей электронно-вычислительной машиной в СССР и континентальной Европе.

Лебедев разработал МЭСМ в качестве макета для отработки принципов построения БЭСМ (большой электронной счётной машины), которую создавали параллельно. Но и саму МЭСМ активно использовали — на ней решали разные научно-технические и экономические задачи:

  • рассчитывали энергосистемы и строительные конструкции;
  • обрабатывали геодезические наблюдения;
  • составляли статистические таблицы;
  • решали задачи баллистики, синтеза аммиака и многое другое.

МЭСМ использовали в реальных задачах до 1957 года, а потом ещё два года на ней обучали студентов.

Благодаря первой машине Лебедева в СССР начало развиваться программирование и производство вычислительной техники.

В том же 1952 году команда Лебедева построила БЭСМ-1.

  • В машине было 5000 электронных ламп.
  • Она могла выполнять 8000–10 000 операций в секунду.
  • Внешняя память — на магнитных барабанах (два барабана по 5120 слов) и магнитных лентах (четыре барабана по 30 000 слов). Машина имела общую память для команд и данных — всё по архитектуре фон Неймана.
  • Система представления чисел — двоичные с плавающей точкой.
  • Система команд — трёхадресная. В каждой команде содержатся код операции, два адреса исходных операндов и адрес результата операции.

В 1953 году на международной конференции в Дармштадте БЭСМ-1 признали самым быстродействующим компьютером в Европе. По скорости работы и объёму памяти она уступала только американской IBM 701.

Сергей Лебедев и Владимир Мельников у машины БЭСМ АН СССР
Фото: «Виртуальный компьютерный музей»

В столице оценили работу Лебедева и назначили его директором московского Института точной механики и вычислительной техники (ИТМиВТ). БЭСМ перевезли в Москву и установили на первом этаже института. На ней решали научные и прикладные задачи, казавшиеся в то время неразрешимыми из-за большого объёма вычислений.

БЭСМ могла рассчитать траекторию полёта снаряда быстрее, чем снаряд долетал до цели. В то время это было огромным достижением. А ещё именно на БЭСМ-1 была рассчитана траектория полёта ракеты, доставившей на Луну вымпел СССР в 1959 году.

В 1960 году БЭСМ-1 разобрали, и по этому поводу сотрудники ИТМиВТ даже написали эпитафию.

БЭСМ-2
Фото: «История информационных технологий в СССР и России»

В 1957 году Ульяновский завод им. Володарского начал выпускать компьютеры БЭСМ-2. Ими оснастили все крупные вычислительные центры страны. На новых БЭСМ рассчитывали запуски искусственных спутников Земли и первых космических кораблей.

А в середине 1960-х разработали и запустили в производство БЭСМ-6 — супер-ЭВМ второго поколения на полупроводниковых транзисторах. Она могла выполнять уже около 1 млн операций в секунду.

БЭСМ-6 в Музее науки, Лондон, Великобритания
Фото: Wikimedia Commons

В то время советская вычислительная техника шла вровень с западными разработками. Даже Норберт Винер говорил, что советские учёные опережают американских в области теории информации, а в части аппаратуры отстают совсем немного.

Лебедев, используя свои наработки при создании МЭСМ, разработал ещё 15 электронно-вычислительных машин. Но отечественным кибернетикам не дано было стать лидерами в компьютерной гонке. В 1966 году в СССР свернули разработку собственных вычислительных машин и начали копировать серию IBM 360 в качестве единого стандарта ЭВМ.

Академик Лебедев протестовал против этого решения — он рьяно доказывал, что клонирование устаревающих систем отбросит компьютерную индустрию на годы назад. Но учёного не послушали — у его оппонентов была власть.

В 1972 году решение о копировании американской IBM приняли окончательно. Эту весть Сергей Александрович принял очень тяжело. Здоровье немолодого уже академика постоянно ухудшалось, и через два года, после долгой болезни, Лебедев скончался.

Сергей Лебедев с коллегами знакомятся с компьютерами IBM, апрель-май 1959 года
Фото: «История информационных технологий в СССР и России»

Много ли выиграла советская компьютерная индустрия от этого решения? По мнению академика Малиновского, нанесённый ущерб был выше, чем полученные результаты. Клонирование IBM шло с трудом, документацию было сложно достать, не было подходящего оборудования и комплектующих. Сроки изготовления постоянно срывались.

В 1970-х годах советская вычислительная техника уже серьёзно отставала от западной, особенно в гражданских областях. ЭВМ использовали в основном в военных разработках. Но руководство страны не рассматривало производство электронно-вычислительных машин как ключевую отрасль. Бытовало мнение, что нехватку компьютеров можно восполнить большим количеством людей с арифмометрами.

В итоге компьютерная революция 1980-х застала страну врасплох. А в 1990-х годах СССР перестал существовать и отставание отечественной компьютерной техники от западной уже мало кого интересовало.

Возможно вы читали или видели на портале статьи про то, как развивалась отечественная индустрия электронно-вычислительной техники. Если нет, то перед прочтением этого материала рекомендую ознакомиться, как минимум, с первой частью Истории развития Советских ЭВМ.

Так вот, главной фигурой в этой истории был ученый Сергей Алексеевич Лебедев, проложивший путь для всех нынешних разработок России и бывшего Советского Союза. Им в 1948-м году была спроектирована первая в СССР ЭВМ «МЭСМ» — Малая Электронная Счетная Машина. Его заслуги и труд помнят по сей день. В его честь называют престижные премии, улицы в городах, а самое главное его имя гордо несет «ИТМиВТ» — Московский Институт Точной Механики и Вычислительной Техники имени Лебедева.

В его стенах Сергеем Алексеевичем была разработана самая производительная в СССР ЭВМ «БЭСМ» — Большая Электронная Счетная Машина, которая во многом превосходила даже западные аналоги того времени. В Советском Союзе и вовсе это был нонсенс. Несмотря на свое название, «БЭСМ» была более компактной относительно другой популярной ЭВМ «Стрела». Для «БЭСМ» требовалось 100 кв.метров в помещении, а для «Стрелы» целых 800. Несмотря на уменьшенные габариты, «БЭСМ» была намного производительнее «Стрелы». Повторюсь, более подробно о «железках» вы можете почитать здесь.

Сегодня мы будем говорить о тихом, скромном человеке, который делал свое дело не желая славы или денег. Он делал это для себя, для своей Родины, для будущего, ставшего для нас с вами уже настоящим. Здесь не будет красивой истории «Американской мечты» амбициозного предпринимателя, который ради своего дела бросил все. Эта история об обычном человеке, таком, как мы с вами, который любил семью, любил свое дело, любил учиться и учить, много и усердно работал, мечтая изменить мир.

Детство

Сергей Лебедев родился 20-го октября 1902-го года в Нижнем Новгороде еще в Царское время.

Отец Алексей Лебедев был учителем и литератором, а мать Анастасия Петровна потомственной дворянкой. Кроме Сергея у Алексея и Анастасии также была старшая дочь Татьяна.

Татьяна Алексеевна Лебедева (Маврина)

Также как и Сергей, Татьяна Алексеевна была выдающимся человеком, но в области абсолютно противоположной — в творческой. Всю свою жизнь она занималась иллюстрированием книг и живописью.

Татьяна Лебедева в молодости

С 1921-го по 1929-е года она училась в московском высшем художественно-техническом заведении «ВХУТЕМАС», ныне известным как РАЖВиЗ (Российская академия живописи, ваяния и зодчества) имени Ильи Глазунова. За свои труды, в 1981-м году Татьяна была награждена почетным орденом Заслуженного художника РСФСР.

Так что у Сергея в семье были достойные люди, послужившие для него примером, благодаря которому воспитали в юноше любовь к родине, мужество и терпение, без которого он не смог бы добиться таких высот. В тот же год, что и сестра, Сергей поступает в Московское высшее техническое училище имени Баумана.

Студенческие годы

Во время учебы Сергей обожал спорт. Активные увлечения были неотъемлемой частью его жизни. Он часто принимал участие в групповых походах в горы, катании на лыжах и сплавах по реке. И это все не мешало занятиям наукой.

Темой его дипломной работы стала проблема установок энергосистем. Весь процесс написания дипломной работы занял два года. Процессом руководил русский и советский электротехник Карл Адольфович Круг, которому принадлежит множество научных трудов по асинхронным двигателям, а также по проблемам преобразования электрического тока.

После защиты диплома Сергей становится преподавателем в Московском Энергетическом Институте (МЭИ). В 1936-м году он получил звание профессора, защитив докторскую, посвященную теории устойчивости энергетических систем. В 1939-м году защитил диссертацию на докторскую степень. В начале 1940-х Сергей занимался проектированием знаменитой Куйбышевской ГЭС (ныне Жигулевской ГЭС) на реке Волга. Даже на сегодняшний день эта ГЭС является второй по мощности среди всех гидроэлектростанций в Европе.

Свою основную работу он совмещал с хобби, которое заключалось в разработке устройства предназначенного для вычисления дифференциальных уравнений. Этот проект, над которым работал Сергей, стал отправной точкой перед проектированием знаменитой МЭСМ (Малой электронной счетной машины).

Великая Отечественная

К сожалению, Великая Отечественная Война отодвинула планы молодого ученого на несколько лет. Желая защищать родину, в 1941-м году Сергей вступил в ряды народного ополчения, так как по возрасту он не подлежал к военному призыву. В итоге на фронт его не взяли, так как ВЭИ (Всероссийский электротехнический институт) в срочном порядке на период военных действий переехал в Свердловск, где Лебедев продолжил заниматься преподавательской деятельностью.

В этом время семья Сергея бедствовала. Им приходилось жить в сараях и прочих временных укрытиях. В 1943-м году угроза нападения фашистских захватчиков на Москву миновала. И все кадры института вместе с Сергеем вернулись обратно в белокаменную.

Пережитая, невероятно ужасная и кровавая эпоха повлияла на ученого в будущем.Одним из применений его вычислительных машин стала разработка противовоздушной оборонной техники. Лебедев сам лично участвовал в работе над ними вместе с армией СССР. Его не интересовали орудия убийств. То, над чем он работал, предназначалось для охраны родины от военных вторжений с воздуха. Так что многие современные российские оборонные комплексы также берут корни у разработок Сергея Алексеевича.

Создание МЭСМ

Поначалу попытки ученого развернуть создание вычислительных устройств не воспринимались организационным бюро Советского Союза всерьез. У ученого чуть ли не опустились руки, однако по рекомендации своих друзей Лебедев переезжает в Киевский Институт энергетики, чтобы занять пост его главы.

В 1947-м институт делится на два отдельных учреждения, одно из которых стало заниматься теплоэнергетикой, а другое электротехникой. Лебедев стал директором института электротехники, что ему наконец позволило организовать лабораторию, в которой совместно со своими коллегами он приступил к разработке первой ЭВМ.

В одном из пунктов выше я упомянул, что Лебедев работал над проектированием Куйбышевской гидроэлектростанции и параллельно занимался исследованиями в области вычислительной техники. Из-за Великой Отечественной ему пришлось отложить эти исследования в долгий ящик. В то время ни в одной стране мира еще не было создано ни одной ЭВМ. Так что, если бы не нападение Фашистской Германии, то СССР могла бы стать страной, в которой была разработана первая в мире ЭВМ. Но это произошло чуть позже.

В 1949-м году Лебедев начал первые работы по проектированию МЭСМ. В её создании принимало участие около 42-х человек. После запуска велась её круглосуточная отладка. Сам Лебедев не покидал рабочего места сутками, оставаясь со своим детищем. После успешного тестирования инженерами было зафиксировано, что машина могла решать сложные уравнения, которые потребовали бы много времени для решения даже у хорошо образованного человека.

После этого отчет о проделанной работе был выслан в надзорные органы. В этот раз труд ученого был оценен властями должным образом. За это в 1952-м году Лебедев получил должность руководителя института в Москве.

Здание, в котором велись работы над МЭСМ находится в Феофании на улице Академика Лебедева, дом 19

МЭСМ является первой ЭВМ, разработанной в Европе.

БЭСМ

Получив огромный опыт в разработке МЭСМ, Сергей Лебедев незамедлительно применил его в создании другого проекта — Большой электронной счетной машины (БЭСМ). Существует легенда, что Лебедев записал всю схему новой ЭВМ на упаковках от папирос «Казбек». Сам Лебедев ехидно посмеивался, когда его спрашивали о правдивости этой легенды.

И лишь единицы видели огромные толстые тетради, исписанные схемами устройства вычислительной машины в мельчайших подробностях.

БЭСМ была самой производительной ЭВМ в Европе в то время. Она могла выполнять десять тысяч операций в секунду. Благодаря таким вычислительным возможностям, комплексы БЭСМ активно использовались в исследовательских и военных институтах для сложных расчетов, требующих высокой точности. Запуск первого искусственного спутника, а после и человека в космос были бы невозможны без созданных Лебедевым вычислительным машинам.

Позднее Лебедевым были разработаны следующие поколения БЭСМ — (БЭСМ-2 – БЭСМ-6), а также отдельная линейка суперкомпьютеров М-20, М-40, М-50. Подробно обо всем этом вы можете узнать в нашей статье про «ранние ЭВМ» выпущенные в Советском Союзе.

В начале 1970-х перед Сергеем Лебедевым, являвшимся академиком РАН, была поставлена не самая легкая задача — создать вычислительную машину, скорость вычислений которой будет составлять порядка 100 миллионов операций в секунду. В то время, даже за рубежом, не было ЭВМ с аналогичной производительностью. Так родился проект «Эльбрус», который живет и по сей день.

Лебедев неспроста выбрал такое название. В молодости, будучи любителем активного отдыха, ему удалось покорить самую высокую горную вершину России и Европы — Эльбрус.

Я должен от себя сказать, что в этом есть определенный символизм. Ведь создать высококлассную и суперпроизводительную ЭВМ, аналогов которой нет нигде, также нелегко, как и покорить Эльбрус.

В тот период появилась тенденция на копирование западных ЭВМ IBM. Лебедев был ярым противником этого, так как он считал, что без уникальных разработок и изобретений собственных технологий, отечественная наука может перестать развиваться, и начать деградировать. К сожалению, слова Лебедева особо ни на что не повлияли. И со временем основными моделями Советских ЭВМ стали становиться клоны IBM.

Благо на сегодняшний день, пускай и в очень сомнительной реализации, создание и разработка отечественной компьютерной техники начинает налаживаться. Я очень надеюсь и верю, что в будущем качественные показатели Российских технологических продуктов и производств повысятся. И возможно мы будем пользоваться устройствами, которые разрабатываются и собираются на нашей с вами родной земле.

Последние годы

Сергей Алексеевич Лебедев скончался летом 3 июля 1974-го года в возрасте 71-го года от тяжелой болезни. Всю свою жизнь он находился в окружении самых лучших людей — своей семьи, друзей, коллег. Он был очень заботливым и трудолюбивым человеком. Он любил свою Родину. Еще будучи в своих родных волжских местах он поклялся вечно служить своему отечеству и продолжал это делать до конца своих дней.

Петр Петрович Головистиков

Последний день своей жизни вместе с Сергеем провел его товарищ Петр Петрович Головистиков. Прибыв к Лебедеву в палату, он рассказывал ему о недавнем визите в Феофанию, где сам Сергей некогда был занят реализации своей судьбоносной для всех идеи. Он внимательно слушал рассказ Головистикова, но смотрел куда-то в пустоту. Этот взгляд Петр запомнил на всю жизнь.

Сергей Алексеевич Лебедев похоронен в Москве на Новодевичьем кладбище.

Заслуги Сергея Лебедева в развитии компьютерной техники СССР помнят до сих пор. В 1996-м году он был посмертно награжден Орденом Пионера Компьютерной Техники за заслуги в развитии Советских ЭВМ.

Его дело продолжает жить. Институт точной механики и вычислительной техники имени С.А.Лебедева ежегодно выпускает последователей ученого, которые продолжают заниматься совершенствованием науки в России и мире.

Во время разборов документации, принадлежащей ученому, выделялась одна папка — это были чертежи и подробные описания самой первой ЭВМ МЭСМ, созданной Лебедевым. Подписана она была словами — «Хранить вечно».

Академик Сергей Лебедев чувствовал себя совсем плохо. Воспаление легких, температура 40. Но он был уверен, что найдет силы встать с постели. Он должен поехать к министру и добиться, чтобы его приняли. Он должен доказать свою правоту. Иначе перечеркнуто дело всей жизни…

Великий молчун

У создателя первого отечественного компьютера Сергея Алексеевича Лебедева был дар предвидения. Еще в середине прошлого века он знал, что за электронно-вычислительной техникой будущее. Еще тогда загорелся идеей создать самую быстродействующую машину. Машину, которая сможет покорить мир…

Детство Сергей провел в Нижнем Новгороде. Мальчишкой был тихим и очень сосредоточенным. Из всех забав предпочитал опыты с электричеством. Однажды смастерил динамо-машину, в другой раз опутал квартиру проводами, чтобы подключить электрические звонки…

Мама Анастасия Петровна Маврина и отец Алексей Иванович Лебедев.

А это их сын Сергей в 1920 году.

В Москву Лебедевы переехали, когда вся страна обсуждала невиданный по масштабам план электрификации — ГОЭЛРО. Тридцать новых электростанций. Тысячи километров электрических проводов через всю страну. Перспективы промышленного и научного развития представлялись фантастическими.

В 1921 году Сергей поступил в Высшее техническое училище имени Баумана на электротехнический факультет и через несколько лет блестяще защитил дипломную работу на тему «Устойчивость параллельной работы электростанций». Совсем скоро его уже считали одним из самых компетентных в стране специалистов по теории надежности в электротехнике.

«Великий молчун» — так его называли. Он был методичным, сдержанным, обстоятельным. Но в нужный момент принимал решения молниеносно.

С Алисой Штейнберг Сергей познакомился в 1927 году на одном из подмосковных пляжей. Она плыла вдоль берега, а он неожиданно и эффектно вынырнул из воды прямо перед ней. Он понял сразу — она будет его женой.

Сергей и Алиса проживут вместе 47 лет. Он будет создавать свои супермашины. А она будет создавать их общий мир. «Молодые не имели своего угла и скитались по друзьям, — вспоминала их дочь Екатерина. — Так, их приютил муж сестры Алисы. В соседней комнате жил мальчик Зига, которого сегодня зовут академик Сигурд Оттович Шмидт. Ребенок на всю жизнь запомнил, как Сергей и Алиса курили, хохотали и целовались на бабушкином сундуке в прихожей».

Спустя годы Сергей Алексеевич признается, что «пережил с Алисой всю гамму чувств, кроме скуки». Какая скука, если в доме гостями были Илья Ильф и Евгений Петров, Михаил Зощенко и Юрий Олеша?!

Лебедев уже получил звание профессора и руководил лабораторией в Электротехническом институте, но в кругу близких людей мог повести себя как мальчишка. Например, съехать в подъезде по перилам. Или пробежаться по этажам, нажимая на дверные звонки. К «великому молчуну» добавился еще и «профессор-шалун».

Объяснялись с возмущенными соседями друзья. А профессор отправлялся в институт и до поздней ночи занимался проблемами мощных энергосистем, от создания которых зависело будущее страны.


Большая электронная счетная машина (БЭСМ-1) и ее создатель.

Единички-нолики 1941 года

Осенью 1941 года Лебедев записался в ополчение. Но на фронт его не отпустили: ученый разрабатывал боевые средства, самонаводящиеся на цель. По ночам он тушил зажигалки на институтской крыше и продолжал думать о своей супермашине. Дети вспоминали: когда в доме не было электричества, отец сидел в ванной у газовой колонки и писал единички-нолики.

Это была основа двоичной системы счисления.

В самом начале войны Лебедев уже вынашивал идею создания цифровых электронных вычислительных машин. Не расставался с мечтой и после 16 октября, когда институт срочно отправили в эвакуацию на Урал. Лебедевых поселили в сыром и холодном доме без всяких удобств. Не хватало лекарств, еды и детских вещей — их украли в поезде. Сергей Алексеевич допоздна пропадал в институте. Работал над созданием самонаводящихся торпед, конструировал систему стабилизации танковых орудий. А в редкие выходные отправлялся пешком за несколько километров от города, чтобы принести семье мешок мерзлой капусты.

В 1945 году Лебедевы вернулись в Москву. Великая Отечественная война закончилась. Но для Сергея Алексеевича его битва за суперЭВМ только начиналась. И пробить чиновничью оборону было потруднее, чем снарядом броню.

На приеме к члену ЦК ВКП(б), курировавшему науку, Лебедев доложил о своем проекте, назвал примерную стоимость ЭВМ. Разговор получился коротким.

— И какова скорость вычислений вашей машины?

— 1000 операций в секунду.

— Что же, мы за один-два месяца перерешаем на этой машине все наши задачи, а куда ее потом — на помойку?!

Лебедев понял, что продолжать разговор бессмысленно, и завершил его своим обычным тихим «ну-ну…». Но судьба уже готовила счастливый поворот.


«Думающее чудо»

О разработках Лебедева узнал президент Академии наук Украины Александр Богомолец. И пригласил его в Киев. Перспективы открывались фантастические: звание академика, должность директора Института энергетики. Не было никаких сомнений, какое решение надо принять. Но дома по этому случаю был устроен целый спектакль.

«И вот, в нашей квартире в Лефортово собрались друзья родителей, — вспоминал сын Сергей. — Мать предложила бросить жребий. Две бумажки с надписями «Киев» и «Москва» были положены в шапку и тщательно перемешаны. К счастью, выпал Киев! С тех пор эта шапка прочно вошла в семейные фольклорные анналы и стала в кругу друзей не менее знаменитой, чем шапка Мономаха».

Лебедевы переехали в Киев летом 1946 года. Того самого, когда американские конструкторы Джон Мочли и Джон Эккерт объявили о создании электронной вычислительной машины ЭНИАК. Разворачивалась яростная борьба за мировое первенство, и Сергей Алексеевич, — создал лабораторию вычислительной техники. Именно там должна была родиться первая в Советском Союзе электронная счетная машина.

А Алиса первым делом купила в их новый дом рояль, о котором вспоминал сын:

«Отец не прекращал думать о деле, пока не находил решение. Выдерживать большие перегрузки ему помогала его манера отдыхать. Если выпадал свободный час, он заполнял его игрой на рояле».

У Сергея Алексеевича наконец-то появился свой кабинет, но он так и не смог привыкнуть работать в одиночестве. Когда собирались друзья, выходил в гостиную, но работу не прекращал. Сидел за столом, рисовал свои схемы на папиросной коробке…

К осени 1948 года Лебедев закончил разработку основных принципов построения машины. Работы по ее созданию были развернуты в 15 километрах от Киева, в селе Феофания, в разрушенном здании бывшей монастырской гостиницы. Толковые специалисты были наперечет. Зато энтузиазма в избытке. Академик сам сверлил, клепал, монтировал. Работали круглыми сутками. И уже через пару лет машина «задышала».

Ее назвали МЭСМ — малая электронная счетная машина. Она стала первой ЭВМ в Советском Союзе и во всей континентальной Европе. Доработка Малой машины еще продолжалась, а Лебедев уже приступил к созданию Большой. К этому времени наконец-то и в столице признали исключительную важность научного направления. В 1953 году Лебедеву предложили возглавить Московский институт точной механики и вычислительной техники. К тому моменту в Специальном конструкторском бюро рождалась машина, которую назвали «Стрела». Но уступать Лебедев не собирался!

Его детище назвали «думающим чудом». Машина Лебедева справлялась с задачами в 5 раз быстрее «Стрелы». Более того, она оказалась самой быстродействующей в Европе! В 1956 году доклад Лебедева на конференции в Дармштадте произвел сенсацию.

А Сергей Алексеевич уже решал нелепую по меркам пятидесятых годов задачу: можно ли снарядом попасть в летящий снаряд? Лебедев понимал, что с этим может справиться ЭВМ. Как он и предвидел, компьютеры начинали завоевывать мир.


Апрель-май 1959 года. Генеральные конструкторы советских ЭВМ, приехав в США, знакомятся с компьютерами IBM. Третий слева - Сергей Алексеевич Лебедев.

Приказ на Запад

4 марта 1961 года с полигона в Капустином Яре стартовала ракета. Расчет для пуска противоракеты вела разработанная в институте Лебедева машина М-40. Спустя несколько минут на табло высветилась надпись «Подрыв цели».

На пресс-конференции Никита Хрущев сказал, что «наша ракета попадает в муху в космосе!». Американцы смогут повторить такой запуск только через 20 лет. Но лишь спустя годы в семье узнают, что в тот день на полигоне Сергей Алексеевич пережил несколько, возможно, самых страшных секунд в своей жизни. Перед запуском противоракеты в компьютере взорвалась электронная лампа. К счастью, с аварией удалось быстро справиться…

В его доме по-прежнему собирались друзья: Ираклий Андроников, Махмуд Эсамбаев, Зиновий Гердт, Александр Галич. Святослав Рихтер давал уроки игры на фортепиано младшей дочери Кате. И все так же Сергей Алексеевич выходил из кабинета к гостям с карандашом и папиросной коробкой. Но шутил уже не так часто.

 Свободное время - в саду, за пианино и, конечно, в кругу семьи (слева направо): сын Сергей, жена Алиса Григорьевна, приемный сын Яков, Сергей Алексеевич, дочери-близнецы Наталья и Екатерина.

«В один из вечеров Алиса Григорьевна с Андреем Дмитриевичем Сахаровым и другими академиками организовала тайный фонд, — вспоминал сын Сергей. — Его называли «академическая касса». Алиса Григорьевна собирала деньги, чтобы помогать нуждавшимся друзьям: Галичу, Солженицыну, Дудинцеву. Тяжелое было время…»

Возможно, самое тяжелое в жизни Сергея Алексеевича. Дискуссии о дальнейшем развитии вычислительной техники становились все яростнее. Лебедев был уверен, что надо идти своим путем, создавать собственную линию ЭВМ средней мощности и супер-ЭВМ нового поколения. Оппоненты предлагали создать ряд совместимых компьютеров, повторив американскую систему IBM. Лебедев жестко возражал: «Мы будем делать машину из ряда вон выходящую».

Выходящую из американского ряда!

У Лебедева были талант и опыт. У его противников — власть.

Зимой 1972 года Сергей Алексеевич лежал с воспалением легких, когда узнал, что решение копировать американскую машину принято окончательно. Он встал с постели и отправился к министру, чтобы убедить его не совершать ошибку, которая отбросит страну на годы назад. Лебедев прождал в приемной больше часа. Министр его не принял.

Кто выиграл от этого поворота на Запад?

«Копирование IBM шло трудно, с многократными сдвигами намеченных сроков, — вспоминал академик Международной академии информатизации Борис Малиновский. — При этом все «варились в собственном котле», с трудом доставая документацию на американскую систему. Если подумать об ущербе, который был нанесен отечественной вычислительной технике, то он, конечно, несравненно выше полученных скромных результатов».

Возможно, эта история приблизила смерть Сергея Алексеевича. Он все чаще болел. Алиса Григорьевна и дети круглосуточно дежурили в больнице. Выдающийся ученый умер 3 июля 1974 года.

ДОСЛОВНО

 Медаль Computer Pioneer, присужденная С.А. Лебедеву как основателю советской компьютерной отрасли.

«Среди ученых в нашей стране и за рубежом нет человека, который, подобно Лебедеву, обладал столь мощным творческим потенциалом, чтобы охватить период от создания первых ламповых ЭВМ, выполнявших лишь сотни операций в секунду, до сверхбыстродействующих супер-ЭВМ на интегральных схемах. За двадцать лет под его руководством было создано пятнадцать высокопроизводительных ЭВМ, и каждая — новое слово в вычислительной технике».

Борис Малиновский, академик Международной академии информатизации


P.S. Его битва за суперкомпьютер имела свое продолжение.

15 июля 1975 года об этом сообщили все газеты мира. Стартовал советско-американский космический проект «Союз — Аполлон». Управление полетом осуществлялось вычислительным комплексом, основу которого составляла лучшая лебедевская машина БЭСМ-6. Всю информацию она обрабатывала на 20 минут быстрее, чем американская.

На фото: Сергей Алексеевич Лебедев – изобретатель первого советского компьютера, настраивает свое детище

В 1946 году профессор Сергей Алексеевич Лебедев становится директором Института электротехники АН УССР и переезжает в Киев, чтобы приступить к разработке принципов работы электронных вычислительных машин (ЭВМ).

ЭВМ с чистого листа

Это был шаг, на который решился бы далеко не каждый ученый. Дело в том, что к этому времени Сергей Алексеевич был признанным специалистом в области теории устойчивости электрических системИзданная им совместно с П.С. Ждановым в 1933 году и переизданная годом позже монография «Устойчивость параллельной работы электрических систем», не имела мировых аналогов. Профессору, доктору технических наук, заведующему кафедрой релейной защиты и автоматизации энергосистем МЭИ, академику АН УССР Лебедеву 44 года, его заслуги и авторитет неоспоримы, дальнейший путь в науке, казалось бы, предопределен. Но Сергей Алексеевич решает все начать с чистого листа и разработать ЭВМ.

Сергей Алексеевич Лебедев

Сергей Алексеевич Лебедев

Сергей Алексеевич Лебедев жизненную необходимость создания ЭВМ. Поэтому, отправляясь в Киев и начиная работать над проектом первой советской ЭВМ – МЭСМ (Малая Электронная Счетная Машина), Лебедев, в случае неудачи, ставил под удар всю свою научную карьеру.

Риск был действительно велик. Ведь какой-либо информации о принципах действия такого рода машин и инженерных решений, необходимых для их реализации, у Лебедева не было. В 1946 году в США был построен первый в мире компьютер – ENIAC, разработанный учеными университета Пенсильвании. Но эти работы проводились по заказу армии США, и поэтому были засекречены. Первая информация о самом факте существовании такой машины появилась только в 1949 году, когда принципиальная схема работы МЭСМ уже сложилась, и Сергей Алексеевич сформировал рабочий коллектив для технической реализации своих идей.

ENIAC, США 1946 г (электрический числовой интегратор и калькулятор)

ENIAC, США 1946 г (электрический числовой интегратор и калькулятор)

Интересно, что если бы не война, первая в мире ЭВМ вполне могла бы появиться в Советском Союзе.

Так, по воспоминаниям Алисы Григорьевны Лебедевой, жены Сергея Алексеевича, в самом начале войны, в 1941 году, Сергей Лебедев уже начал разрабатывать принципы работы электронных машин. Но потребности оборонной промышленности заставили отложить эти работы на долгие пять лет.

В чем Лебедев опередил американцев

Тем не менее, кое в чем Лебедеву удалось опередить американцев. Дело в том, что ENIAC использовал привычную всем нам десятичную систему исчисления, тогда как МЭСМ – двоичную, ныне принятую во всем мире. И эта идея пришла к Сергею Алексеевичу еще в 1941 году.

Алиса Григорьевна вспоминала, что именно в это время она находила среди бумаг мужа листки, исписанные странными последовательностями нулей и единиц.

Все сущности, процессы и явления нашего мира на "языке компьютера" выглядят как последовательности нулей и единиц

Все сущности, процессы и явления нашего мира на “языке компьютера” выглядят как последовательности нулей и единиц

Более того, знаменитая статья американских ученых Фон Неймана, Голдстайна и Бёркса «Предварительное рассмотрение логической конструкции электронно-вычислительного устройства», где обосновывались преимущества двоичной арифметики, вышла в свет только в 1946 году.

Американские ученые.

Американские ученые.

Сергей Алексеевич прекрасно понимал, что существующие на тот момент счетные технические устройства (аналоговые машины и арифмометрыне могут справиться с объемами вычислений, необходимых для решения научно-технических задач, стоящих перед нашей страной. Мы часто говорим, что проблемы российской науки связаны с недостаточным вниманием к ней со стороны государства, остаточным принципом ее финансирования. С этим, конечно, трудно спорить. Тем не менее, история создания первой в стране ЭВМ учит нас, что не всегда все решают деньги, а иногда и люди.

Счеты - легенда советской бухгалтерии

Счеты – легенда советской бухгалтерии

СССР копирует США и – проигрывает. История компьютерного состязания двух сверхдержав

Первый советский компьютер. Как он был изобретен в 1946 году

Один из национальных проектов современной России называется «Цифровая экономика». Он будет действовать до конца 2024 года и включает в себя великое множество планов. Но мы хотим поговорить о «цифровой» истории России, в частности о создании компьютерной индустрии СССР. Поскольку на ее страницах было много интересных моментов, мы надеемся, что опыт прошлого поможет реализовать и предстоящие планы.

Первая попытка создания компьютера была не слишком удачной.

Оцифровать экономику в СССР попытались в 1970-е годы. Все началось в 1971 году, после визита тогдашнего Председателя правительства СССР Алексея Николаевича Косыгина в США. Там ему показали последние (на самом деле нет) научно-технические достижения. В частности, работу американских систем управления местным «народным хозяйством», работающих на базе серии компьютеров IBM 360/370. Косыгин, будучи весьма прозорливым человеком, сразу понял, что Советскому Союзу жизненно необходим некий аналог американской системы. Громоздкая советская бюрократическая машина задыхалась во все увеличивающихся объемах бумажной документации.

IBM 360/370

IBM 360/370

Не сказать, что в эти времена в СССР совсем не было ЭВМ. Они были, и их было много (около 20 типов). Семейство БЭСМ, Урал, Днепр, Мир, Минск и другие. Все дело в том, что на аппаратном и программном уровне они были между собой несовместимы. Это крайне затрудняло обмен информацией между ними и делало все это богатство неприспособленным к оперативному управлению экономикой страны. Нужна была единая система однотипных ЭВМ разной мощности.

У пульта БЭСМ-6, г.Дубна

У пульта БЭСМ-6, г.Дубна

Это вполне разумное решение было принято на самом высоком уровне. Но чиновники посчитали, что от добра добра не ищут. Зачем изобретать велосипед, когда он уже изобретен. И было принято решение скопировать американские ЭВМ IBM 360/370. Благо, информация об их архитектуре была доступна.

Один из самых выдающихся (в СССР и мире) создателей ЭВМ, академик Сергей Алексеевич Лебедев, выступил решительно против копирования американской техники. Он предложил создать оригинальный ряд малых и средних ЭВМ третьего поколения и независимо от него вести разработку Супер ЭВМ. Он считал, что накопленный опыт и созданный к тому времени значительный производственный потенциал позволяют перейти к разработке ЭВМ четвертого поколения раньше, чем это сделают американцы. Но чиновники не послушали академика.

Академик Сергей Алексеевич Лебедев - создатель первого компьютера в СССР

Академик Сергей Алексеевич Лебедев – создатель первого компьютера в СССР

Чиновники СССР взяли курс на IBM

Победа чиновничьей логики привела к тому, что почти все творческие коллективы были расформированы. Основной задачей стало копирование американской техники. Гигантский коллектив ВНИИЦЭВТ копировал машины IBM, а коллектив ИНЭУМ – машины DEC – производителя мини и микро ЭВМ серии PDP.

Здание НИЦЭВТ на Варшавском шоссе в Москве длиной более 720 метров

Здание НИЦЭВТ на Варшавском шоссе в Москве длиной более 720 метров

Проблема состояла в том, что отечественные микросхемы не соответствовали американским, а уворованные куски матобеспечения не работали друг с другом. Конечно, машины (они назывались ЕС – единая серия, а не Евросоюз, как вы могли бы подумать) были построены и даже кое-как работали. Но в процессе копирования уже устаревшей американской техники, мы бесконечно отстали от мирового компьютеростроения. Военные ЭВМ были еще на высоте, но вскоре и эти разработки сошли на нет.

В последующих публикациях на нашем канале мы расскажем о «золотом веке» отечественных ЭВМ, когда мы во многом превосходили Америку, и о сегодняшнем дне отечественной компьютерной индустрии.

Источник

Первый советский компьютер. Как он был изобретен в 1946 году

Первый советский компьютер. Как он был изобретен в 1946 году

Просмотрено: 2 242

Публикация:

Первый советский компьютер. Как он был изобретен в 1946 году
987

Бородатый и очкастый, носит серую гэдээровскую курточку и любимые джинсы, исполосованные «молниями».

Комментарии: 5Публикации: 151Регистрация: 08-09-2019

На первый взгляд может показаться, что вычислительная техника разрабатывалась только в США. Но это не так. Действительно, новая научная область требовала больших финансовых вложений, что было не под силу послевоенной Европе, ставшей основным плацдармом Второй мировой войны. Одной из немногих стран, которая, несмотря ни на что, стала участником гонки в компьютеростроении, являлся СССР.
Советские ЭВМ

В 1948 г. академик Сергей Алексеевич Лебедев (1902-1974), пионер отечественного производства компьютеров, начал строительство первой советской (и европейской) ЭВМ – малой электронной счетной машины (МЭСМ). Работы по ее созданию носили исследовательский, экспериментальный характер. В 1950 г. в Институте электромеханики Академии наук Украины МЭСМ ввели в эксплуатацию. В 1952-1953 гг. она оставалась практически единственной регулярно эксплуатируемой ЭВМ в Европе.

МЭСМ

Основные параметры машины: быстродействие – 50 операций в секунду; в памяти можно было хранить 31 16-разрядное число и 63 команды длиной 20 бит; площадь помещения, занимаемого машиной, — 60 м^2; потребляемая мощность – 25 кВт. Только в ОЗУ использовалось 2,5 тыс. триодов и 1,5 тыс. диодов. Для расширения маленькой памяти можно было дополнительно использовать магнитный барабан емкостью 5 тыс. слов (по 16 бит). Машина имела сменное так называемое долговременное запоминающее устройство (позже названное ПЗУ) для хранения числовых констант и часто выполняемых команд.

МЭСМ

Конечно, машина, по современным меркам, работала медленно, но основные принципы ее построения (Лебедев предложил их независимо от проводимых в США разработок) использовались при проектировании других ЭВМ. МЭСМ фактически явилась моделью БЭСМ – большой электронной счетной машины. Обе машины (МЭСМ и БЭСМ) были изготовлены в единичном экземпляре.

БЭСМ

Практически весь коллектив сотрудников, создавших МЭСМ, стал ядром Вычислительного центра АН УССР, организованного на базу лаборатории С. А. Лебедева.

Работа над БЭСМ в Вычислительном центре закончилась в 1952 г., и через год в АН СССР она уже вошла в строй. БЭСМ по праву признана лучшей европейской ЭВМ 50-х гг. XX в. Машина обрабатывала 39-разрядные слова со средней скоростью 10 тыс. операций в секунду. В качестве внешних запоминающих устройств БЭСМ использовала два магнитных барабана по 5120 символов в каждом. Скорость считывания с барабана составляла 800 слов в минуту. К машине также подключались магнитные ленты общей емкостью 120 тыс. слов.

Шкаф

БЭСМ положила начало целой серии цифровых вычислительных машин. Ртутные линии задержки, используемые в качестве элементов оперативной памяти, в 1954 г. были заменены на запоминающие электронно-лучевые трубки. А через два года их сменили ферритовые сердечники объемом 1024 39-разрядных слова. В таком виде машина известна как БЭСМ-1. На ней решались разнообразные задачи, например, подсчитывались орбиты движения 700 малых планет Солнечной системы.

Для промышленного изготовления конструкцию машины переделали, и в 1958 г. начался серийный выпуск ламповой машины БЭСМ-2. Ее потребляемая мощность составляла 75 кВт.

БЭСМ-2

В 1964 и 1966 гг. появились новые машины этого ряда – БЭСМ-3М и БЭСМ-4. В отличие от своих предшественниц, они собирались из полупроводниковых элементов. Машина БЭСМ-4 имела память 2*4096 45-разрядных слов, четыре магнитных барабана объемом 16,384 тыс. слов и потребляла всего 8 кВт мощности.

БЭСМ-4

В 1967 г. для задач, требующих множества сложных вычислений, была создана полупроводниковая машина БЭСМ-6 со средним быстродействием 1 млн операций в секунду. По сравнению с БЭСМ-4 память возросла в 8 раз (разрядов было 48, а не 45), а магнитных барабанов стало 16 по 32 тыс. слов в каждом.

В БЭСМ-6 отразились все передовые тенденции развития вычислительной техники того времени: мультипрограммный режим, аппаратная система прерывания, схема «защиты памяти» и автоматического присвоения адресов (т.е. фактически диспетчер задач). Любая часть памяти могла использоваться в качестве стека. Центральный процессор использовал одноадресную систему команд и 16 быстродействующих регистров.

БЭСМ-6

Для программирования применялись языки FORTRAN и Algol. Машина оказалась настолько удачна и надежна, что эксплуатировалась до 90-х гг. Редкий современный компьютер похвастает подобным долголетием!

Фортран

Под руководством С. А. Лебедева в 1958 г. в Институте точной механики и вычислительной техники АН СССР создали ЭВМ М20. Она стала родоначальницей семейства машин М220 и М222. Среднее быстродействие М20 было 20 тыс. операций в секунду. Память объемом 4096 45-разрядных слов выполнена на ферритовых сердечниках. Три магнитных барабана запоминали более 12 тыс. слов. Ввод происходил с перфокарт, вывод – на печатающее устройство. Машина была построена по блочному принципу, что упрощало ремонт. В ней использовалось 4,5 тыс. электронных ламп и 3,5 тыс. полупроводниковых диодов.

М20

В 1957 г. в Пензе была создана одноадресная ламповая ЭВМ «Урал-1». Хотя машина отличалась большими размерами, по производительности ее отнесли к малым. Можно считать, что с «Урал-1» началась история малых ЭВМ. При малом быстродействии (100 операций в секунду) машина не нуждалась в быстром запоминающем устройстве, поэтому в качестве основной памяти использовался магнитный барабан объемом 1024 36-битных слова, который впоследствии заменили на ферритовое запоминающее устройство. В 1964-1971 гг. выпустили ряд программно и аппаратно совместимых между собой моделей: «Урал-11», «Урал-14», «Урал-16».

Урал-1

Машины серии «Минск» в 70-х гг. и 80-х гг. XX в. Применялись в основном для инженерных и научных расчетов. Одна из них, «Минск-22» (ее показатели: 5 тыс. операций в секунду, память – 8 тыс. 37-разрядных слов), долгое время являлась основным компьютером вычислительного центра ГУМа (главного универмага страны). В ней (магнитная лента вмещала 1,6 млн слов) хранилась информация о всех складах магазина, машина производила расчет заработной платы. Однако, испытывая некоторое недоверие к вычислительной технике, руководство параллельно держало обширный штат бухгалтеров, проверявших вычисления машины. Ассемблер ЭВМ имел кириллическую мнемонику и назывался ЯСК (язык символического кодирования).

Минск-22

Другой компьютер этого ряда «Минск-32» обладал быстродействием 25 тыс. операций в секунду и комплектовался памятью до 65 тыс. 37-разрядных слов. Машина была программно совместима с «Минском-22». Медленные и быстрые каналы позволяли подключать к ней магнитные барабаны, что существенно ускоряло производительность. ЭВМ «Минск-32» уже имела компиляторы с языков программирования высокого уровня – Алгамс (разновидность Algol) и Кобол.

Минск-32

К отечественным супер ЭВМ (машины, предназначенные для высокоскоростных вычислений) относят многопроцессорные вычислительные комплексы (МВК) «Эльбрус», разработанные в 1970-1980-х гг. «Эльбрус-1» достигал производительности 10 млн операций в секунду. В конфигурацию машины входило до десяти центральных процессоров, обращающихся к общей памяти. Обман с внешними устройствами производили процессоров ввода-вывода, которые фактически представляли собой специализированные. Максимально машина могла управлять четырьмя такими процессорами. Другие спец ЭВМ – процессоры передачи данных – обеспечивали связь с пользователями.

Эльбрус-1

В МВК использовано много неординарных решений, например, каждая величина, хранящаяся в памяти, снабжена дополнительным признаком – тегом (управляющим разрядом). В нем содержится информация о типе хранимой величины, а также признак защиты от чтения или записи. Архитектура центрального процессора имела много общего с аналогичными комплексами американской фирмы Burroughs.

В конце 70-х гг. в Советском Союзе началось производство универсальных многопроцессорных комплексов четвертого поколения «Эльбрус-2». Производительность каждого процессора превышала 10млн операций в секунду. Суммарная производительность могла достигать 100 млн операций в секунду.

Эльбрус-2

Отечественное компьютеростроение испытывало трудности, связанные с необходимостью высококачественного промышленного изготовления электронных компонентов. Вероятно, поэтому был повторен не совсем удачный опыт фирмы IBM System/360 в виде серии ЕС ЭВМ (единой серии). Многие успешные (и не очень) решения копировались с западных аналогов. Прообразом киевской мини-машины СМ-4 и зеленоградской «Электроники-79» стали машины серии PDP-11 фирмы DEC (США). Однако отечественные образцы уступали по основному критерию потребителя – надежности. А с появлением персональных компьютеров бороться с всепроникающим IBM PC не смогли ни западные конкуренты, ни российские разработчики.

Загрузка…

Я очень люблю статьи о развитии той или иной отрасли. Поэтому не мог пройти мимо статьи Владимира Сосновского и Антона Орлова » Советские компьютеры…»

А поскольку помню, что среди читателей есть много программистов — надеюсь вам это тоже будет интересно. Оригинал статьи.

Советские компьютеры: преданные и забытые.

Сколько критических стрел было выпущено за последние годы по поводу состояния нашей вычислительной техники! И что была она безнадежно отсталой (при этом обязательно ввернут про «органические пороки социализма и плановой экономики»), и что сейчас развивать ее бессмысленно, потому что «мы отстали навсегда». И почти в каждом случае рассуждения будут сопровождаться выводом, что «западная техника всегда была лучше», что «русские компьютеры делать не умеют»…

Обычно, критикуя советские компьютеры, акцентируется внимание на их ненадежности, трудности в эксплуатации, малых возможностях. Да, многие программисты «со стажем» наверняка помнят те «зависающие» без конца «Е-Эс-ки» 70-80-х годов, могут рассказать о том, как выглядели «Искры», «Агаты», «Роботроны», «Электроники» на фоне только начавших появляться в Союзе IBM PC (даже и не последних моделей) в конце 80-х — начале 90-х, упомянув о том, что такое сравнение оканчивается отнюдь не в пользу отечественных компьютеров. И это так — указанные модели действительно уступали западным аналогам по своим характеристикам.

Но эти перечисленные марки компьютеров отнюдь не являлись лучшими отечественными разработками, — несмотря на то, что были наиболее распространенными. И на самом деле советская электроника не только развивалась на мировом уровне, но и иной раз опережала аналогичную западную отрасль промышленности!

Но почему же тогда сейчас мы используем исключительно иностранное «железо», а в советское время даже с трудом «добытый»
отечественный компьютер казался грудой металла по сравнению с западным аналогом? Не является ли утверждение о превосходстве советской электроники голословным?

Нет, не является! Почему? Ответ — в этой статье.

Слава наших отцов

Официальной «датой рождения» советской вычислительной техники следует считать, видимо, конец 1948 года. Именно тогда в секретной лаборатории в местечке Феофания под Киевом под руководством Сергея Александровича Лебедева (в то время — директора Института электротехники АН Украины и по совместительству руководителя лаборатории Института точной механики и
вычислительной техники АН СССР) начались работы по созданию Малой Электронной Счетной Машины (МЭСМ).


С.А.Лебедев с коллегами

Лебедевым были выдвинуты, обоснованы и реализованы (независимо от Джона фон Неймана) принципы ЭВМ с хранимой в памяти программой. 

В своей первой машине Лебедев реализовал основополагающие принципы построения компьютеров, такие как:
— наличие арифметических устройств, памяти, устройств ввода/вывода и управления;
— кодирование и хранение программы в памяти, подобно числам;
— двоичная система счисления для кодирования чисел и команд;
— автоматическое выполнение вычислений на основе хранимой программы;
— наличие как арифметических, так и логических операций;
— иерархический принцип построения памяти;
— использование численных методов для реализации вычислений.

Проектирование, монтаж и отладка МЭСМ были выполнены в рекордно короткие сроки (примерно 2 года) и проведены силами всего 17 человек (12 научных сотрудников и 5 техников). Пробный пуск машины МЭСМ состоялся 6 ноября 1950 года, а регулярная эксплуатация — 25 декабря 1951 года .


Первое детище С.А.Лебедева — МЭСМ, За пультом Л.Н.Дашевский и С.Б.Погребинский, 1948-1951гг

В 1953 году коллективом, возглавляемым С.А.Лебедевым, была создана первая большая ЭВМ — БЭСМ-1 (от Большая Электронная Счетная Машина), выпущенная в одном экземпляре. Она создавалась уже в Москве, в Институте точной механики (сокращенно — ИТМ) и Вычислительном центре АН СССР, директором которого и стал С.А.Лебедев, а собрана была на Московском заводе счетно-аналитических машин (сокращенно — САМ). 


Лебедев у одной из стоек БЕСМ-1

После комплектации оперативной памяти БЭСМ-1 усовершенствованной элементной базой ее быстродействие достигло 10000 операций в секунду — на уровне лучших в США и лучшее в Европе. В 1958 году после еще одной модернизации оперативной памяти БЭСМ, уже получившая название БЭСМ-2, была подготовлена к серийному производству на одном из заводов Союза, которое и
было осуществлено в количестве нескольких десятков.

Параллельно шла работа в подмосковном Специальном конструкторском бюро № 245, которым руководил М.А.Лесечко, основанном также в декабре 1948 года приказом И.В.Сталина. В 1950-1953 гг. коллектив этого конструкторского бюро, но
уже под руководством Базилевского Ю.Я. разработал цифровую вычислительную машину общего назначения «Стрела» с быстродействием в 2 тысячи операций в секунду. Эта машина выпускалась до 1956 года, а всего было сделано 7
экземпляров. Таким образом, «Стрела» была первой промышленной ЭВМ, — МЭСМ, БЭСМ существовали в то время всего в одном экземпляре. 


ЭВМ «Стрела».

Вообще, конец 1948 года был крайне продуктивным временем для создателей первых советских компьютеров. Несмотря на то, что обе упомянутые выше ЭВМ были одними из лучших в мире, опять-таки параллельно с ними развивалась еще одна ветвь советского компьютеростроения — М-1, «Автоматическая цифровая вычислительная машина», которой руководил И.С.Брук.


И.С.Брук

М-1 была запущена в декабре 1951 года — одновременно с МЭСМ и почти два года была единственной в
СССР действующей ЭВМ (МЭСМ территориально располагалась на Украине, под Киевом).


Первая задача, решенная на М1

Однако быстродействие М-1 оказалось крайне низким — всего 20 операций в секунду, что, впрочем, не помешало решать на ней задачи ядерных исследований в институте И. В. Курчатова. Вместе с тем М-1 занимала довольно мало места — всего 9 квадратных метров (сравните со 100 кв.м. у БЭСМ-1) и потребляла значительно меньше энергии, чем детище Лебедева. М-1 стала родоначальником целого класса «малых ЭВМ», сторонником которых был ее создатель И.С.Брук. Такие машины, по мысли Брука, должны были предназначаться для небольших конструкторских бюро и научных организаций, не имеющих средств и помещений для приобретения машин типа БЭСМ.

В скором времени М-1 была серьезно усовершенствована, и ее быстродействие достигло уровня «Стрелы» — 2 тысячи операций в секунду, в то же время размеры и энергопотребление выросли незначительно. Новая машина получила закономерное название М-2 и введена в эксплуатацию в 1953 году. По соотношению стоимости, размеров и производительности М-2 стала наилучшим компьютером Союза. Именно М-2 победила в первом международном шахматном турнире между компьютерами.

В результате в 1953 году серьезные вычислительные задачи для нужд обороны страны, науки и народного хозяйства можно было решать на трех типах вычислительных машин — БЭСМ, «Стрела» и М-2. Все эти ЭВМ — это вычислительная техника первого поколения. Элементная база — электронные лампы — определяла их большие габариты, значительное энергопотребление, низкую надежность и, как следствие, небольшие объемы производства и узкий круг пользователей, главным образом, из мира науки. 

В таких машинах практически не было средств совмещения операций выполняемой программы и распараллеливания работы различных устройств; команды выполнялись одна за другой, АЛУ («арифметико-логическое устройство», блок, непосредственно
выполняющий преобразования данных) простаивало в процессе обмена данными с внешними устройствами, набор которых был очень ограниченным. Объем оперативной памяти БЭСМ-2, например, составлял 2048 39-разрядных слов, в качестве внешней памяти использовались магнитные барабаны и накопители на магнитной ленте.

Сетунь — первая и единственная в мире троичная ЭВМ. МГУ. СССР.

Завод-изготовитель: Казанский завод математических машин Минрадиопрома СССР. Изготовитель логических элементов — Астраханский завод электронной аппаратуры и электронных приборов Минрадиопрома СССР. Изготовитель магнитных барабанов — Пензенский завод ЭВМ Минрадиопрома СССР. Изготовитель печатающего устройства — Московский завод пишущих машин Минприборпрома СССР. 
Год окончания разработки: 1959.
Год начала выпуска: 1961.
Год прекращения выпуска: 1965.
Число выпущенных машин: 50.


В наше время «Сетунь» не имеет аналогов — развитие информатики ушло в русло двоичной логики.

На Западе дело в то время обстояло не слишком лучше. Вот пример из воспоминаний академика Н.Н.Моисеева, ознакомившегося с опытом своих коллег из США: «Я увидел, что в технике мы практически не проигрываем: те же самые ламповые вычислительные монстры, те же бесконечные сбои, те же маги-инженеры в белых халатах, которые исправляют поломки, и мудрые математики, которые пытаются выйти из трудных положений.» 


IBM 701.

Напомним, что в 1953 г. в США был выпущен компьютер IBM 701 с быстродействием до 15 тысяч операций в секунду, построенный на электронно-вакуумных лампах, бывший наиболее производительным в мире.  Но более производительной была следующая разработка Лебедева — ЭВМ М-20, серийный выпуск которой начался в 1959 году.


ЭВМ М-20

Число 20 в названии означает быстродействие — 20 тысяч операций в секунду, объем оперативной памяти в два раза превышал ОП БЭСМ, предусматривалось также некоторое совмещение выполняемых команд. В то время это была одна из наиболее мощных и надежных машин в мире, и на ней решалось немало важнейших теоретических и прикладных задач науки и техники того времени. В машине М20 были реализованы возможности написания программ в мнемокодах. Это значительно расширило круг специалистов, которые смогли воспользоваться преимуществами вычислительной техники. По иронии судьбы компьютеров М-20 было выпущено ровно 20 штук.

ЭВМ первого поколения выпускались в СССР довольно долго. Даже в 1964 году в Пензе еще продолжала производиться ЭВМ «Урал-4», служившая для экономических расчетов.


«Урал-1».

Победной поступью.

В 1948 году в США был изобретен полупроводниковый транзистор, который стал использоваться в качестве элементной базы ЭВМ. Это позволило разработать ЭВМ с существенно меньших габаритов, энергопотребления, при существенно более высокой (по сравнению с ламповыми компьютерами) надежности и производительности. Чрезвычайно актуальной стала задача автоматизации программирования, так как разрыв между временем на разработку программ и временем собственно расчета увеличивался.

Второй этап развития вычислительной техники конца 50-х — начала 60-х годов характеризуется созданием развитых языков программирования (Алгол, Фортран, Кобол) и освоением процесса автоматизации управления потоком задач с помощью самой ЭВМ, то есть разработкой операционных систем. Первые ОС автоматизировали работу пользователя по выполнению задания, а затем были созданы средства ввода нескольких заданий сразу (пакета заданий) и распределения между ними вычислительных ресурсов. Появился мультипрограммный режим обработки данных.  Наиболее характерные черты этих ЭВМ, обычно называемых «ЭВМ второгопоколения»:

совмещение операций ввода/вывода с вычислениями в центральном процессоре;

увеличение объема оперативной и внешней памяти;

использование алфавитно-цифровых устройств для ввода/вывода данных;

«закрытый» режим для пользователей: программист уже не допускался в машинный зал, а сдавал программу на алгоритмическом языке (языке высокого уровня) оператору для ее дальнейшего пропуска на машине.

В конце 50-х годов в СССР было также налажено серийное производство транзисторов. 

Отечественные транзисторы (1956 г).

Это позволило приступить к созданию ЭВМ второго поколения с большей производительностью, но меньшими занимаемой площадью и энергопотреблением. Развитие вычислительной техники в Союзе пошло едва ли не «взрывными» темпами: в короткий срок число различных моделей ЭВМ, пущенных в разработку, стало исчисляться десятками: это и М-220 — наследница лебедевской М-20, и «Минск-2» с последующими версиями, и ереванская «Наири», и множество ЭВМ военного назначения — М-40 с быстродействием 40 тысяч операций в секунду и М-50 (еще имевшие в себе ламповые компоненты).

Именно благодаря последним в 1961 году удалось создать полностью работоспособную систему противоракетной обороны (во время испытаний неоднократно удалось сбить реальные баллистические ракеты прямым попаданием в боеголовку обьемом в половину кубического метра). Но в первую очередь хотелось бы упомянуть серию «БЭСМ», разрабатываемую коллективом разработчиков ИТМ и ВТ АН СССР под общим руководством С.А.Лебедева, вершиной труда которых стала ЭВМ БЭСМ-6 созданная в 1967 году. Это была первая советская ЭВМ, достигшая быстродействия в 1 миллион операций в секунду (показатель, превзойденный отечественными ЭВМ последующих выпусков только в начале 80-х годов при значительно более низкой, чем у БЭСМ-6, надежности в эксплуатации). 


БЭСМ-6

Кроме высокого быстродействия (лучший показатель в Европе и один из лучших в мире), структурная организация БЭСМ-6 отличалась целым рядом особенностей, революционных для своего времени и предвосхитивших архитектурные особенности ЭВМ следующего поколения (элементную базу которых составляли интегральные схемы). Так, впервые в отечественной практике и полностью независимо от зарубежных ЭВМ был широко использован принцип совмещения выполнения команд (до 14 машинных команд могли одновременно находиться в процессоре на разных стадиях выполнения). Этот принцип, названный главным конструктором БЭСМ-6 академиком С.А.Лебедевым принципом «водопровода», стал впоследствии широко использоваться для повышения производительности универсальных ЭВМ, получив в современной терминологии название «конвейера команд».

БЭСМ-6 выпускалась серийно на московском заводе САМ с 1968 по 1987 год (всего было выпущено 355 машин) — своего рода рекорд! Последняя БЭСМ-6 была демонтирована уже в наши дни — в 1995 году на московском вертолетном заводе Миля. БЭСМ-6 были оснащены крупнейшие академические (например, Вычислительный Центр АН СССР, Обьединенный Институт Ядерных Исследований) и отраслевые (Центральный Институт Авиационного Машиностроения — ЦИАМ) научно-исследовательские институты, заводы и конструкторские бюро.

Интересна в этой связи статья куратора Музея вычислительной техники в Великобритании Дорона Свейда о том, как он покупал в Новосибирске одну из последних работающих БЭСМ-6:

«Российская серия суперкомпьютеров БЭСМ, разрабатывавшаяся более чем 40 лет тому назад, может
свидетельствовать о лжи Соединенных Штатов, объявлявших технологическое
превосходство в течение лет холодной войны» (статья целиком).


5Э261 — первая в СССР мобильная многопроцессорная высокопроизводительная управляющая система.

Предательство и конец — читать дальше  на Dreamwidth (ЖЖ ограничивает размер статьи).

Исторические факты:

1948 — 1958 гг., первое поколение ЭВМ

1947-1948 г. — начало работ по созданию в Институте электроники Академии наук Украины под руководством академика Сергея Алексеевича Лебедева первой отечественной первая универсальной ламповой ЭВМ — МЭСМ (малой электронной счетной машины).

1948 г. — И. С. Брука получил диплом на изобретение ЭВМ и представил проект создания такой машины, названной М-1. В декабре И. С. Брук и Б. И. Рамеев получили авторское свидетельство на изобретение «Автоматическая цифровая электронная машина». Из-за организационных трудностей работы затянулись.

1950 г. — вступает в действие первая в СССР вычислительная электронная цифровая машина МЭСМ, самая быстродействующая тогда в Европе, а в 1951 году она официально вводится в эксплуатацию.

1952 г. — началась практическая эксплуатация ЭВМ М-1, разработанной под руководством И. С. Брук. За М-1 последовали М-2. Ее разработку выполнила группа выпускников МЭИ, возглавляемая М.А.Карцевым. Затем была выпушена машина М-3. ЭВМ М-3 занимает особое место в развитии вычислительной техники. С некоторыми модификациями она была повторена в Ереване, Минске, а также за рубежом — в Китае и Венгрии, где послужила основой для развития математического машиностроения.

1953 г. — в Академии наук СССР (Москва), вводится в эксплуатацию БЭСМ (большая электронная счетная вычислительная машина), разработанная в Институте точной механики и вычислительной техники АН СССР. под руководством С.А.Лебедева. БЭСМ относится к классу цифровых вычислительных машин общего назначения, ориентированных на решение сложных задач науки и техники.

1953 г. в Москве, в СКБ Министерства машиностроения и приборостроения под руководством Ю. Я. Базилевского и Б. И. Рамеева закончена разработка серийной ЭВМ «Стрела» общего назначения.

1954 г. — начался серийный выпуск ЭВМ «Стрела». Серия оказалась очень маленькой: всего за четыре года было выпущено семь машин. Тем не менее 1954 г. — это год становления отечественной индустрии ЭВМ.

1955 г. — институт точной механики и вычислительный техники АН СССР ввел усовершенствования в Большую ЭВМ «БЭСМ», повысившие её быстродействие до 8000 операций в секунду.

1956 г. — в СССР Госкомиссии представлена ЭВМ М-3, разработанная инициативной группой (И. С. Брук, Н.Я.Матюхин, В.В.Белынский, Г.П.Лопато, Б.М.Каган, В.М.Долкарт, Б.Б.Мелик-Шахназаров).

1956 г. — разработана ЭВМ БЭСМ-2. Руководитель разработки — С.А.Лебедева 

1957 г. — завершена разработка одной из наиболее совершенных чисто релейных вычислительных машин РВМ-1. Машина сконструирована и построена под руководством советского инженера И. И. Бессонова (начало постройки относится к 1954 году).

1957 г. — в Пензе под руководством Б. И. Рамеева создана одноадресная ламповая ЭВМ «Урал-1″общего назначения, ориентированных на решение инженерно-технических и планово-экономических задач. Она положилая начало целому семейству малых ЭВМ «Урал».

1958 г. — введена в эксплуатацию ЭВМ M-20 (Казань) Разработка выполнена ИТМ и ВТ совместно с СКБ-245. Руководитель: С.А.Лебедев, заместитель главного конструктора М. К. Сулим, М. Р. Шура-Бура. М-20 — цифровая электронная вычислительная машина общего назначения, ориентированная на решение сложных математических задач. Она послужила исходной моделью семейства совместимых вычислительных машин М-220 и М-222. 

1958 г. — начало выпуска в Ульяновске БЭСМ-2 (С.А.Лебедев, В.А.Мельников). 

1958 г. — в институте кибернетики АН УССР разработана электронная цифровая вычислительная машина “КИЕВ”, предназначенная для решения широкого круга научных и инженерных задач.

1958 г. — в Ереване под руководством Ф.Т. Саркисяна (Б.Б.Мелик-Шахназаров) создана ЭВМ «Раздан». 


Раздан-2

1958 г. — под руководством Н.П. Брусенцова в вычислительном центре Московского университета была создана и запущена в производство первая и единственная в мире троичная ЭВМ «Сетунь». “Сетунь” — малая цифровая вычислительная машина, предназначенная для решения научно-технических и экономических задач средней сложности. Серийно выпускалась 1962-1964. 

1959 г. — созданы опытные образцы ЭВМ М-40, М-50 для систем противоракетной обороны (ПРО). Разработчики — С.А.Лебедев и В.С.Бурцев (Ленинская премия 1966 г. за специализированный автоматизированный комплекс обработки информации для
системы ПРО на базе этих ЭВМ).  

1959 г. — начало выпуска в Минске ЭВМ «Минск-1» применялась в основном для решения инженерных, научных и конструкторских задач математического и логического характера. (Г.П.Лопато). 

1959 г. — в СССР была введена в эксплуатацию первая ламповая специализированная стационарная ЭВМ СПЕКТР-4 предназначенная для наведения истребителей-перехватчиков.

1959 г. — под руководством Я.А.Хетагурова (ЦМНИИ-1) создана первая в СССР мобильная полупроводниковая ЭВМ «КУРС» для обработки радиолокационной информации.

1959 г. — универсальная ЭВМ «Киев» 


ЭВМ «Киев»

1960 г. — в СССР разработана первая полупроводниковая управляющая машина «Днепр» (В.М.Глушков, Б.Н. Малиновский).

1960 г. — создана первая микропрограммная специализированная ЭВМ «Тетива» для системы ПВО. Производство в Минске. Главный конструктор Н.Я.Матюхин.

1961 г. — начат серийный выпуск ЦВМ “Раздан-2”, предназначена для решения научно-технических и инженерных задач, малой производительности (скорость вычислений — до 5 тысяч операций в 1 секунд). 

1961 г. — в СССР создана первая в стране серийная универсальная полупроводниковая управляющая ЭВМ широкого назначения «Днепр-1» (В.М.Глушков, Б.Н. Малиновский). Выпускалась на протяжении 10 лет. 

1961 г. — начало выпуска «Урал-4» (Пенза). Руководитель работ — Б.И.Рамеев.

1962 г. — в ИТМиВТ выпущена ЭВМ БЭСМ-4. 

1962 г. — в Северодонецком научно-исследовательском институте управляющих вычислительных машин создана “МППИ-1” — машина первичной переработки информации — информационно-вычислительная машина. Применялась “МППИ-1” в химической, нефтеперерабатывающей, металлургической и других отраслях промышленности. 

1962 г. — создан опытный образец ЭВМ «Восток» (А.Н.Мямлин).

1962 г. — в Институте кибернетики АН УССР разработано семейство малых цифровых электронных вычислительных машин “Промiнь”, предназначенных для автоматизации инженерных расчетов средней
сложности. 

1962 г. — разработана первая в Украине ЭВМ с асинхронным управлением «Киев» (В.М.Глушков, Е.Л.Ющенко, Л.Н.Дашевский). Запуск ее в ОИЯИ (Дубна).

1962 г. — начало выпуска ЭВМ «Минск-2» с использованием импульсно потенциальной элементной базы и введением представления данных в виде двоично-десятичных чисел и алфавитно-цифровых слов (Минск) (С 1965 г. – «Минск-22»). В.В.Пржиялковский.

1963 г. — начало серийного производства малой ЭВМ для инженерных расчетов «Промiнь» на Северодонецком заводе вычислительных машин. В ней использовалось ступенчатое микропрограммное управление (С.Б.Погребинский, В.Д.Лосев).

1963 г. — начало выпуска ЭВМ «Минск-32» (Минск) с внешней памятью на сменных магнитных дисках (В.Я.Пыхтин).

1963 г. — создан многомашинный вычислительный комплекс «Минск-222» (Г.П.Лопато).

1964 г. — в Ереванском научно-исследовательском институте математических машин разработана и запущена в производство ЭВМ с микропрограммным управлением «Наири».

1964 г. — начало выпуска ряда ЭВМ Урал; Урал-11, Урал-14, Урал-16 (с 1969 г.) с операциями над словами переменной длины и структурной адресацией (Б.И.Рамеев, В.И.Бурков, А.Н.Невский, Г.С.Горшков, А.С.Горшков, В.И.Мухин).

1964 г. — начало выпуска электронная цифровая вычислительная машина общего назначения «Весна». Производство в Минске. Гавный конструктор В.С.Полин (В.К.Левин, М.Р.Шура-Бура, В.С.Штаркман, В.А.Слепушкин, Ю.А.Котов).

1965 г. — группой инженеров в Институте точной механики и вычислительной техники под руководством С.А.Лебедева была создана мощная полупроводниковая ЭВМ  БЭСМ-6 («Быстродействующая электронно-счетная машина»). БЭСМ-6 занимает особенно важное место в развитии и использовании вычислительной техники в СССР. Это первая в СССР суперЭВМ с производительностью 1 миллион оп/сек.

1965 г. — в Киеве Институте кибернетики АН УССР создана машина МИР-1. Разработчики В.М.Глушков, Ю.В.Благовещенский, А.А.Летичевский, А.А.Летинский, В.Д.Лосев, И.Н. Молчанов, С.Б. Погребинский, А.А.Стогний,. З.Л.Рабинович.

1965 г. — начало выпуска в Казани полупроводниковых ЭВМ М-220 и М-222 с производительностью до 200 тыс. оп/сек, продолжающих линию ЭВМ М-20. Предназначены для решения научно-технических, а также отдельных классов экономических задач. Главный конструктор М.К.Сулим. 

1965 г. — в Ереванском научно-исследовательском институте математических машин выпущена модификация ЭВМ «Наири-М».

1965 г. — создан макет ЭВМ с системой счисления в остаточных классах (И.Я.Акушский, Д.И.Юдицкий). Технический проект ЭВМ «Украина» с развитыми системами интерпретации. В.М.Глушков, З.Л.Рабинович, А.А.Стогний. 

1966 г. — завершается разработка проекта большой ЭВМ «Украина», предвосхитившего многие идеи американских больших ЭВМ 70-х годов.

1966 г. — начат серийный выпуск ЦВМ “Раздан-3”, предназначенной для решения научно-технических, планово-экономических и статистических задач. 

1966 г. — для командных пунктов ПВО в СССР была создана мощная по тем временам специализированная ЭВМ ГРАНИТ (А.З.Шостак).

1967 г. — начало выпуска в Киеве заводе ВУМ управляющей ЭВМ «Днепр-2». Разработка Института кибернетики АН Украины (В.М.Глушков, А.Г.Кухарчук). 

1967 г. — в Ереванском научно-исследовательском институте математических машин выпущена модификации ЭВМ «Наири-С» и «Наири-2». 

1967 г. — ввод в действие электронной счетной машины БЭСМ-6 в Вычислительном центре АН СССР. Начало ее серийного производства на заводе счетно-аналитических машин (САМ) в Москве. За все время (до начала 80-х гг.) было построено около
350 БЭСМ-6. 

1968 — 1973 гг., третье поколение ЭВМ

1968 г. — проект полностью параллельной вычислительной системы М-9 с производительностью порядка 10 оп/сек. В М-9 операции задавались над функциями двух переменных. М.А.Карцев.

1968 г .- начало производства ЭВМ МИР-2, созданной под руководством В.М.Глушкова в Киеве.

1969 г. — “РУТА-110” — комплекс устройств обработки, ввода, хранения, вывода, а также дистанционного сбора и выдачи алфавитно-цифровой информации, предназначенный для создания локальных систем обработки данных. Разработан СКВ вычислительных машин (г. Вильнюс).

1969 г. 5Э92Б — двухпроцессорный компьютер на дискретных полупроводниковых схемах, основной компьютер в первой системе ПРО Москвы;

1970 г. — создана многомашинная система коллективного пользования «АИСТ-0» на базе нескольких М-20 под управлением
«Минск-32». Разработчики А.П.Ершов, Г.И.Кожухин, Г.П.Макаров, М.И. Нечепуренко, И.В.Поттосин.

1970 г. — в Ереванском научно-исследовательском институте математических машин выпущена модификации ЭВМ «Наири-3» и «Наири-3-1» (на интегральных гибридных микросхемах). 

1971 г. — начало выпуска модели ЕС-1020 (20 тыс. оп/сек), Минск. В.В.Пржиялковский.

 1973 г. — начало выпуска модели ЕС-1030 (100 тыс. оп/сек), Казань (разработка выполнена в Ереване, М. Семирджан).

1973 г. — с использованием БЭСМ-6 была создана многомашинная система с переменной структурой АС-6 для задач управления космическими полетами в СССР. 

1973 г. — начало выпуска ЭВМ ЕС-1050 (Москва, Пенза). В.С.Антонов.

1973 г. — начало выпуска высокопроизводительной ЭВМ с многоформатной векторной RISC-архитектурой для систем предупреждения о ракетном нападении и общего наблюдения за космическим пространством М-10 (Загорск, М.А.Карцев).

Разумеется, не все еще потеряно. Остались и описания технологий, иной раз даже по прошествии десяти лет превосходящих западные, и действующие образцы. К счастью, не все разработчики отечественной вычислительной техники уехали за границу или
умерли. Так что шанс еще есть.  А будет ли он реализован — зависит уже от нас.

Владимир Сосновский, Антон Орлов

37

Студенту, вступающем в жизнь в начале XXI века и привыкшему видеть вокруг себя только иностранную бытовую и компьютерную технику, трудно представить себе, что в России (а точнее говоря, в СССР) когда-то была самостоятельная электронная промышленность и собственные оригинальные компьютеры. Тем не менее это так. Более того, на начальном этаперазвития нашастрана почтинеотставалаотЗапада, апо уровню идей иногда опережала иностранные разработки.

Драматическая история отечественной вычислительной техники может быть условно поделена на четыре этапа [1]:

зарождение (1948-1952 годы);

расцвет (1950-60-е годы);

подражание (1970-80-е годы);

крах и надежды на возрождение (1990-е годы).

4.1Зарождение (1948-1952 годы)

История отечественных вычислительных машин начинается в 1948 году и неразрывно связана с именами трех отцов-основателей:

Сергея Алексеевича Лебедева (1902-1974), Исаака Семеновича Брука (1902-1974) и Башира Искандаровича Рамеева (1918-1994). Все трое по образованию были энергетиками и пришли к идее создания ЭВМ, исходя из потребностей трудоемких энергетических расчетов, имея опыт работы на АВМ. В Советском Союзе было известно об американских проектах цифровых машин, но эти сведения были очень поверхностными, поэтому первые советские компьютеры создавались совершенно независимо от зарубежных.

В 1948 году в Институте электротехники Академии наук Украинской ССР под непосредственным руководством директора института С.А. Лебедева (рис. 4.1) началась постройка экспериментальной Малой Электронной Счетной Машины (МЭСМ).

Работы велись в секретной лаборатории под Киевом коллективом из 12 научных сотрудников и 15 техников. Через два года, в 1951 году, МЭСМ – первая отечественная ЭВМ – заработала. Она содержала 6000 электронных ламп и занимала целое крыло двухэтажного здания. Оперативная память насчитывала 94 16-разрядных слова, быстродействие – 50 оп./сек.

В машине Лебедев независимо от фон Неймана реализовал основные принципы классической архитектуры: хранение программ в оперативной памяти, двоичную систему счисления.

38

Рис. 4.1. С.А. Лебедев (1902-1974)

В 1950 году И.С. Брук приступил к практической реализации проекта создания ЭВМ, и в 1952 году, усилиями девяти человек была построена ЭВМ М-1, насчитывающая всего 750 ламп (сравните с 6000 у МЭСМ). М- 1 оказалась первой в Москве работающей ЭВМ и сразу вызвала большой интерес в научных кругах. Работающая со скоростью 15-20 оп./с, она выполняла серьезные расчеты для атомного ведомства академика Курчатова и для космического КБ академика Королева.

4.2 Расцвет (1950-60-е годы)

Дальнейшее развитие вычислительной техники в Советском Союзе тесно связано с военными приложениями и окружено атмосферой секретности. Инициатором правительственных решений был академик Михаил Алексеевич Лаврентьев (рис. 4.2), будущий организатор Новосибирского Академгородка. В 1950 году он обратился к Сталину с письмом, в котором обращалвнимание набольшую важностьвычислительныхмашин для обороны страны. Реакция вождя была немедленной: постановлением правительства предписывалось начать параллельную разработку ЭВМ в Академии наук СССР и Министерстве машиностроения и приборостроения. Такая практика была типичной для важнейших военных заказов, она создавала конкуренцию между разработчиками.

В результате в 1953 году почти одновременно на свет появились две полномасштабные отечественные ЭВМ. Большая Электронная Счетная Машина – БЭСМ была построена в академическом Институте точной механики и вычислительной техники (ИТМ и ВТ) АН СССР, который по рекомендации М.А. Лаврентьева возглавил переехавший в Москву С.А. Лебедев. Машина имела оперативную память в 2048 слов и быстродействие 8000 оп./с, что по тем временам было рекордным для Европы.

39

Рис. 4.2. М.А.Лаврентьев (1900-1980)

«Стрела» – первая отечественная серийная ЭВМ средней производительности с быстродействием около 2000 оп./с – была создана в москов-

ском СКБ-245 под руководством Юрия Яковлевича Базилевского и Б.И. Рамеева. Всего было построено 7 экземпляров этой машины.

К середине 1950-х годов в нескольких го родах Советского Союза были организованы проектные институты, развернувшие широким фронтом работы по созданию различных моделей ЭВМ. Для работ тех лет характерны чрезвычайное разнообразие разработок, ничем не скованный технический поиск, здоровая творческая конкуренция научных школ.

Наиболее авторитетной была московская школа под руководством С.А. Лебедева, специализирующаяся на создании ЭВМ высокой производительности. В руководимом им институте в 1958 году была создана ламповая ЭВМ М-20 с рекордным для машин того времени быстродействием

20000 оп./с.

М-20 знаменита рядом интересных новшеств, авторами которых был главный идеолог машины Лебедев и его заместитель, видный математик и один из первых советских программистов Михаил Романович ШураБура, который вместе с Лебедевым разрабатывал систему команд и руководил созданием математического обеспечения. Это была первая советская ЭВМ с собственным системным программным обеспечением – пакетом стандартных подпрограмм ИС-2.

Машина считалась секретной, так как она обслуживала советские космические программы, но затем ее рассекретили и стали устанавливать в вузах и науч ных организациях. М-20 и ее полупроводниковые аналоги (М-220, БЭСМ-4, М-222) долгое время оставались основными машинами для научных расчетов. Наивысшим достижением коллектива С.А. Лебедева явилась разработка в 1966 году полупроводниковой ЭВМ БЭСМ-6 (рис. 4.3) с производительностью 1 млн. оп./с.

40

Рекордное быстродействие этой машины было достигнуто не за счет скоростных элементов, а благодаря совершенной архитектуре процессора.

Технические решения, найденные при проектировании машины, были настолько оригинальными, что эта модель побила все рекорды живучести. Поколения ЭВМ сменяли друг друга, а легендарная БЭСМ-6 продолжала выпускаться и надежно работать на протяжении более чем 25 лет!. Всего московским заводом САМ было выпущено 350 экземпляров БЭСМ-6.

Рис. 4.3. ЭВМ БЭСМ-6 (1966г.)

Еще одна московская школа возглавлялась И.С. Бруком. Ему удалось создать увлеченный молодежный коллектив, создавший ряд моделей ЭВМ. После успешного старта М-1, в 1952 году появилась М-2, затем М- 3,котораясталапрототипом ЭВМ,выпускаемыхвМинске,Ереванеидаже Китае.

В 1958 году на базе еголаборатории был создан Институт электронныхуправляющих машин(ИНЭУМ), руководимый самим Бруком, а его ученики Михаил Александрович Карцев и Николай Яковлевич Ма-

тюхин возглавили секретные НИИ вычислительных комплексов и НИИ автоматических приборов, в которых реализовывались крупномасштабные проекты информационных систем для ПВО. Последняя из «карцевских» машин серии «М» – M-13 была запущена в производство в 1984 году, она представляла собой многопроцессорную систему с быстродействием до 48 млн. оп./с, отличалась исключительной надежностью и воплотила в себе самые современные решения в области ЭВМ высокой производительности.

Пензенская школа сформировалась на базе созданного там в 1955 году филиала СКБ-245, позже переименованного в НИИ математических машин (НИИ ММ). Получив Государственную премию за машину

41

«Стрела», туда с группой учеников поехал Б.И. Рамеев. Возглавляемый им коллектив создавал универсальные ЭВМ под фирменной маркой «Урал». Первая из них – «Урал-1» была запущена в производство в 1957 году.

Несмотрянасвоиболеечем скромныехарактеристики, «Урал-1» сыграла большую роль в становлении отечественной информатики, так как была первой ЭВМ, увиденной сибирскими учеными.

Единственная в то время в азиатской части СССР, она была запущена в эксплуатацию в Томском государственном университете в 1958 году,

и с тех пор начала формироваться сибирская школа информатики. Последующие модели этой серии — «Урал-11, 14, 16» (1964-1969гг) изготовлялись на полупроводниках, имели весьма приличную производительность (50, 45 и 100 тыс. оп./с соответственно) и впервые в России реализовывали идею масштабируемого ряда ЭВМ.

Киевскую школу возглавил легендарный советский ученый – акаде-

мик Виктор Михайлович Глушков (рис. 4.4). В 1962 году на базе лабо-

ратории вычислительной техники и математики Украинской Академии наук, в которой под руководством С.А. Лебедева создавалась первая советская ЭВМ, он организовал первый в стране Институт кибернетики, ставший вскоре ведущим научным центром в области кибернетики, информатики и вычислительной техники.

Вклад В.М. Глушкова в информатику огромен. Человек энциклопедических познаний, блестящий математик и организатор науки, он не только разрабатывал абстрактные теоретические вопросы конструирования ЭВМ, но и непосредственно руководил их техническим проектированием и изготовлением, изобретал алгоритмы и методики применения компьютеров в самых различных областях.

В.М.Глушковымиегоколлегамибылосозданонесколькооригинальных моделей компьютеров: машина общего назначения «Киев», управляющая ЭВМ «Днепр», малая полупроводниковая «Проминь», в которой программа длиной до 100 команд набиралась штекерами на коммутационном поле.

Самой выдающейся разработкой киевской школы стала машина для инженерных расчетов «МИР» (1965г.), которая, одной из первых имела аппаратный интерпретатор высокоуровневого языка программирования. Ещебольшимивозможностямиобладала «МИР-2» (1969г.),котораямогла оперировать с математическими выражениями в символьном виде.

42

Рис. 4.4. В.М. Глушков (1923-1982)

ВБелоруссииразрабатывалисьивыпускалисьЭВМсерии«Минск»: ламповая «Минск-1» (1960 г.), затем первая массовая отечественная полупроводниковая «Минск-2» и, наконец, «Минск-32» (1968г.), которую назвали машиной второго с половиной поколения, так как она хотя и была собрана на дискретных элементах, но имела модульную структуру и операционную систему.

ВЕреванском институте математических машин были созданы два семейства машин: общего назначения «Раздан» и инженерных расчетов «Наири», в которую также был встроен аппаратный интерпретатор.

Вцелом в это золотое для отечественной вычислительной техники время было создано несколько десятков типов ЭВМ. К середине 1960-х годов разработкой машин занимались двадцать шесть НИИ и КБ, выпуск средств ВТ осуществляли более тридцати заводов. Наряду с традиционными, были разработаны и выпускались несколько совершенно оригинальных конструкций, не имевших аналогов в мировом компьютеростро-

ении.

Оценивая в целом положительно развитие ВТ в СССР в 1950-60-е годы, следует тем не менее признать, что по общему уровню мы существенно отстали от передовых зарубежных стран, причем отставание постоянно увеличивалось, составив к началу 1970-х годов целое поколение ЭВМ, чему было несколько объективных и субъективных причин.

Во-первых, в конце 1940-х — начале 1950-х годов Советский Союз, еще не полностью восстановив разрушенное войной народное хозяйство, втянулся в «холодную» войну, бросив все силы на гонку вооружений. Добившись паритета в жизненно важных базовых отраслях – энергетике и тяжелой промышленности, а также в крайне дорогостоящих атомных и

43

космических программах, наша страна стала постепенно отставать в точном машиностроении, приборостроении, электронике.

Во-вторых, холодная война привела к самоизоляции и встречной международной изоляции СССР в мировом сообществе. Между социалистическим и капиталистическим миром опустился идеологический «железный занавес». Зарубежные публикации тщательно проверялись советской цензурой и доходили до ученых с большим трудом и опозданием, поездки за рубеж были практически невозможными.

Со своей стороны, правительства западных стран всячески препятствовали контактам своих фирм с коммунистическим лагерем и даже организовали комитет по контролю над экспортом (КОКОМ), который вплоть до начала 1990-х годов создавал непреодолимые барьеры по продаже в СССР высоких технологий, включая современную вычислительную технику.

Наконец, в-третьих, научно-техническому прогрессу, в том числе развитию ВТ, мешали пороки советской командно-административной системы управления. Отсутствие материальных стимулов, реальной конкуренции, неповоротливость бюрократической машины усугублялись обстановкой тотальной секретности, царившей в стране в 50-60-е годы.

4.3Подражание (70-80-е годы)

Вконце 1960-х годов новое советское руководство во главе с молодым еще генсеком Л.И. Брежневым и энергичным председателем Совета министров А.Н. Косыгиным, обеспокоенное отставанием СССР в историческом соревновании с капитализмом, пришло к выводу, что надо менять

стиль управления народным хозяйством.

На смену чисто административным, полувоенным методам решили внедрить экономические, основанные на хозрасчете и научном планировании. Лозунгом дня стало оптимальное управление на всех уровнях – от Госплана до предприятия. Как следствие, резко возрос интерес к вычислительной технике и экономико-математическим методам.

Авторитетная комиссия, проанализировавшая зарубежный опыт, пришла к неутешительным выводам – по качеству и количеству вычислительнойтехники СССР отсталотцивилизованного мирана8-10 лет, к тому же у нас была совершенно не сформирована среда внедрения ЭВМ – не хватало инженеров-электронщиков, программистов, не было специальной литературы. И тогда правительство вознамерилось сделать «большой скачок» в деле компьютеризации страны.

Чтобывыигратьвремя,решенобыло неразвивать дальше отечественные разработки, а скопировать архитектуру передовых по тем временам

44

зарубежных линий ЭВМ. Была мобилизована техническая разведка, сконцентрированы силы оборонных отраслей, организовано международное разделение труда в рамках Совета экономической взаимопомощи (СЭВ) социалистических стран Восточной Европы.

В соответствии со сложившимся в мире расслоением рынка ЭВМ на основные секторы (мэйнфреймы, супер-ЭВМ и мини-ЭВМ) ударными темпами была произведена разработка и налажено массовое производство нескольких семейств вычислительных машин.

Мэйнфреймы. Первое, наиболее важное для нужд народного хозяйства, науки и образования семейство ЭВМ общего назначения называлось ЕС ЭВМ — Единой системой ЭВМ, оно должно было воспроизвести архитектуру мэйнфреймов IBM S/360, при этом решающую роль в выборе прототипа сыграло то обстоятельство, что к этому времени для Системы 360 в мире был накоплен большой объем программного обеспечения, по которому мы отставали «навсегда».

Первоначально предполагалось, что головной организацией по ЕС ЭВМ будет академический ИТМ и ВТ, только что с триумфом завершив- шийразработкуБЭСМ-6,однакоС.А. Лебедеврезкоотрицательноотнесся к идее копирования зарубежной техники. Тогда в системе оборонного Минрадиопрома был построен собственный институт под названием

НИЦЭВТ — Научно-исследовательский центр электронной вычисли-

тельной техники, возглавивший невиданную ранее программу разработки и производства социалистических мэйнфреймов.

К производству ЕС ЭВМ было привлечено около 100 организаций, более 200 тысяч ученых, инженеров и техников, около 300 тысяч рабочих из СССР и социалистических стран.

В первую половину 1970-х годов была завершена разработка и налажен массовый выпуск восходящего ряда базовых моделей первого поколения ЕС ЭВМ, которое называлось «Ряд-1»: ЕС-1010 (Венгрия), ЕС-1020 (Болгария), ЕС-1030 (СССР) ЕС-1040 (ГДР), ЕС-1050 (СССР).

Хотяархитектура системы ЕСЭВМ копировала IBM-360, ее элементная и конструктивная база были оригинальными.

Во второй половине 1970-х и первой половине 1980-х годов появились модернизированные модели «Ряда-1»: ЕС-1022, ЕС-1033 и др., а также были разработаны модели «Ряда-2»: ЕС-1015, ЕС-1025, ЕС-1045, учитывающие архитектурные особенности появившейся к тому времени Системы 370.

На вычислительном центре Томского института АСУ и радиоэлектроники (будущего ТУСУРа) в 1970-1980-х годах использовались: отечественная ЭВМ «Минск-32», а такжемашины серии «Ряд-1» – ЕС-1020, EC1033 и серии «Ряд-2» – ЕС-1045.

45

Наивысшей точки своего развития ЕС ЭВМ достигла в моделях «Ряда-3», разработанных во второй половине 1980-х годов (ЕС-1016, .. 1066). Эти машины, если не говорить о надежности и соотношении цена/производительность, в целом соответствовали уровню IBM S/370 и обеспечивали полную программную совместимость с этой системой.

Мини-ЭВМ. Второе семейство, воспроизводившее архитектуру и систему команд популярных компьютеров фирмы DEC, должно было покрыть потребность страны в мини-ЭВМ, оно обозначалось СМ ЭВМ — Си-

стема малых ЭВМ.

Функции головной организации в программе СМ ЭВМ выполнял созданный И.С. Бруком ИНЭУМ. В рамках этого семейства были разработаны и выпускались программно-совместимые с PDP-11 16-разрядные СМ-3 (1978г.), СМ-4 (1979г.), СМ-1420 – 1983г., СМ-1425 (1989г.). Впо-

следствии был освоен выпуск 32-разрядных СМ-1700, совместимых с

VAX-11.

СуперЭВМ. Семейство супер ЭВМ оказалось менее зависимым от мирового стандарта программного обеспечения, поэтому здесь разработчики получили большую свободу.

И хотя в знаменитом ИТМ и ВТ, по праву возглавившем программу созданияотечественныхсуперкомпьютеров, имелся уникальныйопытразработки полностью оригинальной БЭСМ-6 с быстродействием 1 MFLOPS, но и это достижение на фоне мирового опыта выглядело не слишком внушительным: к середине 1970-х годов производительность зарубежных суперЭВМ, производимых фирмами Cray и Burroughs, уже приближалась к 200 MFLOPS. Таким образом, и в линии суперкомпьютеров также виделась целесообразность заимствования передовых архитектурных решений, хотя оставалась возможность любых отступлений. По этому поводу в институте произошел раскол.

Группа разработчиков, возглавляемая Всеволодом Сергеевичем Бурцевым и Борисом Арташесовичем Бабаяном, взяла за основу архи-

тектуру Burroughs и, отталкиваясь от нее, начала разработку серии высокопроизводительных многопроцессорных вычислительных комплексов

(МВК) «Эльбрус».

В 1979 году были закончены работы по созданию МВК «Эльбрус-1» общей производительностью 15 MFLOPS, в 1985 – «Эльбрус-2» производительностью125 MFLOPS. Хотя«Эльбрусы»создавалисьвосновномдля нужд советской системы ПРО, эти машины считались универсальными и могли применяться в крупных ВЦ, работающих на науку и промышленность.

46

Вторая группа специалистов во главе с Владимиром Андреевичем Мельниковым считала более перспективной архитектуру Cray. Когда руководство института их не поддержало, эта группа ушла из ИТМ и ВТ и продолжила работу над «красным Креем» в КБ «Дельта» Министерства электронного машиностроения.

В 1985 году опытный образец машины, получившей название «Электроника СС БИС» успешно прошел испытания. В однопроцессорном варианте она обеспечивала производительность до 250 MFLOPS, что для середины 80-х вполне отвечало суперкомпьютерному уровню, однако готовая машина появилась только в 1989 году, когда ее элементная база уже устарела, а быстродействие сильно отставало от мировых стандартов.

К положительным результатам выбранного пути («подражание»)

следует отнести следующие.

1.Технологическое отставание по компьютерам действительно удалось сократить примерно до 5 лет. В стране быстрыми темпами развилась промышленность средств ВТ, спрос на машины общего назначения в основном был удовлетворен..

2.Вместе с IBM- и DEC-совместимыми компьютерами пользователи получили доступ к громадному массиву соответствующего программного

обеспечения. Нужно сказать, что в СССР в то время никто и слова не говорил об интеллектуальной собственности на программное обеспечение. Пакеты программ добывали за границей, переводили документацию на русский язык, придумывали новые названия и пускали в оборот. Если отвлечься от морально-правовых оценок этого государственного пиратства, которым занимались целые институты, то следует признать, что благодаря ему уровень программирования в СССР совершил резкий подъем.

3. Параллельно с началом работ над совместимыми компьютерами хлынул поток переводной технической литературы. Это позволило в короткий срок организовать массовую подготовку специалистов.

Негативные последствия принятых решений также существенны:

1.Проект создания ЕС ЭВМ затянулся и потребовал слишком больших затрат. Большого и быстрого скачка не получилось, так как отечественная элементная база была намного хуже западной. В результате комплектующие изделия не выдерживали сложности архитектуры IBM, машины получались ненадежными и очень дорогими.

2.Психология подражания действительно сковывалаинициативуоте-

чественных специалистов и разрушила многие сложившиеся научные школы.

3. При использовании пиратских программных продуктов постоянно возникали проблемы с русским языком.

47

По меткомувыражению В.М. Глушкова, в каждом большом деле есть пять обязательных стадий: шумиха, неразбериха, поиски виновных, наказание невиновных и награждение непричастных. Повальная компьютеризация всей страны в 1970-80-е годы прошла их все. Она не дала чудодейственного экономического эффекта, на который рассчитывали власти, но сформировала ту среду, в которой впоследствии без излишнего ажиотажа стала развиваться информатика.

Вчастности, во многих вузах были открыты специальности компьютерного профиля, профессия программиста стала массовой, а опыт общения с зарубежным ПО сделал для них практически незаметным последующий крах отечественного компьютеростроения.

4.4Крах и надежды (1990-2000-е годы)

Вконце 1970-х — начале 1980-х годов в мире произошла микропроцессорная революция, и на западный рынок хлынули персональные компьютеры.

Следуя стратегии подражания, наша электронная промышленность попыталась их воспроизвести. Однако технологическое отставание по электронным составляющим и точной механике было столь значительным, что отечественные (ЕС-1840, 1841) и другие социалистические мо-

дели персональных ЭВМ, например Mazovia (Польша), «Пылдин» (Болгария), нешли ни вкакоесравнениесзападными. Крадостипроизводителей, границы пока были закрыты, предприятия, выпускавшие эти компьютеры, не испытывали реальной конкуренции, рынок сбыта им был обеспечен принудительно.

Политические и экономические потрясения начала 1990-х годов в корне изменили ситуацию.

Кончилась холодная война, распался СССР, за ним весь социалистический лагерь вместе с СЭВ. Открылись границы, Россия стала входить в мировой рынок с его жесточайшей конкуренцией. В этих условиях отечественные ЭВМ гражданского назначения оказались совершенно неконкурентоспособными и были мгновенно сметены с рынка. В течение нескольких лет страну наполнили ширпотребовские импортные компьютеры всех возможныхразновидностей. Отечественнаяэлектронная промышленность фактически перестала существовать, государственное финансирование науки практически прекратилось, отдельные энтузиасты и фирмы наладили сборку по «отверточной» технологии ПК из импортных комплектующих, многие талантливые конструкторы уехали за границу или сменили род деятельности.

48

Вместе с тем, на фоне общего упадка появились островки стабильности и даже прогресса, вселяющие надежду на будущее возрождение отечественного компьютеростроения.

Прежде всего это относится к военной технике, которая по определению не может быть целиком зависимой от импорта. Производство и разработка ЭВМ специального назначения продолжается, в частности, не утерян богатейший опыт, приобретенный разработчиками бортовых вычислительных устройств для авиации и космонавтики.

Аналогичная ситуация складывается в области создания отечественных суперкомпьютеров – это критически важно не только для обороны, но и для фундаментальной науки. Хотя в 1980-90-е годы в Россию правдаминеправдами попало несколько зарубежных ЭВМ относительно высокой мощности, наши заокеанские партнеры, несмотря на уверения в дружбе и сотрудничестве, не отменили эмбарго на поставку в Россию компьютерной техники с производительностью выше 10 GFLOPS. В связи с этим работы по проблеме высокопроизводительных вычислений продолжились в нескольких направлениях.

Первое направление зародилось на базе ИТМ и ВТ – колыбели отечественного компьютеростроения. После того как резко снизилось государственное финансирование, большая группа разработчиков во главе с Б.А. Бабаяном стала активно искать зарубежных инвесторов с целью реализации передовых отечественных идей на современной западной технологии.

В 1992 году работами российских ученых заинтересовалась фирма

Sun Microsystems ибыл создан«МосковскийцентрSPARC-технологий»

(МЦСТ), который, объединившись с некоторыми другими фирмами в группу компаний «Эльбрус», осуществляет ряд успешных проектов, среди которых процессор «Эльбрус-2000» (Е2к).

Другое направление основано на идее интеграции большого числа не самых мощных, но относительно дешевых стандартных процессоров. В 2001 годув Московском Межведомственном суперкомпьютерном цен-

тре состоялся запуск суперкомпьютера МВС-1000М, построенного на серийных микропроцессорах DEC Alpha-21264А 667 МГц. с пиковой произ-

водительностью 1000 GFLOPS = 1 TFLOPS.

Наиболее значимое достижение в данном направлении связано с созданием семейства суперкомпьютеров под общим названием «Скиф» в рамках сотрудничества российской и белорусской академий наук. От российской стороны ответственным исполнителем является Институт программных систем в г. Переяславле-Залесском, а от Республики Беларусь

объединение «Кибернетика».

Целью работ является создание кластеров с пиковой производительностью в сотни GFLOPS. По основным параметрам «Скиф» не уступает

49

зарубежным аналогам, а по соотношению цена/производительность намного их превосходит. Осенью 2004 года старшая в ряду «Скифов» система К-1000 показала производительность 2500 GFLOPS и вошла в рей- тинг-лист ТОР500, заняв в нем 98-е место.

Наконец, совсем недавно – 16 февраля 2007 года в Томском госуниверситете был установлен Скиф Cyberia – самый мощный на тот момент времени суперкомпьютер в странах СНГ и Восточной Европы (рис. 4.5). Скиф Cyberia – российский суперкомпьютер, созданный в 2007 году специалистами российской компании «Т-Платформы». Производительность системы составляет 8,945 трлн. операций в секунду (TFLOPS).

Рис. 4.5. СуперЭВМ «Скиф Cyberia» (ТГУ, 2007г.)

Похожие разработки ведутся и в других творческих коллективах, их уровень не уступает мировому, однако только время сможет ответить на вопрос, способна ли в целом наша страна снова выйти на передовой край научно-технического прогресса.

Студентам, обучающимся сегодня в ТУСУРе, на кафедре автоматизации обработки информации (бывшая кафедра технической кибернетики, созданная в 1964 году) наверняка интересно будет ознакомиться с оснащением кафедрысредствамивычислительнойтехники в1960-1990-е годы,

вкотором, как в зеркале, отражена отечественная история ЭВМ:

1.Малая полупроводниковая ЭВМ «Проминь» (1967-1968гг)

2.Малая электронная цифровая машина МИР-1 (1970-1972гг)

3.Настольная мини-ЭВМ «Электроника НЦ-60» (1972-1973гг)

4.Диалоговый вычислительный комплекс ДВК-1 (1973г.)

5.Машина для инженерных расчётов «НАИРИ 3-1» (1975г.)

6.Мини-ЭВМ СМ-2 (1978г.)

7.Мини-ЭВМ СМ-3 и СМ-4 – дисплейный класс (1989-1991гг)

8.ПЭВМ «Пылдин» Болгария – дисплейный класс (1990г.)

9.ПЭВМ «Mazovia» Польша – дисплейный класс (1991г.)

Значение машины БЭСМ АН для отечественной и мировой вычислительной техники невозможно переоценить — многое из того, что сегодня обыденно в ИТ, впервые было опробовано при разработке именно этой машины. Важно сохранить любые свидетельства способности отечественных разработчиков в самых сложных ситуациях справляться с техническими и организационными проблемами.

Первая БЭСМ: начало путиПостановление Совета министров СССР об образовании Института точной механики и вычислительной техники Академии наук СССР было принято в июне 1948 года, когда руководство страны уже осознало необходимость создания устройств, позволяющих автоматизировать процесс математических расчетов. В США в это время уже полным ходом шли работы, приведшие впоследствии к созданию цифровых вычислительных машин. Никакого научного обмена идеями и разработками в этой области тогда не существовало — подробности американских разработок стали известны в нашей стране только в середине 1950-х годов. Но общая тенденция была одинакова — осуществлялся переход от аналоговых (уже электронных, но еще не цифровых) и релейных (во многом цифровых, но не электронных, а электромеханических) машин к цифровым.

Первый директор ИТМиВТ АН СССР Николай Григорьевич БруевичПервым директором ИТМиВТ стал академик, генерал-лейтенант Николай Григорьевич Бруевич, известный своими работами в области автоматизации интеллектуальной деятельности. Бруевич — один из создателей теории точности и надежности машин и приборов, разработчик теории счетно-решающих устройств, в частности логического анализа и синтеза устройств цифровых вычислительных машин, а также средств управления машинами. Под руководством Бруевича проводились исследования вопросов автоматизации умственного труда в области машиностроения, сущность которых — создание более эффективных приемов исследования на основе применения вычислительной техники.

При создании ИТМиВТ его первому директору удалось объединить в новом институте несколько ранее разрозненных групп ученых. Первое время тематика работ института не была напрямую связана с цифровой электронной вычислительной техникой, но уже тогда был создан отдел быстродействующих ЭВМ. Бруевич убедил руководство страны, что нужно отказаться от слепого копирования американской релейной вычислительной машины и приступить к проектированию вычислительных машин на электронных лампах.

В начале 1950 года директором ИТМиВТ был назначен переведенный из Киева на работу в Москву академик Михаил Алексеевич Лаврентьев, который назначил начальником лаборатории № 1 Сергея Алексеевича Лебедева.

Академик Михаил Алексеевич Лаврентьев               Создатель первых отечественных ЭВМ академик Сергей Алексеевич Лебедев

Лебедев работал в институте электротехники АН УССР, где создавался макет электронной счетной машины (МЭСМ), который впоследствии был развит и превращен в малую электронную счетную машину. Работа над МЭСМ подходила к концу: в 1949 году была завершена разработка запоминающего устройства и других основных элементов машины. В Москве Лебедеву была поставлена задача в кратчайшие сроки создать не макет, а полноценную вычислительную машину для проведения расчетов, необходимых для проектирования и производства ядерного оружия. Такой машиной должна была стать БЭСМ — быстродействующая электронная счетная машина.

Для работы над БЭСМ Лебедев планировал взять с собой из Киева всех разработчиков МЭСМ и даже добился предоставления им жилья в Москве на Песчаной улице, но в последний момент руководство разрешило переезд в Москву только его самого. В результате пришлось срочно формировать совершенно новый коллектив, так как работа над МЭСМ в Киеве продолжалась, и Лебедев одновременно руководил двумя коллективами.

МЭСМ в связи с началом работ над БЭСМ стала называться малой электронной счетной машиной, а из Киева Лебедев привез собственноручно выполненный проект БЭСМ, который вскоре стал именоваться как большая электронная счетная машина. Один из ведущих разработчиков ИТМиВТ Петр Петрович Головистиков вспоминал: «Существует легенда, что вся схема БЭСМ у Сергея Алексеевича была записана на папиросных коробках «Казбек» или отдельных листках. Это неверно. Она заключалась в толстых тетрадях, в которых самым скрупулезным образом были изображены все структурные схемы машины, приведены временные диаграммы работы блоков, подробно расписаны все варианты выполнения отдельных операций». Среди документации ИТМиВТ была обнаружена одна из таких тетрадей (рис. 1), состоящая из 100 разлинованных страниц, заполненных личными записями Лебедева. В ней, например, имеются такие заголовки:

Рис. 1. Страница 46 рабочей тетради С. А. Лебедева07.07.50:
Управление внешней памятью (магнитной записью).

09.07.50:
Передача с магнитной ленты на барабан.

12.07.50:
Рассмотреть вариант макета с общими элементами памяти для команд и чисел с одним управляющим коммутатором и работой на 4 такта ЦУ (а не на 3 такта).

16.07.50:
Программное и схемное осуществление передачи с ленты на барабан.
Выбор количества разрядов машины.
Выбор количества разрядов для макета с параллельным вводом чисел.

21.07.50:
Перевод из двоичной в десятичную систему на машине.

Операции.

23.07.50:
Управление магнитной лентой.

04.08.50:
Возможность и целесообразность осуществления варианта с параллельным вводом кодов и памятью на тригерных ячейках.

08.08.50:
Передача с барабана на внутреннюю память.

Чтение тетради позволяет проследить весь процесс постепенного понимания структуры будущей вычислительной машины. Первая дата в тетради относится к 7 июля 1950 года, когда Лебедев уже работал над двумя проектами — доведением до рабочего состояния МЭСМ и разработкой БЭСМ. Последняя дата (12 августа 1950 года) обозначена на странице 46 (рис. 1), а все дальнейшие записи следуют без указания дат. По-видимому, вторая половина тетради заполнилась к концу лета 1950 года. За это время были спроектированы основные узлы будущей машины и разработаны алгоритмы выполнения (производства, как написано в тетради) основных операций: сложения, умножения, деления.

Необходимо было рассчитывать все, даже длину магнитных лент, которые предполагалось использовать в качестве внешней памяти. Подобный расчет также имеется в тетради — была вычислена суммарная длина ленты (200 метров) и определено полное время передачи информации с ленты на магнитный барабан (20 минут). И тут же помечено: «Время приемлемое».

Рис. 2. Страницы 84 и 85 рабочей тетради С. А. ЛебедеваЛебедев расписывал операции и одновременно вычислял время их выполнения, выясняя для себя основные вопросы начального этапа проектирования — имеет ли смысл вводить ту или иную операцию, какова будет производительность новой машины? Например, после вычисления времени, необходимого для выполнения операции получения обратной величины с точностью до 2-30, выписан результат: 1,5 миллисекунды, и в тетради поставлена резолюция: «Приемлемо».

Особый интерес вызывают страницы 84 и 85 (рис. 2), на которых есть записи, не имеющие технического характера, — они посвящены организации работ над проектом большой машины. Записи сделаны при подготовке к встрече с руководством, от которого зависел успех проекта создания новой ЭВМ. Здесь обозначены проблемы, с которыми сталкивались обе группы разработчиков, работавшие в Киеве и в Москве, но главный вывод был прост — при реальном обеспечении работы можно построить машину ко второму полугодию 1952 года. Указанный срок был выдержан.

Рис. 3. План работ над эскизным проектом БЭСМ, составленный С. А. Лебедевым в 1950 годуОдин только перечень заголовков этой тетради показывает, что Лебедев вел свою разработку очень тщательно, вникая во все тонкости работы машины, многие из которых открывались впервые, не забывая о важности правильной организации труда и планировании. Лебедев лично составил план работ по созданию БЭСМ и постоянно контролировал ход его выполнения. Работа по этому плану проводилась сотрудниками ИТМиВТ, составившими так называемую «московскую группу». В соответствии с ним завершение разработки эскизного проекта намечалось на I квартал 1951 года (практически одновременно с завершением работы над макетом МЭСМ). В плане были выделены три основных направления работ (рис. 3):

  1. Разработка принципиальной схемы ячеек.

  2. Расчетная и экспериментальная проверка.

  3. Разработка эскизного проекта.

По каждому направлению были определены 20 главных работ, для которых устанавливались сроки выполнения и затраты ресурсов. В состав работ входили следующие:

  1. Разработка основных электронных элементов (счетчики, ячейки статического запоминания, ключи, суммирующие ячейки).

  2. Разработка методики производства арифметических операций (сложение, вычитание, умножение, деление).

  3. Разработка методики производства специальных операций (сравнение, сдвиг, изменение знака, интерполяция).

  4. Разработка методики и вспомогательных устройств для перевода чисел из десятичной в двоичную систему счисления и обратно.

  5. Разработка арифметического устройства.

  6. Разработка устройства для интерполирования.

  7. Разработка вспомогательных устройств для решения системы линейных уравнений.

  8. Разработка устройства быстрой внутренней памяти.

  9. Разработка устройства внешней памяти.

  10. Разработка блока центрального управления машиной.

  11. Разработка блока управления командами.

  12. Разработка блока управления операциями.

  13. Разработка блока управления памятью.

  14. Разработка устройства для приготовления программы и внешних цифровых данных.

  15. Разработка устройства для окончательной записи результатов.

  16. Разработка системы связи между блоками.

  17. Разработка системы контроля, сигнализации и питания машины.

  18. Разработка скелетной схемы машины.

  19. Эскизная разработка конструкции машины.

  20. Разработка действующего макета машины (на пониженной частоте, с уменьшенным количеством разрядов, с ограниченной памятью, на статических блоках на электронных лампах и с ограниченным количеством операций).

На плане заметны неоднократно вносившиеся правки, относящиеся к срокам выполнения заданий и ресурсам, требующимся для этого. Состав работ практически не подвергался изменению, хотя пункт № 4 явно вставлялся тогда, когда все остальные работы уже были написаны (это подтверждается исправлением номеров всех пунктов плана, начиная с пункта № 5 и до конца списка). Также позднейшую вставку представляет собой пункт № 7, поэтому пункты плана начиная с № 8 исправлялись дважды (второй раз новые номера просто писались левее первоначального). Вставка пункта № 7 наталкивает на мысль, что решение запланировать создание отдельного устройства для решения линейных уравнений пришло к Лебедеву несколько позднее (в окончательном варианте БЭСМ никаких подобных аналоговых устройств не осталось — машина была полностью цифровой).

Ресурсы для проекта, по-видимому, исчислялись в тысячах рублей в ценах 1950 года. Цена определялась (и корректировалась, часто несколько раз) для каждого пункта плана. Сразу при создании плана первоначальные сроки были установлены только для первых его пунктов. У пункта № 8 (и последующих пунктов) плана первый срок проставлен только карандашом, тогда как у предыдущих пунктов — теми же фиолетовыми чернилами, что и само название работы. Иногда первоначальные сроки отодвигались, но некоторые из них затем вновь были восстановлены. Так или иначе, работы над эскизным проектом БЭСМ завершились именно в первом квартале 1951 года. Это означало, что электрические схемы устройств были не только разработаны, но и проверены как математическими расчетами, так и на специально созданных макетах, был также составлен текст самого эскизного проекта.

Сергей Алексеевич не побоялся привлечь к работе над ЭВМ молодых студентов Московского энергетического института, где он читал лекции по основам цифровых приборов. К работе им были привлечены девять студентов МЭИ, которым были выданы темы дипломным работ, непосредственно относящиеся к разработке вычислительной машины:

  1. В. С. Бурцев — блок управления командами.

  2. И. Д. (Горелова) Визун — усилители считывания и записи к потенциалоскопу.

  3. А. Н. Зимарев — арифметическое устройство чисел.

  4. С. П. Кузнецов — датчик основных сигналов машины.

  5. А. Г. Лаут — блок местного управления.

  6. В. Н. Лаут — запоминающее устройство на потенциалоскопах.

  7. В. А. Мельников — блок центрального управления операциями.

  8. В. П. Смирягин — арифметическое устройство порядков.

  9. А. С. Федоров — устройство внешней памяти.

Работа каждого участника была отражена в плане эскизного проекта, который представляет собой лист бумаги формата А4, заполненный с одной стороны рукописными записями, сделанными автоматической ручкой с фиолетовыми чернилами и, по-видимому, более поздними карандашными пометками и пометками более темными чернилами. Судя по почерку, записи и пометки сделаны непосредственно С. А. Лебедевым. По этому плану завершение разработки эскизного проекта намечалось на I квартал 1951 года (практически одновременно с завершением работы над макетом МЭСМ).

Молодые коллеги Лебедева оказывали ему весьма существенную помощь. Все студенты блестяще справились со своими дипломными проектами, которые дали им мощнейший импульс к творческому развитию. Из девяти студентов двое — В. С. Бурцев и В. А. Мельников впоследствии стали лауреатами Государственных премий, действительными членами Академии наук, директорами академических институтов. Валентин Лаут защитил докторскую диссертацию, ему дважды присуждалась Государственная премия. Имена многих выпускников МЭИ 1950 года неоднократно встречаются в списках сотрудников, награжденных орденами и медалями за участие в важнейших работах ИТМиВТ.

Если бы в архиве института случайно не сохранился листок Лебедева с планом работ над эскизным проектом, мы бы никогда не узнали о той огромной работе, которая проводилась молодым коллективом института при создании первой полноценной отечественной цифровой вычислительной машины (МЭСМ изначально проектировалась как макетный вариант и никогда не производилась серийно). Разработчики ЭВМ, как и разработчики другой техники, предпочитают сохранять только окончательные варианты документации — предварительные варианты, черновики, записки, письма, чертежи, эскизы часто теряются, хотя именно с их помощью можно проследить процесс работы над новыми проектами, не менее интересный, чем результат. Сегодня, с внедрением новых технологий проектирования, разработчики стали формировать так называемые «книги проектов», в которые заносятся все промежуточные документы и их варианты. На основе этих книг (архивов документов) компании, ведущие разработку, получают возможность доказывать свою непосредственную причастность к процессу разработки и свои авторские права. Однако эти архивы не сохраняют то, что люди называют «теплом человеческих рук», тот энергетический заряд, который передается от личных записей разработчиков.

На фото. Академик А. А. Дородницын и сотрудники ИТМиВТ АН СССР Л. Н. Королев, В. С. Бурцев и И. С. Мухин (стоят) во время командировки в США в июне 1958 года

Как результат общего труда по реализации разработанного Лебедевым плана 21 апреля 1951 года начала работу Государственная комиссия по приемке эскизного проекта БЭСМ, а летом 1952 года было завершено изготовление БЭСМ, которая заработала к осени 1952 года. В итоге в апреле 1953 года Государственная комиссия под председательством М. В. Келдыша приняла к работе БЭСМ, в июне 1953 года Лебедев был назначен директором ИТМиВТ и избран действительным членом Академии наук СССР по Отделению физико-математических наук, став первым академиком по специальности «счетные устройства».

Многие задачи, казавшиеся до этого неразрешимыми из-за большого объема вычислений, легко решались на БЭСМ, получившей наименование БЭСМ Академии наук. Сам Лебедев любил приводить в качестве примера расчет на БЭСМ траектории полета снаряда, который осуществлялся на БЭСМ быстрее, чем летел сам снаряд.

Рис. 4. Машина БЭСМ АН

БЭСМ АН была установлена на первом этаже здания ИТМиВТ на Ленинском проспекте (рис. 4), и долгое время на ней решались как научные, так и прикладные задачи, в частности был проведен расчет траектории ракеты, доставившей вымпел Советского Союза на Луну. При эксплуатации машины за долгие годы возникали различные сложные ситуации, ведь в состав машины входили 4 тыс. электронных ламп, но инженеры и техники всегда находили оригинальные решения по поддержанию ее работоспособности.

После создания в феврале 1955 года Вычислительного центра АН СССР перед ИТМиВТ была поставлена задача подготовить БЭСМ к серийному выпуску, что и было сделано к концу 1957 года, когда Ульяновский завод начал выпускать эту машину под наименованием БЭСМ-2. Этими машинами были оснащены практически все крупные вычислительные центры страны. На БЭСМ-2 осуществлялись расчеты запусков искусственных спутников Земли и первых космических кораблей с человеком на борту. БЭСМ-2 была воспроизведена в Китае, куда выезжала группа сотрудников ИТМиВТ. К моменту окончания работы над БЭСМ АН Лебедев уже продумал принципы и архитектуру новой машины М-20, которая должна была стать самой быстродействующей в мире.

БЭСМ выпускалась в различных модификациях до 1964 года — всего в нашей стране, кроме самого первого и единственного экземпляра БЭСМ АН, было изготовлено 16 экземпляров БЭСМ-2, 27 экземпляров БЭСМ-2М и 2 экземпляра БЭСМ-3.

В октябре 1955 года Лебедев сделал сенсационный доклад на Международной конференции по электронным счетным машинам в Дармштадте ФРГ доказав, что БЭСМ АН оказалась самой быстрой ЭВМ в Европе, а в декабре того же года первое сообщение о БЭСМ появилось в центральной печати. Газета «Правда» опубликовала большую статью Лебедева «Электронная счетная машина», в которой он подробно описывал основные принципы устройства цифровой вычислительной машины и новые возможности, которые открываются перед наукой и промышленностью страны в результате внедрения вычислительной техники. Все машины серии БЭСМ (от БЭСМ АН до БЭСМ-6) на момент своего создания были лучшими в Европе в классе универсальных ЭВМ. Летом 1958 группа сотрудников ИТМиВТ была включена в состав делегации, которая выезжала в США по приглашению компании IBM, продемонстрировавшей свои достижения в разработке цифровых ЭВМ. Делегацию возглавлял директор Вычислительного центра Академии наук академик А. А. Дородницын, а от ИТМиВТ в делегацию были включены заместитель директора института И. С. Мухин и молодые разработчики В. С. Бурцев и Л. Н. Королев.

Рис. 5. Макет машины БЭСМ АН в музее истории ИТМиВТ РАНВ 1960 году машину БЭСМ АН разобрали, освободив помещение для М-50, и по этому поводу была выпущена трогательная эпитафия.

Ни одна другая машина в ИТМиВТ не удостаивалась такой чести. Сотрудники института, работавшие на ней, стали решать свои задачи на БЭСМ-2, а позже — на БЭСМ-4. Отдельные части БЭСМ АН удалось сохранить. Когда в 1982 году к 80-летию С. А. Лебедева стараниями тогдашнего директора ИТМиВТ В. С. Бурцева в институте был открыт музей истории, для него из сохранившихся блоков БЭСМ АН и БЭСМ-2 был создан специальный стенд, представляющий собой работающий макет одной из секций БЭСМ (рис. 5).

В левой части макета установлено пять плат, изготовленных точно по чертежам первой машины и укомплектованных деталями того времени. На правой части располагается демонстрационная панель с экраном. Правая и левая части перекрываются раздвижной стеклянной дверью, сохранившейся в подлинном виде с 1951 года. Верхняя плата укомплектована разъемами типа «лист» и начинена подлинными блоками БЭСМ АН. Вторая сверху плата укомплектована подлинными блоками БЭСМ-2, в которой был осуществлен переход на пальчиковые лампы (ведущий разработчик — П. П. Головистиков) и широко применялись кристаллические диоды. Третья сверху плата представляет собой образец пульта управления с запоминающим устройством на электронных трубках, применявшимся на первой машине. На пульте воспроизведены все органы управления машиной. Четвертая сверху плата представляет собой полную мнемоническую схему центрального пульта управления БЭСМ, а на пятой плате располагаются тумблеры управления макетом.

Вера Карпова (v_karpova@ipmce.ru) — руководитель музея истории института точной механики и вычислительной техники им. С. А. Лебедева РАН, Леонид Карпов (mak@ispras.ru) — ведущий научный сотрудник института системного программирования РАН (Москва).


Расшифровка записей по организации работ и планам С. А. Лебедева

Организация работы (стр. 84 тетради С. А. Лебедева).

Московская группа. Киевская группа. Направления работ.

Помещение (освоение помещения. Академия, проводка, строительство Института Феофания. Площадь. Расширение. Жилье)

Кадры (списочный состав) по Москве и по Киеву. Оценка кадров. Недостаток.

Первоочередное мероприятие. Сборка работников ВЭИ, как необходимое условие успешного развертывания работы.

Оборудование. На сегодняшний день удовлетворительно при действительном развертывании работ — резкое увеличение.

Материалы — исключительно плохое снабжение. Трудность заранее предусмотреть необходимые параметры. Малое сравнительно потребное количество. Необходимость внеочередного снабжения.

Система оплаты — более низкие ставки, чем в СКБ 245, — в результате трудность набора инженерно-технического персонала.

Ожидаемые результаты (стр. 85 тетради С. А. Лебедева).

Запуск макета в 4-м квартале 50 г. Можно решать реальные задачи.

Угроза срыва успешного окончания эскизного проекта.

Немедленно приступить к изготовлению опытного образца.

При реальном обеспечении работы можно построить машину ко второму полугодию 1952 г.


Первоисточники

  1. П. С. Жданов, С. А. Лебедев. «Устойчивость параллельной работы электрических систем», М.-Л.: Энергоиздат, 1933. 263 с., 2-е изд. 1934.
  2. С. А. Лебедев, «Электронная счетная машина», газета «Правда», 4 декабря 1955.

  3. «От БЭСМ до суперЭВМ. Страницы истории ИТМ и ВТ им. С. А. Лебедева АН СССР в воспоминаниях сотрудников». Институт точной механики и вычислительной техники им. С. А. Лебедева, под ред. Г. Г. Рябова, в 2 томах, 1988.
  4. «С. А. Лебедев — творец отечественных ЭВМ». Институт точной механики и вычислительной техники им. С. А. Лебедева, сборник статей, 1990, 2002.

  5. Малиновский Б. Н. «История вычислительной техники в лицах». К.: фирма «КИТ», ПТОО «А. С. К.», 1995. ISBN 5-7707-6131-8.
  6. «Сергей Алексеевич Лебедев. К 100-летию со дня рождения основоположника отечественной электронной вычислительной техники». Под ред. В. С. Бурцева, М.: ФИЗМАТЛИТ, 2002.
  7. В. Б. Карпова, «История создания БЭСМ АН СССР», Международная конференция «Развитие вычислительной техники в России и странах бывшего СССР: история и перспективы», тезисы доклада, Петрозаводск, июль 2006.

Понравилась статья? Поделить с друзьями:
  • Phoenix point руководство
  • Боро плюс крем инструкция по применению фиолетовый от чего помогает
  • Прокуратура калининградской области официальный сайт руководство
  • Руководство по экватору
  • 151 руководство по составлению нормативного документа по качеству